Properties

Label 1150.4.b.j
Level $1150$
Weight $4$
Character orbit 1150.b
Analytic conductor $67.852$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(599,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.599");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{73})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 37x^{2} + 324 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 46)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta_{2} q^{2} + ( - \beta_{2} + \beta_1) q^{3} - 4 q^{4} + ( - 2 \beta_{3} + 4) q^{6} + (8 \beta_{2} + 4 \beta_1) q^{7} - 8 \beta_{2} q^{8} + (3 \beta_{3} + 5) q^{9} - 6 q^{11} + (4 \beta_{2} - 4 \beta_1) q^{12}+ \cdots + ( - 18 \beta_{3} - 30) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} + 12 q^{6} + 26 q^{9} - 24 q^{11} - 48 q^{14} + 64 q^{16} + 32 q^{19} - 256 q^{21} - 48 q^{24} - 204 q^{26} + 114 q^{29} - 34 q^{31} + 264 q^{34} - 104 q^{36} - 650 q^{39} + 746 q^{41} + 96 q^{44}+ \cdots - 156 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 37x^{2} + 324 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 19\nu ) / 18 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 19 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 19 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 18\beta_{2} - 19\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1150\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
599.1
3.77200i
4.77200i
4.77200i
3.77200i
2.00000i 2.77200i −4.00000 0 −5.54400 23.0880i 8.00000i 19.3160 0
599.2 2.00000i 5.77200i −4.00000 0 11.5440 11.0880i 8.00000i −6.31601 0
599.3 2.00000i 5.77200i −4.00000 0 11.5440 11.0880i 8.00000i −6.31601 0
599.4 2.00000i 2.77200i −4.00000 0 −5.54400 23.0880i 8.00000i 19.3160 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1150.4.b.j 4
5.b even 2 1 inner 1150.4.b.j 4
5.c odd 4 1 46.4.a.d 2
5.c odd 4 1 1150.4.a.j 2
15.e even 4 1 414.4.a.f 2
20.e even 4 1 368.4.a.f 2
35.f even 4 1 2254.4.a.f 2
40.i odd 4 1 1472.4.a.k 2
40.k even 4 1 1472.4.a.n 2
115.e even 4 1 1058.4.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
46.4.a.d 2 5.c odd 4 1
368.4.a.f 2 20.e even 4 1
414.4.a.f 2 15.e even 4 1
1058.4.a.j 2 115.e even 4 1
1150.4.a.j 2 5.c odd 4 1
1150.4.b.j 4 1.a even 1 1 trivial
1150.4.b.j 4 5.b even 2 1 inner
1472.4.a.k 2 40.i odd 4 1
1472.4.a.n 2 40.k even 4 1
2254.4.a.f 2 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1150, [\chi])\):

\( T_{3}^{4} + 41T_{3}^{2} + 256 \) Copy content Toggle raw display
\( T_{7}^{4} + 656T_{7}^{2} + 65536 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 41T^{2} + 256 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 656 T^{2} + 65536 \) Copy content Toggle raw display
$11$ \( (T + 6)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 5717 T^{2} + 2427364 \) Copy content Toggle raw display
$17$ \( T^{4} + 3492 T^{2} + 186624 \) Copy content Toggle raw display
$19$ \( (T^{2} - 16 T - 7236)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 529)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 57 T - 19062)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 17 T - 86816)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 73924 T^{2} + 247873536 \) Copy content Toggle raw display
$41$ \( (T^{2} - 373 T + 19434)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 9616548096 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 29951148096 \) Copy content Toggle raw display
$53$ \( T^{4} + 53956 T^{2} + 661929984 \) Copy content Toggle raw display
$59$ \( (T^{2} + 612 T + 27936)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 1062 T + 220568)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 14605205904 \) Copy content Toggle raw display
$71$ \( (T^{2} - 399 T + 31752)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 166070920324 \) Copy content Toggle raw display
$79$ \( (T^{2} + 122 T - 8616)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 644757609024 \) Copy content Toggle raw display
$89$ \( (T^{2} + 2046 T + 1040616)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 1352829524544 \) Copy content Toggle raw display
show more
show less