Properties

Label 1150.4.a.s.1.5
Level $1150$
Weight $4$
Character 1150.1
Self dual yes
Analytic conductor $67.852$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(1,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 38x^{3} + 38x^{2} + 202x + 101 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(3.55548\) of defining polynomial
Character \(\chi\) \(=\) 1150.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +10.0533 q^{3} +4.00000 q^{4} -20.1065 q^{6} +0.670353 q^{7} -8.00000 q^{8} +74.0682 q^{9} -15.7157 q^{11} +40.2131 q^{12} +50.2505 q^{13} -1.34071 q^{14} +16.0000 q^{16} +43.0881 q^{17} -148.136 q^{18} +86.7556 q^{19} +6.73924 q^{21} +31.4313 q^{22} -23.0000 q^{23} -80.4262 q^{24} -100.501 q^{26} +473.190 q^{27} +2.68141 q^{28} +147.078 q^{29} -121.171 q^{31} -32.0000 q^{32} -157.994 q^{33} -86.1762 q^{34} +296.273 q^{36} -241.489 q^{37} -173.511 q^{38} +505.181 q^{39} +232.308 q^{41} -13.4785 q^{42} -302.817 q^{43} -62.8627 q^{44} +46.0000 q^{46} -252.268 q^{47} +160.852 q^{48} -342.551 q^{49} +433.176 q^{51} +201.002 q^{52} +58.0364 q^{53} -946.380 q^{54} -5.36282 q^{56} +872.177 q^{57} -294.155 q^{58} -375.545 q^{59} +353.755 q^{61} +242.342 q^{62} +49.6518 q^{63} +64.0000 q^{64} +315.988 q^{66} +750.780 q^{67} +172.352 q^{68} -231.225 q^{69} +29.4436 q^{71} -592.546 q^{72} +80.5591 q^{73} +482.978 q^{74} +347.022 q^{76} -10.5350 q^{77} -1010.36 q^{78} -607.461 q^{79} +2757.26 q^{81} -464.616 q^{82} +1235.22 q^{83} +26.9569 q^{84} +605.635 q^{86} +1478.61 q^{87} +125.725 q^{88} +903.263 q^{89} +33.6855 q^{91} -92.0000 q^{92} -1218.17 q^{93} +504.536 q^{94} -321.705 q^{96} +1139.44 q^{97} +685.101 q^{98} -1164.03 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 10 q^{2} + 12 q^{3} + 20 q^{4} - 24 q^{6} - 24 q^{7} - 40 q^{8} + 11 q^{9} - 54 q^{11} + 48 q^{12} + 36 q^{13} + 48 q^{14} + 80 q^{16} + 132 q^{17} - 22 q^{18} - 50 q^{19} - 158 q^{21} + 108 q^{22}+ \cdots - 1740 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 10.0533 1.93475 0.967376 0.253343i \(-0.0815303\pi\)
0.967376 + 0.253343i \(0.0815303\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) −20.1065 −1.36808
\(7\) 0.670353 0.0361956 0.0180978 0.999836i \(-0.494239\pi\)
0.0180978 + 0.999836i \(0.494239\pi\)
\(8\) −8.00000 −0.353553
\(9\) 74.0682 2.74327
\(10\) 0 0
\(11\) −15.7157 −0.430768 −0.215384 0.976529i \(-0.569100\pi\)
−0.215384 + 0.976529i \(0.569100\pi\)
\(12\) 40.2131 0.967376
\(13\) 50.2505 1.07207 0.536037 0.844194i \(-0.319921\pi\)
0.536037 + 0.844194i \(0.319921\pi\)
\(14\) −1.34071 −0.0255942
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 43.0881 0.614729 0.307365 0.951592i \(-0.400553\pi\)
0.307365 + 0.951592i \(0.400553\pi\)
\(18\) −148.136 −1.93978
\(19\) 86.7556 1.04753 0.523766 0.851862i \(-0.324527\pi\)
0.523766 + 0.851862i \(0.324527\pi\)
\(20\) 0 0
\(21\) 6.73924 0.0700296
\(22\) 31.4313 0.304599
\(23\) −23.0000 −0.208514
\(24\) −80.4262 −0.684038
\(25\) 0 0
\(26\) −100.501 −0.758071
\(27\) 473.190 3.37279
\(28\) 2.68141 0.0180978
\(29\) 147.078 0.941780 0.470890 0.882192i \(-0.343933\pi\)
0.470890 + 0.882192i \(0.343933\pi\)
\(30\) 0 0
\(31\) −121.171 −0.702032 −0.351016 0.936370i \(-0.614164\pi\)
−0.351016 + 0.936370i \(0.614164\pi\)
\(32\) −32.0000 −0.176777
\(33\) −157.994 −0.833430
\(34\) −86.1762 −0.434679
\(35\) 0 0
\(36\) 296.273 1.37163
\(37\) −241.489 −1.07299 −0.536493 0.843905i \(-0.680251\pi\)
−0.536493 + 0.843905i \(0.680251\pi\)
\(38\) −173.511 −0.740716
\(39\) 505.181 2.07420
\(40\) 0 0
\(41\) 232.308 0.884888 0.442444 0.896796i \(-0.354112\pi\)
0.442444 + 0.896796i \(0.354112\pi\)
\(42\) −13.4785 −0.0495184
\(43\) −302.817 −1.07394 −0.536968 0.843603i \(-0.680430\pi\)
−0.536968 + 0.843603i \(0.680430\pi\)
\(44\) −62.8627 −0.215384
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) −252.268 −0.782916 −0.391458 0.920196i \(-0.628029\pi\)
−0.391458 + 0.920196i \(0.628029\pi\)
\(48\) 160.852 0.483688
\(49\) −342.551 −0.998690
\(50\) 0 0
\(51\) 433.176 1.18935
\(52\) 201.002 0.536037
\(53\) 58.0364 0.150413 0.0752067 0.997168i \(-0.476038\pi\)
0.0752067 + 0.997168i \(0.476038\pi\)
\(54\) −946.380 −2.38493
\(55\) 0 0
\(56\) −5.36282 −0.0127971
\(57\) 872.177 2.02671
\(58\) −294.155 −0.665939
\(59\) −375.545 −0.828675 −0.414337 0.910123i \(-0.635987\pi\)
−0.414337 + 0.910123i \(0.635987\pi\)
\(60\) 0 0
\(61\) 353.755 0.742519 0.371259 0.928529i \(-0.378926\pi\)
0.371259 + 0.928529i \(0.378926\pi\)
\(62\) 242.342 0.496411
\(63\) 49.6518 0.0992944
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 315.988 0.589324
\(67\) 750.780 1.36899 0.684495 0.729017i \(-0.260023\pi\)
0.684495 + 0.729017i \(0.260023\pi\)
\(68\) 172.352 0.307365
\(69\) −231.225 −0.403424
\(70\) 0 0
\(71\) 29.4436 0.0492156 0.0246078 0.999697i \(-0.492166\pi\)
0.0246078 + 0.999697i \(0.492166\pi\)
\(72\) −592.546 −0.969892
\(73\) 80.5591 0.129161 0.0645803 0.997913i \(-0.479429\pi\)
0.0645803 + 0.997913i \(0.479429\pi\)
\(74\) 482.978 0.758716
\(75\) 0 0
\(76\) 347.022 0.523766
\(77\) −10.5350 −0.0155919
\(78\) −1010.36 −1.46668
\(79\) −607.461 −0.865122 −0.432561 0.901605i \(-0.642390\pi\)
−0.432561 + 0.901605i \(0.642390\pi\)
\(80\) 0 0
\(81\) 2757.26 3.78225
\(82\) −464.616 −0.625710
\(83\) 1235.22 1.63354 0.816768 0.576967i \(-0.195764\pi\)
0.816768 + 0.576967i \(0.195764\pi\)
\(84\) 26.9569 0.0350148
\(85\) 0 0
\(86\) 605.635 0.759387
\(87\) 1478.61 1.82211
\(88\) 125.725 0.152300
\(89\) 903.263 1.07579 0.537897 0.843010i \(-0.319219\pi\)
0.537897 + 0.843010i \(0.319219\pi\)
\(90\) 0 0
\(91\) 33.6855 0.0388044
\(92\) −92.0000 −0.104257
\(93\) −1218.17 −1.35826
\(94\) 504.536 0.553606
\(95\) 0 0
\(96\) −321.705 −0.342019
\(97\) 1139.44 1.19270 0.596351 0.802724i \(-0.296617\pi\)
0.596351 + 0.802724i \(0.296617\pi\)
\(98\) 685.101 0.706180
\(99\) −1164.03 −1.18171
\(100\) 0 0
\(101\) −241.262 −0.237688 −0.118844 0.992913i \(-0.537919\pi\)
−0.118844 + 0.992913i \(0.537919\pi\)
\(102\) −866.353 −0.840997
\(103\) −304.633 −0.291421 −0.145711 0.989327i \(-0.546547\pi\)
−0.145711 + 0.989327i \(0.546547\pi\)
\(104\) −402.004 −0.379036
\(105\) 0 0
\(106\) −116.073 −0.106358
\(107\) 1660.06 1.49985 0.749927 0.661521i \(-0.230089\pi\)
0.749927 + 0.661521i \(0.230089\pi\)
\(108\) 1892.76 1.68640
\(109\) 603.058 0.529931 0.264965 0.964258i \(-0.414639\pi\)
0.264965 + 0.964258i \(0.414639\pi\)
\(110\) 0 0
\(111\) −2427.75 −2.07596
\(112\) 10.7256 0.00904891
\(113\) 1231.01 1.02481 0.512404 0.858744i \(-0.328755\pi\)
0.512404 + 0.858744i \(0.328755\pi\)
\(114\) −1744.35 −1.43310
\(115\) 0 0
\(116\) 588.310 0.470890
\(117\) 3721.96 2.94099
\(118\) 751.090 0.585961
\(119\) 28.8842 0.0222505
\(120\) 0 0
\(121\) −1084.02 −0.814439
\(122\) −707.510 −0.525040
\(123\) 2335.46 1.71204
\(124\) −484.685 −0.351016
\(125\) 0 0
\(126\) −99.3037 −0.0702117
\(127\) −2793.94 −1.95214 −0.976071 0.217453i \(-0.930225\pi\)
−0.976071 + 0.217453i \(0.930225\pi\)
\(128\) −128.000 −0.0883883
\(129\) −3044.31 −2.07780
\(130\) 0 0
\(131\) −1476.50 −0.984753 −0.492376 0.870382i \(-0.663872\pi\)
−0.492376 + 0.870382i \(0.663872\pi\)
\(132\) −631.975 −0.416715
\(133\) 58.1568 0.0379161
\(134\) −1501.56 −0.968022
\(135\) 0 0
\(136\) −344.705 −0.217340
\(137\) 1955.43 1.21944 0.609720 0.792617i \(-0.291282\pi\)
0.609720 + 0.792617i \(0.291282\pi\)
\(138\) 462.450 0.285264
\(139\) −3211.77 −1.95985 −0.979923 0.199375i \(-0.936109\pi\)
−0.979923 + 0.199375i \(0.936109\pi\)
\(140\) 0 0
\(141\) −2536.12 −1.51475
\(142\) −58.8871 −0.0348007
\(143\) −789.719 −0.461816
\(144\) 1185.09 0.685817
\(145\) 0 0
\(146\) −161.118 −0.0913303
\(147\) −3443.75 −1.93222
\(148\) −965.955 −0.536493
\(149\) 3016.92 1.65876 0.829382 0.558682i \(-0.188693\pi\)
0.829382 + 0.558682i \(0.188693\pi\)
\(150\) 0 0
\(151\) −648.140 −0.349304 −0.174652 0.984630i \(-0.555880\pi\)
−0.174652 + 0.984630i \(0.555880\pi\)
\(152\) −694.044 −0.370358
\(153\) 3191.46 1.68637
\(154\) 21.0701 0.0110252
\(155\) 0 0
\(156\) 2020.73 1.03710
\(157\) 2846.40 1.44693 0.723463 0.690363i \(-0.242549\pi\)
0.723463 + 0.690363i \(0.242549\pi\)
\(158\) 1214.92 0.611734
\(159\) 583.456 0.291013
\(160\) 0 0
\(161\) −15.4181 −0.00754731
\(162\) −5514.53 −2.67446
\(163\) 592.664 0.284792 0.142396 0.989810i \(-0.454519\pi\)
0.142396 + 0.989810i \(0.454519\pi\)
\(164\) 929.232 0.442444
\(165\) 0 0
\(166\) −2470.45 −1.15508
\(167\) −0.834417 −0.000386641 0 −0.000193321 1.00000i \(-0.500062\pi\)
−0.000193321 1.00000i \(0.500062\pi\)
\(168\) −53.9139 −0.0247592
\(169\) 328.109 0.149344
\(170\) 0 0
\(171\) 6425.83 2.87366
\(172\) −1211.27 −0.536968
\(173\) 885.670 0.389227 0.194613 0.980880i \(-0.437655\pi\)
0.194613 + 0.980880i \(0.437655\pi\)
\(174\) −2957.22 −1.28843
\(175\) 0 0
\(176\) −251.451 −0.107692
\(177\) −3775.46 −1.60328
\(178\) −1806.53 −0.760702
\(179\) −3354.45 −1.40069 −0.700344 0.713805i \(-0.746970\pi\)
−0.700344 + 0.713805i \(0.746970\pi\)
\(180\) 0 0
\(181\) 79.3370 0.0325805 0.0162903 0.999867i \(-0.494814\pi\)
0.0162903 + 0.999867i \(0.494814\pi\)
\(182\) −67.3711 −0.0274389
\(183\) 3556.39 1.43659
\(184\) 184.000 0.0737210
\(185\) 0 0
\(186\) 2436.33 0.960433
\(187\) −677.158 −0.264806
\(188\) −1009.07 −0.391458
\(189\) 317.204 0.122080
\(190\) 0 0
\(191\) −3240.80 −1.22773 −0.613863 0.789412i \(-0.710385\pi\)
−0.613863 + 0.789412i \(0.710385\pi\)
\(192\) 643.409 0.241844
\(193\) −4713.15 −1.75782 −0.878912 0.476983i \(-0.841730\pi\)
−0.878912 + 0.476983i \(0.841730\pi\)
\(194\) −2278.87 −0.843368
\(195\) 0 0
\(196\) −1370.20 −0.499345
\(197\) −1507.85 −0.545328 −0.272664 0.962109i \(-0.587905\pi\)
−0.272664 + 0.962109i \(0.587905\pi\)
\(198\) 2328.06 0.835597
\(199\) −231.005 −0.0822891 −0.0411446 0.999153i \(-0.513100\pi\)
−0.0411446 + 0.999153i \(0.513100\pi\)
\(200\) 0 0
\(201\) 7547.79 2.64866
\(202\) 482.524 0.168071
\(203\) 98.5939 0.0340883
\(204\) 1732.71 0.594675
\(205\) 0 0
\(206\) 609.266 0.206066
\(207\) −1703.57 −0.572011
\(208\) 804.007 0.268019
\(209\) −1363.42 −0.451243
\(210\) 0 0
\(211\) −995.976 −0.324957 −0.162478 0.986712i \(-0.551949\pi\)
−0.162478 + 0.986712i \(0.551949\pi\)
\(212\) 232.146 0.0752067
\(213\) 296.004 0.0952200
\(214\) −3320.13 −1.06056
\(215\) 0 0
\(216\) −3785.52 −1.19246
\(217\) −81.2274 −0.0254105
\(218\) −1206.12 −0.374718
\(219\) 809.882 0.249894
\(220\) 0 0
\(221\) 2165.20 0.659036
\(222\) 4855.50 1.46793
\(223\) 5412.50 1.62533 0.812663 0.582734i \(-0.198017\pi\)
0.812663 + 0.582734i \(0.198017\pi\)
\(224\) −21.4513 −0.00639855
\(225\) 0 0
\(226\) −2462.01 −0.724649
\(227\) 3972.78 1.16160 0.580799 0.814047i \(-0.302740\pi\)
0.580799 + 0.814047i \(0.302740\pi\)
\(228\) 3488.71 1.01336
\(229\) 5209.62 1.50333 0.751663 0.659548i \(-0.229252\pi\)
0.751663 + 0.659548i \(0.229252\pi\)
\(230\) 0 0
\(231\) −105.912 −0.0301665
\(232\) −1176.62 −0.332970
\(233\) −1183.13 −0.332658 −0.166329 0.986070i \(-0.553191\pi\)
−0.166329 + 0.986070i \(0.553191\pi\)
\(234\) −7443.93 −2.07959
\(235\) 0 0
\(236\) −1502.18 −0.414337
\(237\) −6106.96 −1.67380
\(238\) −57.7684 −0.0157335
\(239\) 3759.05 1.01737 0.508687 0.860951i \(-0.330131\pi\)
0.508687 + 0.860951i \(0.330131\pi\)
\(240\) 0 0
\(241\) −5148.34 −1.37607 −0.688037 0.725675i \(-0.741527\pi\)
−0.688037 + 0.725675i \(0.741527\pi\)
\(242\) 2168.04 0.575895
\(243\) 14943.4 3.94493
\(244\) 1415.02 0.371259
\(245\) 0 0
\(246\) −4670.91 −1.21059
\(247\) 4359.51 1.12303
\(248\) 969.369 0.248206
\(249\) 12418.0 3.16049
\(250\) 0 0
\(251\) −4522.82 −1.13736 −0.568682 0.822558i \(-0.692546\pi\)
−0.568682 + 0.822558i \(0.692546\pi\)
\(252\) 198.607 0.0496472
\(253\) 361.460 0.0898214
\(254\) 5587.88 1.38037
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −3690.30 −0.895698 −0.447849 0.894109i \(-0.647810\pi\)
−0.447849 + 0.894109i \(0.647810\pi\)
\(258\) 6088.61 1.46923
\(259\) −161.883 −0.0388374
\(260\) 0 0
\(261\) 10893.8 2.58356
\(262\) 2953.00 0.696325
\(263\) −6516.16 −1.52777 −0.763885 0.645352i \(-0.776711\pi\)
−0.763885 + 0.645352i \(0.776711\pi\)
\(264\) 1263.95 0.294662
\(265\) 0 0
\(266\) −116.314 −0.0268107
\(267\) 9080.75 2.08140
\(268\) 3003.12 0.684495
\(269\) −1546.27 −0.350474 −0.175237 0.984526i \(-0.556069\pi\)
−0.175237 + 0.984526i \(0.556069\pi\)
\(270\) 0 0
\(271\) 6420.51 1.43918 0.719590 0.694399i \(-0.244330\pi\)
0.719590 + 0.694399i \(0.244330\pi\)
\(272\) 689.410 0.153682
\(273\) 338.650 0.0750770
\(274\) −3910.85 −0.862275
\(275\) 0 0
\(276\) −924.901 −0.201712
\(277\) 5084.94 1.10298 0.551489 0.834182i \(-0.314060\pi\)
0.551489 + 0.834182i \(0.314060\pi\)
\(278\) 6423.54 1.38582
\(279\) −8974.94 −1.92586
\(280\) 0 0
\(281\) −1261.35 −0.267778 −0.133889 0.990996i \(-0.542747\pi\)
−0.133889 + 0.990996i \(0.542747\pi\)
\(282\) 5072.24 1.07109
\(283\) 8129.18 1.70753 0.853763 0.520662i \(-0.174315\pi\)
0.853763 + 0.520662i \(0.174315\pi\)
\(284\) 117.774 0.0246078
\(285\) 0 0
\(286\) 1579.44 0.326553
\(287\) 155.728 0.0320291
\(288\) −2370.18 −0.484946
\(289\) −3056.42 −0.622108
\(290\) 0 0
\(291\) 11455.1 2.30758
\(292\) 322.236 0.0645803
\(293\) −6161.19 −1.22847 −0.614233 0.789124i \(-0.710535\pi\)
−0.614233 + 0.789124i \(0.710535\pi\)
\(294\) 6887.51 1.36628
\(295\) 0 0
\(296\) 1931.91 0.379358
\(297\) −7436.49 −1.45289
\(298\) −6033.84 −1.17292
\(299\) −1155.76 −0.223543
\(300\) 0 0
\(301\) −202.994 −0.0388718
\(302\) 1296.28 0.246995
\(303\) −2425.47 −0.459867
\(304\) 1388.09 0.261883
\(305\) 0 0
\(306\) −6382.92 −1.19244
\(307\) 1882.96 0.350052 0.175026 0.984564i \(-0.443999\pi\)
0.175026 + 0.984564i \(0.443999\pi\)
\(308\) −42.1401 −0.00779597
\(309\) −3062.56 −0.563828
\(310\) 0 0
\(311\) 2771.91 0.505403 0.252702 0.967544i \(-0.418681\pi\)
0.252702 + 0.967544i \(0.418681\pi\)
\(312\) −4041.45 −0.733340
\(313\) −6823.98 −1.23231 −0.616157 0.787624i \(-0.711311\pi\)
−0.616157 + 0.787624i \(0.711311\pi\)
\(314\) −5692.80 −1.02313
\(315\) 0 0
\(316\) −2429.84 −0.432561
\(317\) 8338.17 1.47735 0.738673 0.674064i \(-0.235453\pi\)
0.738673 + 0.674064i \(0.235453\pi\)
\(318\) −1166.91 −0.205777
\(319\) −2311.42 −0.405689
\(320\) 0 0
\(321\) 16689.1 2.90185
\(322\) 30.8362 0.00533676
\(323\) 3738.13 0.643948
\(324\) 11029.1 1.89113
\(325\) 0 0
\(326\) −1185.33 −0.201378
\(327\) 6062.70 1.02528
\(328\) −1858.46 −0.312855
\(329\) −169.109 −0.0283382
\(330\) 0 0
\(331\) 1157.44 0.192202 0.0961009 0.995372i \(-0.469363\pi\)
0.0961009 + 0.995372i \(0.469363\pi\)
\(332\) 4940.90 0.816768
\(333\) −17886.7 −2.94349
\(334\) 1.66883 0.000273397 0
\(335\) 0 0
\(336\) 107.828 0.0175074
\(337\) −3991.75 −0.645236 −0.322618 0.946529i \(-0.604563\pi\)
−0.322618 + 0.946529i \(0.604563\pi\)
\(338\) −656.218 −0.105602
\(339\) 12375.6 1.98275
\(340\) 0 0
\(341\) 1904.29 0.302413
\(342\) −12851.7 −2.03198
\(343\) −459.561 −0.0723439
\(344\) 2422.54 0.379693
\(345\) 0 0
\(346\) −1771.34 −0.275225
\(347\) 6517.56 1.00830 0.504151 0.863615i \(-0.331805\pi\)
0.504151 + 0.863615i \(0.331805\pi\)
\(348\) 5914.44 0.911056
\(349\) −6645.39 −1.01925 −0.509627 0.860395i \(-0.670217\pi\)
−0.509627 + 0.860395i \(0.670217\pi\)
\(350\) 0 0
\(351\) 23778.0 3.61589
\(352\) 502.901 0.0761498
\(353\) 3235.49 0.487841 0.243920 0.969795i \(-0.421566\pi\)
0.243920 + 0.969795i \(0.421566\pi\)
\(354\) 7550.91 1.13369
\(355\) 0 0
\(356\) 3613.05 0.537897
\(357\) 290.381 0.0430493
\(358\) 6708.90 0.990436
\(359\) −7919.19 −1.16423 −0.582115 0.813106i \(-0.697775\pi\)
−0.582115 + 0.813106i \(0.697775\pi\)
\(360\) 0 0
\(361\) 667.527 0.0973213
\(362\) −158.674 −0.0230379
\(363\) −10897.9 −1.57574
\(364\) 134.742 0.0194022
\(365\) 0 0
\(366\) −7112.78 −1.01582
\(367\) −6956.40 −0.989430 −0.494715 0.869055i \(-0.664728\pi\)
−0.494715 + 0.869055i \(0.664728\pi\)
\(368\) −368.000 −0.0521286
\(369\) 17206.6 2.42749
\(370\) 0 0
\(371\) 38.9049 0.00544431
\(372\) −4872.67 −0.679129
\(373\) −9288.00 −1.28932 −0.644658 0.764471i \(-0.723000\pi\)
−0.644658 + 0.764471i \(0.723000\pi\)
\(374\) 1354.32 0.187246
\(375\) 0 0
\(376\) 2018.14 0.276803
\(377\) 7390.72 1.00966
\(378\) −634.408 −0.0863239
\(379\) 448.987 0.0608520 0.0304260 0.999537i \(-0.490314\pi\)
0.0304260 + 0.999537i \(0.490314\pi\)
\(380\) 0 0
\(381\) −28088.2 −3.77691
\(382\) 6481.59 0.868134
\(383\) −8724.18 −1.16393 −0.581965 0.813214i \(-0.697716\pi\)
−0.581965 + 0.813214i \(0.697716\pi\)
\(384\) −1286.82 −0.171010
\(385\) 0 0
\(386\) 9426.31 1.24297
\(387\) −22429.2 −2.94609
\(388\) 4557.74 0.596351
\(389\) −5852.57 −0.762820 −0.381410 0.924406i \(-0.624561\pi\)
−0.381410 + 0.924406i \(0.624561\pi\)
\(390\) 0 0
\(391\) −991.026 −0.128180
\(392\) 2740.41 0.353090
\(393\) −14843.7 −1.90525
\(394\) 3015.69 0.385605
\(395\) 0 0
\(396\) −4656.13 −0.590856
\(397\) −6890.88 −0.871142 −0.435571 0.900154i \(-0.643454\pi\)
−0.435571 + 0.900154i \(0.643454\pi\)
\(398\) 462.011 0.0581872
\(399\) 584.666 0.0733582
\(400\) 0 0
\(401\) 10326.6 1.28600 0.642999 0.765867i \(-0.277690\pi\)
0.642999 + 0.765867i \(0.277690\pi\)
\(402\) −15095.6 −1.87288
\(403\) −6088.91 −0.752630
\(404\) −965.048 −0.118844
\(405\) 0 0
\(406\) −197.188 −0.0241041
\(407\) 3795.16 0.462209
\(408\) −3465.41 −0.420499
\(409\) 6508.97 0.786914 0.393457 0.919343i \(-0.371279\pi\)
0.393457 + 0.919343i \(0.371279\pi\)
\(410\) 0 0
\(411\) 19658.4 2.35932
\(412\) −1218.53 −0.145711
\(413\) −251.748 −0.0299944
\(414\) 3407.14 0.404473
\(415\) 0 0
\(416\) −1608.01 −0.189518
\(417\) −32288.8 −3.79182
\(418\) 2726.84 0.319077
\(419\) −12013.9 −1.40076 −0.700380 0.713770i \(-0.746986\pi\)
−0.700380 + 0.713770i \(0.746986\pi\)
\(420\) 0 0
\(421\) −14560.1 −1.68555 −0.842774 0.538267i \(-0.819079\pi\)
−0.842774 + 0.538267i \(0.819079\pi\)
\(422\) 1991.95 0.229779
\(423\) −18685.1 −2.14775
\(424\) −464.291 −0.0531792
\(425\) 0 0
\(426\) −592.008 −0.0673307
\(427\) 237.140 0.0268759
\(428\) 6640.25 0.749927
\(429\) −7939.26 −0.893499
\(430\) 0 0
\(431\) −2707.44 −0.302582 −0.151291 0.988489i \(-0.548343\pi\)
−0.151291 + 0.988489i \(0.548343\pi\)
\(432\) 7571.04 0.843198
\(433\) −2044.10 −0.226866 −0.113433 0.993546i \(-0.536185\pi\)
−0.113433 + 0.993546i \(0.536185\pi\)
\(434\) 162.455 0.0179679
\(435\) 0 0
\(436\) 2412.23 0.264965
\(437\) −1995.38 −0.218425
\(438\) −1619.76 −0.176702
\(439\) −15667.9 −1.70339 −0.851694 0.524040i \(-0.824424\pi\)
−0.851694 + 0.524040i \(0.824424\pi\)
\(440\) 0 0
\(441\) −25372.1 −2.73967
\(442\) −4330.39 −0.466009
\(443\) −11116.6 −1.19225 −0.596124 0.802892i \(-0.703293\pi\)
−0.596124 + 0.802892i \(0.703293\pi\)
\(444\) −9711.01 −1.03798
\(445\) 0 0
\(446\) −10825.0 −1.14928
\(447\) 30329.9 3.20930
\(448\) 42.9026 0.00452445
\(449\) 14892.5 1.56530 0.782649 0.622463i \(-0.213868\pi\)
0.782649 + 0.622463i \(0.213868\pi\)
\(450\) 0 0
\(451\) −3650.87 −0.381182
\(452\) 4924.03 0.512404
\(453\) −6515.92 −0.675816
\(454\) −7945.56 −0.821373
\(455\) 0 0
\(456\) −6977.42 −0.716551
\(457\) 5764.57 0.590055 0.295027 0.955489i \(-0.404671\pi\)
0.295027 + 0.955489i \(0.404671\pi\)
\(458\) −10419.2 −1.06301
\(459\) 20388.9 2.07336
\(460\) 0 0
\(461\) −15874.1 −1.60375 −0.801877 0.597489i \(-0.796165\pi\)
−0.801877 + 0.597489i \(0.796165\pi\)
\(462\) 211.823 0.0213310
\(463\) 3812.03 0.382635 0.191318 0.981528i \(-0.438724\pi\)
0.191318 + 0.981528i \(0.438724\pi\)
\(464\) 2353.24 0.235445
\(465\) 0 0
\(466\) 2366.26 0.235225
\(467\) 13541.6 1.34182 0.670912 0.741537i \(-0.265903\pi\)
0.670912 + 0.741537i \(0.265903\pi\)
\(468\) 14887.9 1.47049
\(469\) 503.287 0.0495515
\(470\) 0 0
\(471\) 28615.6 2.79944
\(472\) 3004.36 0.292981
\(473\) 4758.98 0.462617
\(474\) 12213.9 1.18355
\(475\) 0 0
\(476\) 115.537 0.0111253
\(477\) 4298.65 0.412625
\(478\) −7518.10 −0.719393
\(479\) −14788.4 −1.41064 −0.705321 0.708888i \(-0.749197\pi\)
−0.705321 + 0.708888i \(0.749197\pi\)
\(480\) 0 0
\(481\) −12134.9 −1.15032
\(482\) 10296.7 0.973031
\(483\) −155.002 −0.0146022
\(484\) −4336.07 −0.407219
\(485\) 0 0
\(486\) −29886.8 −2.78949
\(487\) −11307.8 −1.05217 −0.526084 0.850432i \(-0.676340\pi\)
−0.526084 + 0.850432i \(0.676340\pi\)
\(488\) −2830.04 −0.262520
\(489\) 5958.21 0.551001
\(490\) 0 0
\(491\) 4126.13 0.379246 0.189623 0.981857i \(-0.439273\pi\)
0.189623 + 0.981857i \(0.439273\pi\)
\(492\) 9341.82 0.856020
\(493\) 6337.29 0.578940
\(494\) −8719.01 −0.794103
\(495\) 0 0
\(496\) −1938.74 −0.175508
\(497\) 19.7376 0.00178139
\(498\) −24836.1 −2.23480
\(499\) 15160.9 1.36011 0.680055 0.733161i \(-0.261956\pi\)
0.680055 + 0.733161i \(0.261956\pi\)
\(500\) 0 0
\(501\) −8.38862 −0.000748056 0
\(502\) 9045.65 0.804237
\(503\) 12971.8 1.14987 0.574935 0.818199i \(-0.305027\pi\)
0.574935 + 0.818199i \(0.305027\pi\)
\(504\) −397.215 −0.0351059
\(505\) 0 0
\(506\) −722.921 −0.0635133
\(507\) 3298.57 0.288944
\(508\) −11175.8 −0.976071
\(509\) −8093.24 −0.704767 −0.352384 0.935856i \(-0.614629\pi\)
−0.352384 + 0.935856i \(0.614629\pi\)
\(510\) 0 0
\(511\) 54.0030 0.00467505
\(512\) −512.000 −0.0441942
\(513\) 41051.8 3.53311
\(514\) 7380.59 0.633354
\(515\) 0 0
\(516\) −12177.2 −1.03890
\(517\) 3964.56 0.337256
\(518\) 323.765 0.0274622
\(519\) 8903.88 0.753058
\(520\) 0 0
\(521\) −151.052 −0.0127019 −0.00635096 0.999980i \(-0.502022\pi\)
−0.00635096 + 0.999980i \(0.502022\pi\)
\(522\) −21787.6 −1.82685
\(523\) −3890.59 −0.325284 −0.162642 0.986685i \(-0.552002\pi\)
−0.162642 + 0.986685i \(0.552002\pi\)
\(524\) −5906.01 −0.492376
\(525\) 0 0
\(526\) 13032.3 1.08030
\(527\) −5221.04 −0.431560
\(528\) −2527.90 −0.208358
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −27816.0 −2.27328
\(532\) 232.627 0.0189580
\(533\) 11673.6 0.948666
\(534\) −18161.5 −1.47177
\(535\) 0 0
\(536\) −6006.24 −0.484011
\(537\) −33723.2 −2.70999
\(538\) 3092.53 0.247822
\(539\) 5383.41 0.430204
\(540\) 0 0
\(541\) −13618.3 −1.08225 −0.541125 0.840942i \(-0.682001\pi\)
−0.541125 + 0.840942i \(0.682001\pi\)
\(542\) −12841.0 −1.01765
\(543\) 797.597 0.0630353
\(544\) −1378.82 −0.108670
\(545\) 0 0
\(546\) −677.299 −0.0530874
\(547\) 11813.5 0.923420 0.461710 0.887031i \(-0.347236\pi\)
0.461710 + 0.887031i \(0.347236\pi\)
\(548\) 7821.71 0.609720
\(549\) 26202.0 2.03693
\(550\) 0 0
\(551\) 12759.8 0.986544
\(552\) 1849.80 0.142632
\(553\) −407.213 −0.0313136
\(554\) −10169.9 −0.779923
\(555\) 0 0
\(556\) −12847.1 −0.979923
\(557\) 15929.0 1.21173 0.605864 0.795568i \(-0.292827\pi\)
0.605864 + 0.795568i \(0.292827\pi\)
\(558\) 17949.9 1.36179
\(559\) −15216.7 −1.15134
\(560\) 0 0
\(561\) −6807.65 −0.512334
\(562\) 2522.69 0.189348
\(563\) −10630.7 −0.795790 −0.397895 0.917431i \(-0.630259\pi\)
−0.397895 + 0.917431i \(0.630259\pi\)
\(564\) −10144.5 −0.757375
\(565\) 0 0
\(566\) −16258.4 −1.20740
\(567\) 1848.34 0.136901
\(568\) −235.548 −0.0174003
\(569\) 16116.7 1.18743 0.593714 0.804676i \(-0.297661\pi\)
0.593714 + 0.804676i \(0.297661\pi\)
\(570\) 0 0
\(571\) −13337.7 −0.977524 −0.488762 0.872417i \(-0.662551\pi\)
−0.488762 + 0.872417i \(0.662551\pi\)
\(572\) −3158.88 −0.230908
\(573\) −32580.6 −2.37535
\(574\) −311.457 −0.0226480
\(575\) 0 0
\(576\) 4740.37 0.342909
\(577\) −4935.92 −0.356127 −0.178063 0.984019i \(-0.556983\pi\)
−0.178063 + 0.984019i \(0.556983\pi\)
\(578\) 6112.83 0.439897
\(579\) −47382.6 −3.40096
\(580\) 0 0
\(581\) 828.036 0.0591269
\(582\) −22910.1 −1.63171
\(583\) −912.081 −0.0647933
\(584\) −644.472 −0.0456652
\(585\) 0 0
\(586\) 12322.4 0.868657
\(587\) 4386.29 0.308418 0.154209 0.988038i \(-0.450717\pi\)
0.154209 + 0.988038i \(0.450717\pi\)
\(588\) −13775.0 −0.966109
\(589\) −10512.3 −0.735400
\(590\) 0 0
\(591\) −15158.8 −1.05507
\(592\) −3863.82 −0.268247
\(593\) −11004.4 −0.762053 −0.381026 0.924564i \(-0.624429\pi\)
−0.381026 + 0.924564i \(0.624429\pi\)
\(594\) 14873.0 1.02735
\(595\) 0 0
\(596\) 12067.7 0.829382
\(597\) −2322.36 −0.159209
\(598\) 2311.52 0.158069
\(599\) 9742.23 0.664536 0.332268 0.943185i \(-0.392186\pi\)
0.332268 + 0.943185i \(0.392186\pi\)
\(600\) 0 0
\(601\) −13053.0 −0.885929 −0.442964 0.896539i \(-0.646073\pi\)
−0.442964 + 0.896539i \(0.646073\pi\)
\(602\) 405.989 0.0274865
\(603\) 55608.9 3.75551
\(604\) −2592.56 −0.174652
\(605\) 0 0
\(606\) 4850.94 0.325175
\(607\) −16313.6 −1.09085 −0.545426 0.838159i \(-0.683632\pi\)
−0.545426 + 0.838159i \(0.683632\pi\)
\(608\) −2776.18 −0.185179
\(609\) 991.191 0.0659525
\(610\) 0 0
\(611\) −12676.6 −0.839345
\(612\) 12765.8 0.843184
\(613\) −22248.4 −1.46592 −0.732958 0.680274i \(-0.761861\pi\)
−0.732958 + 0.680274i \(0.761861\pi\)
\(614\) −3765.92 −0.247524
\(615\) 0 0
\(616\) 84.2803 0.00551258
\(617\) −7012.62 −0.457565 −0.228782 0.973478i \(-0.573474\pi\)
−0.228782 + 0.973478i \(0.573474\pi\)
\(618\) 6125.12 0.398687
\(619\) 7635.90 0.495820 0.247910 0.968783i \(-0.420256\pi\)
0.247910 + 0.968783i \(0.420256\pi\)
\(620\) 0 0
\(621\) −10883.4 −0.703276
\(622\) −5543.82 −0.357374
\(623\) 605.505 0.0389391
\(624\) 8082.90 0.518550
\(625\) 0 0
\(626\) 13648.0 0.871377
\(627\) −13706.8 −0.873044
\(628\) 11385.6 0.723463
\(629\) −10405.3 −0.659596
\(630\) 0 0
\(631\) 16185.3 1.02112 0.510560 0.859842i \(-0.329438\pi\)
0.510560 + 0.859842i \(0.329438\pi\)
\(632\) 4859.68 0.305867
\(633\) −10012.8 −0.628711
\(634\) −16676.3 −1.04464
\(635\) 0 0
\(636\) 2333.82 0.145506
\(637\) −17213.3 −1.07067
\(638\) 4622.84 0.286865
\(639\) 2180.83 0.135012
\(640\) 0 0
\(641\) −4909.20 −0.302499 −0.151249 0.988496i \(-0.548330\pi\)
−0.151249 + 0.988496i \(0.548330\pi\)
\(642\) −33378.1 −2.05191
\(643\) −29722.2 −1.82291 −0.911453 0.411404i \(-0.865039\pi\)
−0.911453 + 0.411404i \(0.865039\pi\)
\(644\) −61.6724 −0.00377366
\(645\) 0 0
\(646\) −7476.26 −0.455340
\(647\) 6460.79 0.392581 0.196290 0.980546i \(-0.437110\pi\)
0.196290 + 0.980546i \(0.437110\pi\)
\(648\) −22058.1 −1.33723
\(649\) 5901.94 0.356967
\(650\) 0 0
\(651\) −816.601 −0.0491630
\(652\) 2370.66 0.142396
\(653\) −14842.0 −0.889452 −0.444726 0.895667i \(-0.646699\pi\)
−0.444726 + 0.895667i \(0.646699\pi\)
\(654\) −12125.4 −0.724986
\(655\) 0 0
\(656\) 3716.93 0.221222
\(657\) 5966.87 0.354322
\(658\) 338.217 0.0200381
\(659\) −291.305 −0.0172195 −0.00860973 0.999963i \(-0.502741\pi\)
−0.00860973 + 0.999963i \(0.502741\pi\)
\(660\) 0 0
\(661\) 13045.5 0.767640 0.383820 0.923408i \(-0.374608\pi\)
0.383820 + 0.923408i \(0.374608\pi\)
\(662\) −2314.88 −0.135907
\(663\) 21767.3 1.27507
\(664\) −9881.79 −0.577542
\(665\) 0 0
\(666\) 35773.3 2.08136
\(667\) −3382.78 −0.196375
\(668\) −3.33767 −0.000193321 0
\(669\) 54413.3 3.14460
\(670\) 0 0
\(671\) −5559.49 −0.319854
\(672\) −215.656 −0.0123796
\(673\) 18521.1 1.06083 0.530414 0.847739i \(-0.322036\pi\)
0.530414 + 0.847739i \(0.322036\pi\)
\(674\) 7983.50 0.456251
\(675\) 0 0
\(676\) 1312.44 0.0746720
\(677\) −2606.26 −0.147957 −0.0739783 0.997260i \(-0.523570\pi\)
−0.0739783 + 0.997260i \(0.523570\pi\)
\(678\) −24751.3 −1.40202
\(679\) 763.824 0.0431706
\(680\) 0 0
\(681\) 39939.4 2.24740
\(682\) −3808.57 −0.213838
\(683\) 7900.69 0.442623 0.221312 0.975203i \(-0.428966\pi\)
0.221312 + 0.975203i \(0.428966\pi\)
\(684\) 25703.3 1.43683
\(685\) 0 0
\(686\) 919.121 0.0511548
\(687\) 52373.7 2.90856
\(688\) −4845.08 −0.268484
\(689\) 2916.36 0.161254
\(690\) 0 0
\(691\) −4623.33 −0.254530 −0.127265 0.991869i \(-0.540620\pi\)
−0.127265 + 0.991869i \(0.540620\pi\)
\(692\) 3542.68 0.194613
\(693\) −780.312 −0.0427729
\(694\) −13035.1 −0.712977
\(695\) 0 0
\(696\) −11828.9 −0.644214
\(697\) 10009.7 0.543967
\(698\) 13290.8 0.720721
\(699\) −11894.3 −0.643611
\(700\) 0 0
\(701\) −20427.9 −1.10064 −0.550322 0.834952i \(-0.685495\pi\)
−0.550322 + 0.834952i \(0.685495\pi\)
\(702\) −47556.0 −2.55682
\(703\) −20950.5 −1.12399
\(704\) −1005.80 −0.0538460
\(705\) 0 0
\(706\) −6470.98 −0.344956
\(707\) −161.731 −0.00860326
\(708\) −15101.8 −0.801640
\(709\) −13724.3 −0.726978 −0.363489 0.931599i \(-0.618415\pi\)
−0.363489 + 0.931599i \(0.618415\pi\)
\(710\) 0 0
\(711\) −44993.5 −2.37326
\(712\) −7226.11 −0.380351
\(713\) 2786.94 0.146384
\(714\) −580.762 −0.0304404
\(715\) 0 0
\(716\) −13417.8 −0.700344
\(717\) 37790.7 1.96837
\(718\) 15838.4 0.823235
\(719\) −1783.58 −0.0925125 −0.0462562 0.998930i \(-0.514729\pi\)
−0.0462562 + 0.998930i \(0.514729\pi\)
\(720\) 0 0
\(721\) −204.212 −0.0105482
\(722\) −1335.05 −0.0688165
\(723\) −51757.7 −2.66236
\(724\) 317.348 0.0162903
\(725\) 0 0
\(726\) 21795.9 1.11421
\(727\) −22646.2 −1.15530 −0.577649 0.816285i \(-0.696030\pi\)
−0.577649 + 0.816285i \(0.696030\pi\)
\(728\) −269.484 −0.0137194
\(729\) 75783.8 3.85021
\(730\) 0 0
\(731\) −13047.8 −0.660180
\(732\) 14225.6 0.718295
\(733\) 28570.9 1.43969 0.719844 0.694136i \(-0.244213\pi\)
0.719844 + 0.694136i \(0.244213\pi\)
\(734\) 13912.8 0.699633
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −11799.0 −0.589718
\(738\) −34413.3 −1.71649
\(739\) −618.299 −0.0307774 −0.0153887 0.999882i \(-0.504899\pi\)
−0.0153887 + 0.999882i \(0.504899\pi\)
\(740\) 0 0
\(741\) 43827.3 2.17279
\(742\) −77.8097 −0.00384971
\(743\) 3799.48 0.187604 0.0938019 0.995591i \(-0.470098\pi\)
0.0938019 + 0.995591i \(0.470098\pi\)
\(744\) 9745.33 0.480217
\(745\) 0 0
\(746\) 18576.0 0.911683
\(747\) 91490.9 4.48123
\(748\) −2708.63 −0.132403
\(749\) 1112.83 0.0542882
\(750\) 0 0
\(751\) −35821.9 −1.74056 −0.870280 0.492557i \(-0.836062\pi\)
−0.870280 + 0.492557i \(0.836062\pi\)
\(752\) −4036.29 −0.195729
\(753\) −45469.2 −2.20052
\(754\) −14781.4 −0.713936
\(755\) 0 0
\(756\) 1268.82 0.0610402
\(757\) 22756.9 1.09262 0.546310 0.837583i \(-0.316032\pi\)
0.546310 + 0.837583i \(0.316032\pi\)
\(758\) −897.974 −0.0430289
\(759\) 3633.86 0.173782
\(760\) 0 0
\(761\) −467.195 −0.0222547 −0.0111273 0.999938i \(-0.503542\pi\)
−0.0111273 + 0.999938i \(0.503542\pi\)
\(762\) 56176.4 2.67068
\(763\) 404.261 0.0191812
\(764\) −12963.2 −0.613863
\(765\) 0 0
\(766\) 17448.4 0.823022
\(767\) −18871.3 −0.888401
\(768\) 2573.64 0.120922
\(769\) −25390.7 −1.19065 −0.595326 0.803484i \(-0.702977\pi\)
−0.595326 + 0.803484i \(0.702977\pi\)
\(770\) 0 0
\(771\) −37099.5 −1.73295
\(772\) −18852.6 −0.878912
\(773\) −32898.5 −1.53076 −0.765380 0.643578i \(-0.777449\pi\)
−0.765380 + 0.643578i \(0.777449\pi\)
\(774\) 44858.3 2.08320
\(775\) 0 0
\(776\) −9115.48 −0.421684
\(777\) −1627.45 −0.0751409
\(778\) 11705.1 0.539395
\(779\) 20154.0 0.926948
\(780\) 0 0
\(781\) −462.725 −0.0212005
\(782\) 1982.05 0.0906369
\(783\) 69595.6 3.17643
\(784\) −5480.81 −0.249672
\(785\) 0 0
\(786\) 29687.4 1.34722
\(787\) 6114.83 0.276963 0.138482 0.990365i \(-0.455778\pi\)
0.138482 + 0.990365i \(0.455778\pi\)
\(788\) −6031.39 −0.272664
\(789\) −65508.7 −2.95586
\(790\) 0 0
\(791\) 825.209 0.0370936
\(792\) 9312.25 0.417799
\(793\) 17776.3 0.796036
\(794\) 13781.8 0.615991
\(795\) 0 0
\(796\) −924.022 −0.0411446
\(797\) 39418.9 1.75193 0.875966 0.482373i \(-0.160225\pi\)
0.875966 + 0.482373i \(0.160225\pi\)
\(798\) −1169.33 −0.0518721
\(799\) −10869.8 −0.481282
\(800\) 0 0
\(801\) 66903.1 2.95119
\(802\) −20653.2 −0.909338
\(803\) −1266.04 −0.0556383
\(804\) 30191.2 1.32433
\(805\) 0 0
\(806\) 12177.8 0.532190
\(807\) −15545.0 −0.678080
\(808\) 1930.10 0.0840353
\(809\) −5365.35 −0.233171 −0.116586 0.993181i \(-0.537195\pi\)
−0.116586 + 0.993181i \(0.537195\pi\)
\(810\) 0 0
\(811\) 24016.0 1.03985 0.519924 0.854213i \(-0.325960\pi\)
0.519924 + 0.854213i \(0.325960\pi\)
\(812\) 394.375 0.0170442
\(813\) 64547.1 2.78446
\(814\) −7590.31 −0.326831
\(815\) 0 0
\(816\) 6930.82 0.297337
\(817\) −26271.1 −1.12498
\(818\) −13017.9 −0.556433
\(819\) 2495.03 0.106451
\(820\) 0 0
\(821\) 2487.91 0.105760 0.0528799 0.998601i \(-0.483160\pi\)
0.0528799 + 0.998601i \(0.483160\pi\)
\(822\) −39316.9 −1.66829
\(823\) 40471.5 1.71415 0.857077 0.515188i \(-0.172278\pi\)
0.857077 + 0.515188i \(0.172278\pi\)
\(824\) 2437.07 0.103033
\(825\) 0 0
\(826\) 503.495 0.0212092
\(827\) 18990.3 0.798499 0.399249 0.916842i \(-0.369271\pi\)
0.399249 + 0.916842i \(0.369271\pi\)
\(828\) −6814.28 −0.286006
\(829\) −5590.16 −0.234203 −0.117102 0.993120i \(-0.537360\pi\)
−0.117102 + 0.993120i \(0.537360\pi\)
\(830\) 0 0
\(831\) 51120.3 2.13399
\(832\) 3216.03 0.134009
\(833\) −14759.9 −0.613924
\(834\) 64577.6 2.68122
\(835\) 0 0
\(836\) −5453.68 −0.225622
\(837\) −57337.0 −2.36781
\(838\) 24027.9 0.990487
\(839\) 41350.3 1.70151 0.850756 0.525560i \(-0.176144\pi\)
0.850756 + 0.525560i \(0.176144\pi\)
\(840\) 0 0
\(841\) −2757.18 −0.113050
\(842\) 29120.2 1.19186
\(843\) −12680.7 −0.518084
\(844\) −3983.91 −0.162478
\(845\) 0 0
\(846\) 37370.1 1.51869
\(847\) −726.674 −0.0294791
\(848\) 928.583 0.0376034
\(849\) 81724.9 3.30364
\(850\) 0 0
\(851\) 5554.24 0.223733
\(852\) 1184.02 0.0476100
\(853\) −38767.6 −1.55613 −0.778064 0.628185i \(-0.783798\pi\)
−0.778064 + 0.628185i \(0.783798\pi\)
\(854\) −474.281 −0.0190042
\(855\) 0 0
\(856\) −13280.5 −0.530278
\(857\) 23232.3 0.926021 0.463010 0.886353i \(-0.346769\pi\)
0.463010 + 0.886353i \(0.346769\pi\)
\(858\) 15878.5 0.631799
\(859\) 14026.2 0.557121 0.278560 0.960419i \(-0.410143\pi\)
0.278560 + 0.960419i \(0.410143\pi\)
\(860\) 0 0
\(861\) 1565.58 0.0619684
\(862\) 5414.88 0.213958
\(863\) −40191.4 −1.58532 −0.792661 0.609663i \(-0.791305\pi\)
−0.792661 + 0.609663i \(0.791305\pi\)
\(864\) −15142.1 −0.596231
\(865\) 0 0
\(866\) 4088.20 0.160419
\(867\) −30727.0 −1.20362
\(868\) −324.910 −0.0127052
\(869\) 9546.64 0.372667
\(870\) 0 0
\(871\) 37727.0 1.46766
\(872\) −4824.46 −0.187359
\(873\) 84396.0 3.27190
\(874\) 3990.76 0.154450
\(875\) 0 0
\(876\) 3239.53 0.124947
\(877\) −26001.1 −1.00113 −0.500567 0.865698i \(-0.666875\pi\)
−0.500567 + 0.865698i \(0.666875\pi\)
\(878\) 31335.8 1.20448
\(879\) −61940.1 −2.37678
\(880\) 0 0
\(881\) 48072.2 1.83836 0.919179 0.393839i \(-0.128853\pi\)
0.919179 + 0.393839i \(0.128853\pi\)
\(882\) 50744.2 1.93724
\(883\) −21394.5 −0.815381 −0.407691 0.913120i \(-0.633666\pi\)
−0.407691 + 0.913120i \(0.633666\pi\)
\(884\) 8660.79 0.329518
\(885\) 0 0
\(886\) 22233.2 0.843047
\(887\) −2470.47 −0.0935178 −0.0467589 0.998906i \(-0.514889\pi\)
−0.0467589 + 0.998906i \(0.514889\pi\)
\(888\) 19422.0 0.733964
\(889\) −1872.92 −0.0706590
\(890\) 0 0
\(891\) −43332.2 −1.62927
\(892\) 21650.0 0.812663
\(893\) −21885.7 −0.820129
\(894\) −60659.8 −2.26932
\(895\) 0 0
\(896\) −85.8051 −0.00319927
\(897\) −11619.2 −0.432500
\(898\) −29784.9 −1.10683
\(899\) −17821.6 −0.661160
\(900\) 0 0
\(901\) 2500.68 0.0924636
\(902\) 7301.75 0.269536
\(903\) −2040.76 −0.0752073
\(904\) −9848.06 −0.362325
\(905\) 0 0
\(906\) 13031.8 0.477874
\(907\) −46686.9 −1.70917 −0.854583 0.519314i \(-0.826187\pi\)
−0.854583 + 0.519314i \(0.826187\pi\)
\(908\) 15891.1 0.580799
\(909\) −17869.8 −0.652041
\(910\) 0 0
\(911\) 8843.65 0.321628 0.160814 0.986985i \(-0.448588\pi\)
0.160814 + 0.986985i \(0.448588\pi\)
\(912\) 13954.8 0.506678
\(913\) −19412.4 −0.703675
\(914\) −11529.1 −0.417232
\(915\) 0 0
\(916\) 20838.5 0.751663
\(917\) −989.777 −0.0356438
\(918\) −40777.7 −1.46608
\(919\) −37342.3 −1.34038 −0.670189 0.742190i \(-0.733787\pi\)
−0.670189 + 0.742190i \(0.733787\pi\)
\(920\) 0 0
\(921\) 18929.9 0.677265
\(922\) 31748.2 1.13403
\(923\) 1479.55 0.0527628
\(924\) −423.646 −0.0150833
\(925\) 0 0
\(926\) −7624.07 −0.270564
\(927\) −22563.7 −0.799447
\(928\) −4706.48 −0.166485
\(929\) −8119.14 −0.286739 −0.143369 0.989669i \(-0.545794\pi\)
−0.143369 + 0.989669i \(0.545794\pi\)
\(930\) 0 0
\(931\) −29718.2 −1.04616
\(932\) −4732.51 −0.166329
\(933\) 27866.7 0.977831
\(934\) −27083.2 −0.948812
\(935\) 0 0
\(936\) −29775.7 −1.03980
\(937\) 7726.38 0.269381 0.134690 0.990888i \(-0.456996\pi\)
0.134690 + 0.990888i \(0.456996\pi\)
\(938\) −1006.57 −0.0350382
\(939\) −68603.3 −2.38422
\(940\) 0 0
\(941\) −36044.0 −1.24867 −0.624337 0.781155i \(-0.714631\pi\)
−0.624337 + 0.781155i \(0.714631\pi\)
\(942\) −57231.3 −1.97951
\(943\) −5343.08 −0.184512
\(944\) −6008.72 −0.207169
\(945\) 0 0
\(946\) −9517.95 −0.327120
\(947\) 54162.7 1.85855 0.929277 0.369385i \(-0.120431\pi\)
0.929277 + 0.369385i \(0.120431\pi\)
\(948\) −24427.9 −0.836899
\(949\) 4048.13 0.138470
\(950\) 0 0
\(951\) 83825.9 2.85830
\(952\) −231.074 −0.00786675
\(953\) 50561.5 1.71862 0.859311 0.511453i \(-0.170893\pi\)
0.859311 + 0.511453i \(0.170893\pi\)
\(954\) −8597.31 −0.291770
\(955\) 0 0
\(956\) 15036.2 0.508687
\(957\) −23237.4 −0.784908
\(958\) 29576.7 0.997475
\(959\) 1310.83 0.0441384
\(960\) 0 0
\(961\) −15108.5 −0.507151
\(962\) 24269.8 0.813400
\(963\) 122958. 4.11450
\(964\) −20593.4 −0.688037
\(965\) 0 0
\(966\) 310.005 0.0103253
\(967\) −50393.2 −1.67584 −0.837919 0.545794i \(-0.816228\pi\)
−0.837919 + 0.545794i \(0.816228\pi\)
\(968\) 8672.14 0.287948
\(969\) 37580.5 1.24588
\(970\) 0 0
\(971\) −1810.68 −0.0598429 −0.0299215 0.999552i \(-0.509526\pi\)
−0.0299215 + 0.999552i \(0.509526\pi\)
\(972\) 59773.5 1.97247
\(973\) −2153.02 −0.0709379
\(974\) 22615.6 0.743996
\(975\) 0 0
\(976\) 5660.08 0.185630
\(977\) −51110.8 −1.67367 −0.836837 0.547451i \(-0.815598\pi\)
−0.836837 + 0.547451i \(0.815598\pi\)
\(978\) −11916.4 −0.389617
\(979\) −14195.4 −0.463418
\(980\) 0 0
\(981\) 44667.4 1.45374
\(982\) −8252.27 −0.268167
\(983\) −21142.5 −0.686003 −0.343002 0.939335i \(-0.611444\pi\)
−0.343002 + 0.939335i \(0.611444\pi\)
\(984\) −18683.6 −0.605297
\(985\) 0 0
\(986\) −12674.6 −0.409372
\(987\) −1700.09 −0.0548273
\(988\) 17438.0 0.561516
\(989\) 6964.80 0.223931
\(990\) 0 0
\(991\) −39535.7 −1.26730 −0.633650 0.773620i \(-0.718444\pi\)
−0.633650 + 0.773620i \(0.718444\pi\)
\(992\) 3877.48 0.124103
\(993\) 11636.1 0.371863
\(994\) −39.4751 −0.00125963
\(995\) 0 0
\(996\) 49672.2 1.58024
\(997\) −9859.01 −0.313178 −0.156589 0.987664i \(-0.550050\pi\)
−0.156589 + 0.987664i \(0.550050\pi\)
\(998\) −30321.8 −0.961743
\(999\) −114270. −3.61896
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.a.s.1.5 5
5.2 odd 4 1150.4.b.p.599.1 10
5.3 odd 4 1150.4.b.p.599.10 10
5.4 even 2 1150.4.a.t.1.1 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1150.4.a.s.1.5 5 1.1 even 1 trivial
1150.4.a.t.1.1 yes 5 5.4 even 2
1150.4.b.p.599.1 10 5.2 odd 4
1150.4.b.p.599.10 10 5.3 odd 4