Properties

Label 1150.4.b.b.599.2
Level $1150$
Weight $4$
Character 1150.599
Analytic conductor $67.852$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(599,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.599");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1150.599
Dual form 1150.4.b.b.599.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} +7.00000i q^{3} -4.00000 q^{4} -14.0000 q^{6} -20.0000i q^{7} -8.00000i q^{8} -22.0000 q^{9} +6.00000 q^{11} -28.0000i q^{12} +47.0000i q^{13} +40.0000 q^{14} +16.0000 q^{16} +132.000i q^{17} -44.0000i q^{18} -146.000 q^{19} +140.000 q^{21} +12.0000i q^{22} +23.0000i q^{23} +56.0000 q^{24} -94.0000 q^{26} +35.0000i q^{27} +80.0000i q^{28} +99.0000 q^{29} -253.000 q^{31} +32.0000i q^{32} +42.0000i q^{33} -264.000 q^{34} +88.0000 q^{36} +118.000i q^{37} -292.000i q^{38} -329.000 q^{39} +495.000 q^{41} +280.000i q^{42} +272.000i q^{43} -24.0000 q^{44} -46.0000 q^{46} -639.000i q^{47} +112.000i q^{48} -57.0000 q^{49} -924.000 q^{51} -188.000i q^{52} -342.000i q^{53} -70.0000 q^{54} -160.000 q^{56} -1022.00i q^{57} +198.000i q^{58} -240.000 q^{59} -370.000 q^{61} -506.000i q^{62} +440.000i q^{63} -64.0000 q^{64} -84.0000 q^{66} -698.000i q^{67} -528.000i q^{68} -161.000 q^{69} -357.000 q^{71} +176.000i q^{72} -259.000i q^{73} -236.000 q^{74} +584.000 q^{76} -120.000i q^{77} -658.000i q^{78} -542.000 q^{79} -839.000 q^{81} +990.000i q^{82} -1248.00i q^{83} -560.000 q^{84} -544.000 q^{86} +693.000i q^{87} -48.0000i q^{88} +828.000 q^{89} +940.000 q^{91} -92.0000i q^{92} -1771.00i q^{93} +1278.00 q^{94} -224.000 q^{96} -992.000i q^{97} -114.000i q^{98} -132.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} - 28 q^{6} - 44 q^{9} + 12 q^{11} + 80 q^{14} + 32 q^{16} - 292 q^{19} + 280 q^{21} + 112 q^{24} - 188 q^{26} + 198 q^{29} - 506 q^{31} - 528 q^{34} + 176 q^{36} - 658 q^{39} + 990 q^{41}+ \cdots - 264 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1150\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 7.00000i 1.34715i 0.739119 + 0.673575i \(0.235242\pi\)
−0.739119 + 0.673575i \(0.764758\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) −14.0000 −0.952579
\(7\) − 20.0000i − 1.07990i −0.841698 0.539949i \(-0.818443\pi\)
0.841698 0.539949i \(-0.181557\pi\)
\(8\) − 8.00000i − 0.353553i
\(9\) −22.0000 −0.814815
\(10\) 0 0
\(11\) 6.00000 0.164461 0.0822304 0.996613i \(-0.473796\pi\)
0.0822304 + 0.996613i \(0.473796\pi\)
\(12\) − 28.0000i − 0.673575i
\(13\) 47.0000i 1.00273i 0.865237 + 0.501364i \(0.167168\pi\)
−0.865237 + 0.501364i \(0.832832\pi\)
\(14\) 40.0000 0.763604
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 132.000i 1.88322i 0.336709 + 0.941609i \(0.390686\pi\)
−0.336709 + 0.941609i \(0.609314\pi\)
\(18\) − 44.0000i − 0.576161i
\(19\) −146.000 −1.76288 −0.881439 0.472297i \(-0.843425\pi\)
−0.881439 + 0.472297i \(0.843425\pi\)
\(20\) 0 0
\(21\) 140.000 1.45479
\(22\) 12.0000i 0.116291i
\(23\) 23.0000i 0.208514i
\(24\) 56.0000 0.476290
\(25\) 0 0
\(26\) −94.0000 −0.709035
\(27\) 35.0000i 0.249472i
\(28\) 80.0000i 0.539949i
\(29\) 99.0000 0.633925 0.316963 0.948438i \(-0.397337\pi\)
0.316963 + 0.948438i \(0.397337\pi\)
\(30\) 0 0
\(31\) −253.000 −1.46581 −0.732906 0.680330i \(-0.761836\pi\)
−0.732906 + 0.680330i \(0.761836\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 42.0000i 0.221553i
\(34\) −264.000 −1.33164
\(35\) 0 0
\(36\) 88.0000 0.407407
\(37\) 118.000i 0.524299i 0.965027 + 0.262150i \(0.0844314\pi\)
−0.965027 + 0.262150i \(0.915569\pi\)
\(38\) − 292.000i − 1.24654i
\(39\) −329.000 −1.35082
\(40\) 0 0
\(41\) 495.000 1.88551 0.942756 0.333483i \(-0.108224\pi\)
0.942756 + 0.333483i \(0.108224\pi\)
\(42\) 280.000i 1.02869i
\(43\) 272.000i 0.964642i 0.875995 + 0.482321i \(0.160206\pi\)
−0.875995 + 0.482321i \(0.839794\pi\)
\(44\) −24.0000 −0.0822304
\(45\) 0 0
\(46\) −46.0000 −0.147442
\(47\) − 639.000i − 1.98314i −0.129560 0.991572i \(-0.541356\pi\)
0.129560 0.991572i \(-0.458644\pi\)
\(48\) 112.000i 0.336788i
\(49\) −57.0000 −0.166181
\(50\) 0 0
\(51\) −924.000 −2.53698
\(52\) − 188.000i − 0.501364i
\(53\) − 342.000i − 0.886364i −0.896432 0.443182i \(-0.853849\pi\)
0.896432 0.443182i \(-0.146151\pi\)
\(54\) −70.0000 −0.176404
\(55\) 0 0
\(56\) −160.000 −0.381802
\(57\) − 1022.00i − 2.37486i
\(58\) 198.000i 0.448253i
\(59\) −240.000 −0.529582 −0.264791 0.964306i \(-0.585303\pi\)
−0.264791 + 0.964306i \(0.585303\pi\)
\(60\) 0 0
\(61\) −370.000 −0.776617 −0.388309 0.921529i \(-0.626941\pi\)
−0.388309 + 0.921529i \(0.626941\pi\)
\(62\) − 506.000i − 1.03648i
\(63\) 440.000i 0.879917i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −84.0000 −0.156662
\(67\) − 698.000i − 1.27275i −0.771380 0.636375i \(-0.780433\pi\)
0.771380 0.636375i \(-0.219567\pi\)
\(68\) − 528.000i − 0.941609i
\(69\) −161.000 −0.280900
\(70\) 0 0
\(71\) −357.000 −0.596734 −0.298367 0.954451i \(-0.596442\pi\)
−0.298367 + 0.954451i \(0.596442\pi\)
\(72\) 176.000i 0.288081i
\(73\) − 259.000i − 0.415256i −0.978208 0.207628i \(-0.933426\pi\)
0.978208 0.207628i \(-0.0665743\pi\)
\(74\) −236.000 −0.370736
\(75\) 0 0
\(76\) 584.000 0.881439
\(77\) − 120.000i − 0.177601i
\(78\) − 658.000i − 0.955177i
\(79\) −542.000 −0.771896 −0.385948 0.922521i \(-0.626126\pi\)
−0.385948 + 0.922521i \(0.626126\pi\)
\(80\) 0 0
\(81\) −839.000 −1.15089
\(82\) 990.000i 1.33326i
\(83\) − 1248.00i − 1.65043i −0.564818 0.825216i \(-0.691054\pi\)
0.564818 0.825216i \(-0.308946\pi\)
\(84\) −560.000 −0.727393
\(85\) 0 0
\(86\) −544.000 −0.682105
\(87\) 693.000i 0.853993i
\(88\) − 48.0000i − 0.0581456i
\(89\) 828.000 0.986155 0.493078 0.869985i \(-0.335872\pi\)
0.493078 + 0.869985i \(0.335872\pi\)
\(90\) 0 0
\(91\) 940.000 1.08284
\(92\) − 92.0000i − 0.104257i
\(93\) − 1771.00i − 1.97467i
\(94\) 1278.00 1.40229
\(95\) 0 0
\(96\) −224.000 −0.238145
\(97\) − 992.000i − 1.03837i −0.854660 0.519187i \(-0.826235\pi\)
0.854660 0.519187i \(-0.173765\pi\)
\(98\) − 114.000i − 0.117508i
\(99\) −132.000 −0.134005
\(100\) 0 0
\(101\) −1542.00 −1.51916 −0.759578 0.650416i \(-0.774594\pi\)
−0.759578 + 0.650416i \(0.774594\pi\)
\(102\) − 1848.00i − 1.79391i
\(103\) 32.0000i 0.0306122i 0.999883 + 0.0153061i \(0.00487227\pi\)
−0.999883 + 0.0153061i \(0.995128\pi\)
\(104\) 376.000 0.354518
\(105\) 0 0
\(106\) 684.000 0.626754
\(107\) 834.000i 0.753512i 0.926312 + 0.376756i \(0.122961\pi\)
−0.926312 + 0.376756i \(0.877039\pi\)
\(108\) − 140.000i − 0.124736i
\(109\) 1192.00 1.04746 0.523729 0.851885i \(-0.324540\pi\)
0.523729 + 0.851885i \(0.324540\pi\)
\(110\) 0 0
\(111\) −826.000 −0.706310
\(112\) − 320.000i − 0.269975i
\(113\) − 132.000i − 0.109890i −0.998489 0.0549448i \(-0.982502\pi\)
0.998489 0.0549448i \(-0.0174983\pi\)
\(114\) 2044.00 1.67928
\(115\) 0 0
\(116\) −396.000 −0.316963
\(117\) − 1034.00i − 0.817037i
\(118\) − 480.000i − 0.374471i
\(119\) 2640.00 2.03368
\(120\) 0 0
\(121\) −1295.00 −0.972953
\(122\) − 740.000i − 0.549151i
\(123\) 3465.00i 2.54007i
\(124\) 1012.00 0.732906
\(125\) 0 0
\(126\) −880.000 −0.622195
\(127\) − 89.0000i − 0.0621848i −0.999517 0.0310924i \(-0.990101\pi\)
0.999517 0.0310924i \(-0.00989862\pi\)
\(128\) − 128.000i − 0.0883883i
\(129\) −1904.00 −1.29952
\(130\) 0 0
\(131\) −1797.00 −1.19851 −0.599254 0.800559i \(-0.704536\pi\)
−0.599254 + 0.800559i \(0.704536\pi\)
\(132\) − 168.000i − 0.110777i
\(133\) 2920.00i 1.90373i
\(134\) 1396.00 0.899970
\(135\) 0 0
\(136\) 1056.00 0.665818
\(137\) 1836.00i 1.14496i 0.819917 + 0.572482i \(0.194019\pi\)
−0.819917 + 0.572482i \(0.805981\pi\)
\(138\) − 322.000i − 0.198627i
\(139\) 1027.00 0.626683 0.313342 0.949640i \(-0.398551\pi\)
0.313342 + 0.949640i \(0.398551\pi\)
\(140\) 0 0
\(141\) 4473.00 2.67159
\(142\) − 714.000i − 0.421955i
\(143\) 282.000i 0.164909i
\(144\) −352.000 −0.203704
\(145\) 0 0
\(146\) 518.000 0.293630
\(147\) − 399.000i − 0.223871i
\(148\) − 472.000i − 0.262150i
\(149\) −2310.00 −1.27008 −0.635042 0.772477i \(-0.719017\pi\)
−0.635042 + 0.772477i \(0.719017\pi\)
\(150\) 0 0
\(151\) −2149.00 −1.15817 −0.579083 0.815268i \(-0.696589\pi\)
−0.579083 + 0.815268i \(0.696589\pi\)
\(152\) 1168.00i 0.623272i
\(153\) − 2904.00i − 1.53447i
\(154\) 240.000 0.125583
\(155\) 0 0
\(156\) 1316.00 0.675412
\(157\) − 1832.00i − 0.931271i −0.884977 0.465635i \(-0.845826\pi\)
0.884977 0.465635i \(-0.154174\pi\)
\(158\) − 1084.00i − 0.545813i
\(159\) 2394.00 1.19407
\(160\) 0 0
\(161\) 460.000 0.225174
\(162\) − 1678.00i − 0.813803i
\(163\) 1217.00i 0.584802i 0.956296 + 0.292401i \(0.0944543\pi\)
−0.956296 + 0.292401i \(0.905546\pi\)
\(164\) −1980.00 −0.942756
\(165\) 0 0
\(166\) 2496.00 1.16703
\(167\) − 3048.00i − 1.41234i −0.708041 0.706172i \(-0.750421\pi\)
0.708041 0.706172i \(-0.249579\pi\)
\(168\) − 1120.00i − 0.514344i
\(169\) −12.0000 −0.00546199
\(170\) 0 0
\(171\) 3212.00 1.43642
\(172\) − 1088.00i − 0.482321i
\(173\) 774.000i 0.340151i 0.985431 + 0.170076i \(0.0544012\pi\)
−0.985431 + 0.170076i \(0.945599\pi\)
\(174\) −1386.00 −0.603864
\(175\) 0 0
\(176\) 96.0000 0.0411152
\(177\) − 1680.00i − 0.713427i
\(178\) 1656.00i 0.697317i
\(179\) 1875.00 0.782928 0.391464 0.920193i \(-0.371969\pi\)
0.391464 + 0.920193i \(0.371969\pi\)
\(180\) 0 0
\(181\) −1606.00 −0.659520 −0.329760 0.944065i \(-0.606968\pi\)
−0.329760 + 0.944065i \(0.606968\pi\)
\(182\) 1880.00i 0.765686i
\(183\) − 2590.00i − 1.04622i
\(184\) 184.000 0.0737210
\(185\) 0 0
\(186\) 3542.00 1.39630
\(187\) 792.000i 0.309715i
\(188\) 2556.00i 0.991572i
\(189\) 700.000 0.269405
\(190\) 0 0
\(191\) 2982.00 1.12969 0.564843 0.825199i \(-0.308937\pi\)
0.564843 + 0.825199i \(0.308937\pi\)
\(192\) − 448.000i − 0.168394i
\(193\) 1385.00i 0.516552i 0.966071 + 0.258276i \(0.0831543\pi\)
−0.966071 + 0.258276i \(0.916846\pi\)
\(194\) 1984.00 0.734242
\(195\) 0 0
\(196\) 228.000 0.0830904
\(197\) − 957.000i − 0.346109i −0.984912 0.173054i \(-0.944636\pi\)
0.984912 0.173054i \(-0.0553636\pi\)
\(198\) − 264.000i − 0.0947559i
\(199\) 358.000 0.127527 0.0637637 0.997965i \(-0.479690\pi\)
0.0637637 + 0.997965i \(0.479690\pi\)
\(200\) 0 0
\(201\) 4886.00 1.71459
\(202\) − 3084.00i − 1.07421i
\(203\) − 1980.00i − 0.684575i
\(204\) 3696.00 1.26849
\(205\) 0 0
\(206\) −64.0000 −0.0216461
\(207\) − 506.000i − 0.169901i
\(208\) 752.000i 0.250682i
\(209\) −876.000 −0.289924
\(210\) 0 0
\(211\) −5380.00 −1.75533 −0.877665 0.479275i \(-0.840900\pi\)
−0.877665 + 0.479275i \(0.840900\pi\)
\(212\) 1368.00i 0.443182i
\(213\) − 2499.00i − 0.803890i
\(214\) −1668.00 −0.532814
\(215\) 0 0
\(216\) 280.000 0.0882018
\(217\) 5060.00i 1.58293i
\(218\) 2384.00i 0.740664i
\(219\) 1813.00 0.559412
\(220\) 0 0
\(221\) −6204.00 −1.88835
\(222\) − 1652.00i − 0.499437i
\(223\) 1040.00i 0.312303i 0.987733 + 0.156151i \(0.0499088\pi\)
−0.987733 + 0.156151i \(0.950091\pi\)
\(224\) 640.000 0.190901
\(225\) 0 0
\(226\) 264.000 0.0777036
\(227\) 3744.00i 1.09470i 0.836902 + 0.547352i \(0.184364\pi\)
−0.836902 + 0.547352i \(0.815636\pi\)
\(228\) 4088.00i 1.18743i
\(229\) −2804.00 −0.809142 −0.404571 0.914507i \(-0.632579\pi\)
−0.404571 + 0.914507i \(0.632579\pi\)
\(230\) 0 0
\(231\) 840.000 0.239255
\(232\) − 792.000i − 0.224126i
\(233\) − 4869.00i − 1.36901i −0.729009 0.684504i \(-0.760019\pi\)
0.729009 0.684504i \(-0.239981\pi\)
\(234\) 2068.00 0.577732
\(235\) 0 0
\(236\) 960.000 0.264791
\(237\) − 3794.00i − 1.03986i
\(238\) 5280.00i 1.43803i
\(239\) 2877.00 0.778651 0.389326 0.921100i \(-0.372708\pi\)
0.389326 + 0.921100i \(0.372708\pi\)
\(240\) 0 0
\(241\) 1622.00 0.433536 0.216768 0.976223i \(-0.430448\pi\)
0.216768 + 0.976223i \(0.430448\pi\)
\(242\) − 2590.00i − 0.687981i
\(243\) − 4928.00i − 1.30095i
\(244\) 1480.00 0.388309
\(245\) 0 0
\(246\) −6930.00 −1.79610
\(247\) − 6862.00i − 1.76769i
\(248\) 2024.00i 0.518242i
\(249\) 8736.00 2.22338
\(250\) 0 0
\(251\) −4752.00 −1.19499 −0.597497 0.801871i \(-0.703838\pi\)
−0.597497 + 0.801871i \(0.703838\pi\)
\(252\) − 1760.00i − 0.439959i
\(253\) 138.000i 0.0342924i
\(254\) 178.000 0.0439713
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 5073.00i 1.23130i 0.788018 + 0.615652i \(0.211107\pi\)
−0.788018 + 0.615652i \(0.788893\pi\)
\(258\) − 3808.00i − 0.918898i
\(259\) 2360.00 0.566190
\(260\) 0 0
\(261\) −2178.00 −0.516532
\(262\) − 3594.00i − 0.847474i
\(263\) 1314.00i 0.308079i 0.988065 + 0.154039i \(0.0492283\pi\)
−0.988065 + 0.154039i \(0.950772\pi\)
\(264\) 336.000 0.0783309
\(265\) 0 0
\(266\) −5840.00 −1.34614
\(267\) 5796.00i 1.32850i
\(268\) 2792.00i 0.636375i
\(269\) −5265.00 −1.19336 −0.596678 0.802481i \(-0.703513\pi\)
−0.596678 + 0.802481i \(0.703513\pi\)
\(270\) 0 0
\(271\) −2488.00 −0.557695 −0.278847 0.960335i \(-0.589952\pi\)
−0.278847 + 0.960335i \(0.589952\pi\)
\(272\) 2112.00i 0.470804i
\(273\) 6580.00i 1.45875i
\(274\) −3672.00 −0.809612
\(275\) 0 0
\(276\) 644.000 0.140450
\(277\) − 5465.00i − 1.18542i −0.805418 0.592708i \(-0.798059\pi\)
0.805418 0.592708i \(-0.201941\pi\)
\(278\) 2054.00i 0.443132i
\(279\) 5566.00 1.19436
\(280\) 0 0
\(281\) 8940.00 1.89792 0.948960 0.315396i \(-0.102137\pi\)
0.948960 + 0.315396i \(0.102137\pi\)
\(282\) 8946.00i 1.88910i
\(283\) 842.000i 0.176861i 0.996082 + 0.0884306i \(0.0281851\pi\)
−0.996082 + 0.0884306i \(0.971815\pi\)
\(284\) 1428.00 0.298367
\(285\) 0 0
\(286\) −564.000 −0.116608
\(287\) − 9900.00i − 2.03616i
\(288\) − 704.000i − 0.144040i
\(289\) −12511.0 −2.54651
\(290\) 0 0
\(291\) 6944.00 1.39885
\(292\) 1036.00i 0.207628i
\(293\) − 4032.00i − 0.803932i −0.915655 0.401966i \(-0.868327\pi\)
0.915655 0.401966i \(-0.131673\pi\)
\(294\) 798.000 0.158300
\(295\) 0 0
\(296\) 944.000 0.185368
\(297\) 210.000i 0.0410284i
\(298\) − 4620.00i − 0.898085i
\(299\) −1081.00 −0.209083
\(300\) 0 0
\(301\) 5440.00 1.04172
\(302\) − 4298.00i − 0.818947i
\(303\) − 10794.0i − 2.04653i
\(304\) −2336.00 −0.440720
\(305\) 0 0
\(306\) 5808.00 1.08504
\(307\) 1096.00i 0.203753i 0.994797 + 0.101876i \(0.0324846\pi\)
−0.994797 + 0.101876i \(0.967515\pi\)
\(308\) 480.000i 0.0888004i
\(309\) −224.000 −0.0412392
\(310\) 0 0
\(311\) −4653.00 −0.848384 −0.424192 0.905572i \(-0.639442\pi\)
−0.424192 + 0.905572i \(0.639442\pi\)
\(312\) 2632.00i 0.477589i
\(313\) 3440.00i 0.621215i 0.950538 + 0.310608i \(0.100532\pi\)
−0.950538 + 0.310608i \(0.899468\pi\)
\(314\) 3664.00 0.658508
\(315\) 0 0
\(316\) 2168.00 0.385948
\(317\) − 3066.00i − 0.543229i −0.962406 0.271615i \(-0.912442\pi\)
0.962406 0.271615i \(-0.0875576\pi\)
\(318\) 4788.00i 0.844332i
\(319\) 594.000 0.104256
\(320\) 0 0
\(321\) −5838.00 −1.01509
\(322\) 920.000i 0.159222i
\(323\) − 19272.0i − 3.31988i
\(324\) 3356.00 0.575446
\(325\) 0 0
\(326\) −2434.00 −0.413518
\(327\) 8344.00i 1.41108i
\(328\) − 3960.00i − 0.666629i
\(329\) −12780.0 −2.14159
\(330\) 0 0
\(331\) 1505.00 0.249916 0.124958 0.992162i \(-0.460120\pi\)
0.124958 + 0.992162i \(0.460120\pi\)
\(332\) 4992.00i 0.825216i
\(333\) − 2596.00i − 0.427207i
\(334\) 6096.00 0.998677
\(335\) 0 0
\(336\) 2240.00 0.363696
\(337\) 3268.00i 0.528247i 0.964489 + 0.264124i \(0.0850827\pi\)
−0.964489 + 0.264124i \(0.914917\pi\)
\(338\) − 24.0000i − 0.00386221i
\(339\) 924.000 0.148038
\(340\) 0 0
\(341\) −1518.00 −0.241068
\(342\) 6424.00i 1.01570i
\(343\) − 5720.00i − 0.900440i
\(344\) 2176.00 0.341052
\(345\) 0 0
\(346\) −1548.00 −0.240523
\(347\) − 4164.00i − 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) − 2772.00i − 0.426997i
\(349\) 2911.00 0.446482 0.223241 0.974763i \(-0.428336\pi\)
0.223241 + 0.974763i \(0.428336\pi\)
\(350\) 0 0
\(351\) −1645.00 −0.250153
\(352\) 192.000i 0.0290728i
\(353\) 9753.00i 1.47054i 0.677776 + 0.735269i \(0.262944\pi\)
−0.677776 + 0.735269i \(0.737056\pi\)
\(354\) 3360.00 0.504469
\(355\) 0 0
\(356\) −3312.00 −0.493078
\(357\) 18480.0i 2.73968i
\(358\) 3750.00i 0.553614i
\(359\) −3858.00 −0.567180 −0.283590 0.958946i \(-0.591525\pi\)
−0.283590 + 0.958946i \(0.591525\pi\)
\(360\) 0 0
\(361\) 14457.0 2.10774
\(362\) − 3212.00i − 0.466351i
\(363\) − 9065.00i − 1.31071i
\(364\) −3760.00 −0.541422
\(365\) 0 0
\(366\) 5180.00 0.739789
\(367\) − 7856.00i − 1.11738i −0.829375 0.558692i \(-0.811303\pi\)
0.829375 0.558692i \(-0.188697\pi\)
\(368\) 368.000i 0.0521286i
\(369\) −10890.0 −1.53634
\(370\) 0 0
\(371\) −6840.00 −0.957184
\(372\) 7084.00i 0.987334i
\(373\) − 34.0000i − 0.00471971i −0.999997 0.00235986i \(-0.999249\pi\)
0.999997 0.00235986i \(-0.000751166\pi\)
\(374\) −1584.00 −0.219002
\(375\) 0 0
\(376\) −5112.00 −0.701147
\(377\) 4653.00i 0.635654i
\(378\) 1400.00i 0.190498i
\(379\) 6064.00 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 623.000 0.0837723
\(382\) 5964.00i 0.798808i
\(383\) 11868.0i 1.58336i 0.610937 + 0.791679i \(0.290793\pi\)
−0.610937 + 0.791679i \(0.709207\pi\)
\(384\) 896.000 0.119072
\(385\) 0 0
\(386\) −2770.00 −0.365257
\(387\) − 5984.00i − 0.786005i
\(388\) 3968.00i 0.519187i
\(389\) −8616.00 −1.12300 −0.561502 0.827475i \(-0.689776\pi\)
−0.561502 + 0.827475i \(0.689776\pi\)
\(390\) 0 0
\(391\) −3036.00 −0.392678
\(392\) 456.000i 0.0587538i
\(393\) − 12579.0i − 1.61457i
\(394\) 1914.00 0.244736
\(395\) 0 0
\(396\) 528.000 0.0670025
\(397\) − 3119.00i − 0.394303i −0.980373 0.197151i \(-0.936831\pi\)
0.980373 0.197151i \(-0.0631690\pi\)
\(398\) 716.000i 0.0901755i
\(399\) −20440.0 −2.56461
\(400\) 0 0
\(401\) 7986.00 0.994518 0.497259 0.867602i \(-0.334340\pi\)
0.497259 + 0.867602i \(0.334340\pi\)
\(402\) 9772.00i 1.21240i
\(403\) − 11891.0i − 1.46981i
\(404\) 6168.00 0.759578
\(405\) 0 0
\(406\) 3960.00 0.484068
\(407\) 708.000i 0.0862267i
\(408\) 7392.00i 0.896957i
\(409\) 3475.00 0.420117 0.210058 0.977689i \(-0.432635\pi\)
0.210058 + 0.977689i \(0.432635\pi\)
\(410\) 0 0
\(411\) −12852.0 −1.54244
\(412\) − 128.000i − 0.0153061i
\(413\) 4800.00i 0.571895i
\(414\) 1012.00 0.120138
\(415\) 0 0
\(416\) −1504.00 −0.177259
\(417\) 7189.00i 0.844237i
\(418\) − 1752.00i − 0.205007i
\(419\) −10992.0 −1.28161 −0.640805 0.767704i \(-0.721399\pi\)
−0.640805 + 0.767704i \(0.721399\pi\)
\(420\) 0 0
\(421\) 2012.00 0.232919 0.116459 0.993195i \(-0.462845\pi\)
0.116459 + 0.993195i \(0.462845\pi\)
\(422\) − 10760.0i − 1.24121i
\(423\) 14058.0i 1.61589i
\(424\) −2736.00 −0.313377
\(425\) 0 0
\(426\) 4998.00 0.568436
\(427\) 7400.00i 0.838668i
\(428\) − 3336.00i − 0.376756i
\(429\) −1974.00 −0.222158
\(430\) 0 0
\(431\) −9792.00 −1.09435 −0.547174 0.837019i \(-0.684296\pi\)
−0.547174 + 0.837019i \(0.684296\pi\)
\(432\) 560.000i 0.0623681i
\(433\) 5786.00i 0.642165i 0.947051 + 0.321082i \(0.104047\pi\)
−0.947051 + 0.321082i \(0.895953\pi\)
\(434\) −10120.0 −1.11930
\(435\) 0 0
\(436\) −4768.00 −0.523729
\(437\) − 3358.00i − 0.367586i
\(438\) 3626.00i 0.395564i
\(439\) −2549.00 −0.277123 −0.138562 0.990354i \(-0.544248\pi\)
−0.138562 + 0.990354i \(0.544248\pi\)
\(440\) 0 0
\(441\) 1254.00 0.135407
\(442\) − 12408.0i − 1.33527i
\(443\) 1311.00i 0.140604i 0.997526 + 0.0703019i \(0.0223963\pi\)
−0.997526 + 0.0703019i \(0.977604\pi\)
\(444\) 3304.00 0.353155
\(445\) 0 0
\(446\) −2080.00 −0.220832
\(447\) − 16170.0i − 1.71099i
\(448\) 1280.00i 0.134987i
\(449\) 14610.0 1.53561 0.767805 0.640684i \(-0.221349\pi\)
0.767805 + 0.640684i \(0.221349\pi\)
\(450\) 0 0
\(451\) 2970.00 0.310093
\(452\) 528.000i 0.0549448i
\(453\) − 15043.0i − 1.56022i
\(454\) −7488.00 −0.774073
\(455\) 0 0
\(456\) −8176.00 −0.839641
\(457\) − 80.0000i − 0.00818871i −0.999992 0.00409436i \(-0.998697\pi\)
0.999992 0.00409436i \(-0.00130328\pi\)
\(458\) − 5608.00i − 0.572150i
\(459\) −4620.00 −0.469811
\(460\) 0 0
\(461\) −2343.00 −0.236712 −0.118356 0.992971i \(-0.537762\pi\)
−0.118356 + 0.992971i \(0.537762\pi\)
\(462\) 1680.00i 0.169179i
\(463\) − 3400.00i − 0.341277i −0.985334 0.170639i \(-0.945417\pi\)
0.985334 0.170639i \(-0.0545831\pi\)
\(464\) 1584.00 0.158481
\(465\) 0 0
\(466\) 9738.00 0.968035
\(467\) 1374.00i 0.136148i 0.997680 + 0.0680740i \(0.0216854\pi\)
−0.997680 + 0.0680740i \(0.978315\pi\)
\(468\) 4136.00i 0.408519i
\(469\) −13960.0 −1.37444
\(470\) 0 0
\(471\) 12824.0 1.25456
\(472\) 1920.00i 0.187236i
\(473\) 1632.00i 0.158646i
\(474\) 7588.00 0.735292
\(475\) 0 0
\(476\) −10560.0 −1.01684
\(477\) 7524.00i 0.722223i
\(478\) 5754.00i 0.550590i
\(479\) −4536.00 −0.432683 −0.216341 0.976318i \(-0.569412\pi\)
−0.216341 + 0.976318i \(0.569412\pi\)
\(480\) 0 0
\(481\) −5546.00 −0.525729
\(482\) 3244.00i 0.306556i
\(483\) 3220.00i 0.303344i
\(484\) 5180.00 0.486476
\(485\) 0 0
\(486\) 9856.00 0.919912
\(487\) 11455.0i 1.06586i 0.846158 + 0.532932i \(0.178910\pi\)
−0.846158 + 0.532932i \(0.821090\pi\)
\(488\) 2960.00i 0.274576i
\(489\) −8519.00 −0.787817
\(490\) 0 0
\(491\) −10395.0 −0.955437 −0.477719 0.878513i \(-0.658536\pi\)
−0.477719 + 0.878513i \(0.658536\pi\)
\(492\) − 13860.0i − 1.27003i
\(493\) 13068.0i 1.19382i
\(494\) 13724.0 1.24994
\(495\) 0 0
\(496\) −4048.00 −0.366453
\(497\) 7140.00i 0.644412i
\(498\) 17472.0i 1.57217i
\(499\) 5497.00 0.493145 0.246573 0.969124i \(-0.420696\pi\)
0.246573 + 0.969124i \(0.420696\pi\)
\(500\) 0 0
\(501\) 21336.0 1.90264
\(502\) − 9504.00i − 0.844989i
\(503\) 7158.00i 0.634512i 0.948340 + 0.317256i \(0.102761\pi\)
−0.948340 + 0.317256i \(0.897239\pi\)
\(504\) 3520.00 0.311098
\(505\) 0 0
\(506\) −276.000 −0.0242484
\(507\) − 84.0000i − 0.00735813i
\(508\) 356.000i 0.0310924i
\(509\) −12801.0 −1.11472 −0.557362 0.830270i \(-0.688186\pi\)
−0.557362 + 0.830270i \(0.688186\pi\)
\(510\) 0 0
\(511\) −5180.00 −0.448434
\(512\) 512.000i 0.0441942i
\(513\) − 5110.00i − 0.439789i
\(514\) −10146.0 −0.870663
\(515\) 0 0
\(516\) 7616.00 0.649759
\(517\) − 3834.00i − 0.326149i
\(518\) 4720.00i 0.400357i
\(519\) −5418.00 −0.458235
\(520\) 0 0
\(521\) 16788.0 1.41170 0.705850 0.708361i \(-0.250565\pi\)
0.705850 + 0.708361i \(0.250565\pi\)
\(522\) − 4356.00i − 0.365243i
\(523\) 19040.0i 1.59189i 0.605366 + 0.795947i \(0.293027\pi\)
−0.605366 + 0.795947i \(0.706973\pi\)
\(524\) 7188.00 0.599254
\(525\) 0 0
\(526\) −2628.00 −0.217845
\(527\) − 33396.0i − 2.76044i
\(528\) 672.000i 0.0553883i
\(529\) −529.000 −0.0434783
\(530\) 0 0
\(531\) 5280.00 0.431511
\(532\) − 11680.0i − 0.951865i
\(533\) 23265.0i 1.89065i
\(534\) −11592.0 −0.939391
\(535\) 0 0
\(536\) −5584.00 −0.449985
\(537\) 13125.0i 1.05472i
\(538\) − 10530.0i − 0.843830i
\(539\) −342.000 −0.0273302
\(540\) 0 0
\(541\) −13339.0 −1.06005 −0.530026 0.847981i \(-0.677818\pi\)
−0.530026 + 0.847981i \(0.677818\pi\)
\(542\) − 4976.00i − 0.394350i
\(543\) − 11242.0i − 0.888472i
\(544\) −4224.00 −0.332909
\(545\) 0 0
\(546\) −13160.0 −1.03149
\(547\) 22975.0i 1.79587i 0.440130 + 0.897934i \(0.354932\pi\)
−0.440130 + 0.897934i \(0.645068\pi\)
\(548\) − 7344.00i − 0.572482i
\(549\) 8140.00 0.632799
\(550\) 0 0
\(551\) −14454.0 −1.11753
\(552\) 1288.00i 0.0993133i
\(553\) 10840.0i 0.833569i
\(554\) 10930.0 0.838215
\(555\) 0 0
\(556\) −4108.00 −0.313342
\(557\) 17964.0i 1.36653i 0.730169 + 0.683267i \(0.239441\pi\)
−0.730169 + 0.683267i \(0.760559\pi\)
\(558\) 11132.0i 0.844543i
\(559\) −12784.0 −0.967273
\(560\) 0 0
\(561\) −5544.00 −0.417233
\(562\) 17880.0i 1.34203i
\(563\) 12636.0i 0.945904i 0.881088 + 0.472952i \(0.156812\pi\)
−0.881088 + 0.472952i \(0.843188\pi\)
\(564\) −17892.0 −1.33580
\(565\) 0 0
\(566\) −1684.00 −0.125060
\(567\) 16780.0i 1.24285i
\(568\) 2856.00i 0.210977i
\(569\) 10302.0 0.759020 0.379510 0.925188i \(-0.376093\pi\)
0.379510 + 0.925188i \(0.376093\pi\)
\(570\) 0 0
\(571\) 12380.0 0.907333 0.453666 0.891172i \(-0.350116\pi\)
0.453666 + 0.891172i \(0.350116\pi\)
\(572\) − 1128.00i − 0.0824546i
\(573\) 20874.0i 1.52186i
\(574\) 19800.0 1.43978
\(575\) 0 0
\(576\) 1408.00 0.101852
\(577\) − 1913.00i − 0.138023i −0.997616 0.0690115i \(-0.978015\pi\)
0.997616 0.0690115i \(-0.0219845\pi\)
\(578\) − 25022.0i − 1.80065i
\(579\) −9695.00 −0.695873
\(580\) 0 0
\(581\) −24960.0 −1.78230
\(582\) 13888.0i 0.989134i
\(583\) − 2052.00i − 0.145772i
\(584\) −2072.00 −0.146815
\(585\) 0 0
\(586\) 8064.00 0.568465
\(587\) − 16767.0i − 1.17896i −0.807784 0.589479i \(-0.799333\pi\)
0.807784 0.589479i \(-0.200667\pi\)
\(588\) 1596.00i 0.111935i
\(589\) 36938.0 2.58405
\(590\) 0 0
\(591\) 6699.00 0.466261
\(592\) 1888.00i 0.131075i
\(593\) − 16722.0i − 1.15799i −0.815330 0.578997i \(-0.803444\pi\)
0.815330 0.578997i \(-0.196556\pi\)
\(594\) −420.000 −0.0290115
\(595\) 0 0
\(596\) 9240.00 0.635042
\(597\) 2506.00i 0.171799i
\(598\) − 2162.00i − 0.147844i
\(599\) 4200.00 0.286490 0.143245 0.989687i \(-0.454246\pi\)
0.143245 + 0.989687i \(0.454246\pi\)
\(600\) 0 0
\(601\) −19915.0 −1.35166 −0.675832 0.737056i \(-0.736215\pi\)
−0.675832 + 0.737056i \(0.736215\pi\)
\(602\) 10880.0i 0.736604i
\(603\) 15356.0i 1.03706i
\(604\) 8596.00 0.579083
\(605\) 0 0
\(606\) 21588.0 1.44712
\(607\) − 24044.0i − 1.60777i −0.594785 0.803885i \(-0.702763\pi\)
0.594785 0.803885i \(-0.297237\pi\)
\(608\) − 4672.00i − 0.311636i
\(609\) 13860.0 0.922226
\(610\) 0 0
\(611\) 30033.0 1.98855
\(612\) 11616.0i 0.767237i
\(613\) 3452.00i 0.227447i 0.993512 + 0.113723i \(0.0362778\pi\)
−0.993512 + 0.113723i \(0.963722\pi\)
\(614\) −2192.00 −0.144075
\(615\) 0 0
\(616\) −960.000 −0.0627914
\(617\) 16374.0i 1.06838i 0.845363 + 0.534192i \(0.179384\pi\)
−0.845363 + 0.534192i \(0.820616\pi\)
\(618\) − 448.000i − 0.0291605i
\(619\) 12760.0 0.828542 0.414271 0.910154i \(-0.364037\pi\)
0.414271 + 0.910154i \(0.364037\pi\)
\(620\) 0 0
\(621\) −805.000 −0.0520186
\(622\) − 9306.00i − 0.599898i
\(623\) − 16560.0i − 1.06495i
\(624\) −5264.00 −0.337706
\(625\) 0 0
\(626\) −6880.00 −0.439265
\(627\) − 6132.00i − 0.390572i
\(628\) 7328.00i 0.465635i
\(629\) −15576.0 −0.987370
\(630\) 0 0
\(631\) 29420.0 1.85609 0.928044 0.372470i \(-0.121489\pi\)
0.928044 + 0.372470i \(0.121489\pi\)
\(632\) 4336.00i 0.272906i
\(633\) − 37660.0i − 2.36469i
\(634\) 6132.00 0.384121
\(635\) 0 0
\(636\) −9576.00 −0.597033
\(637\) − 2679.00i − 0.166634i
\(638\) 1188.00i 0.0737200i
\(639\) 7854.00 0.486228
\(640\) 0 0
\(641\) −13692.0 −0.843684 −0.421842 0.906669i \(-0.638616\pi\)
−0.421842 + 0.906669i \(0.638616\pi\)
\(642\) − 11676.0i − 0.717780i
\(643\) 27398.0i 1.68036i 0.542307 + 0.840180i \(0.317551\pi\)
−0.542307 + 0.840180i \(0.682449\pi\)
\(644\) −1840.00 −0.112587
\(645\) 0 0
\(646\) 38544.0 2.34751
\(647\) 6417.00i 0.389920i 0.980811 + 0.194960i \(0.0624577\pi\)
−0.980811 + 0.194960i \(0.937542\pi\)
\(648\) 6712.00i 0.406902i
\(649\) −1440.00 −0.0870954
\(650\) 0 0
\(651\) −35420.0 −2.13244
\(652\) − 4868.00i − 0.292401i
\(653\) 14583.0i 0.873931i 0.899478 + 0.436965i \(0.143947\pi\)
−0.899478 + 0.436965i \(0.856053\pi\)
\(654\) −16688.0 −0.997787
\(655\) 0 0
\(656\) 7920.00 0.471378
\(657\) 5698.00i 0.338356i
\(658\) − 25560.0i − 1.51434i
\(659\) 9624.00 0.568889 0.284444 0.958693i \(-0.408191\pi\)
0.284444 + 0.958693i \(0.408191\pi\)
\(660\) 0 0
\(661\) −24586.0 −1.44672 −0.723362 0.690469i \(-0.757404\pi\)
−0.723362 + 0.690469i \(0.757404\pi\)
\(662\) 3010.00i 0.176717i
\(663\) − 43428.0i − 2.54390i
\(664\) −9984.00 −0.583516
\(665\) 0 0
\(666\) 5192.00 0.302081
\(667\) 2277.00i 0.132183i
\(668\) 12192.0i 0.706172i
\(669\) −7280.00 −0.420719
\(670\) 0 0
\(671\) −2220.00 −0.127723
\(672\) 4480.00i 0.257172i
\(673\) 14339.0i 0.821289i 0.911795 + 0.410645i \(0.134696\pi\)
−0.911795 + 0.410645i \(0.865304\pi\)
\(674\) −6536.00 −0.373527
\(675\) 0 0
\(676\) 48.0000 0.00273100
\(677\) − 14658.0i − 0.832131i −0.909335 0.416066i \(-0.863409\pi\)
0.909335 0.416066i \(-0.136591\pi\)
\(678\) 1848.00i 0.104678i
\(679\) −19840.0 −1.12134
\(680\) 0 0
\(681\) −26208.0 −1.47473
\(682\) − 3036.00i − 0.170461i
\(683\) 16797.0i 0.941024i 0.882394 + 0.470512i \(0.155931\pi\)
−0.882394 + 0.470512i \(0.844069\pi\)
\(684\) −12848.0 −0.718210
\(685\) 0 0
\(686\) 11440.0 0.636707
\(687\) − 19628.0i − 1.09004i
\(688\) 4352.00i 0.241161i
\(689\) 16074.0 0.888782
\(690\) 0 0
\(691\) 8132.00 0.447693 0.223846 0.974624i \(-0.428139\pi\)
0.223846 + 0.974624i \(0.428139\pi\)
\(692\) − 3096.00i − 0.170076i
\(693\) 2640.00i 0.144712i
\(694\) 8328.00 0.455514
\(695\) 0 0
\(696\) 5544.00 0.301932
\(697\) 65340.0i 3.55083i
\(698\) 5822.00i 0.315711i
\(699\) 34083.0 1.84426
\(700\) 0 0
\(701\) 19668.0 1.05970 0.529850 0.848091i \(-0.322248\pi\)
0.529850 + 0.848091i \(0.322248\pi\)
\(702\) − 3290.00i − 0.176885i
\(703\) − 17228.0i − 0.924276i
\(704\) −384.000 −0.0205576
\(705\) 0 0
\(706\) −19506.0 −1.03983
\(707\) 30840.0i 1.64053i
\(708\) 6720.00i 0.356713i
\(709\) −18200.0 −0.964055 −0.482028 0.876156i \(-0.660100\pi\)
−0.482028 + 0.876156i \(0.660100\pi\)
\(710\) 0 0
\(711\) 11924.0 0.628952
\(712\) − 6624.00i − 0.348659i
\(713\) − 5819.00i − 0.305643i
\(714\) −36960.0 −1.93725
\(715\) 0 0
\(716\) −7500.00 −0.391464
\(717\) 20139.0i 1.04896i
\(718\) − 7716.00i − 0.401056i
\(719\) 11880.0 0.616202 0.308101 0.951354i \(-0.400307\pi\)
0.308101 + 0.951354i \(0.400307\pi\)
\(720\) 0 0
\(721\) 640.000 0.0330580
\(722\) 28914.0i 1.49040i
\(723\) 11354.0i 0.584038i
\(724\) 6424.00 0.329760
\(725\) 0 0
\(726\) 18130.0 0.926815
\(727\) 2554.00i 0.130292i 0.997876 + 0.0651462i \(0.0207514\pi\)
−0.997876 + 0.0651462i \(0.979249\pi\)
\(728\) − 7520.00i − 0.382843i
\(729\) 11843.0 0.601687
\(730\) 0 0
\(731\) −35904.0 −1.81663
\(732\) 10360.0i 0.523110i
\(733\) 6308.00i 0.317860i 0.987290 + 0.158930i \(0.0508044\pi\)
−0.987290 + 0.158930i \(0.949196\pi\)
\(734\) 15712.0 0.790110
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) − 4188.00i − 0.209317i
\(738\) − 21780.0i − 1.08636i
\(739\) −9557.00 −0.475724 −0.237862 0.971299i \(-0.576447\pi\)
−0.237862 + 0.971299i \(0.576447\pi\)
\(740\) 0 0
\(741\) 48034.0 2.38134
\(742\) − 13680.0i − 0.676831i
\(743\) 19128.0i 0.944466i 0.881474 + 0.472233i \(0.156552\pi\)
−0.881474 + 0.472233i \(0.843448\pi\)
\(744\) −14168.0 −0.698151
\(745\) 0 0
\(746\) 68.0000 0.00333734
\(747\) 27456.0i 1.34480i
\(748\) − 3168.00i − 0.154858i
\(749\) 16680.0 0.813717
\(750\) 0 0
\(751\) −18448.0 −0.896374 −0.448187 0.893940i \(-0.647930\pi\)
−0.448187 + 0.893940i \(0.647930\pi\)
\(752\) − 10224.0i − 0.495786i
\(753\) − 33264.0i − 1.60984i
\(754\) −9306.00 −0.449476
\(755\) 0 0
\(756\) −2800.00 −0.134702
\(757\) 5602.00i 0.268967i 0.990916 + 0.134484i \(0.0429376\pi\)
−0.990916 + 0.134484i \(0.957062\pi\)
\(758\) 12128.0i 0.581146i
\(759\) −966.000 −0.0461971
\(760\) 0 0
\(761\) 4005.00 0.190777 0.0953884 0.995440i \(-0.469591\pi\)
0.0953884 + 0.995440i \(0.469591\pi\)
\(762\) 1246.00i 0.0592360i
\(763\) − 23840.0i − 1.13115i
\(764\) −11928.0 −0.564843
\(765\) 0 0
\(766\) −23736.0 −1.11960
\(767\) − 11280.0i − 0.531026i
\(768\) 1792.00i 0.0841969i
\(769\) −41726.0 −1.95667 −0.978334 0.207032i \(-0.933620\pi\)
−0.978334 + 0.207032i \(0.933620\pi\)
\(770\) 0 0
\(771\) −35511.0 −1.65875
\(772\) − 5540.00i − 0.258276i
\(773\) 34116.0i 1.58741i 0.608303 + 0.793705i \(0.291850\pi\)
−0.608303 + 0.793705i \(0.708150\pi\)
\(774\) 11968.0 0.555789
\(775\) 0 0
\(776\) −7936.00 −0.367121
\(777\) 16520.0i 0.762743i
\(778\) − 17232.0i − 0.794084i
\(779\) −72270.0 −3.32393
\(780\) 0 0
\(781\) −2142.00 −0.0981393
\(782\) − 6072.00i − 0.277665i
\(783\) 3465.00i 0.158147i
\(784\) −912.000 −0.0415452
\(785\) 0 0
\(786\) 25158.0 1.14167
\(787\) − 1652.00i − 0.0748252i −0.999300 0.0374126i \(-0.988088\pi\)
0.999300 0.0374126i \(-0.0119116\pi\)
\(788\) 3828.00i 0.173054i
\(789\) −9198.00 −0.415028
\(790\) 0 0
\(791\) −2640.00 −0.118670
\(792\) 1056.00i 0.0473779i
\(793\) − 17390.0i − 0.778735i
\(794\) 6238.00 0.278814
\(795\) 0 0
\(796\) −1432.00 −0.0637637
\(797\) − 12486.0i − 0.554927i −0.960736 0.277463i \(-0.910506\pi\)
0.960736 0.277463i \(-0.0894938\pi\)
\(798\) − 40880.0i − 1.81345i
\(799\) 84348.0 3.73469
\(800\) 0 0
\(801\) −18216.0 −0.803534
\(802\) 15972.0i 0.703231i
\(803\) − 1554.00i − 0.0682932i
\(804\) −19544.0 −0.857293
\(805\) 0 0
\(806\) 23782.0 1.03931
\(807\) − 36855.0i − 1.60763i
\(808\) 12336.0i 0.537103i
\(809\) −5490.00 −0.238589 −0.119294 0.992859i \(-0.538063\pi\)
−0.119294 + 0.992859i \(0.538063\pi\)
\(810\) 0 0
\(811\) −14785.0 −0.640162 −0.320081 0.947390i \(-0.603710\pi\)
−0.320081 + 0.947390i \(0.603710\pi\)
\(812\) 7920.00i 0.342288i
\(813\) − 17416.0i − 0.751299i
\(814\) −1416.00 −0.0609715
\(815\) 0 0
\(816\) −14784.0 −0.634245
\(817\) − 39712.0i − 1.70055i
\(818\) 6950.00i 0.297067i
\(819\) −20680.0 −0.882317
\(820\) 0 0
\(821\) −12486.0 −0.530773 −0.265386 0.964142i \(-0.585500\pi\)
−0.265386 + 0.964142i \(0.585500\pi\)
\(822\) − 25704.0i − 1.09067i
\(823\) − 39805.0i − 1.68592i −0.537973 0.842962i \(-0.680810\pi\)
0.537973 0.842962i \(-0.319190\pi\)
\(824\) 256.000 0.0108230
\(825\) 0 0
\(826\) −9600.00 −0.404391
\(827\) − 15024.0i − 0.631724i −0.948805 0.315862i \(-0.897706\pi\)
0.948805 0.315862i \(-0.102294\pi\)
\(828\) 2024.00i 0.0849503i
\(829\) −14618.0 −0.612430 −0.306215 0.951962i \(-0.599063\pi\)
−0.306215 + 0.951962i \(0.599063\pi\)
\(830\) 0 0
\(831\) 38255.0 1.59693
\(832\) − 3008.00i − 0.125341i
\(833\) − 7524.00i − 0.312955i
\(834\) −14378.0 −0.596966
\(835\) 0 0
\(836\) 3504.00 0.144962
\(837\) − 8855.00i − 0.365679i
\(838\) − 21984.0i − 0.906235i
\(839\) 10152.0 0.417743 0.208871 0.977943i \(-0.433021\pi\)
0.208871 + 0.977943i \(0.433021\pi\)
\(840\) 0 0
\(841\) −14588.0 −0.598139
\(842\) 4024.00i 0.164699i
\(843\) 62580.0i 2.55678i
\(844\) 21520.0 0.877665
\(845\) 0 0
\(846\) −28116.0 −1.14261
\(847\) 25900.0i 1.05069i
\(848\) − 5472.00i − 0.221591i
\(849\) −5894.00 −0.238259
\(850\) 0 0
\(851\) −2714.00 −0.109324
\(852\) 9996.00i 0.401945i
\(853\) − 22306.0i − 0.895361i −0.894194 0.447680i \(-0.852250\pi\)
0.894194 0.447680i \(-0.147750\pi\)
\(854\) −14800.0 −0.593028
\(855\) 0 0
\(856\) 6672.00 0.266407
\(857\) − 1731.00i − 0.0689963i −0.999405 0.0344982i \(-0.989017\pi\)
0.999405 0.0344982i \(-0.0109833\pi\)
\(858\) − 3948.00i − 0.157089i
\(859\) 12649.0 0.502419 0.251210 0.967933i \(-0.419172\pi\)
0.251210 + 0.967933i \(0.419172\pi\)
\(860\) 0 0
\(861\) 69300.0 2.74302
\(862\) − 19584.0i − 0.773821i
\(863\) − 16143.0i − 0.636749i −0.947965 0.318374i \(-0.896863\pi\)
0.947965 0.318374i \(-0.103137\pi\)
\(864\) −1120.00 −0.0441009
\(865\) 0 0
\(866\) −11572.0 −0.454079
\(867\) − 87577.0i − 3.43053i
\(868\) − 20240.0i − 0.791464i
\(869\) −3252.00 −0.126947
\(870\) 0 0
\(871\) 32806.0 1.27622
\(872\) − 9536.00i − 0.370332i
\(873\) 21824.0i 0.846083i
\(874\) 6716.00 0.259922
\(875\) 0 0
\(876\) −7252.00 −0.279706
\(877\) − 4094.00i − 0.157633i −0.996889 0.0788167i \(-0.974886\pi\)
0.996889 0.0788167i \(-0.0251142\pi\)
\(878\) − 5098.00i − 0.195956i
\(879\) 28224.0 1.08302
\(880\) 0 0
\(881\) 30396.0 1.16239 0.581196 0.813764i \(-0.302585\pi\)
0.581196 + 0.813764i \(0.302585\pi\)
\(882\) 2508.00i 0.0957469i
\(883\) − 21148.0i − 0.805987i −0.915203 0.402994i \(-0.867970\pi\)
0.915203 0.402994i \(-0.132030\pi\)
\(884\) 24816.0 0.944177
\(885\) 0 0
\(886\) −2622.00 −0.0994219
\(887\) − 5031.00i − 0.190445i −0.995456 0.0952223i \(-0.969644\pi\)
0.995456 0.0952223i \(-0.0303562\pi\)
\(888\) 6608.00i 0.249718i
\(889\) −1780.00 −0.0671533
\(890\) 0 0
\(891\) −5034.00 −0.189276
\(892\) − 4160.00i − 0.156151i
\(893\) 93294.0i 3.49604i
\(894\) 32340.0 1.20986
\(895\) 0 0
\(896\) −2560.00 −0.0954504
\(897\) − 7567.00i − 0.281666i
\(898\) 29220.0i 1.08584i
\(899\) −25047.0 −0.929215
\(900\) 0 0
\(901\) 45144.0 1.66922
\(902\) 5940.00i 0.219269i
\(903\) 38080.0i 1.40335i
\(904\) −1056.00 −0.0388518
\(905\) 0 0
\(906\) 30086.0 1.10325
\(907\) 538.000i 0.0196957i 0.999952 + 0.00984785i \(0.00313472\pi\)
−0.999952 + 0.00984785i \(0.996865\pi\)
\(908\) − 14976.0i − 0.547352i
\(909\) 33924.0 1.23783
\(910\) 0 0
\(911\) 3078.00 0.111941 0.0559707 0.998432i \(-0.482175\pi\)
0.0559707 + 0.998432i \(0.482175\pi\)
\(912\) − 16352.0i − 0.593716i
\(913\) − 7488.00i − 0.271431i
\(914\) 160.000 0.00579029
\(915\) 0 0
\(916\) 11216.0 0.404571
\(917\) 35940.0i 1.29427i
\(918\) − 9240.00i − 0.332206i
\(919\) −20288.0 −0.728226 −0.364113 0.931355i \(-0.618628\pi\)
−0.364113 + 0.931355i \(0.618628\pi\)
\(920\) 0 0
\(921\) −7672.00 −0.274485
\(922\) − 4686.00i − 0.167381i
\(923\) − 16779.0i − 0.598361i
\(924\) −3360.00 −0.119628
\(925\) 0 0
\(926\) 6800.00 0.241320
\(927\) − 704.000i − 0.0249433i
\(928\) 3168.00i 0.112063i
\(929\) −28911.0 −1.02103 −0.510516 0.859868i \(-0.670546\pi\)
−0.510516 + 0.859868i \(0.670546\pi\)
\(930\) 0 0
\(931\) 8322.00 0.292957
\(932\) 19476.0i 0.684504i
\(933\) − 32571.0i − 1.14290i
\(934\) −2748.00 −0.0962712
\(935\) 0 0
\(936\) −8272.00 −0.288866
\(937\) − 14810.0i − 0.516352i −0.966098 0.258176i \(-0.916879\pi\)
0.966098 0.258176i \(-0.0831214\pi\)
\(938\) − 27920.0i − 0.971877i
\(939\) −24080.0 −0.836870
\(940\) 0 0
\(941\) −2544.00 −0.0881318 −0.0440659 0.999029i \(-0.514031\pi\)
−0.0440659 + 0.999029i \(0.514031\pi\)
\(942\) 25648.0i 0.887109i
\(943\) 11385.0i 0.393157i
\(944\) −3840.00 −0.132396
\(945\) 0 0
\(946\) −3264.00 −0.112179
\(947\) 11145.0i 0.382433i 0.981548 + 0.191216i \(0.0612432\pi\)
−0.981548 + 0.191216i \(0.938757\pi\)
\(948\) 15176.0i 0.519930i
\(949\) 12173.0 0.416388
\(950\) 0 0
\(951\) 21462.0 0.731812
\(952\) − 21120.0i − 0.719016i
\(953\) − 4386.00i − 0.149083i −0.997218 0.0745417i \(-0.976251\pi\)
0.997218 0.0745417i \(-0.0237494\pi\)
\(954\) −15048.0 −0.510689
\(955\) 0 0
\(956\) −11508.0 −0.389326
\(957\) 4158.00i 0.140448i
\(958\) − 9072.00i − 0.305953i
\(959\) 36720.0 1.23644
\(960\) 0 0
\(961\) 34218.0 1.14860
\(962\) − 11092.0i − 0.371747i
\(963\) − 18348.0i − 0.613973i
\(964\) −6488.00 −0.216768
\(965\) 0 0
\(966\) −6440.00 −0.214496
\(967\) − 56381.0i − 1.87496i −0.348033 0.937482i \(-0.613150\pi\)
0.348033 0.937482i \(-0.386850\pi\)
\(968\) 10360.0i 0.343991i
\(969\) 134904. 4.47238
\(970\) 0 0
\(971\) 43782.0 1.44699 0.723497 0.690327i \(-0.242534\pi\)
0.723497 + 0.690327i \(0.242534\pi\)
\(972\) 19712.0i 0.650476i
\(973\) − 20540.0i − 0.676755i
\(974\) −22910.0 −0.753679
\(975\) 0 0
\(976\) −5920.00 −0.194154
\(977\) − 3714.00i − 0.121619i −0.998149 0.0608093i \(-0.980632\pi\)
0.998149 0.0608093i \(-0.0193682\pi\)
\(978\) − 17038.0i − 0.557071i
\(979\) 4968.00 0.162184
\(980\) 0 0
\(981\) −26224.0 −0.853484
\(982\) − 20790.0i − 0.675596i
\(983\) − 4662.00i − 0.151266i −0.997136 0.0756331i \(-0.975902\pi\)
0.997136 0.0756331i \(-0.0240978\pi\)
\(984\) 27720.0 0.898050
\(985\) 0 0
\(986\) −26136.0 −0.844158
\(987\) − 89460.0i − 2.88505i
\(988\) 27448.0i 0.883843i
\(989\) −6256.00 −0.201142
\(990\) 0 0
\(991\) 51440.0 1.64889 0.824443 0.565945i \(-0.191489\pi\)
0.824443 + 0.565945i \(0.191489\pi\)
\(992\) − 8096.00i − 0.259121i
\(993\) 10535.0i 0.336675i
\(994\) −14280.0 −0.455668
\(995\) 0 0
\(996\) −34944.0 −1.11169
\(997\) − 686.000i − 0.0217912i −0.999941 0.0108956i \(-0.996532\pi\)
0.999941 0.0108956i \(-0.00346825\pi\)
\(998\) 10994.0i 0.348706i
\(999\) −4130.00 −0.130798
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.b.b.599.2 2
5.2 odd 4 230.4.a.c.1.1 1
5.3 odd 4 1150.4.a.e.1.1 1
5.4 even 2 inner 1150.4.b.b.599.1 2
15.2 even 4 2070.4.a.j.1.1 1
20.7 even 4 1840.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.c.1.1 1 5.2 odd 4
1150.4.a.e.1.1 1 5.3 odd 4
1150.4.b.b.599.1 2 5.4 even 2 inner
1150.4.b.b.599.2 2 1.1 even 1 trivial
1840.4.a.a.1.1 1 20.7 even 4
2070.4.a.j.1.1 1 15.2 even 4