Properties

Label 1150.4.b.b.599.1
Level $1150$
Weight $4$
Character 1150.599
Analytic conductor $67.852$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(599,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.599");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1150.599
Dual form 1150.4.b.b.599.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -7.00000i q^{3} -4.00000 q^{4} -14.0000 q^{6} +20.0000i q^{7} +8.00000i q^{8} -22.0000 q^{9} +6.00000 q^{11} +28.0000i q^{12} -47.0000i q^{13} +40.0000 q^{14} +16.0000 q^{16} -132.000i q^{17} +44.0000i q^{18} -146.000 q^{19} +140.000 q^{21} -12.0000i q^{22} -23.0000i q^{23} +56.0000 q^{24} -94.0000 q^{26} -35.0000i q^{27} -80.0000i q^{28} +99.0000 q^{29} -253.000 q^{31} -32.0000i q^{32} -42.0000i q^{33} -264.000 q^{34} +88.0000 q^{36} -118.000i q^{37} +292.000i q^{38} -329.000 q^{39} +495.000 q^{41} -280.000i q^{42} -272.000i q^{43} -24.0000 q^{44} -46.0000 q^{46} +639.000i q^{47} -112.000i q^{48} -57.0000 q^{49} -924.000 q^{51} +188.000i q^{52} +342.000i q^{53} -70.0000 q^{54} -160.000 q^{56} +1022.00i q^{57} -198.000i q^{58} -240.000 q^{59} -370.000 q^{61} +506.000i q^{62} -440.000i q^{63} -64.0000 q^{64} -84.0000 q^{66} +698.000i q^{67} +528.000i q^{68} -161.000 q^{69} -357.000 q^{71} -176.000i q^{72} +259.000i q^{73} -236.000 q^{74} +584.000 q^{76} +120.000i q^{77} +658.000i q^{78} -542.000 q^{79} -839.000 q^{81} -990.000i q^{82} +1248.00i q^{83} -560.000 q^{84} -544.000 q^{86} -693.000i q^{87} +48.0000i q^{88} +828.000 q^{89} +940.000 q^{91} +92.0000i q^{92} +1771.00i q^{93} +1278.00 q^{94} -224.000 q^{96} +992.000i q^{97} +114.000i q^{98} -132.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} - 28 q^{6} - 44 q^{9} + 12 q^{11} + 80 q^{14} + 32 q^{16} - 292 q^{19} + 280 q^{21} + 112 q^{24} - 188 q^{26} + 198 q^{29} - 506 q^{31} - 528 q^{34} + 176 q^{36} - 658 q^{39} + 990 q^{41}+ \cdots - 264 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1150\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.00000i − 0.707107i
\(3\) − 7.00000i − 1.34715i −0.739119 0.673575i \(-0.764758\pi\)
0.739119 0.673575i \(-0.235242\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) −14.0000 −0.952579
\(7\) 20.0000i 1.07990i 0.841698 + 0.539949i \(0.181557\pi\)
−0.841698 + 0.539949i \(0.818443\pi\)
\(8\) 8.00000i 0.353553i
\(9\) −22.0000 −0.814815
\(10\) 0 0
\(11\) 6.00000 0.164461 0.0822304 0.996613i \(-0.473796\pi\)
0.0822304 + 0.996613i \(0.473796\pi\)
\(12\) 28.0000i 0.673575i
\(13\) − 47.0000i − 1.00273i −0.865237 0.501364i \(-0.832832\pi\)
0.865237 0.501364i \(-0.167168\pi\)
\(14\) 40.0000 0.763604
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) − 132.000i − 1.88322i −0.336709 0.941609i \(-0.609314\pi\)
0.336709 0.941609i \(-0.390686\pi\)
\(18\) 44.0000i 0.576161i
\(19\) −146.000 −1.76288 −0.881439 0.472297i \(-0.843425\pi\)
−0.881439 + 0.472297i \(0.843425\pi\)
\(20\) 0 0
\(21\) 140.000 1.45479
\(22\) − 12.0000i − 0.116291i
\(23\) − 23.0000i − 0.208514i
\(24\) 56.0000 0.476290
\(25\) 0 0
\(26\) −94.0000 −0.709035
\(27\) − 35.0000i − 0.249472i
\(28\) − 80.0000i − 0.539949i
\(29\) 99.0000 0.633925 0.316963 0.948438i \(-0.397337\pi\)
0.316963 + 0.948438i \(0.397337\pi\)
\(30\) 0 0
\(31\) −253.000 −1.46581 −0.732906 0.680330i \(-0.761836\pi\)
−0.732906 + 0.680330i \(0.761836\pi\)
\(32\) − 32.0000i − 0.176777i
\(33\) − 42.0000i − 0.221553i
\(34\) −264.000 −1.33164
\(35\) 0 0
\(36\) 88.0000 0.407407
\(37\) − 118.000i − 0.524299i −0.965027 0.262150i \(-0.915569\pi\)
0.965027 0.262150i \(-0.0844314\pi\)
\(38\) 292.000i 1.24654i
\(39\) −329.000 −1.35082
\(40\) 0 0
\(41\) 495.000 1.88551 0.942756 0.333483i \(-0.108224\pi\)
0.942756 + 0.333483i \(0.108224\pi\)
\(42\) − 280.000i − 1.02869i
\(43\) − 272.000i − 0.964642i −0.875995 0.482321i \(-0.839794\pi\)
0.875995 0.482321i \(-0.160206\pi\)
\(44\) −24.0000 −0.0822304
\(45\) 0 0
\(46\) −46.0000 −0.147442
\(47\) 639.000i 1.98314i 0.129560 + 0.991572i \(0.458644\pi\)
−0.129560 + 0.991572i \(0.541356\pi\)
\(48\) − 112.000i − 0.336788i
\(49\) −57.0000 −0.166181
\(50\) 0 0
\(51\) −924.000 −2.53698
\(52\) 188.000i 0.501364i
\(53\) 342.000i 0.886364i 0.896432 + 0.443182i \(0.146151\pi\)
−0.896432 + 0.443182i \(0.853849\pi\)
\(54\) −70.0000 −0.176404
\(55\) 0 0
\(56\) −160.000 −0.381802
\(57\) 1022.00i 2.37486i
\(58\) − 198.000i − 0.448253i
\(59\) −240.000 −0.529582 −0.264791 0.964306i \(-0.585303\pi\)
−0.264791 + 0.964306i \(0.585303\pi\)
\(60\) 0 0
\(61\) −370.000 −0.776617 −0.388309 0.921529i \(-0.626941\pi\)
−0.388309 + 0.921529i \(0.626941\pi\)
\(62\) 506.000i 1.03648i
\(63\) − 440.000i − 0.879917i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −84.0000 −0.156662
\(67\) 698.000i 1.27275i 0.771380 + 0.636375i \(0.219567\pi\)
−0.771380 + 0.636375i \(0.780433\pi\)
\(68\) 528.000i 0.941609i
\(69\) −161.000 −0.280900
\(70\) 0 0
\(71\) −357.000 −0.596734 −0.298367 0.954451i \(-0.596442\pi\)
−0.298367 + 0.954451i \(0.596442\pi\)
\(72\) − 176.000i − 0.288081i
\(73\) 259.000i 0.415256i 0.978208 + 0.207628i \(0.0665743\pi\)
−0.978208 + 0.207628i \(0.933426\pi\)
\(74\) −236.000 −0.370736
\(75\) 0 0
\(76\) 584.000 0.881439
\(77\) 120.000i 0.177601i
\(78\) 658.000i 0.955177i
\(79\) −542.000 −0.771896 −0.385948 0.922521i \(-0.626126\pi\)
−0.385948 + 0.922521i \(0.626126\pi\)
\(80\) 0 0
\(81\) −839.000 −1.15089
\(82\) − 990.000i − 1.33326i
\(83\) 1248.00i 1.65043i 0.564818 + 0.825216i \(0.308946\pi\)
−0.564818 + 0.825216i \(0.691054\pi\)
\(84\) −560.000 −0.727393
\(85\) 0 0
\(86\) −544.000 −0.682105
\(87\) − 693.000i − 0.853993i
\(88\) 48.0000i 0.0581456i
\(89\) 828.000 0.986155 0.493078 0.869985i \(-0.335872\pi\)
0.493078 + 0.869985i \(0.335872\pi\)
\(90\) 0 0
\(91\) 940.000 1.08284
\(92\) 92.0000i 0.104257i
\(93\) 1771.00i 1.97467i
\(94\) 1278.00 1.40229
\(95\) 0 0
\(96\) −224.000 −0.238145
\(97\) 992.000i 1.03837i 0.854660 + 0.519187i \(0.173765\pi\)
−0.854660 + 0.519187i \(0.826235\pi\)
\(98\) 114.000i 0.117508i
\(99\) −132.000 −0.134005
\(100\) 0 0
\(101\) −1542.00 −1.51916 −0.759578 0.650416i \(-0.774594\pi\)
−0.759578 + 0.650416i \(0.774594\pi\)
\(102\) 1848.00i 1.79391i
\(103\) − 32.0000i − 0.0306122i −0.999883 0.0153061i \(-0.995128\pi\)
0.999883 0.0153061i \(-0.00487227\pi\)
\(104\) 376.000 0.354518
\(105\) 0 0
\(106\) 684.000 0.626754
\(107\) − 834.000i − 0.753512i −0.926312 0.376756i \(-0.877039\pi\)
0.926312 0.376756i \(-0.122961\pi\)
\(108\) 140.000i 0.124736i
\(109\) 1192.00 1.04746 0.523729 0.851885i \(-0.324540\pi\)
0.523729 + 0.851885i \(0.324540\pi\)
\(110\) 0 0
\(111\) −826.000 −0.706310
\(112\) 320.000i 0.269975i
\(113\) 132.000i 0.109890i 0.998489 + 0.0549448i \(0.0174983\pi\)
−0.998489 + 0.0549448i \(0.982502\pi\)
\(114\) 2044.00 1.67928
\(115\) 0 0
\(116\) −396.000 −0.316963
\(117\) 1034.00i 0.817037i
\(118\) 480.000i 0.374471i
\(119\) 2640.00 2.03368
\(120\) 0 0
\(121\) −1295.00 −0.972953
\(122\) 740.000i 0.549151i
\(123\) − 3465.00i − 2.54007i
\(124\) 1012.00 0.732906
\(125\) 0 0
\(126\) −880.000 −0.622195
\(127\) 89.0000i 0.0621848i 0.999517 + 0.0310924i \(0.00989862\pi\)
−0.999517 + 0.0310924i \(0.990101\pi\)
\(128\) 128.000i 0.0883883i
\(129\) −1904.00 −1.29952
\(130\) 0 0
\(131\) −1797.00 −1.19851 −0.599254 0.800559i \(-0.704536\pi\)
−0.599254 + 0.800559i \(0.704536\pi\)
\(132\) 168.000i 0.110777i
\(133\) − 2920.00i − 1.90373i
\(134\) 1396.00 0.899970
\(135\) 0 0
\(136\) 1056.00 0.665818
\(137\) − 1836.00i − 1.14496i −0.819917 0.572482i \(-0.805981\pi\)
0.819917 0.572482i \(-0.194019\pi\)
\(138\) 322.000i 0.198627i
\(139\) 1027.00 0.626683 0.313342 0.949640i \(-0.398551\pi\)
0.313342 + 0.949640i \(0.398551\pi\)
\(140\) 0 0
\(141\) 4473.00 2.67159
\(142\) 714.000i 0.421955i
\(143\) − 282.000i − 0.164909i
\(144\) −352.000 −0.203704
\(145\) 0 0
\(146\) 518.000 0.293630
\(147\) 399.000i 0.223871i
\(148\) 472.000i 0.262150i
\(149\) −2310.00 −1.27008 −0.635042 0.772477i \(-0.719017\pi\)
−0.635042 + 0.772477i \(0.719017\pi\)
\(150\) 0 0
\(151\) −2149.00 −1.15817 −0.579083 0.815268i \(-0.696589\pi\)
−0.579083 + 0.815268i \(0.696589\pi\)
\(152\) − 1168.00i − 0.623272i
\(153\) 2904.00i 1.53447i
\(154\) 240.000 0.125583
\(155\) 0 0
\(156\) 1316.00 0.675412
\(157\) 1832.00i 0.931271i 0.884977 + 0.465635i \(0.154174\pi\)
−0.884977 + 0.465635i \(0.845826\pi\)
\(158\) 1084.00i 0.545813i
\(159\) 2394.00 1.19407
\(160\) 0 0
\(161\) 460.000 0.225174
\(162\) 1678.00i 0.813803i
\(163\) − 1217.00i − 0.584802i −0.956296 0.292401i \(-0.905546\pi\)
0.956296 0.292401i \(-0.0944543\pi\)
\(164\) −1980.00 −0.942756
\(165\) 0 0
\(166\) 2496.00 1.16703
\(167\) 3048.00i 1.41234i 0.708041 + 0.706172i \(0.249579\pi\)
−0.708041 + 0.706172i \(0.750421\pi\)
\(168\) 1120.00i 0.514344i
\(169\) −12.0000 −0.00546199
\(170\) 0 0
\(171\) 3212.00 1.43642
\(172\) 1088.00i 0.482321i
\(173\) − 774.000i − 0.340151i −0.985431 0.170076i \(-0.945599\pi\)
0.985431 0.170076i \(-0.0544012\pi\)
\(174\) −1386.00 −0.603864
\(175\) 0 0
\(176\) 96.0000 0.0411152
\(177\) 1680.00i 0.713427i
\(178\) − 1656.00i − 0.697317i
\(179\) 1875.00 0.782928 0.391464 0.920193i \(-0.371969\pi\)
0.391464 + 0.920193i \(0.371969\pi\)
\(180\) 0 0
\(181\) −1606.00 −0.659520 −0.329760 0.944065i \(-0.606968\pi\)
−0.329760 + 0.944065i \(0.606968\pi\)
\(182\) − 1880.00i − 0.765686i
\(183\) 2590.00i 1.04622i
\(184\) 184.000 0.0737210
\(185\) 0 0
\(186\) 3542.00 1.39630
\(187\) − 792.000i − 0.309715i
\(188\) − 2556.00i − 0.991572i
\(189\) 700.000 0.269405
\(190\) 0 0
\(191\) 2982.00 1.12969 0.564843 0.825199i \(-0.308937\pi\)
0.564843 + 0.825199i \(0.308937\pi\)
\(192\) 448.000i 0.168394i
\(193\) − 1385.00i − 0.516552i −0.966071 0.258276i \(-0.916846\pi\)
0.966071 0.258276i \(-0.0831543\pi\)
\(194\) 1984.00 0.734242
\(195\) 0 0
\(196\) 228.000 0.0830904
\(197\) 957.000i 0.346109i 0.984912 + 0.173054i \(0.0553636\pi\)
−0.984912 + 0.173054i \(0.944636\pi\)
\(198\) 264.000i 0.0947559i
\(199\) 358.000 0.127527 0.0637637 0.997965i \(-0.479690\pi\)
0.0637637 + 0.997965i \(0.479690\pi\)
\(200\) 0 0
\(201\) 4886.00 1.71459
\(202\) 3084.00i 1.07421i
\(203\) 1980.00i 0.684575i
\(204\) 3696.00 1.26849
\(205\) 0 0
\(206\) −64.0000 −0.0216461
\(207\) 506.000i 0.169901i
\(208\) − 752.000i − 0.250682i
\(209\) −876.000 −0.289924
\(210\) 0 0
\(211\) −5380.00 −1.75533 −0.877665 0.479275i \(-0.840900\pi\)
−0.877665 + 0.479275i \(0.840900\pi\)
\(212\) − 1368.00i − 0.443182i
\(213\) 2499.00i 0.803890i
\(214\) −1668.00 −0.532814
\(215\) 0 0
\(216\) 280.000 0.0882018
\(217\) − 5060.00i − 1.58293i
\(218\) − 2384.00i − 0.740664i
\(219\) 1813.00 0.559412
\(220\) 0 0
\(221\) −6204.00 −1.88835
\(222\) 1652.00i 0.499437i
\(223\) − 1040.00i − 0.312303i −0.987733 0.156151i \(-0.950091\pi\)
0.987733 0.156151i \(-0.0499088\pi\)
\(224\) 640.000 0.190901
\(225\) 0 0
\(226\) 264.000 0.0777036
\(227\) − 3744.00i − 1.09470i −0.836902 0.547352i \(-0.815636\pi\)
0.836902 0.547352i \(-0.184364\pi\)
\(228\) − 4088.00i − 1.18743i
\(229\) −2804.00 −0.809142 −0.404571 0.914507i \(-0.632579\pi\)
−0.404571 + 0.914507i \(0.632579\pi\)
\(230\) 0 0
\(231\) 840.000 0.239255
\(232\) 792.000i 0.224126i
\(233\) 4869.00i 1.36901i 0.729009 + 0.684504i \(0.239981\pi\)
−0.729009 + 0.684504i \(0.760019\pi\)
\(234\) 2068.00 0.577732
\(235\) 0 0
\(236\) 960.000 0.264791
\(237\) 3794.00i 1.03986i
\(238\) − 5280.00i − 1.43803i
\(239\) 2877.00 0.778651 0.389326 0.921100i \(-0.372708\pi\)
0.389326 + 0.921100i \(0.372708\pi\)
\(240\) 0 0
\(241\) 1622.00 0.433536 0.216768 0.976223i \(-0.430448\pi\)
0.216768 + 0.976223i \(0.430448\pi\)
\(242\) 2590.00i 0.687981i
\(243\) 4928.00i 1.30095i
\(244\) 1480.00 0.388309
\(245\) 0 0
\(246\) −6930.00 −1.79610
\(247\) 6862.00i 1.76769i
\(248\) − 2024.00i − 0.518242i
\(249\) 8736.00 2.22338
\(250\) 0 0
\(251\) −4752.00 −1.19499 −0.597497 0.801871i \(-0.703838\pi\)
−0.597497 + 0.801871i \(0.703838\pi\)
\(252\) 1760.00i 0.439959i
\(253\) − 138.000i − 0.0342924i
\(254\) 178.000 0.0439713
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) − 5073.00i − 1.23130i −0.788018 0.615652i \(-0.788893\pi\)
0.788018 0.615652i \(-0.211107\pi\)
\(258\) 3808.00i 0.918898i
\(259\) 2360.00 0.566190
\(260\) 0 0
\(261\) −2178.00 −0.516532
\(262\) 3594.00i 0.847474i
\(263\) − 1314.00i − 0.308079i −0.988065 0.154039i \(-0.950772\pi\)
0.988065 0.154039i \(-0.0492283\pi\)
\(264\) 336.000 0.0783309
\(265\) 0 0
\(266\) −5840.00 −1.34614
\(267\) − 5796.00i − 1.32850i
\(268\) − 2792.00i − 0.636375i
\(269\) −5265.00 −1.19336 −0.596678 0.802481i \(-0.703513\pi\)
−0.596678 + 0.802481i \(0.703513\pi\)
\(270\) 0 0
\(271\) −2488.00 −0.557695 −0.278847 0.960335i \(-0.589952\pi\)
−0.278847 + 0.960335i \(0.589952\pi\)
\(272\) − 2112.00i − 0.470804i
\(273\) − 6580.00i − 1.45875i
\(274\) −3672.00 −0.809612
\(275\) 0 0
\(276\) 644.000 0.140450
\(277\) 5465.00i 1.18542i 0.805418 + 0.592708i \(0.201941\pi\)
−0.805418 + 0.592708i \(0.798059\pi\)
\(278\) − 2054.00i − 0.443132i
\(279\) 5566.00 1.19436
\(280\) 0 0
\(281\) 8940.00 1.89792 0.948960 0.315396i \(-0.102137\pi\)
0.948960 + 0.315396i \(0.102137\pi\)
\(282\) − 8946.00i − 1.88910i
\(283\) − 842.000i − 0.176861i −0.996082 0.0884306i \(-0.971815\pi\)
0.996082 0.0884306i \(-0.0281851\pi\)
\(284\) 1428.00 0.298367
\(285\) 0 0
\(286\) −564.000 −0.116608
\(287\) 9900.00i 2.03616i
\(288\) 704.000i 0.144040i
\(289\) −12511.0 −2.54651
\(290\) 0 0
\(291\) 6944.00 1.39885
\(292\) − 1036.00i − 0.207628i
\(293\) 4032.00i 0.803932i 0.915655 + 0.401966i \(0.131673\pi\)
−0.915655 + 0.401966i \(0.868327\pi\)
\(294\) 798.000 0.158300
\(295\) 0 0
\(296\) 944.000 0.185368
\(297\) − 210.000i − 0.0410284i
\(298\) 4620.00i 0.898085i
\(299\) −1081.00 −0.209083
\(300\) 0 0
\(301\) 5440.00 1.04172
\(302\) 4298.00i 0.818947i
\(303\) 10794.0i 2.04653i
\(304\) −2336.00 −0.440720
\(305\) 0 0
\(306\) 5808.00 1.08504
\(307\) − 1096.00i − 0.203753i −0.994797 0.101876i \(-0.967515\pi\)
0.994797 0.101876i \(-0.0324846\pi\)
\(308\) − 480.000i − 0.0888004i
\(309\) −224.000 −0.0412392
\(310\) 0 0
\(311\) −4653.00 −0.848384 −0.424192 0.905572i \(-0.639442\pi\)
−0.424192 + 0.905572i \(0.639442\pi\)
\(312\) − 2632.00i − 0.477589i
\(313\) − 3440.00i − 0.621215i −0.950538 0.310608i \(-0.899468\pi\)
0.950538 0.310608i \(-0.100532\pi\)
\(314\) 3664.00 0.658508
\(315\) 0 0
\(316\) 2168.00 0.385948
\(317\) 3066.00i 0.543229i 0.962406 + 0.271615i \(0.0875576\pi\)
−0.962406 + 0.271615i \(0.912442\pi\)
\(318\) − 4788.00i − 0.844332i
\(319\) 594.000 0.104256
\(320\) 0 0
\(321\) −5838.00 −1.01509
\(322\) − 920.000i − 0.159222i
\(323\) 19272.0i 3.31988i
\(324\) 3356.00 0.575446
\(325\) 0 0
\(326\) −2434.00 −0.413518
\(327\) − 8344.00i − 1.41108i
\(328\) 3960.00i 0.666629i
\(329\) −12780.0 −2.14159
\(330\) 0 0
\(331\) 1505.00 0.249916 0.124958 0.992162i \(-0.460120\pi\)
0.124958 + 0.992162i \(0.460120\pi\)
\(332\) − 4992.00i − 0.825216i
\(333\) 2596.00i 0.427207i
\(334\) 6096.00 0.998677
\(335\) 0 0
\(336\) 2240.00 0.363696
\(337\) − 3268.00i − 0.528247i −0.964489 0.264124i \(-0.914917\pi\)
0.964489 0.264124i \(-0.0850827\pi\)
\(338\) 24.0000i 0.00386221i
\(339\) 924.000 0.148038
\(340\) 0 0
\(341\) −1518.00 −0.241068
\(342\) − 6424.00i − 1.01570i
\(343\) 5720.00i 0.900440i
\(344\) 2176.00 0.341052
\(345\) 0 0
\(346\) −1548.00 −0.240523
\(347\) 4164.00i 0.644194i 0.946707 + 0.322097i \(0.104388\pi\)
−0.946707 + 0.322097i \(0.895612\pi\)
\(348\) 2772.00i 0.426997i
\(349\) 2911.00 0.446482 0.223241 0.974763i \(-0.428336\pi\)
0.223241 + 0.974763i \(0.428336\pi\)
\(350\) 0 0
\(351\) −1645.00 −0.250153
\(352\) − 192.000i − 0.0290728i
\(353\) − 9753.00i − 1.47054i −0.677776 0.735269i \(-0.737056\pi\)
0.677776 0.735269i \(-0.262944\pi\)
\(354\) 3360.00 0.504469
\(355\) 0 0
\(356\) −3312.00 −0.493078
\(357\) − 18480.0i − 2.73968i
\(358\) − 3750.00i − 0.553614i
\(359\) −3858.00 −0.567180 −0.283590 0.958946i \(-0.591525\pi\)
−0.283590 + 0.958946i \(0.591525\pi\)
\(360\) 0 0
\(361\) 14457.0 2.10774
\(362\) 3212.00i 0.466351i
\(363\) 9065.00i 1.31071i
\(364\) −3760.00 −0.541422
\(365\) 0 0
\(366\) 5180.00 0.739789
\(367\) 7856.00i 1.11738i 0.829375 + 0.558692i \(0.188697\pi\)
−0.829375 + 0.558692i \(0.811303\pi\)
\(368\) − 368.000i − 0.0521286i
\(369\) −10890.0 −1.53634
\(370\) 0 0
\(371\) −6840.00 −0.957184
\(372\) − 7084.00i − 0.987334i
\(373\) 34.0000i 0.00471971i 0.999997 + 0.00235986i \(0.000751166\pi\)
−0.999997 + 0.00235986i \(0.999249\pi\)
\(374\) −1584.00 −0.219002
\(375\) 0 0
\(376\) −5112.00 −0.701147
\(377\) − 4653.00i − 0.635654i
\(378\) − 1400.00i − 0.190498i
\(379\) 6064.00 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 623.000 0.0837723
\(382\) − 5964.00i − 0.798808i
\(383\) − 11868.0i − 1.58336i −0.610937 0.791679i \(-0.709207\pi\)
0.610937 0.791679i \(-0.290793\pi\)
\(384\) 896.000 0.119072
\(385\) 0 0
\(386\) −2770.00 −0.365257
\(387\) 5984.00i 0.786005i
\(388\) − 3968.00i − 0.519187i
\(389\) −8616.00 −1.12300 −0.561502 0.827475i \(-0.689776\pi\)
−0.561502 + 0.827475i \(0.689776\pi\)
\(390\) 0 0
\(391\) −3036.00 −0.392678
\(392\) − 456.000i − 0.0587538i
\(393\) 12579.0i 1.61457i
\(394\) 1914.00 0.244736
\(395\) 0 0
\(396\) 528.000 0.0670025
\(397\) 3119.00i 0.394303i 0.980373 + 0.197151i \(0.0631690\pi\)
−0.980373 + 0.197151i \(0.936831\pi\)
\(398\) − 716.000i − 0.0901755i
\(399\) −20440.0 −2.56461
\(400\) 0 0
\(401\) 7986.00 0.994518 0.497259 0.867602i \(-0.334340\pi\)
0.497259 + 0.867602i \(0.334340\pi\)
\(402\) − 9772.00i − 1.21240i
\(403\) 11891.0i 1.46981i
\(404\) 6168.00 0.759578
\(405\) 0 0
\(406\) 3960.00 0.484068
\(407\) − 708.000i − 0.0862267i
\(408\) − 7392.00i − 0.896957i
\(409\) 3475.00 0.420117 0.210058 0.977689i \(-0.432635\pi\)
0.210058 + 0.977689i \(0.432635\pi\)
\(410\) 0 0
\(411\) −12852.0 −1.54244
\(412\) 128.000i 0.0153061i
\(413\) − 4800.00i − 0.571895i
\(414\) 1012.00 0.120138
\(415\) 0 0
\(416\) −1504.00 −0.177259
\(417\) − 7189.00i − 0.844237i
\(418\) 1752.00i 0.205007i
\(419\) −10992.0 −1.28161 −0.640805 0.767704i \(-0.721399\pi\)
−0.640805 + 0.767704i \(0.721399\pi\)
\(420\) 0 0
\(421\) 2012.00 0.232919 0.116459 0.993195i \(-0.462845\pi\)
0.116459 + 0.993195i \(0.462845\pi\)
\(422\) 10760.0i 1.24121i
\(423\) − 14058.0i − 1.61589i
\(424\) −2736.00 −0.313377
\(425\) 0 0
\(426\) 4998.00 0.568436
\(427\) − 7400.00i − 0.838668i
\(428\) 3336.00i 0.376756i
\(429\) −1974.00 −0.222158
\(430\) 0 0
\(431\) −9792.00 −1.09435 −0.547174 0.837019i \(-0.684296\pi\)
−0.547174 + 0.837019i \(0.684296\pi\)
\(432\) − 560.000i − 0.0623681i
\(433\) − 5786.00i − 0.642165i −0.947051 0.321082i \(-0.895953\pi\)
0.947051 0.321082i \(-0.104047\pi\)
\(434\) −10120.0 −1.11930
\(435\) 0 0
\(436\) −4768.00 −0.523729
\(437\) 3358.00i 0.367586i
\(438\) − 3626.00i − 0.395564i
\(439\) −2549.00 −0.277123 −0.138562 0.990354i \(-0.544248\pi\)
−0.138562 + 0.990354i \(0.544248\pi\)
\(440\) 0 0
\(441\) 1254.00 0.135407
\(442\) 12408.0i 1.33527i
\(443\) − 1311.00i − 0.140604i −0.997526 0.0703019i \(-0.977604\pi\)
0.997526 0.0703019i \(-0.0223963\pi\)
\(444\) 3304.00 0.353155
\(445\) 0 0
\(446\) −2080.00 −0.220832
\(447\) 16170.0i 1.71099i
\(448\) − 1280.00i − 0.134987i
\(449\) 14610.0 1.53561 0.767805 0.640684i \(-0.221349\pi\)
0.767805 + 0.640684i \(0.221349\pi\)
\(450\) 0 0
\(451\) 2970.00 0.310093
\(452\) − 528.000i − 0.0549448i
\(453\) 15043.0i 1.56022i
\(454\) −7488.00 −0.774073
\(455\) 0 0
\(456\) −8176.00 −0.839641
\(457\) 80.0000i 0.00818871i 0.999992 + 0.00409436i \(0.00130328\pi\)
−0.999992 + 0.00409436i \(0.998697\pi\)
\(458\) 5608.00i 0.572150i
\(459\) −4620.00 −0.469811
\(460\) 0 0
\(461\) −2343.00 −0.236712 −0.118356 0.992971i \(-0.537762\pi\)
−0.118356 + 0.992971i \(0.537762\pi\)
\(462\) − 1680.00i − 0.169179i
\(463\) 3400.00i 0.341277i 0.985334 + 0.170639i \(0.0545831\pi\)
−0.985334 + 0.170639i \(0.945417\pi\)
\(464\) 1584.00 0.158481
\(465\) 0 0
\(466\) 9738.00 0.968035
\(467\) − 1374.00i − 0.136148i −0.997680 0.0680740i \(-0.978315\pi\)
0.997680 0.0680740i \(-0.0216854\pi\)
\(468\) − 4136.00i − 0.408519i
\(469\) −13960.0 −1.37444
\(470\) 0 0
\(471\) 12824.0 1.25456
\(472\) − 1920.00i − 0.187236i
\(473\) − 1632.00i − 0.158646i
\(474\) 7588.00 0.735292
\(475\) 0 0
\(476\) −10560.0 −1.01684
\(477\) − 7524.00i − 0.722223i
\(478\) − 5754.00i − 0.550590i
\(479\) −4536.00 −0.432683 −0.216341 0.976318i \(-0.569412\pi\)
−0.216341 + 0.976318i \(0.569412\pi\)
\(480\) 0 0
\(481\) −5546.00 −0.525729
\(482\) − 3244.00i − 0.306556i
\(483\) − 3220.00i − 0.303344i
\(484\) 5180.00 0.486476
\(485\) 0 0
\(486\) 9856.00 0.919912
\(487\) − 11455.0i − 1.06586i −0.846158 0.532932i \(-0.821090\pi\)
0.846158 0.532932i \(-0.178910\pi\)
\(488\) − 2960.00i − 0.274576i
\(489\) −8519.00 −0.787817
\(490\) 0 0
\(491\) −10395.0 −0.955437 −0.477719 0.878513i \(-0.658536\pi\)
−0.477719 + 0.878513i \(0.658536\pi\)
\(492\) 13860.0i 1.27003i
\(493\) − 13068.0i − 1.19382i
\(494\) 13724.0 1.24994
\(495\) 0 0
\(496\) −4048.00 −0.366453
\(497\) − 7140.00i − 0.644412i
\(498\) − 17472.0i − 1.57217i
\(499\) 5497.00 0.493145 0.246573 0.969124i \(-0.420696\pi\)
0.246573 + 0.969124i \(0.420696\pi\)
\(500\) 0 0
\(501\) 21336.0 1.90264
\(502\) 9504.00i 0.844989i
\(503\) − 7158.00i − 0.634512i −0.948340 0.317256i \(-0.897239\pi\)
0.948340 0.317256i \(-0.102761\pi\)
\(504\) 3520.00 0.311098
\(505\) 0 0
\(506\) −276.000 −0.0242484
\(507\) 84.0000i 0.00735813i
\(508\) − 356.000i − 0.0310924i
\(509\) −12801.0 −1.11472 −0.557362 0.830270i \(-0.688186\pi\)
−0.557362 + 0.830270i \(0.688186\pi\)
\(510\) 0 0
\(511\) −5180.00 −0.448434
\(512\) − 512.000i − 0.0441942i
\(513\) 5110.00i 0.439789i
\(514\) −10146.0 −0.870663
\(515\) 0 0
\(516\) 7616.00 0.649759
\(517\) 3834.00i 0.326149i
\(518\) − 4720.00i − 0.400357i
\(519\) −5418.00 −0.458235
\(520\) 0 0
\(521\) 16788.0 1.41170 0.705850 0.708361i \(-0.250565\pi\)
0.705850 + 0.708361i \(0.250565\pi\)
\(522\) 4356.00i 0.365243i
\(523\) − 19040.0i − 1.59189i −0.605366 0.795947i \(-0.706973\pi\)
0.605366 0.795947i \(-0.293027\pi\)
\(524\) 7188.00 0.599254
\(525\) 0 0
\(526\) −2628.00 −0.217845
\(527\) 33396.0i 2.76044i
\(528\) − 672.000i − 0.0553883i
\(529\) −529.000 −0.0434783
\(530\) 0 0
\(531\) 5280.00 0.431511
\(532\) 11680.0i 0.951865i
\(533\) − 23265.0i − 1.89065i
\(534\) −11592.0 −0.939391
\(535\) 0 0
\(536\) −5584.00 −0.449985
\(537\) − 13125.0i − 1.05472i
\(538\) 10530.0i 0.843830i
\(539\) −342.000 −0.0273302
\(540\) 0 0
\(541\) −13339.0 −1.06005 −0.530026 0.847981i \(-0.677818\pi\)
−0.530026 + 0.847981i \(0.677818\pi\)
\(542\) 4976.00i 0.394350i
\(543\) 11242.0i 0.888472i
\(544\) −4224.00 −0.332909
\(545\) 0 0
\(546\) −13160.0 −1.03149
\(547\) − 22975.0i − 1.79587i −0.440130 0.897934i \(-0.645068\pi\)
0.440130 0.897934i \(-0.354932\pi\)
\(548\) 7344.00i 0.572482i
\(549\) 8140.00 0.632799
\(550\) 0 0
\(551\) −14454.0 −1.11753
\(552\) − 1288.00i − 0.0993133i
\(553\) − 10840.0i − 0.833569i
\(554\) 10930.0 0.838215
\(555\) 0 0
\(556\) −4108.00 −0.313342
\(557\) − 17964.0i − 1.36653i −0.730169 0.683267i \(-0.760559\pi\)
0.730169 0.683267i \(-0.239441\pi\)
\(558\) − 11132.0i − 0.844543i
\(559\) −12784.0 −0.967273
\(560\) 0 0
\(561\) −5544.00 −0.417233
\(562\) − 17880.0i − 1.34203i
\(563\) − 12636.0i − 0.945904i −0.881088 0.472952i \(-0.843188\pi\)
0.881088 0.472952i \(-0.156812\pi\)
\(564\) −17892.0 −1.33580
\(565\) 0 0
\(566\) −1684.00 −0.125060
\(567\) − 16780.0i − 1.24285i
\(568\) − 2856.00i − 0.210977i
\(569\) 10302.0 0.759020 0.379510 0.925188i \(-0.376093\pi\)
0.379510 + 0.925188i \(0.376093\pi\)
\(570\) 0 0
\(571\) 12380.0 0.907333 0.453666 0.891172i \(-0.350116\pi\)
0.453666 + 0.891172i \(0.350116\pi\)
\(572\) 1128.00i 0.0824546i
\(573\) − 20874.0i − 1.52186i
\(574\) 19800.0 1.43978
\(575\) 0 0
\(576\) 1408.00 0.101852
\(577\) 1913.00i 0.138023i 0.997616 + 0.0690115i \(0.0219845\pi\)
−0.997616 + 0.0690115i \(0.978015\pi\)
\(578\) 25022.0i 1.80065i
\(579\) −9695.00 −0.695873
\(580\) 0 0
\(581\) −24960.0 −1.78230
\(582\) − 13888.0i − 0.989134i
\(583\) 2052.00i 0.145772i
\(584\) −2072.00 −0.146815
\(585\) 0 0
\(586\) 8064.00 0.568465
\(587\) 16767.0i 1.17896i 0.807784 + 0.589479i \(0.200667\pi\)
−0.807784 + 0.589479i \(0.799333\pi\)
\(588\) − 1596.00i − 0.111935i
\(589\) 36938.0 2.58405
\(590\) 0 0
\(591\) 6699.00 0.466261
\(592\) − 1888.00i − 0.131075i
\(593\) 16722.0i 1.15799i 0.815330 + 0.578997i \(0.196556\pi\)
−0.815330 + 0.578997i \(0.803444\pi\)
\(594\) −420.000 −0.0290115
\(595\) 0 0
\(596\) 9240.00 0.635042
\(597\) − 2506.00i − 0.171799i
\(598\) 2162.00i 0.147844i
\(599\) 4200.00 0.286490 0.143245 0.989687i \(-0.454246\pi\)
0.143245 + 0.989687i \(0.454246\pi\)
\(600\) 0 0
\(601\) −19915.0 −1.35166 −0.675832 0.737056i \(-0.736215\pi\)
−0.675832 + 0.737056i \(0.736215\pi\)
\(602\) − 10880.0i − 0.736604i
\(603\) − 15356.0i − 1.03706i
\(604\) 8596.00 0.579083
\(605\) 0 0
\(606\) 21588.0 1.44712
\(607\) 24044.0i 1.60777i 0.594785 + 0.803885i \(0.297237\pi\)
−0.594785 + 0.803885i \(0.702763\pi\)
\(608\) 4672.00i 0.311636i
\(609\) 13860.0 0.922226
\(610\) 0 0
\(611\) 30033.0 1.98855
\(612\) − 11616.0i − 0.767237i
\(613\) − 3452.00i − 0.227447i −0.993512 0.113723i \(-0.963722\pi\)
0.993512 0.113723i \(-0.0362778\pi\)
\(614\) −2192.00 −0.144075
\(615\) 0 0
\(616\) −960.000 −0.0627914
\(617\) − 16374.0i − 1.06838i −0.845363 0.534192i \(-0.820616\pi\)
0.845363 0.534192i \(-0.179384\pi\)
\(618\) 448.000i 0.0291605i
\(619\) 12760.0 0.828542 0.414271 0.910154i \(-0.364037\pi\)
0.414271 + 0.910154i \(0.364037\pi\)
\(620\) 0 0
\(621\) −805.000 −0.0520186
\(622\) 9306.00i 0.599898i
\(623\) 16560.0i 1.06495i
\(624\) −5264.00 −0.337706
\(625\) 0 0
\(626\) −6880.00 −0.439265
\(627\) 6132.00i 0.390572i
\(628\) − 7328.00i − 0.465635i
\(629\) −15576.0 −0.987370
\(630\) 0 0
\(631\) 29420.0 1.85609 0.928044 0.372470i \(-0.121489\pi\)
0.928044 + 0.372470i \(0.121489\pi\)
\(632\) − 4336.00i − 0.272906i
\(633\) 37660.0i 2.36469i
\(634\) 6132.00 0.384121
\(635\) 0 0
\(636\) −9576.00 −0.597033
\(637\) 2679.00i 0.166634i
\(638\) − 1188.00i − 0.0737200i
\(639\) 7854.00 0.486228
\(640\) 0 0
\(641\) −13692.0 −0.843684 −0.421842 0.906669i \(-0.638616\pi\)
−0.421842 + 0.906669i \(0.638616\pi\)
\(642\) 11676.0i 0.717780i
\(643\) − 27398.0i − 1.68036i −0.542307 0.840180i \(-0.682449\pi\)
0.542307 0.840180i \(-0.317551\pi\)
\(644\) −1840.00 −0.112587
\(645\) 0 0
\(646\) 38544.0 2.34751
\(647\) − 6417.00i − 0.389920i −0.980811 0.194960i \(-0.937542\pi\)
0.980811 0.194960i \(-0.0624577\pi\)
\(648\) − 6712.00i − 0.406902i
\(649\) −1440.00 −0.0870954
\(650\) 0 0
\(651\) −35420.0 −2.13244
\(652\) 4868.00i 0.292401i
\(653\) − 14583.0i − 0.873931i −0.899478 0.436965i \(-0.856053\pi\)
0.899478 0.436965i \(-0.143947\pi\)
\(654\) −16688.0 −0.997787
\(655\) 0 0
\(656\) 7920.00 0.471378
\(657\) − 5698.00i − 0.338356i
\(658\) 25560.0i 1.51434i
\(659\) 9624.00 0.568889 0.284444 0.958693i \(-0.408191\pi\)
0.284444 + 0.958693i \(0.408191\pi\)
\(660\) 0 0
\(661\) −24586.0 −1.44672 −0.723362 0.690469i \(-0.757404\pi\)
−0.723362 + 0.690469i \(0.757404\pi\)
\(662\) − 3010.00i − 0.176717i
\(663\) 43428.0i 2.54390i
\(664\) −9984.00 −0.583516
\(665\) 0 0
\(666\) 5192.00 0.302081
\(667\) − 2277.00i − 0.132183i
\(668\) − 12192.0i − 0.706172i
\(669\) −7280.00 −0.420719
\(670\) 0 0
\(671\) −2220.00 −0.127723
\(672\) − 4480.00i − 0.257172i
\(673\) − 14339.0i − 0.821289i −0.911795 0.410645i \(-0.865304\pi\)
0.911795 0.410645i \(-0.134696\pi\)
\(674\) −6536.00 −0.373527
\(675\) 0 0
\(676\) 48.0000 0.00273100
\(677\) 14658.0i 0.832131i 0.909335 + 0.416066i \(0.136591\pi\)
−0.909335 + 0.416066i \(0.863409\pi\)
\(678\) − 1848.00i − 0.104678i
\(679\) −19840.0 −1.12134
\(680\) 0 0
\(681\) −26208.0 −1.47473
\(682\) 3036.00i 0.170461i
\(683\) − 16797.0i − 0.941024i −0.882394 0.470512i \(-0.844069\pi\)
0.882394 0.470512i \(-0.155931\pi\)
\(684\) −12848.0 −0.718210
\(685\) 0 0
\(686\) 11440.0 0.636707
\(687\) 19628.0i 1.09004i
\(688\) − 4352.00i − 0.241161i
\(689\) 16074.0 0.888782
\(690\) 0 0
\(691\) 8132.00 0.447693 0.223846 0.974624i \(-0.428139\pi\)
0.223846 + 0.974624i \(0.428139\pi\)
\(692\) 3096.00i 0.170076i
\(693\) − 2640.00i − 0.144712i
\(694\) 8328.00 0.455514
\(695\) 0 0
\(696\) 5544.00 0.301932
\(697\) − 65340.0i − 3.55083i
\(698\) − 5822.00i − 0.315711i
\(699\) 34083.0 1.84426
\(700\) 0 0
\(701\) 19668.0 1.05970 0.529850 0.848091i \(-0.322248\pi\)
0.529850 + 0.848091i \(0.322248\pi\)
\(702\) 3290.00i 0.176885i
\(703\) 17228.0i 0.924276i
\(704\) −384.000 −0.0205576
\(705\) 0 0
\(706\) −19506.0 −1.03983
\(707\) − 30840.0i − 1.64053i
\(708\) − 6720.00i − 0.356713i
\(709\) −18200.0 −0.964055 −0.482028 0.876156i \(-0.660100\pi\)
−0.482028 + 0.876156i \(0.660100\pi\)
\(710\) 0 0
\(711\) 11924.0 0.628952
\(712\) 6624.00i 0.348659i
\(713\) 5819.00i 0.305643i
\(714\) −36960.0 −1.93725
\(715\) 0 0
\(716\) −7500.00 −0.391464
\(717\) − 20139.0i − 1.04896i
\(718\) 7716.00i 0.401056i
\(719\) 11880.0 0.616202 0.308101 0.951354i \(-0.400307\pi\)
0.308101 + 0.951354i \(0.400307\pi\)
\(720\) 0 0
\(721\) 640.000 0.0330580
\(722\) − 28914.0i − 1.49040i
\(723\) − 11354.0i − 0.584038i
\(724\) 6424.00 0.329760
\(725\) 0 0
\(726\) 18130.0 0.926815
\(727\) − 2554.00i − 0.130292i −0.997876 0.0651462i \(-0.979249\pi\)
0.997876 0.0651462i \(-0.0207514\pi\)
\(728\) 7520.00i 0.382843i
\(729\) 11843.0 0.601687
\(730\) 0 0
\(731\) −35904.0 −1.81663
\(732\) − 10360.0i − 0.523110i
\(733\) − 6308.00i − 0.317860i −0.987290 0.158930i \(-0.949196\pi\)
0.987290 0.158930i \(-0.0508044\pi\)
\(734\) 15712.0 0.790110
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) 4188.00i 0.209317i
\(738\) 21780.0i 1.08636i
\(739\) −9557.00 −0.475724 −0.237862 0.971299i \(-0.576447\pi\)
−0.237862 + 0.971299i \(0.576447\pi\)
\(740\) 0 0
\(741\) 48034.0 2.38134
\(742\) 13680.0i 0.676831i
\(743\) − 19128.0i − 0.944466i −0.881474 0.472233i \(-0.843448\pi\)
0.881474 0.472233i \(-0.156552\pi\)
\(744\) −14168.0 −0.698151
\(745\) 0 0
\(746\) 68.0000 0.00333734
\(747\) − 27456.0i − 1.34480i
\(748\) 3168.00i 0.154858i
\(749\) 16680.0 0.813717
\(750\) 0 0
\(751\) −18448.0 −0.896374 −0.448187 0.893940i \(-0.647930\pi\)
−0.448187 + 0.893940i \(0.647930\pi\)
\(752\) 10224.0i 0.495786i
\(753\) 33264.0i 1.60984i
\(754\) −9306.00 −0.449476
\(755\) 0 0
\(756\) −2800.00 −0.134702
\(757\) − 5602.00i − 0.268967i −0.990916 0.134484i \(-0.957062\pi\)
0.990916 0.134484i \(-0.0429376\pi\)
\(758\) − 12128.0i − 0.581146i
\(759\) −966.000 −0.0461971
\(760\) 0 0
\(761\) 4005.00 0.190777 0.0953884 0.995440i \(-0.469591\pi\)
0.0953884 + 0.995440i \(0.469591\pi\)
\(762\) − 1246.00i − 0.0592360i
\(763\) 23840.0i 1.13115i
\(764\) −11928.0 −0.564843
\(765\) 0 0
\(766\) −23736.0 −1.11960
\(767\) 11280.0i 0.531026i
\(768\) − 1792.00i − 0.0841969i
\(769\) −41726.0 −1.95667 −0.978334 0.207032i \(-0.933620\pi\)
−0.978334 + 0.207032i \(0.933620\pi\)
\(770\) 0 0
\(771\) −35511.0 −1.65875
\(772\) 5540.00i 0.258276i
\(773\) − 34116.0i − 1.58741i −0.608303 0.793705i \(-0.708150\pi\)
0.608303 0.793705i \(-0.291850\pi\)
\(774\) 11968.0 0.555789
\(775\) 0 0
\(776\) −7936.00 −0.367121
\(777\) − 16520.0i − 0.762743i
\(778\) 17232.0i 0.794084i
\(779\) −72270.0 −3.32393
\(780\) 0 0
\(781\) −2142.00 −0.0981393
\(782\) 6072.00i 0.277665i
\(783\) − 3465.00i − 0.158147i
\(784\) −912.000 −0.0415452
\(785\) 0 0
\(786\) 25158.0 1.14167
\(787\) 1652.00i 0.0748252i 0.999300 + 0.0374126i \(0.0119116\pi\)
−0.999300 + 0.0374126i \(0.988088\pi\)
\(788\) − 3828.00i − 0.173054i
\(789\) −9198.00 −0.415028
\(790\) 0 0
\(791\) −2640.00 −0.118670
\(792\) − 1056.00i − 0.0473779i
\(793\) 17390.0i 0.778735i
\(794\) 6238.00 0.278814
\(795\) 0 0
\(796\) −1432.00 −0.0637637
\(797\) 12486.0i 0.554927i 0.960736 + 0.277463i \(0.0894938\pi\)
−0.960736 + 0.277463i \(0.910506\pi\)
\(798\) 40880.0i 1.81345i
\(799\) 84348.0 3.73469
\(800\) 0 0
\(801\) −18216.0 −0.803534
\(802\) − 15972.0i − 0.703231i
\(803\) 1554.00i 0.0682932i
\(804\) −19544.0 −0.857293
\(805\) 0 0
\(806\) 23782.0 1.03931
\(807\) 36855.0i 1.60763i
\(808\) − 12336.0i − 0.537103i
\(809\) −5490.00 −0.238589 −0.119294 0.992859i \(-0.538063\pi\)
−0.119294 + 0.992859i \(0.538063\pi\)
\(810\) 0 0
\(811\) −14785.0 −0.640162 −0.320081 0.947390i \(-0.603710\pi\)
−0.320081 + 0.947390i \(0.603710\pi\)
\(812\) − 7920.00i − 0.342288i
\(813\) 17416.0i 0.751299i
\(814\) −1416.00 −0.0609715
\(815\) 0 0
\(816\) −14784.0 −0.634245
\(817\) 39712.0i 1.70055i
\(818\) − 6950.00i − 0.297067i
\(819\) −20680.0 −0.882317
\(820\) 0 0
\(821\) −12486.0 −0.530773 −0.265386 0.964142i \(-0.585500\pi\)
−0.265386 + 0.964142i \(0.585500\pi\)
\(822\) 25704.0i 1.09067i
\(823\) 39805.0i 1.68592i 0.537973 + 0.842962i \(0.319190\pi\)
−0.537973 + 0.842962i \(0.680810\pi\)
\(824\) 256.000 0.0108230
\(825\) 0 0
\(826\) −9600.00 −0.404391
\(827\) 15024.0i 0.631724i 0.948805 + 0.315862i \(0.102294\pi\)
−0.948805 + 0.315862i \(0.897706\pi\)
\(828\) − 2024.00i − 0.0849503i
\(829\) −14618.0 −0.612430 −0.306215 0.951962i \(-0.599063\pi\)
−0.306215 + 0.951962i \(0.599063\pi\)
\(830\) 0 0
\(831\) 38255.0 1.59693
\(832\) 3008.00i 0.125341i
\(833\) 7524.00i 0.312955i
\(834\) −14378.0 −0.596966
\(835\) 0 0
\(836\) 3504.00 0.144962
\(837\) 8855.00i 0.365679i
\(838\) 21984.0i 0.906235i
\(839\) 10152.0 0.417743 0.208871 0.977943i \(-0.433021\pi\)
0.208871 + 0.977943i \(0.433021\pi\)
\(840\) 0 0
\(841\) −14588.0 −0.598139
\(842\) − 4024.00i − 0.164699i
\(843\) − 62580.0i − 2.55678i
\(844\) 21520.0 0.877665
\(845\) 0 0
\(846\) −28116.0 −1.14261
\(847\) − 25900.0i − 1.05069i
\(848\) 5472.00i 0.221591i
\(849\) −5894.00 −0.238259
\(850\) 0 0
\(851\) −2714.00 −0.109324
\(852\) − 9996.00i − 0.401945i
\(853\) 22306.0i 0.895361i 0.894194 + 0.447680i \(0.147750\pi\)
−0.894194 + 0.447680i \(0.852250\pi\)
\(854\) −14800.0 −0.593028
\(855\) 0 0
\(856\) 6672.00 0.266407
\(857\) 1731.00i 0.0689963i 0.999405 + 0.0344982i \(0.0109833\pi\)
−0.999405 + 0.0344982i \(0.989017\pi\)
\(858\) 3948.00i 0.157089i
\(859\) 12649.0 0.502419 0.251210 0.967933i \(-0.419172\pi\)
0.251210 + 0.967933i \(0.419172\pi\)
\(860\) 0 0
\(861\) 69300.0 2.74302
\(862\) 19584.0i 0.773821i
\(863\) 16143.0i 0.636749i 0.947965 + 0.318374i \(0.103137\pi\)
−0.947965 + 0.318374i \(0.896863\pi\)
\(864\) −1120.00 −0.0441009
\(865\) 0 0
\(866\) −11572.0 −0.454079
\(867\) 87577.0i 3.43053i
\(868\) 20240.0i 0.791464i
\(869\) −3252.00 −0.126947
\(870\) 0 0
\(871\) 32806.0 1.27622
\(872\) 9536.00i 0.370332i
\(873\) − 21824.0i − 0.846083i
\(874\) 6716.00 0.259922
\(875\) 0 0
\(876\) −7252.00 −0.279706
\(877\) 4094.00i 0.157633i 0.996889 + 0.0788167i \(0.0251142\pi\)
−0.996889 + 0.0788167i \(0.974886\pi\)
\(878\) 5098.00i 0.195956i
\(879\) 28224.0 1.08302
\(880\) 0 0
\(881\) 30396.0 1.16239 0.581196 0.813764i \(-0.302585\pi\)
0.581196 + 0.813764i \(0.302585\pi\)
\(882\) − 2508.00i − 0.0957469i
\(883\) 21148.0i 0.805987i 0.915203 + 0.402994i \(0.132030\pi\)
−0.915203 + 0.402994i \(0.867970\pi\)
\(884\) 24816.0 0.944177
\(885\) 0 0
\(886\) −2622.00 −0.0994219
\(887\) 5031.00i 0.190445i 0.995456 + 0.0952223i \(0.0303562\pi\)
−0.995456 + 0.0952223i \(0.969644\pi\)
\(888\) − 6608.00i − 0.249718i
\(889\) −1780.00 −0.0671533
\(890\) 0 0
\(891\) −5034.00 −0.189276
\(892\) 4160.00i 0.156151i
\(893\) − 93294.0i − 3.49604i
\(894\) 32340.0 1.20986
\(895\) 0 0
\(896\) −2560.00 −0.0954504
\(897\) 7567.00i 0.281666i
\(898\) − 29220.0i − 1.08584i
\(899\) −25047.0 −0.929215
\(900\) 0 0
\(901\) 45144.0 1.66922
\(902\) − 5940.00i − 0.219269i
\(903\) − 38080.0i − 1.40335i
\(904\) −1056.00 −0.0388518
\(905\) 0 0
\(906\) 30086.0 1.10325
\(907\) − 538.000i − 0.0196957i −0.999952 0.00984785i \(-0.996865\pi\)
0.999952 0.00984785i \(-0.00313472\pi\)
\(908\) 14976.0i 0.547352i
\(909\) 33924.0 1.23783
\(910\) 0 0
\(911\) 3078.00 0.111941 0.0559707 0.998432i \(-0.482175\pi\)
0.0559707 + 0.998432i \(0.482175\pi\)
\(912\) 16352.0i 0.593716i
\(913\) 7488.00i 0.271431i
\(914\) 160.000 0.00579029
\(915\) 0 0
\(916\) 11216.0 0.404571
\(917\) − 35940.0i − 1.29427i
\(918\) 9240.00i 0.332206i
\(919\) −20288.0 −0.728226 −0.364113 0.931355i \(-0.618628\pi\)
−0.364113 + 0.931355i \(0.618628\pi\)
\(920\) 0 0
\(921\) −7672.00 −0.274485
\(922\) 4686.00i 0.167381i
\(923\) 16779.0i 0.598361i
\(924\) −3360.00 −0.119628
\(925\) 0 0
\(926\) 6800.00 0.241320
\(927\) 704.000i 0.0249433i
\(928\) − 3168.00i − 0.112063i
\(929\) −28911.0 −1.02103 −0.510516 0.859868i \(-0.670546\pi\)
−0.510516 + 0.859868i \(0.670546\pi\)
\(930\) 0 0
\(931\) 8322.00 0.292957
\(932\) − 19476.0i − 0.684504i
\(933\) 32571.0i 1.14290i
\(934\) −2748.00 −0.0962712
\(935\) 0 0
\(936\) −8272.00 −0.288866
\(937\) 14810.0i 0.516352i 0.966098 + 0.258176i \(0.0831214\pi\)
−0.966098 + 0.258176i \(0.916879\pi\)
\(938\) 27920.0i 0.971877i
\(939\) −24080.0 −0.836870
\(940\) 0 0
\(941\) −2544.00 −0.0881318 −0.0440659 0.999029i \(-0.514031\pi\)
−0.0440659 + 0.999029i \(0.514031\pi\)
\(942\) − 25648.0i − 0.887109i
\(943\) − 11385.0i − 0.393157i
\(944\) −3840.00 −0.132396
\(945\) 0 0
\(946\) −3264.00 −0.112179
\(947\) − 11145.0i − 0.382433i −0.981548 0.191216i \(-0.938757\pi\)
0.981548 0.191216i \(-0.0612432\pi\)
\(948\) − 15176.0i − 0.519930i
\(949\) 12173.0 0.416388
\(950\) 0 0
\(951\) 21462.0 0.731812
\(952\) 21120.0i 0.719016i
\(953\) 4386.00i 0.149083i 0.997218 + 0.0745417i \(0.0237494\pi\)
−0.997218 + 0.0745417i \(0.976251\pi\)
\(954\) −15048.0 −0.510689
\(955\) 0 0
\(956\) −11508.0 −0.389326
\(957\) − 4158.00i − 0.140448i
\(958\) 9072.00i 0.305953i
\(959\) 36720.0 1.23644
\(960\) 0 0
\(961\) 34218.0 1.14860
\(962\) 11092.0i 0.371747i
\(963\) 18348.0i 0.613973i
\(964\) −6488.00 −0.216768
\(965\) 0 0
\(966\) −6440.00 −0.214496
\(967\) 56381.0i 1.87496i 0.348033 + 0.937482i \(0.386850\pi\)
−0.348033 + 0.937482i \(0.613150\pi\)
\(968\) − 10360.0i − 0.343991i
\(969\) 134904. 4.47238
\(970\) 0 0
\(971\) 43782.0 1.44699 0.723497 0.690327i \(-0.242534\pi\)
0.723497 + 0.690327i \(0.242534\pi\)
\(972\) − 19712.0i − 0.650476i
\(973\) 20540.0i 0.676755i
\(974\) −22910.0 −0.753679
\(975\) 0 0
\(976\) −5920.00 −0.194154
\(977\) 3714.00i 0.121619i 0.998149 + 0.0608093i \(0.0193682\pi\)
−0.998149 + 0.0608093i \(0.980632\pi\)
\(978\) 17038.0i 0.557071i
\(979\) 4968.00 0.162184
\(980\) 0 0
\(981\) −26224.0 −0.853484
\(982\) 20790.0i 0.675596i
\(983\) 4662.00i 0.151266i 0.997136 + 0.0756331i \(0.0240978\pi\)
−0.997136 + 0.0756331i \(0.975902\pi\)
\(984\) 27720.0 0.898050
\(985\) 0 0
\(986\) −26136.0 −0.844158
\(987\) 89460.0i 2.88505i
\(988\) − 27448.0i − 0.883843i
\(989\) −6256.00 −0.201142
\(990\) 0 0
\(991\) 51440.0 1.64889 0.824443 0.565945i \(-0.191489\pi\)
0.824443 + 0.565945i \(0.191489\pi\)
\(992\) 8096.00i 0.259121i
\(993\) − 10535.0i − 0.336675i
\(994\) −14280.0 −0.455668
\(995\) 0 0
\(996\) −34944.0 −1.11169
\(997\) 686.000i 0.0217912i 0.999941 + 0.0108956i \(0.00346825\pi\)
−0.999941 + 0.0108956i \(0.996532\pi\)
\(998\) − 10994.0i − 0.348706i
\(999\) −4130.00 −0.130798
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.b.b.599.1 2
5.2 odd 4 1150.4.a.e.1.1 1
5.3 odd 4 230.4.a.c.1.1 1
5.4 even 2 inner 1150.4.b.b.599.2 2
15.8 even 4 2070.4.a.j.1.1 1
20.3 even 4 1840.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.c.1.1 1 5.3 odd 4
1150.4.a.e.1.1 1 5.2 odd 4
1150.4.b.b.599.1 2 1.1 even 1 trivial
1150.4.b.b.599.2 2 5.4 even 2 inner
1840.4.a.a.1.1 1 20.3 even 4
2070.4.a.j.1.1 1 15.8 even 4