Properties

Label 1150.4.b.a.599.2
Level $1150$
Weight $4$
Character 1150.599
Analytic conductor $67.852$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(599,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.599");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 46)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1150.599
Dual form 1150.4.b.a.599.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} +9.00000i q^{3} -4.00000 q^{4} -18.0000 q^{6} +2.00000i q^{7} -8.00000i q^{8} -54.0000 q^{9} -52.0000 q^{11} -36.0000i q^{12} -43.0000i q^{13} -4.00000 q^{14} +16.0000 q^{16} -50.0000i q^{17} -108.000i q^{18} +74.0000 q^{19} -18.0000 q^{21} -104.000i q^{22} +23.0000i q^{23} +72.0000 q^{24} +86.0000 q^{26} -243.000i q^{27} -8.00000i q^{28} +7.00000 q^{29} -273.000 q^{31} +32.0000i q^{32} -468.000i q^{33} +100.000 q^{34} +216.000 q^{36} -4.00000i q^{37} +148.000i q^{38} +387.000 q^{39} +123.000 q^{41} -36.0000i q^{42} +152.000i q^{43} +208.000 q^{44} -46.0000 q^{46} +75.0000i q^{47} +144.000i q^{48} +339.000 q^{49} +450.000 q^{51} +172.000i q^{52} -86.0000i q^{53} +486.000 q^{54} +16.0000 q^{56} +666.000i q^{57} +14.0000i q^{58} +444.000 q^{59} +262.000 q^{61} -546.000i q^{62} -108.000i q^{63} -64.0000 q^{64} +936.000 q^{66} +764.000i q^{67} +200.000i q^{68} -207.000 q^{69} -21.0000 q^{71} +432.000i q^{72} -681.000i q^{73} +8.00000 q^{74} -296.000 q^{76} -104.000i q^{77} +774.000i q^{78} -426.000 q^{79} +729.000 q^{81} +246.000i q^{82} -902.000i q^{83} +72.0000 q^{84} -304.000 q^{86} +63.0000i q^{87} +416.000i q^{88} +1272.00 q^{89} +86.0000 q^{91} -92.0000i q^{92} -2457.00i q^{93} -150.000 q^{94} -288.000 q^{96} -342.000i q^{97} +678.000i q^{98} +2808.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} - 36 q^{6} - 108 q^{9} - 104 q^{11} - 8 q^{14} + 32 q^{16} + 148 q^{19} - 36 q^{21} + 144 q^{24} + 172 q^{26} + 14 q^{29} - 546 q^{31} + 200 q^{34} + 432 q^{36} + 774 q^{39} + 246 q^{41} + 416 q^{44}+ \cdots + 5616 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1150\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 9.00000i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) −18.0000 −1.22474
\(7\) 2.00000i 0.107990i 0.998541 + 0.0539949i \(0.0171955\pi\)
−0.998541 + 0.0539949i \(0.982805\pi\)
\(8\) − 8.00000i − 0.353553i
\(9\) −54.0000 −2.00000
\(10\) 0 0
\(11\) −52.0000 −1.42533 −0.712663 0.701506i \(-0.752511\pi\)
−0.712663 + 0.701506i \(0.752511\pi\)
\(12\) − 36.0000i − 0.866025i
\(13\) − 43.0000i − 0.917389i −0.888594 0.458694i \(-0.848317\pi\)
0.888594 0.458694i \(-0.151683\pi\)
\(14\) −4.00000 −0.0763604
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) − 50.0000i − 0.713340i −0.934230 0.356670i \(-0.883912\pi\)
0.934230 0.356670i \(-0.116088\pi\)
\(18\) − 108.000i − 1.41421i
\(19\) 74.0000 0.893514 0.446757 0.894655i \(-0.352579\pi\)
0.446757 + 0.894655i \(0.352579\pi\)
\(20\) 0 0
\(21\) −18.0000 −0.187044
\(22\) − 104.000i − 1.00786i
\(23\) 23.0000i 0.208514i
\(24\) 72.0000 0.612372
\(25\) 0 0
\(26\) 86.0000 0.648692
\(27\) − 243.000i − 1.73205i
\(28\) − 8.00000i − 0.0539949i
\(29\) 7.00000 0.0448230 0.0224115 0.999749i \(-0.492866\pi\)
0.0224115 + 0.999749i \(0.492866\pi\)
\(30\) 0 0
\(31\) −273.000 −1.58169 −0.790843 0.612019i \(-0.790357\pi\)
−0.790843 + 0.612019i \(0.790357\pi\)
\(32\) 32.0000i 0.176777i
\(33\) − 468.000i − 2.46874i
\(34\) 100.000 0.504408
\(35\) 0 0
\(36\) 216.000 1.00000
\(37\) − 4.00000i − 0.0177729i −0.999961 0.00888643i \(-0.997171\pi\)
0.999961 0.00888643i \(-0.00282868\pi\)
\(38\) 148.000i 0.631810i
\(39\) 387.000 1.58896
\(40\) 0 0
\(41\) 123.000 0.468521 0.234261 0.972174i \(-0.424733\pi\)
0.234261 + 0.972174i \(0.424733\pi\)
\(42\) − 36.0000i − 0.132260i
\(43\) 152.000i 0.539065i 0.962991 + 0.269532i \(0.0868691\pi\)
−0.962991 + 0.269532i \(0.913131\pi\)
\(44\) 208.000 0.712663
\(45\) 0 0
\(46\) −46.0000 −0.147442
\(47\) 75.0000i 0.232763i 0.993205 + 0.116382i \(0.0371296\pi\)
−0.993205 + 0.116382i \(0.962870\pi\)
\(48\) 144.000i 0.433013i
\(49\) 339.000 0.988338
\(50\) 0 0
\(51\) 450.000 1.23554
\(52\) 172.000i 0.458694i
\(53\) − 86.0000i − 0.222887i −0.993771 0.111443i \(-0.964453\pi\)
0.993771 0.111443i \(-0.0355474\pi\)
\(54\) 486.000 1.22474
\(55\) 0 0
\(56\) 16.0000 0.0381802
\(57\) 666.000i 1.54761i
\(58\) 14.0000i 0.0316947i
\(59\) 444.000 0.979727 0.489863 0.871799i \(-0.337047\pi\)
0.489863 + 0.871799i \(0.337047\pi\)
\(60\) 0 0
\(61\) 262.000 0.549929 0.274964 0.961454i \(-0.411334\pi\)
0.274964 + 0.961454i \(0.411334\pi\)
\(62\) − 546.000i − 1.11842i
\(63\) − 108.000i − 0.215980i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 936.000 1.74566
\(67\) 764.000i 1.39310i 0.717510 + 0.696548i \(0.245282\pi\)
−0.717510 + 0.696548i \(0.754718\pi\)
\(68\) 200.000i 0.356670i
\(69\) −207.000 −0.361158
\(70\) 0 0
\(71\) −21.0000 −0.0351020 −0.0175510 0.999846i \(-0.505587\pi\)
−0.0175510 + 0.999846i \(0.505587\pi\)
\(72\) 432.000i 0.707107i
\(73\) − 681.000i − 1.09185i −0.837834 0.545925i \(-0.816178\pi\)
0.837834 0.545925i \(-0.183822\pi\)
\(74\) 8.00000 0.0125673
\(75\) 0 0
\(76\) −296.000 −0.446757
\(77\) − 104.000i − 0.153921i
\(78\) 774.000i 1.12357i
\(79\) −426.000 −0.606693 −0.303346 0.952880i \(-0.598104\pi\)
−0.303346 + 0.952880i \(0.598104\pi\)
\(80\) 0 0
\(81\) 729.000 1.00000
\(82\) 246.000i 0.331295i
\(83\) − 902.000i − 1.19286i −0.802665 0.596430i \(-0.796585\pi\)
0.802665 0.596430i \(-0.203415\pi\)
\(84\) 72.0000 0.0935220
\(85\) 0 0
\(86\) −304.000 −0.381176
\(87\) 63.0000i 0.0776357i
\(88\) 416.000i 0.503929i
\(89\) 1272.00 1.51496 0.757482 0.652856i \(-0.226430\pi\)
0.757482 + 0.652856i \(0.226430\pi\)
\(90\) 0 0
\(91\) 86.0000 0.0990687
\(92\) − 92.0000i − 0.104257i
\(93\) − 2457.00i − 2.73956i
\(94\) −150.000 −0.164588
\(95\) 0 0
\(96\) −288.000 −0.306186
\(97\) − 342.000i − 0.357988i −0.983850 0.178994i \(-0.942716\pi\)
0.983850 0.178994i \(-0.0572843\pi\)
\(98\) 678.000i 0.698861i
\(99\) 2808.00 2.85065
\(100\) 0 0
\(101\) −1426.00 −1.40487 −0.702437 0.711746i \(-0.747905\pi\)
−0.702437 + 0.711746i \(0.747905\pi\)
\(102\) 900.000i 0.873660i
\(103\) 1190.00i 1.13839i 0.822203 + 0.569195i \(0.192745\pi\)
−0.822203 + 0.569195i \(0.807255\pi\)
\(104\) −344.000 −0.324346
\(105\) 0 0
\(106\) 172.000 0.157605
\(107\) − 1210.00i − 1.09323i −0.837386 0.546613i \(-0.815917\pi\)
0.837386 0.546613i \(-0.184083\pi\)
\(108\) 972.000i 0.866025i
\(109\) 1680.00 1.47628 0.738141 0.674646i \(-0.235704\pi\)
0.738141 + 0.674646i \(0.235704\pi\)
\(110\) 0 0
\(111\) 36.0000 0.0307835
\(112\) 32.0000i 0.0269975i
\(113\) − 1030.00i − 0.857471i −0.903430 0.428736i \(-0.858959\pi\)
0.903430 0.428736i \(-0.141041\pi\)
\(114\) −1332.00 −1.09433
\(115\) 0 0
\(116\) −28.0000 −0.0224115
\(117\) 2322.00i 1.83478i
\(118\) 888.000i 0.692771i
\(119\) 100.000 0.0770335
\(120\) 0 0
\(121\) 1373.00 1.03156
\(122\) 524.000i 0.388858i
\(123\) 1107.00i 0.811503i
\(124\) 1092.00 0.790843
\(125\) 0 0
\(126\) 216.000 0.152721
\(127\) − 2279.00i − 1.59235i −0.605066 0.796175i \(-0.706853\pi\)
0.605066 0.796175i \(-0.293147\pi\)
\(128\) − 128.000i − 0.0883883i
\(129\) −1368.00 −0.933687
\(130\) 0 0
\(131\) 987.000 0.658279 0.329140 0.944281i \(-0.393241\pi\)
0.329140 + 0.944281i \(0.393241\pi\)
\(132\) 1872.00i 1.23437i
\(133\) 148.000i 0.0964904i
\(134\) −1528.00 −0.985068
\(135\) 0 0
\(136\) −400.000 −0.252204
\(137\) − 1644.00i − 1.02523i −0.858619 0.512615i \(-0.828677\pi\)
0.858619 0.512615i \(-0.171323\pi\)
\(138\) − 414.000i − 0.255377i
\(139\) −2189.00 −1.33575 −0.667873 0.744276i \(-0.732795\pi\)
−0.667873 + 0.744276i \(0.732795\pi\)
\(140\) 0 0
\(141\) −675.000 −0.403158
\(142\) − 42.0000i − 0.0248209i
\(143\) 2236.00i 1.30758i
\(144\) −864.000 −0.500000
\(145\) 0 0
\(146\) 1362.00 0.772054
\(147\) 3051.00i 1.71185i
\(148\) 16.0000i 0.00888643i
\(149\) 946.000 0.520130 0.260065 0.965591i \(-0.416256\pi\)
0.260065 + 0.965591i \(0.416256\pi\)
\(150\) 0 0
\(151\) −365.000 −0.196710 −0.0983552 0.995151i \(-0.531358\pi\)
−0.0983552 + 0.995151i \(0.531358\pi\)
\(152\) − 592.000i − 0.315905i
\(153\) 2700.00i 1.42668i
\(154\) 208.000 0.108838
\(155\) 0 0
\(156\) −1548.00 −0.794482
\(157\) − 108.000i − 0.0549002i −0.999623 0.0274501i \(-0.991261\pi\)
0.999623 0.0274501i \(-0.00873874\pi\)
\(158\) − 852.000i − 0.428997i
\(159\) 774.000 0.386052
\(160\) 0 0
\(161\) −46.0000 −0.0225174
\(162\) 1458.00i 0.707107i
\(163\) 1415.00i 0.679947i 0.940435 + 0.339973i \(0.110418\pi\)
−0.940435 + 0.339973i \(0.889582\pi\)
\(164\) −492.000 −0.234261
\(165\) 0 0
\(166\) 1804.00 0.843479
\(167\) 1756.00i 0.813673i 0.913501 + 0.406836i \(0.133368\pi\)
−0.913501 + 0.406836i \(0.866632\pi\)
\(168\) 144.000i 0.0661300i
\(169\) 348.000 0.158398
\(170\) 0 0
\(171\) −3996.00 −1.78703
\(172\) − 608.000i − 0.269532i
\(173\) − 2358.00i − 1.03627i −0.855298 0.518137i \(-0.826626\pi\)
0.855298 0.518137i \(-0.173374\pi\)
\(174\) −126.000 −0.0548968
\(175\) 0 0
\(176\) −832.000 −0.356332
\(177\) 3996.00i 1.69694i
\(178\) 2544.00i 1.07124i
\(179\) −1073.00 −0.448043 −0.224022 0.974584i \(-0.571919\pi\)
−0.224022 + 0.974584i \(0.571919\pi\)
\(180\) 0 0
\(181\) 2868.00 1.17777 0.588886 0.808216i \(-0.299567\pi\)
0.588886 + 0.808216i \(0.299567\pi\)
\(182\) 172.000i 0.0700521i
\(183\) 2358.00i 0.952505i
\(184\) 184.000 0.0737210
\(185\) 0 0
\(186\) 4914.00 1.93716
\(187\) 2600.00i 1.01674i
\(188\) − 300.000i − 0.116382i
\(189\) 486.000 0.187044
\(190\) 0 0
\(191\) 332.000 0.125773 0.0628866 0.998021i \(-0.479969\pi\)
0.0628866 + 0.998021i \(0.479969\pi\)
\(192\) − 576.000i − 0.216506i
\(193\) 2143.00i 0.799257i 0.916677 + 0.399628i \(0.130861\pi\)
−0.916677 + 0.399628i \(0.869139\pi\)
\(194\) 684.000 0.253136
\(195\) 0 0
\(196\) −1356.00 −0.494169
\(197\) − 2739.00i − 0.990587i −0.868726 0.495294i \(-0.835060\pi\)
0.868726 0.495294i \(-0.164940\pi\)
\(198\) 5616.00i 2.01572i
\(199\) −752.000 −0.267879 −0.133939 0.990990i \(-0.542763\pi\)
−0.133939 + 0.990990i \(0.542763\pi\)
\(200\) 0 0
\(201\) −6876.00 −2.41291
\(202\) − 2852.00i − 0.993396i
\(203\) 14.0000i 0.00484043i
\(204\) −1800.00 −0.617771
\(205\) 0 0
\(206\) −2380.00 −0.804963
\(207\) − 1242.00i − 0.417029i
\(208\) − 688.000i − 0.229347i
\(209\) −3848.00 −1.27355
\(210\) 0 0
\(211\) −1016.00 −0.331490 −0.165745 0.986169i \(-0.553003\pi\)
−0.165745 + 0.986169i \(0.553003\pi\)
\(212\) 344.000i 0.111443i
\(213\) − 189.000i − 0.0607984i
\(214\) 2420.00 0.773027
\(215\) 0 0
\(216\) −1944.00 −0.612372
\(217\) − 546.000i − 0.170806i
\(218\) 3360.00i 1.04389i
\(219\) 6129.00 1.89114
\(220\) 0 0
\(221\) −2150.00 −0.654410
\(222\) 72.0000i 0.0217672i
\(223\) 1120.00i 0.336326i 0.985759 + 0.168163i \(0.0537835\pi\)
−0.985759 + 0.168163i \(0.946216\pi\)
\(224\) −64.0000 −0.0190901
\(225\) 0 0
\(226\) 2060.00 0.606324
\(227\) 2706.00i 0.791205i 0.918422 + 0.395602i \(0.129464\pi\)
−0.918422 + 0.395602i \(0.870536\pi\)
\(228\) − 2664.00i − 0.773806i
\(229\) −6140.00 −1.77180 −0.885901 0.463875i \(-0.846459\pi\)
−0.885901 + 0.463875i \(0.846459\pi\)
\(230\) 0 0
\(231\) 936.000 0.266599
\(232\) − 56.0000i − 0.0158473i
\(233\) − 6567.00i − 1.84643i −0.384282 0.923216i \(-0.625551\pi\)
0.384282 0.923216i \(-0.374449\pi\)
\(234\) −4644.00 −1.29738
\(235\) 0 0
\(236\) −1776.00 −0.489863
\(237\) − 3834.00i − 1.05082i
\(238\) 200.000i 0.0544709i
\(239\) 729.000 0.197302 0.0986508 0.995122i \(-0.468547\pi\)
0.0986508 + 0.995122i \(0.468547\pi\)
\(240\) 0 0
\(241\) −2912.00 −0.778334 −0.389167 0.921167i \(-0.627237\pi\)
−0.389167 + 0.921167i \(0.627237\pi\)
\(242\) 2746.00i 0.729420i
\(243\) 0 0
\(244\) −1048.00 −0.274964
\(245\) 0 0
\(246\) −2214.00 −0.573819
\(247\) − 3182.00i − 0.819700i
\(248\) 2184.00i 0.559210i
\(249\) 8118.00 2.06609
\(250\) 0 0
\(251\) 398.000 0.100086 0.0500429 0.998747i \(-0.484064\pi\)
0.0500429 + 0.998747i \(0.484064\pi\)
\(252\) 432.000i 0.107990i
\(253\) − 1196.00i − 0.297201i
\(254\) 4558.00 1.12596
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 8131.00i 1.97353i 0.162149 + 0.986766i \(0.448157\pi\)
−0.162149 + 0.986766i \(0.551843\pi\)
\(258\) − 2736.00i − 0.660217i
\(259\) 8.00000 0.00191929
\(260\) 0 0
\(261\) −378.000 −0.0896460
\(262\) 1974.00i 0.465474i
\(263\) 1978.00i 0.463759i 0.972744 + 0.231880i \(0.0744876\pi\)
−0.972744 + 0.231880i \(0.925512\pi\)
\(264\) −3744.00 −0.872831
\(265\) 0 0
\(266\) −296.000 −0.0682290
\(267\) 11448.0i 2.62399i
\(268\) − 3056.00i − 0.696548i
\(269\) 8459.00 1.91730 0.958651 0.284584i \(-0.0918554\pi\)
0.958651 + 0.284584i \(0.0918554\pi\)
\(270\) 0 0
\(271\) −7240.00 −1.62287 −0.811437 0.584440i \(-0.801314\pi\)
−0.811437 + 0.584440i \(0.801314\pi\)
\(272\) − 800.000i − 0.178335i
\(273\) 774.000i 0.171592i
\(274\) 3288.00 0.724947
\(275\) 0 0
\(276\) 828.000 0.180579
\(277\) − 1319.00i − 0.286105i −0.989715 0.143052i \(-0.954308\pi\)
0.989715 0.143052i \(-0.0456917\pi\)
\(278\) − 4378.00i − 0.944514i
\(279\) 14742.0 3.16337
\(280\) 0 0
\(281\) 1770.00 0.375763 0.187881 0.982192i \(-0.439838\pi\)
0.187881 + 0.982192i \(0.439838\pi\)
\(282\) − 1350.00i − 0.285076i
\(283\) − 4144.00i − 0.870443i −0.900324 0.435221i \(-0.856670\pi\)
0.900324 0.435221i \(-0.143330\pi\)
\(284\) 84.0000 0.0175510
\(285\) 0 0
\(286\) −4472.00 −0.924598
\(287\) 246.000i 0.0505955i
\(288\) − 1728.00i − 0.353553i
\(289\) 2413.00 0.491146
\(290\) 0 0
\(291\) 3078.00 0.620053
\(292\) 2724.00i 0.545925i
\(293\) 6812.00i 1.35823i 0.734032 + 0.679115i \(0.237636\pi\)
−0.734032 + 0.679115i \(0.762364\pi\)
\(294\) −6102.00 −1.21046
\(295\) 0 0
\(296\) −32.0000 −0.00628366
\(297\) 12636.0i 2.46874i
\(298\) 1892.00i 0.367787i
\(299\) 989.000 0.191289
\(300\) 0 0
\(301\) −304.000 −0.0582135
\(302\) − 730.000i − 0.139095i
\(303\) − 12834.0i − 2.43331i
\(304\) 1184.00 0.223378
\(305\) 0 0
\(306\) −5400.00 −1.00882
\(307\) − 5692.00i − 1.05817i −0.848567 0.529087i \(-0.822534\pi\)
0.848567 0.529087i \(-0.177466\pi\)
\(308\) 416.000i 0.0769604i
\(309\) −10710.0 −1.97175
\(310\) 0 0
\(311\) 5267.00 0.960335 0.480167 0.877177i \(-0.340576\pi\)
0.480167 + 0.877177i \(0.340576\pi\)
\(312\) − 3096.00i − 0.561784i
\(313\) − 6340.00i − 1.14491i −0.819935 0.572457i \(-0.805990\pi\)
0.819935 0.572457i \(-0.194010\pi\)
\(314\) 216.000 0.0388203
\(315\) 0 0
\(316\) 1704.00 0.303346
\(317\) − 8794.00i − 1.55811i −0.626957 0.779054i \(-0.715700\pi\)
0.626957 0.779054i \(-0.284300\pi\)
\(318\) 1548.00i 0.272980i
\(319\) −364.000 −0.0638874
\(320\) 0 0
\(321\) 10890.0 1.89352
\(322\) − 92.0000i − 0.0159222i
\(323\) − 3700.00i − 0.637379i
\(324\) −2916.00 −0.500000
\(325\) 0 0
\(326\) −2830.00 −0.480795
\(327\) 15120.0i 2.55700i
\(328\) − 984.000i − 0.165647i
\(329\) −150.000 −0.0251361
\(330\) 0 0
\(331\) 8225.00 1.36582 0.682911 0.730502i \(-0.260714\pi\)
0.682911 + 0.730502i \(0.260714\pi\)
\(332\) 3608.00i 0.596430i
\(333\) 216.000i 0.0355457i
\(334\) −3512.00 −0.575354
\(335\) 0 0
\(336\) −288.000 −0.0467610
\(337\) − 2576.00i − 0.416391i −0.978087 0.208195i \(-0.933241\pi\)
0.978087 0.208195i \(-0.0667590\pi\)
\(338\) 696.000i 0.112004i
\(339\) 9270.00 1.48518
\(340\) 0 0
\(341\) 14196.0 2.25442
\(342\) − 7992.00i − 1.26362i
\(343\) 1364.00i 0.214720i
\(344\) 1216.00 0.190588
\(345\) 0 0
\(346\) 4716.00 0.732756
\(347\) 596.000i 0.0922045i 0.998937 + 0.0461022i \(0.0146800\pi\)
−0.998937 + 0.0461022i \(0.985320\pi\)
\(348\) − 252.000i − 0.0388179i
\(349\) 9271.00 1.42196 0.710982 0.703210i \(-0.248251\pi\)
0.710982 + 0.703210i \(0.248251\pi\)
\(350\) 0 0
\(351\) −10449.0 −1.58896
\(352\) − 1664.00i − 0.251964i
\(353\) − 8141.00i − 1.22748i −0.789507 0.613742i \(-0.789664\pi\)
0.789507 0.613742i \(-0.210336\pi\)
\(354\) −7992.00 −1.19992
\(355\) 0 0
\(356\) −5088.00 −0.757482
\(357\) 900.000i 0.133426i
\(358\) − 2146.00i − 0.316815i
\(359\) 2130.00 0.313140 0.156570 0.987667i \(-0.449956\pi\)
0.156570 + 0.987667i \(0.449956\pi\)
\(360\) 0 0
\(361\) −1383.00 −0.201633
\(362\) 5736.00i 0.832811i
\(363\) 12357.0i 1.78671i
\(364\) −344.000 −0.0495343
\(365\) 0 0
\(366\) −4716.00 −0.673523
\(367\) − 2574.00i − 0.366108i −0.983103 0.183054i \(-0.941402\pi\)
0.983103 0.183054i \(-0.0585984\pi\)
\(368\) 368.000i 0.0521286i
\(369\) −6642.00 −0.937043
\(370\) 0 0
\(371\) 172.000 0.0240695
\(372\) 9828.00i 1.36978i
\(373\) 4504.00i 0.625223i 0.949881 + 0.312612i \(0.101204\pi\)
−0.949881 + 0.312612i \(0.898796\pi\)
\(374\) −5200.00 −0.718945
\(375\) 0 0
\(376\) 600.000 0.0822942
\(377\) − 301.000i − 0.0411201i
\(378\) 972.000i 0.132260i
\(379\) −2740.00 −0.371357 −0.185679 0.982611i \(-0.559448\pi\)
−0.185679 + 0.982611i \(0.559448\pi\)
\(380\) 0 0
\(381\) 20511.0 2.75803
\(382\) 664.000i 0.0889351i
\(383\) − 6948.00i − 0.926961i −0.886107 0.463481i \(-0.846600\pi\)
0.886107 0.463481i \(-0.153400\pi\)
\(384\) 1152.00 0.153093
\(385\) 0 0
\(386\) −4286.00 −0.565160
\(387\) − 8208.00i − 1.07813i
\(388\) 1368.00i 0.178994i
\(389\) 1404.00 0.182996 0.0914982 0.995805i \(-0.470834\pi\)
0.0914982 + 0.995805i \(0.470834\pi\)
\(390\) 0 0
\(391\) 1150.00 0.148742
\(392\) − 2712.00i − 0.349430i
\(393\) 8883.00i 1.14017i
\(394\) 5478.00 0.700451
\(395\) 0 0
\(396\) −11232.0 −1.42533
\(397\) − 8641.00i − 1.09239i −0.837658 0.546196i \(-0.816076\pi\)
0.837658 0.546196i \(-0.183924\pi\)
\(398\) − 1504.00i − 0.189419i
\(399\) −1332.00 −0.167126
\(400\) 0 0
\(401\) −1140.00 −0.141967 −0.0709836 0.997477i \(-0.522614\pi\)
−0.0709836 + 0.997477i \(0.522614\pi\)
\(402\) − 13752.0i − 1.70619i
\(403\) 11739.0i 1.45102i
\(404\) 5704.00 0.702437
\(405\) 0 0
\(406\) −28.0000 −0.00342270
\(407\) 208.000i 0.0253321i
\(408\) − 3600.00i − 0.436830i
\(409\) −12529.0 −1.51472 −0.757358 0.652999i \(-0.773510\pi\)
−0.757358 + 0.652999i \(0.773510\pi\)
\(410\) 0 0
\(411\) 14796.0 1.77575
\(412\) − 4760.00i − 0.569195i
\(413\) 888.000i 0.105801i
\(414\) 2484.00 0.294884
\(415\) 0 0
\(416\) 1376.00 0.162173
\(417\) − 19701.0i − 2.31358i
\(418\) − 7696.00i − 0.900535i
\(419\) −3252.00 −0.379166 −0.189583 0.981865i \(-0.560714\pi\)
−0.189583 + 0.981865i \(0.560714\pi\)
\(420\) 0 0
\(421\) 2206.00 0.255377 0.127689 0.991814i \(-0.459244\pi\)
0.127689 + 0.991814i \(0.459244\pi\)
\(422\) − 2032.00i − 0.234399i
\(423\) − 4050.00i − 0.465527i
\(424\) −688.000 −0.0788024
\(425\) 0 0
\(426\) 378.000 0.0429910
\(427\) 524.000i 0.0593867i
\(428\) 4840.00i 0.546613i
\(429\) −20124.0 −2.26479
\(430\) 0 0
\(431\) 14316.0 1.59995 0.799974 0.600035i \(-0.204847\pi\)
0.799974 + 0.600035i \(0.204847\pi\)
\(432\) − 3888.00i − 0.433013i
\(433\) − 7828.00i − 0.868798i −0.900720 0.434399i \(-0.856961\pi\)
0.900720 0.434399i \(-0.143039\pi\)
\(434\) 1092.00 0.120778
\(435\) 0 0
\(436\) −6720.00 −0.738141
\(437\) 1702.00i 0.186311i
\(438\) 12258.0i 1.33724i
\(439\) 16039.0 1.74374 0.871868 0.489742i \(-0.162909\pi\)
0.871868 + 0.489742i \(0.162909\pi\)
\(440\) 0 0
\(441\) −18306.0 −1.97668
\(442\) − 4300.00i − 0.462738i
\(443\) − 11747.0i − 1.25986i −0.776653 0.629929i \(-0.783084\pi\)
0.776653 0.629929i \(-0.216916\pi\)
\(444\) −144.000 −0.0153918
\(445\) 0 0
\(446\) −2240.00 −0.237819
\(447\) 8514.00i 0.900891i
\(448\) − 128.000i − 0.0134987i
\(449\) 2890.00 0.303758 0.151879 0.988399i \(-0.451468\pi\)
0.151879 + 0.988399i \(0.451468\pi\)
\(450\) 0 0
\(451\) −6396.00 −0.667796
\(452\) 4120.00i 0.428736i
\(453\) − 3285.00i − 0.340713i
\(454\) −5412.00 −0.559466
\(455\) 0 0
\(456\) 5328.00 0.547163
\(457\) − 13126.0i − 1.34356i −0.740749 0.671782i \(-0.765529\pi\)
0.740749 0.671782i \(-0.234471\pi\)
\(458\) − 12280.0i − 1.25285i
\(459\) −12150.0 −1.23554
\(460\) 0 0
\(461\) 14481.0 1.46301 0.731505 0.681836i \(-0.238818\pi\)
0.731505 + 0.681836i \(0.238818\pi\)
\(462\) 1872.00i 0.188514i
\(463\) − 5272.00i − 0.529181i −0.964361 0.264590i \(-0.914763\pi\)
0.964361 0.264590i \(-0.0852367\pi\)
\(464\) 112.000 0.0112058
\(465\) 0 0
\(466\) 13134.0 1.30562
\(467\) − 13466.0i − 1.33433i −0.744910 0.667165i \(-0.767508\pi\)
0.744910 0.667165i \(-0.232492\pi\)
\(468\) − 9288.00i − 0.917389i
\(469\) −1528.00 −0.150440
\(470\) 0 0
\(471\) 972.000 0.0950900
\(472\) − 3552.00i − 0.346386i
\(473\) − 7904.00i − 0.768343i
\(474\) 7668.00 0.743044
\(475\) 0 0
\(476\) −400.000 −0.0385167
\(477\) 4644.00i 0.445774i
\(478\) 1458.00i 0.139513i
\(479\) 4526.00 0.431729 0.215865 0.976423i \(-0.430743\pi\)
0.215865 + 0.976423i \(0.430743\pi\)
\(480\) 0 0
\(481\) −172.000 −0.0163046
\(482\) − 5824.00i − 0.550365i
\(483\) − 414.000i − 0.0390014i
\(484\) −5492.00 −0.515778
\(485\) 0 0
\(486\) 0 0
\(487\) − 8795.00i − 0.818356i −0.912455 0.409178i \(-0.865815\pi\)
0.912455 0.409178i \(-0.134185\pi\)
\(488\) − 2096.00i − 0.194429i
\(489\) −12735.0 −1.17770
\(490\) 0 0
\(491\) −1275.00 −0.117189 −0.0585946 0.998282i \(-0.518662\pi\)
−0.0585946 + 0.998282i \(0.518662\pi\)
\(492\) − 4428.00i − 0.405751i
\(493\) − 350.000i − 0.0319741i
\(494\) 6364.00 0.579615
\(495\) 0 0
\(496\) −4368.00 −0.395421
\(497\) − 42.0000i − 0.00379066i
\(498\) 16236.0i 1.46095i
\(499\) 9533.00 0.855222 0.427611 0.903963i \(-0.359355\pi\)
0.427611 + 0.903963i \(0.359355\pi\)
\(500\) 0 0
\(501\) −15804.0 −1.40932
\(502\) 796.000i 0.0707714i
\(503\) 13398.0i 1.18765i 0.804595 + 0.593824i \(0.202383\pi\)
−0.804595 + 0.593824i \(0.797617\pi\)
\(504\) −864.000 −0.0763604
\(505\) 0 0
\(506\) 2392.00 0.210153
\(507\) 3132.00i 0.274353i
\(508\) 9116.00i 0.796175i
\(509\) 8031.00 0.699347 0.349674 0.936872i \(-0.386292\pi\)
0.349674 + 0.936872i \(0.386292\pi\)
\(510\) 0 0
\(511\) 1362.00 0.117909
\(512\) 512.000i 0.0441942i
\(513\) − 17982.0i − 1.54761i
\(514\) −16262.0 −1.39550
\(515\) 0 0
\(516\) 5472.00 0.466844
\(517\) − 3900.00i − 0.331764i
\(518\) 16.0000i 0.00135714i
\(519\) 21222.0 1.79488
\(520\) 0 0
\(521\) −21184.0 −1.78136 −0.890679 0.454632i \(-0.849771\pi\)
−0.890679 + 0.454632i \(0.849771\pi\)
\(522\) − 756.000i − 0.0633893i
\(523\) 21706.0i 1.81479i 0.420275 + 0.907397i \(0.361934\pi\)
−0.420275 + 0.907397i \(0.638066\pi\)
\(524\) −3948.00 −0.329140
\(525\) 0 0
\(526\) −3956.00 −0.327927
\(527\) 13650.0i 1.12828i
\(528\) − 7488.00i − 0.617184i
\(529\) −529.000 −0.0434783
\(530\) 0 0
\(531\) −23976.0 −1.95945
\(532\) − 592.000i − 0.0482452i
\(533\) − 5289.00i − 0.429816i
\(534\) −22896.0 −1.85544
\(535\) 0 0
\(536\) 6112.00 0.492534
\(537\) − 9657.00i − 0.776034i
\(538\) 16918.0i 1.35574i
\(539\) −17628.0 −1.40870
\(540\) 0 0
\(541\) 5781.00 0.459417 0.229709 0.973259i \(-0.426223\pi\)
0.229709 + 0.973259i \(0.426223\pi\)
\(542\) − 14480.0i − 1.14754i
\(543\) 25812.0i 2.03996i
\(544\) 1600.00 0.126102
\(545\) 0 0
\(546\) −1548.00 −0.121334
\(547\) 7809.00i 0.610400i 0.952288 + 0.305200i \(0.0987233\pi\)
−0.952288 + 0.305200i \(0.901277\pi\)
\(548\) 6576.00i 0.512615i
\(549\) −14148.0 −1.09986
\(550\) 0 0
\(551\) 518.000 0.0400500
\(552\) 1656.00i 0.127688i
\(553\) − 852.000i − 0.0655167i
\(554\) 2638.00 0.202307
\(555\) 0 0
\(556\) 8756.00 0.667873
\(557\) − 20240.0i − 1.53967i −0.638243 0.769835i \(-0.720338\pi\)
0.638243 0.769835i \(-0.279662\pi\)
\(558\) 29484.0i 2.23684i
\(559\) 6536.00 0.494532
\(560\) 0 0
\(561\) −23400.0 −1.76105
\(562\) 3540.00i 0.265704i
\(563\) − 7612.00i − 0.569818i −0.958555 0.284909i \(-0.908037\pi\)
0.958555 0.284909i \(-0.0919634\pi\)
\(564\) 2700.00 0.201579
\(565\) 0 0
\(566\) 8288.00 0.615496
\(567\) 1458.00i 0.107990i
\(568\) 168.000i 0.0124104i
\(569\) −19484.0 −1.43552 −0.717761 0.696290i \(-0.754833\pi\)
−0.717761 + 0.696290i \(0.754833\pi\)
\(570\) 0 0
\(571\) 6614.00 0.484741 0.242371 0.970184i \(-0.422075\pi\)
0.242371 + 0.970184i \(0.422075\pi\)
\(572\) − 8944.00i − 0.653789i
\(573\) 2988.00i 0.217846i
\(574\) −492.000 −0.0357765
\(575\) 0 0
\(576\) 3456.00 0.250000
\(577\) − 639.000i − 0.0461038i −0.999734 0.0230519i \(-0.992662\pi\)
0.999734 0.0230519i \(-0.00733830\pi\)
\(578\) 4826.00i 0.347293i
\(579\) −19287.0 −1.38435
\(580\) 0 0
\(581\) 1804.00 0.128817
\(582\) 6156.00i 0.438444i
\(583\) 4472.00i 0.317687i
\(584\) −5448.00 −0.386027
\(585\) 0 0
\(586\) −13624.0 −0.960413
\(587\) − 829.000i − 0.0582904i −0.999575 0.0291452i \(-0.990721\pi\)
0.999575 0.0291452i \(-0.00927853\pi\)
\(588\) − 12204.0i − 0.855926i
\(589\) −20202.0 −1.41326
\(590\) 0 0
\(591\) 24651.0 1.71575
\(592\) − 64.0000i − 0.00444322i
\(593\) 20610.0i 1.42724i 0.700535 + 0.713618i \(0.252945\pi\)
−0.700535 + 0.713618i \(0.747055\pi\)
\(594\) −25272.0 −1.74566
\(595\) 0 0
\(596\) −3784.00 −0.260065
\(597\) − 6768.00i − 0.463980i
\(598\) 1978.00i 0.135262i
\(599\) 17240.0 1.17597 0.587986 0.808871i \(-0.299921\pi\)
0.587986 + 0.808871i \(0.299921\pi\)
\(600\) 0 0
\(601\) −8459.00 −0.574126 −0.287063 0.957912i \(-0.592679\pi\)
−0.287063 + 0.957912i \(0.592679\pi\)
\(602\) − 608.000i − 0.0411632i
\(603\) − 41256.0i − 2.78619i
\(604\) 1460.00 0.0983552
\(605\) 0 0
\(606\) 25668.0 1.72061
\(607\) 17840.0i 1.19292i 0.802642 + 0.596461i \(0.203427\pi\)
−0.802642 + 0.596461i \(0.796573\pi\)
\(608\) 2368.00i 0.157952i
\(609\) −126.000 −0.00838387
\(610\) 0 0
\(611\) 3225.00 0.213534
\(612\) − 10800.0i − 0.713340i
\(613\) − 2534.00i − 0.166961i −0.996509 0.0834807i \(-0.973396\pi\)
0.996509 0.0834807i \(-0.0266037\pi\)
\(614\) 11384.0 0.748242
\(615\) 0 0
\(616\) −832.000 −0.0544192
\(617\) − 5610.00i − 0.366046i −0.983109 0.183023i \(-0.941412\pi\)
0.983109 0.183023i \(-0.0585882\pi\)
\(618\) − 21420.0i − 1.39424i
\(619\) 11948.0 0.775817 0.387908 0.921698i \(-0.373198\pi\)
0.387908 + 0.921698i \(0.373198\pi\)
\(620\) 0 0
\(621\) 5589.00 0.361158
\(622\) 10534.0i 0.679059i
\(623\) 2544.00i 0.163601i
\(624\) 6192.00 0.397241
\(625\) 0 0
\(626\) 12680.0 0.809576
\(627\) − 34632.0i − 2.20585i
\(628\) 432.000i 0.0274501i
\(629\) −200.000 −0.0126781
\(630\) 0 0
\(631\) −7840.00 −0.494620 −0.247310 0.968936i \(-0.579547\pi\)
−0.247310 + 0.968936i \(0.579547\pi\)
\(632\) 3408.00i 0.214498i
\(633\) − 9144.00i − 0.574157i
\(634\) 17588.0 1.10175
\(635\) 0 0
\(636\) −3096.00 −0.193026
\(637\) − 14577.0i − 0.906690i
\(638\) − 728.000i − 0.0451752i
\(639\) 1134.00 0.0702040
\(640\) 0 0
\(641\) −2320.00 −0.142956 −0.0714778 0.997442i \(-0.522771\pi\)
−0.0714778 + 0.997442i \(0.522771\pi\)
\(642\) 21780.0i 1.33892i
\(643\) − 1864.00i − 0.114322i −0.998365 0.0571610i \(-0.981795\pi\)
0.998365 0.0571610i \(-0.0182048\pi\)
\(644\) 184.000 0.0112587
\(645\) 0 0
\(646\) 7400.00 0.450695
\(647\) 11939.0i 0.725457i 0.931895 + 0.362728i \(0.118155\pi\)
−0.931895 + 0.362728i \(0.881845\pi\)
\(648\) − 5832.00i − 0.353553i
\(649\) −23088.0 −1.39643
\(650\) 0 0
\(651\) 4914.00 0.295845
\(652\) − 5660.00i − 0.339973i
\(653\) − 10503.0i − 0.629424i −0.949187 0.314712i \(-0.898092\pi\)
0.949187 0.314712i \(-0.101908\pi\)
\(654\) −30240.0 −1.80807
\(655\) 0 0
\(656\) 1968.00 0.117130
\(657\) 36774.0i 2.18370i
\(658\) − 300.000i − 0.0177739i
\(659\) −10950.0 −0.647271 −0.323635 0.946182i \(-0.604905\pi\)
−0.323635 + 0.946182i \(0.604905\pi\)
\(660\) 0 0
\(661\) −3210.00 −0.188887 −0.0944437 0.995530i \(-0.530107\pi\)
−0.0944437 + 0.995530i \(0.530107\pi\)
\(662\) 16450.0i 0.965782i
\(663\) − 19350.0i − 1.13347i
\(664\) −7216.00 −0.421740
\(665\) 0 0
\(666\) −432.000 −0.0251346
\(667\) 161.000i 0.00934624i
\(668\) − 7024.00i − 0.406836i
\(669\) −10080.0 −0.582534
\(670\) 0 0
\(671\) −13624.0 −0.783828
\(672\) − 576.000i − 0.0330650i
\(673\) 13517.0i 0.774208i 0.922036 + 0.387104i \(0.126525\pi\)
−0.922036 + 0.387104i \(0.873475\pi\)
\(674\) 5152.00 0.294433
\(675\) 0 0
\(676\) −1392.00 −0.0791989
\(677\) − 7494.00i − 0.425433i −0.977114 0.212716i \(-0.931769\pi\)
0.977114 0.212716i \(-0.0682310\pi\)
\(678\) 18540.0i 1.05018i
\(679\) 684.000 0.0386591
\(680\) 0 0
\(681\) −24354.0 −1.37041
\(682\) 28392.0i 1.59411i
\(683\) − 17865.0i − 1.00086i −0.865778 0.500428i \(-0.833176\pi\)
0.865778 0.500428i \(-0.166824\pi\)
\(684\) 15984.0 0.893514
\(685\) 0 0
\(686\) −2728.00 −0.151830
\(687\) − 55260.0i − 3.06885i
\(688\) 2432.00i 0.134766i
\(689\) −3698.00 −0.204474
\(690\) 0 0
\(691\) 22364.0 1.23121 0.615605 0.788055i \(-0.288912\pi\)
0.615605 + 0.788055i \(0.288912\pi\)
\(692\) 9432.00i 0.518137i
\(693\) 5616.00i 0.307842i
\(694\) −1192.00 −0.0651984
\(695\) 0 0
\(696\) 504.000 0.0274484
\(697\) − 6150.00i − 0.334215i
\(698\) 18542.0i 1.00548i
\(699\) 59103.0 3.19811
\(700\) 0 0
\(701\) 7842.00 0.422522 0.211261 0.977430i \(-0.432243\pi\)
0.211261 + 0.977430i \(0.432243\pi\)
\(702\) − 20898.0i − 1.12357i
\(703\) − 296.000i − 0.0158803i
\(704\) 3328.00 0.178166
\(705\) 0 0
\(706\) 16282.0 0.867962
\(707\) − 2852.00i − 0.151712i
\(708\) − 15984.0i − 0.848468i
\(709\) −11234.0 −0.595066 −0.297533 0.954712i \(-0.596164\pi\)
−0.297533 + 0.954712i \(0.596164\pi\)
\(710\) 0 0
\(711\) 23004.0 1.21339
\(712\) − 10176.0i − 0.535620i
\(713\) − 6279.00i − 0.329804i
\(714\) −1800.00 −0.0943464
\(715\) 0 0
\(716\) 4292.00 0.224022
\(717\) 6561.00i 0.341736i
\(718\) 4260.00i 0.221423i
\(719\) 17568.0 0.911232 0.455616 0.890176i \(-0.349419\pi\)
0.455616 + 0.890176i \(0.349419\pi\)
\(720\) 0 0
\(721\) −2380.00 −0.122935
\(722\) − 2766.00i − 0.142576i
\(723\) − 26208.0i − 1.34811i
\(724\) −11472.0 −0.588886
\(725\) 0 0
\(726\) −24714.0 −1.26339
\(727\) − 35664.0i − 1.81940i −0.415265 0.909701i \(-0.636311\pi\)
0.415265 0.909701i \(-0.363689\pi\)
\(728\) − 688.000i − 0.0350261i
\(729\) 19683.0 1.00000
\(730\) 0 0
\(731\) 7600.00 0.384536
\(732\) − 9432.00i − 0.476252i
\(733\) 27914.0i 1.40659i 0.710900 + 0.703293i \(0.248288\pi\)
−0.710900 + 0.703293i \(0.751712\pi\)
\(734\) 5148.00 0.258878
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) − 39728.0i − 1.98562i
\(738\) − 13284.0i − 0.662589i
\(739\) −39529.0 −1.96766 −0.983828 0.179116i \(-0.942676\pi\)
−0.983828 + 0.179116i \(0.942676\pi\)
\(740\) 0 0
\(741\) 28638.0 1.41976
\(742\) 344.000i 0.0170197i
\(743\) − 10062.0i − 0.496822i −0.968655 0.248411i \(-0.920092\pi\)
0.968655 0.248411i \(-0.0799084\pi\)
\(744\) −19656.0 −0.968581
\(745\) 0 0
\(746\) −9008.00 −0.442100
\(747\) 48708.0i 2.38572i
\(748\) − 10400.0i − 0.508371i
\(749\) 2420.00 0.118057
\(750\) 0 0
\(751\) 25644.0 1.24602 0.623011 0.782213i \(-0.285909\pi\)
0.623011 + 0.782213i \(0.285909\pi\)
\(752\) 1200.00i 0.0581908i
\(753\) 3582.00i 0.173354i
\(754\) 602.000 0.0290763
\(755\) 0 0
\(756\) −1944.00 −0.0935220
\(757\) 37368.0i 1.79414i 0.441890 + 0.897069i \(0.354308\pi\)
−0.441890 + 0.897069i \(0.645692\pi\)
\(758\) − 5480.00i − 0.262589i
\(759\) 10764.0 0.514767
\(760\) 0 0
\(761\) 105.000 0.00500164 0.00250082 0.999997i \(-0.499204\pi\)
0.00250082 + 0.999997i \(0.499204\pi\)
\(762\) 41022.0i 1.95022i
\(763\) 3360.00i 0.159424i
\(764\) −1328.00 −0.0628866
\(765\) 0 0
\(766\) 13896.0 0.655461
\(767\) − 19092.0i − 0.898790i
\(768\) 2304.00i 0.108253i
\(769\) 15464.0 0.725157 0.362579 0.931953i \(-0.381896\pi\)
0.362579 + 0.931953i \(0.381896\pi\)
\(770\) 0 0
\(771\) −73179.0 −3.41826
\(772\) − 8572.00i − 0.399628i
\(773\) − 35168.0i − 1.63636i −0.574963 0.818179i \(-0.694984\pi\)
0.574963 0.818179i \(-0.305016\pi\)
\(774\) 16416.0 0.762353
\(775\) 0 0
\(776\) −2736.00 −0.126568
\(777\) 72.0000i 0.00332431i
\(778\) 2808.00i 0.129398i
\(779\) 9102.00 0.418630
\(780\) 0 0
\(781\) 1092.00 0.0500318
\(782\) 2300.00i 0.105176i
\(783\) − 1701.00i − 0.0776357i
\(784\) 5424.00 0.247085
\(785\) 0 0
\(786\) −17766.0 −0.806224
\(787\) − 21216.0i − 0.960951i −0.877008 0.480476i \(-0.840464\pi\)
0.877008 0.480476i \(-0.159536\pi\)
\(788\) 10956.0i 0.495294i
\(789\) −17802.0 −0.803255
\(790\) 0 0
\(791\) 2060.00 0.0925982
\(792\) − 22464.0i − 1.00786i
\(793\) − 11266.0i − 0.504499i
\(794\) 17282.0 0.772437
\(795\) 0 0
\(796\) 3008.00 0.133939
\(797\) 9506.00i 0.422484i 0.977434 + 0.211242i \(0.0677508\pi\)
−0.977434 + 0.211242i \(0.932249\pi\)
\(798\) − 2664.00i − 0.118176i
\(799\) 3750.00 0.166039
\(800\) 0 0
\(801\) −68688.0 −3.02993
\(802\) − 2280.00i − 0.100386i
\(803\) 35412.0i 1.55624i
\(804\) 27504.0 1.20646
\(805\) 0 0
\(806\) −23478.0 −1.02603
\(807\) 76131.0i 3.32087i
\(808\) 11408.0i 0.496698i
\(809\) 20550.0 0.893077 0.446539 0.894764i \(-0.352657\pi\)
0.446539 + 0.894764i \(0.352657\pi\)
\(810\) 0 0
\(811\) −5161.00 −0.223461 −0.111731 0.993739i \(-0.535639\pi\)
−0.111731 + 0.993739i \(0.535639\pi\)
\(812\) − 56.0000i − 0.00242022i
\(813\) − 65160.0i − 2.81090i
\(814\) −416.000 −0.0179125
\(815\) 0 0
\(816\) 7200.00 0.308885
\(817\) 11248.0i 0.481662i
\(818\) − 25058.0i − 1.07107i
\(819\) −4644.00 −0.198137
\(820\) 0 0
\(821\) 7866.00 0.334379 0.167190 0.985925i \(-0.446531\pi\)
0.167190 + 0.985925i \(0.446531\pi\)
\(822\) 29592.0i 1.25564i
\(823\) 22317.0i 0.945227i 0.881270 + 0.472613i \(0.156689\pi\)
−0.881270 + 0.472613i \(0.843311\pi\)
\(824\) 9520.00 0.402482
\(825\) 0 0
\(826\) −1776.00 −0.0748123
\(827\) − 26196.0i − 1.10148i −0.834677 0.550740i \(-0.814346\pi\)
0.834677 0.550740i \(-0.185654\pi\)
\(828\) 4968.00i 0.208514i
\(829\) −5886.00 −0.246597 −0.123299 0.992370i \(-0.539347\pi\)
−0.123299 + 0.992370i \(0.539347\pi\)
\(830\) 0 0
\(831\) 11871.0 0.495548
\(832\) 2752.00i 0.114674i
\(833\) − 16950.0i − 0.705021i
\(834\) 39402.0 1.63595
\(835\) 0 0
\(836\) 15392.0 0.636774
\(837\) 66339.0i 2.73956i
\(838\) − 6504.00i − 0.268111i
\(839\) −32394.0 −1.33297 −0.666487 0.745517i \(-0.732203\pi\)
−0.666487 + 0.745517i \(0.732203\pi\)
\(840\) 0 0
\(841\) −24340.0 −0.997991
\(842\) 4412.00i 0.180579i
\(843\) 15930.0i 0.650840i
\(844\) 4064.00 0.165745
\(845\) 0 0
\(846\) 8100.00 0.329177
\(847\) 2746.00i 0.111397i
\(848\) − 1376.00i − 0.0557217i
\(849\) 37296.0 1.50765
\(850\) 0 0
\(851\) 92.0000 0.00370590
\(852\) 756.000i 0.0303992i
\(853\) 31286.0i 1.25582i 0.778287 + 0.627909i \(0.216089\pi\)
−0.778287 + 0.627909i \(0.783911\pi\)
\(854\) −1048.00 −0.0419928
\(855\) 0 0
\(856\) −9680.00 −0.386514
\(857\) − 2913.00i − 0.116110i −0.998313 0.0580550i \(-0.981510\pi\)
0.998313 0.0580550i \(-0.0184899\pi\)
\(858\) − 40248.0i − 1.60145i
\(859\) −15451.0 −0.613715 −0.306858 0.951755i \(-0.599278\pi\)
−0.306858 + 0.951755i \(0.599278\pi\)
\(860\) 0 0
\(861\) −2214.00 −0.0876341
\(862\) 28632.0i 1.13133i
\(863\) 20627.0i 0.813617i 0.913514 + 0.406808i \(0.133358\pi\)
−0.913514 + 0.406808i \(0.866642\pi\)
\(864\) 7776.00 0.306186
\(865\) 0 0
\(866\) 15656.0 0.614333
\(867\) 21717.0i 0.850690i
\(868\) 2184.00i 0.0854030i
\(869\) 22152.0 0.864735
\(870\) 0 0
\(871\) 32852.0 1.27801
\(872\) − 13440.0i − 0.521945i
\(873\) 18468.0i 0.715976i
\(874\) −3404.00 −0.131741
\(875\) 0 0
\(876\) −24516.0 −0.945569
\(877\) − 6966.00i − 0.268216i −0.990967 0.134108i \(-0.957183\pi\)
0.990967 0.134108i \(-0.0428168\pi\)
\(878\) 32078.0i 1.23301i
\(879\) −61308.0 −2.35252
\(880\) 0 0
\(881\) −37590.0 −1.43750 −0.718751 0.695268i \(-0.755286\pi\)
−0.718751 + 0.695268i \(0.755286\pi\)
\(882\) − 36612.0i − 1.39772i
\(883\) − 27876.0i − 1.06240i −0.847245 0.531202i \(-0.821741\pi\)
0.847245 0.531202i \(-0.178259\pi\)
\(884\) 8600.00 0.327205
\(885\) 0 0
\(886\) 23494.0 0.890854
\(887\) 9471.00i 0.358518i 0.983802 + 0.179259i \(0.0573699\pi\)
−0.983802 + 0.179259i \(0.942630\pi\)
\(888\) − 288.000i − 0.0108836i
\(889\) 4558.00 0.171958
\(890\) 0 0
\(891\) −37908.0 −1.42533
\(892\) − 4480.00i − 0.168163i
\(893\) 5550.00i 0.207977i
\(894\) −17028.0 −0.637026
\(895\) 0 0
\(896\) 256.000 0.00954504
\(897\) 8901.00i 0.331322i
\(898\) 5780.00i 0.214790i
\(899\) −1911.00 −0.0708959
\(900\) 0 0
\(901\) −4300.00 −0.158994
\(902\) − 12792.0i − 0.472203i
\(903\) − 2736.00i − 0.100829i
\(904\) −8240.00 −0.303162
\(905\) 0 0
\(906\) 6570.00 0.240920
\(907\) 28366.0i 1.03845i 0.854636 + 0.519227i \(0.173780\pi\)
−0.854636 + 0.519227i \(0.826220\pi\)
\(908\) − 10824.0i − 0.395602i
\(909\) 77004.0 2.80975
\(910\) 0 0
\(911\) −7210.00 −0.262215 −0.131108 0.991368i \(-0.541853\pi\)
−0.131108 + 0.991368i \(0.541853\pi\)
\(912\) 10656.0i 0.386903i
\(913\) 46904.0i 1.70021i
\(914\) 26252.0 0.950043
\(915\) 0 0
\(916\) 24560.0 0.885901
\(917\) 1974.00i 0.0710875i
\(918\) − 24300.0i − 0.873660i
\(919\) −17198.0 −0.617312 −0.308656 0.951174i \(-0.599879\pi\)
−0.308656 + 0.951174i \(0.599879\pi\)
\(920\) 0 0
\(921\) 51228.0 1.83281
\(922\) 28962.0i 1.03450i
\(923\) 903.000i 0.0322022i
\(924\) −3744.00 −0.133299
\(925\) 0 0
\(926\) 10544.0 0.374187
\(927\) − 64260.0i − 2.27678i
\(928\) 224.000i 0.00792366i
\(929\) 51033.0 1.80230 0.901151 0.433505i \(-0.142724\pi\)
0.901151 + 0.433505i \(0.142724\pi\)
\(930\) 0 0
\(931\) 25086.0 0.883094
\(932\) 26268.0i 0.923216i
\(933\) 47403.0i 1.66335i
\(934\) 26932.0 0.943514
\(935\) 0 0
\(936\) 18576.0 0.648692
\(937\) 33328.0i 1.16198i 0.813910 + 0.580992i \(0.197335\pi\)
−0.813910 + 0.580992i \(0.802665\pi\)
\(938\) − 3056.00i − 0.106377i
\(939\) 57060.0 1.98305
\(940\) 0 0
\(941\) −20166.0 −0.698611 −0.349305 0.937009i \(-0.613582\pi\)
−0.349305 + 0.937009i \(0.613582\pi\)
\(942\) 1944.00i 0.0672388i
\(943\) 2829.00i 0.0976934i
\(944\) 7104.00 0.244932
\(945\) 0 0
\(946\) 15808.0 0.543301
\(947\) − 28629.0i − 0.982384i −0.871051 0.491192i \(-0.836561\pi\)
0.871051 0.491192i \(-0.163439\pi\)
\(948\) 15336.0i 0.525412i
\(949\) −29283.0 −1.00165
\(950\) 0 0
\(951\) 79146.0 2.69872
\(952\) − 800.000i − 0.0272355i
\(953\) − 38146.0i − 1.29661i −0.761380 0.648305i \(-0.775478\pi\)
0.761380 0.648305i \(-0.224522\pi\)
\(954\) −9288.00 −0.315210
\(955\) 0 0
\(956\) −2916.00 −0.0986508
\(957\) − 3276.00i − 0.110656i
\(958\) 9052.00i 0.305279i
\(959\) 3288.00 0.110714
\(960\) 0 0
\(961\) 44738.0 1.50173
\(962\) − 344.000i − 0.0115291i
\(963\) 65340.0i 2.18645i
\(964\) 11648.0 0.389167
\(965\) 0 0
\(966\) 828.000 0.0275781
\(967\) 44621.0i 1.48388i 0.670465 + 0.741941i \(0.266095\pi\)
−0.670465 + 0.741941i \(0.733905\pi\)
\(968\) − 10984.0i − 0.364710i
\(969\) 33300.0 1.10397
\(970\) 0 0
\(971\) 5950.00 0.196647 0.0983237 0.995154i \(-0.468652\pi\)
0.0983237 + 0.995154i \(0.468652\pi\)
\(972\) 0 0
\(973\) − 4378.00i − 0.144247i
\(974\) 17590.0 0.578665
\(975\) 0 0
\(976\) 4192.00 0.137482
\(977\) 40836.0i 1.33722i 0.743615 + 0.668608i \(0.233109\pi\)
−0.743615 + 0.668608i \(0.766891\pi\)
\(978\) − 25470.0i − 0.832762i
\(979\) −66144.0 −2.15932
\(980\) 0 0
\(981\) −90720.0 −2.95257
\(982\) − 2550.00i − 0.0828653i
\(983\) − 26874.0i − 0.871971i −0.899954 0.435985i \(-0.856400\pi\)
0.899954 0.435985i \(-0.143600\pi\)
\(984\) 8856.00 0.286910
\(985\) 0 0
\(986\) 700.000 0.0226091
\(987\) − 1350.00i − 0.0435370i
\(988\) 12728.0i 0.409850i
\(989\) −3496.00 −0.112403
\(990\) 0 0
\(991\) 21472.0 0.688275 0.344138 0.938919i \(-0.388171\pi\)
0.344138 + 0.938919i \(0.388171\pi\)
\(992\) − 8736.00i − 0.279605i
\(993\) 74025.0i 2.36567i
\(994\) 84.0000 0.00268040
\(995\) 0 0
\(996\) −32472.0 −1.03305
\(997\) 6286.00i 0.199679i 0.995004 + 0.0998393i \(0.0318329\pi\)
−0.995004 + 0.0998393i \(0.968167\pi\)
\(998\) 19066.0i 0.604733i
\(999\) −972.000 −0.0307835
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.b.a.599.2 2
5.2 odd 4 1150.4.a.d.1.1 1
5.3 odd 4 46.4.a.b.1.1 1
5.4 even 2 inner 1150.4.b.a.599.1 2
15.8 even 4 414.4.a.b.1.1 1
20.3 even 4 368.4.a.e.1.1 1
35.13 even 4 2254.4.a.b.1.1 1
40.3 even 4 1472.4.a.a.1.1 1
40.13 odd 4 1472.4.a.j.1.1 1
115.68 even 4 1058.4.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
46.4.a.b.1.1 1 5.3 odd 4
368.4.a.e.1.1 1 20.3 even 4
414.4.a.b.1.1 1 15.8 even 4
1058.4.a.b.1.1 1 115.68 even 4
1150.4.a.d.1.1 1 5.2 odd 4
1150.4.b.a.599.1 2 5.4 even 2 inner
1150.4.b.a.599.2 2 1.1 even 1 trivial
1472.4.a.a.1.1 1 40.3 even 4
1472.4.a.j.1.1 1 40.13 odd 4
2254.4.a.b.1.1 1 35.13 even 4