Properties

Label 1150.4.a.s.1.2
Level $1150$
Weight $4$
Character 1150.1
Self dual yes
Analytic conductor $67.852$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(1,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 38x^{3} + 38x^{2} + 202x + 101 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(5.33268\) of defining polynomial
Character \(\chi\) \(=\) 1150.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -2.43578 q^{3} +4.00000 q^{4} +4.87156 q^{6} +3.42292 q^{7} -8.00000 q^{8} -21.0670 q^{9} -53.2677 q^{11} -9.74311 q^{12} -28.9262 q^{13} -6.84584 q^{14} +16.0000 q^{16} -116.357 q^{17} +42.1340 q^{18} -57.7956 q^{19} -8.33748 q^{21} +106.535 q^{22} -23.0000 q^{23} +19.4862 q^{24} +57.8524 q^{26} +117.081 q^{27} +13.6917 q^{28} -54.5385 q^{29} -263.480 q^{31} -32.0000 q^{32} +129.748 q^{33} +232.714 q^{34} -84.2679 q^{36} -142.376 q^{37} +115.591 q^{38} +70.4578 q^{39} +316.236 q^{41} +16.6750 q^{42} +235.809 q^{43} -213.071 q^{44} +46.0000 q^{46} +504.756 q^{47} -38.9725 q^{48} -331.284 q^{49} +283.420 q^{51} -115.705 q^{52} +380.218 q^{53} -234.161 q^{54} -27.3834 q^{56} +140.777 q^{57} +109.077 q^{58} -653.064 q^{59} -507.741 q^{61} +526.961 q^{62} -72.1106 q^{63} +64.0000 q^{64} -259.497 q^{66} +740.813 q^{67} -465.427 q^{68} +56.0229 q^{69} -302.446 q^{71} +168.536 q^{72} -265.457 q^{73} +284.752 q^{74} -231.183 q^{76} -182.331 q^{77} -140.916 q^{78} -1182.67 q^{79} +283.626 q^{81} -632.473 q^{82} -489.827 q^{83} -33.3499 q^{84} -471.619 q^{86} +132.844 q^{87} +426.142 q^{88} +484.871 q^{89} -99.0121 q^{91} -92.0000 q^{92} +641.780 q^{93} -1009.51 q^{94} +77.9449 q^{96} -1192.07 q^{97} +662.567 q^{98} +1122.19 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 10 q^{2} + 12 q^{3} + 20 q^{4} - 24 q^{6} - 24 q^{7} - 40 q^{8} + 11 q^{9} - 54 q^{11} + 48 q^{12} + 36 q^{13} + 48 q^{14} + 80 q^{16} + 132 q^{17} - 22 q^{18} - 50 q^{19} - 158 q^{21} + 108 q^{22}+ \cdots - 1740 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −2.43578 −0.468766 −0.234383 0.972144i \(-0.575307\pi\)
−0.234383 + 0.972144i \(0.575307\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 4.87156 0.331467
\(7\) 3.42292 0.184820 0.0924102 0.995721i \(-0.470543\pi\)
0.0924102 + 0.995721i \(0.470543\pi\)
\(8\) −8.00000 −0.353553
\(9\) −21.0670 −0.780259
\(10\) 0 0
\(11\) −53.2677 −1.46007 −0.730037 0.683408i \(-0.760497\pi\)
−0.730037 + 0.683408i \(0.760497\pi\)
\(12\) −9.74311 −0.234383
\(13\) −28.9262 −0.617130 −0.308565 0.951203i \(-0.599849\pi\)
−0.308565 + 0.951203i \(0.599849\pi\)
\(14\) −6.84584 −0.130688
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −116.357 −1.66004 −0.830020 0.557733i \(-0.811671\pi\)
−0.830020 + 0.557733i \(0.811671\pi\)
\(18\) 42.1340 0.551726
\(19\) −57.7956 −0.697854 −0.348927 0.937150i \(-0.613454\pi\)
−0.348927 + 0.937150i \(0.613454\pi\)
\(20\) 0 0
\(21\) −8.33748 −0.0866375
\(22\) 106.535 1.03243
\(23\) −23.0000 −0.208514
\(24\) 19.4862 0.165734
\(25\) 0 0
\(26\) 57.8524 0.436377
\(27\) 117.081 0.834524
\(28\) 13.6917 0.0924102
\(29\) −54.5385 −0.349225 −0.174613 0.984637i \(-0.555867\pi\)
−0.174613 + 0.984637i \(0.555867\pi\)
\(30\) 0 0
\(31\) −263.480 −1.52653 −0.763266 0.646085i \(-0.776405\pi\)
−0.763266 + 0.646085i \(0.776405\pi\)
\(32\) −32.0000 −0.176777
\(33\) 129.748 0.684433
\(34\) 232.714 1.17383
\(35\) 0 0
\(36\) −84.2679 −0.390129
\(37\) −142.376 −0.632608 −0.316304 0.948658i \(-0.602442\pi\)
−0.316304 + 0.948658i \(0.602442\pi\)
\(38\) 115.591 0.493457
\(39\) 70.4578 0.289289
\(40\) 0 0
\(41\) 316.236 1.20458 0.602290 0.798277i \(-0.294255\pi\)
0.602290 + 0.798277i \(0.294255\pi\)
\(42\) 16.6750 0.0612619
\(43\) 235.809 0.836293 0.418146 0.908380i \(-0.362680\pi\)
0.418146 + 0.908380i \(0.362680\pi\)
\(44\) −213.071 −0.730037
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) 504.756 1.56652 0.783258 0.621697i \(-0.213556\pi\)
0.783258 + 0.621697i \(0.213556\pi\)
\(48\) −38.9725 −0.117191
\(49\) −331.284 −0.965841
\(50\) 0 0
\(51\) 283.420 0.778170
\(52\) −115.705 −0.308565
\(53\) 380.218 0.985415 0.492707 0.870195i \(-0.336007\pi\)
0.492707 + 0.870195i \(0.336007\pi\)
\(54\) −234.161 −0.590098
\(55\) 0 0
\(56\) −27.3834 −0.0653439
\(57\) 140.777 0.327130
\(58\) 109.077 0.246940
\(59\) −653.064 −1.44104 −0.720522 0.693432i \(-0.756098\pi\)
−0.720522 + 0.693432i \(0.756098\pi\)
\(60\) 0 0
\(61\) −507.741 −1.06573 −0.532865 0.846200i \(-0.678885\pi\)
−0.532865 + 0.846200i \(0.678885\pi\)
\(62\) 526.961 1.07942
\(63\) −72.1106 −0.144208
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −259.497 −0.483967
\(67\) 740.813 1.35082 0.675408 0.737444i \(-0.263968\pi\)
0.675408 + 0.737444i \(0.263968\pi\)
\(68\) −465.427 −0.830020
\(69\) 56.0229 0.0977444
\(70\) 0 0
\(71\) −302.446 −0.505546 −0.252773 0.967526i \(-0.581343\pi\)
−0.252773 + 0.967526i \(0.581343\pi\)
\(72\) 168.536 0.275863
\(73\) −265.457 −0.425608 −0.212804 0.977095i \(-0.568260\pi\)
−0.212804 + 0.977095i \(0.568260\pi\)
\(74\) 284.752 0.447322
\(75\) 0 0
\(76\) −231.183 −0.348927
\(77\) −182.331 −0.269851
\(78\) −140.916 −0.204558
\(79\) −1182.67 −1.68431 −0.842156 0.539233i \(-0.818714\pi\)
−0.842156 + 0.539233i \(0.818714\pi\)
\(80\) 0 0
\(81\) 283.626 0.389062
\(82\) −632.473 −0.851767
\(83\) −489.827 −0.647778 −0.323889 0.946095i \(-0.604990\pi\)
−0.323889 + 0.946095i \(0.604990\pi\)
\(84\) −33.3499 −0.0433187
\(85\) 0 0
\(86\) −471.619 −0.591348
\(87\) 132.844 0.163705
\(88\) 426.142 0.516214
\(89\) 484.871 0.577486 0.288743 0.957407i \(-0.406763\pi\)
0.288743 + 0.957407i \(0.406763\pi\)
\(90\) 0 0
\(91\) −99.0121 −0.114058
\(92\) −92.0000 −0.104257
\(93\) 641.780 0.715586
\(94\) −1009.51 −1.10769
\(95\) 0 0
\(96\) 77.9449 0.0828669
\(97\) −1192.07 −1.24779 −0.623896 0.781507i \(-0.714451\pi\)
−0.623896 + 0.781507i \(0.714451\pi\)
\(98\) 662.567 0.682953
\(99\) 1122.19 1.13924
\(100\) 0 0
\(101\) 1695.78 1.67066 0.835329 0.549751i \(-0.185277\pi\)
0.835329 + 0.549751i \(0.185277\pi\)
\(102\) −566.839 −0.550249
\(103\) 768.895 0.735548 0.367774 0.929915i \(-0.380120\pi\)
0.367774 + 0.929915i \(0.380120\pi\)
\(104\) 231.410 0.218188
\(105\) 0 0
\(106\) −760.436 −0.696794
\(107\) 854.991 0.772478 0.386239 0.922399i \(-0.373774\pi\)
0.386239 + 0.922399i \(0.373774\pi\)
\(108\) 468.322 0.417262
\(109\) −1312.71 −1.15353 −0.576765 0.816910i \(-0.695685\pi\)
−0.576765 + 0.816910i \(0.695685\pi\)
\(110\) 0 0
\(111\) 346.797 0.296545
\(112\) 54.7667 0.0462051
\(113\) −1804.62 −1.50234 −0.751170 0.660109i \(-0.770510\pi\)
−0.751170 + 0.660109i \(0.770510\pi\)
\(114\) −281.555 −0.231316
\(115\) 0 0
\(116\) −218.154 −0.174613
\(117\) 609.388 0.481521
\(118\) 1306.13 1.01897
\(119\) −398.280 −0.306809
\(120\) 0 0
\(121\) 1506.45 1.13182
\(122\) 1015.48 0.753585
\(123\) −770.282 −0.564666
\(124\) −1053.92 −0.763266
\(125\) 0 0
\(126\) 144.221 0.101970
\(127\) −2104.31 −1.47029 −0.735146 0.677908i \(-0.762887\pi\)
−0.735146 + 0.677908i \(0.762887\pi\)
\(128\) −128.000 −0.0883883
\(129\) −574.379 −0.392025
\(130\) 0 0
\(131\) 1161.59 0.774721 0.387360 0.921928i \(-0.373387\pi\)
0.387360 + 0.921928i \(0.373387\pi\)
\(132\) 518.993 0.342216
\(133\) −197.830 −0.128978
\(134\) −1481.63 −0.955171
\(135\) 0 0
\(136\) 930.855 0.586913
\(137\) 2754.88 1.71799 0.858996 0.511982i \(-0.171089\pi\)
0.858996 + 0.511982i \(0.171089\pi\)
\(138\) −112.046 −0.0691157
\(139\) −1479.61 −0.902867 −0.451433 0.892305i \(-0.649087\pi\)
−0.451433 + 0.892305i \(0.649087\pi\)
\(140\) 0 0
\(141\) −1229.47 −0.734329
\(142\) 604.893 0.357475
\(143\) 1540.83 0.901055
\(144\) −337.072 −0.195065
\(145\) 0 0
\(146\) 530.913 0.300950
\(147\) 806.934 0.452753
\(148\) −569.505 −0.316304
\(149\) 64.8634 0.0356632 0.0178316 0.999841i \(-0.494324\pi\)
0.0178316 + 0.999841i \(0.494324\pi\)
\(150\) 0 0
\(151\) 3234.72 1.74330 0.871648 0.490133i \(-0.163052\pi\)
0.871648 + 0.490133i \(0.163052\pi\)
\(152\) 462.365 0.246729
\(153\) 2451.29 1.29526
\(154\) 364.662 0.190814
\(155\) 0 0
\(156\) 281.831 0.144645
\(157\) −3027.52 −1.53899 −0.769497 0.638650i \(-0.779493\pi\)
−0.769497 + 0.638650i \(0.779493\pi\)
\(158\) 2365.34 1.19099
\(159\) −926.127 −0.461929
\(160\) 0 0
\(161\) −78.7272 −0.0385377
\(162\) −567.253 −0.275108
\(163\) 412.823 0.198373 0.0991865 0.995069i \(-0.468376\pi\)
0.0991865 + 0.995069i \(0.468376\pi\)
\(164\) 1264.95 0.602290
\(165\) 0 0
\(166\) 979.655 0.458048
\(167\) 1133.68 0.525308 0.262654 0.964890i \(-0.415402\pi\)
0.262654 + 0.964890i \(0.415402\pi\)
\(168\) 66.6998 0.0306310
\(169\) −1360.27 −0.619151
\(170\) 0 0
\(171\) 1217.58 0.544507
\(172\) 943.237 0.418146
\(173\) 3572.44 1.56999 0.784994 0.619504i \(-0.212666\pi\)
0.784994 + 0.619504i \(0.212666\pi\)
\(174\) −265.687 −0.115757
\(175\) 0 0
\(176\) −852.283 −0.365019
\(177\) 1590.72 0.675512
\(178\) −969.742 −0.408344
\(179\) −3535.07 −1.47611 −0.738055 0.674740i \(-0.764256\pi\)
−0.738055 + 0.674740i \(0.764256\pi\)
\(180\) 0 0
\(181\) 2213.79 0.909116 0.454558 0.890717i \(-0.349797\pi\)
0.454558 + 0.890717i \(0.349797\pi\)
\(182\) 198.024 0.0806513
\(183\) 1236.74 0.499578
\(184\) 184.000 0.0737210
\(185\) 0 0
\(186\) −1283.56 −0.505996
\(187\) 6198.06 2.42378
\(188\) 2019.02 0.783258
\(189\) 400.757 0.154237
\(190\) 0 0
\(191\) 2675.85 1.01370 0.506852 0.862033i \(-0.330809\pi\)
0.506852 + 0.862033i \(0.330809\pi\)
\(192\) −155.890 −0.0585957
\(193\) 3662.81 1.36609 0.683043 0.730378i \(-0.260656\pi\)
0.683043 + 0.730378i \(0.260656\pi\)
\(194\) 2384.13 0.882322
\(195\) 0 0
\(196\) −1325.13 −0.482921
\(197\) −2962.85 −1.07154 −0.535772 0.844362i \(-0.679980\pi\)
−0.535772 + 0.844362i \(0.679980\pi\)
\(198\) −2244.38 −0.805561
\(199\) 5331.22 1.89909 0.949547 0.313624i \(-0.101543\pi\)
0.949547 + 0.313624i \(0.101543\pi\)
\(200\) 0 0
\(201\) −1804.46 −0.633216
\(202\) −3391.56 −1.18133
\(203\) −186.681 −0.0645440
\(204\) 1133.68 0.389085
\(205\) 0 0
\(206\) −1537.79 −0.520111
\(207\) 484.541 0.162695
\(208\) −462.819 −0.154282
\(209\) 3078.64 1.01892
\(210\) 0 0
\(211\) −461.010 −0.150414 −0.0752068 0.997168i \(-0.523962\pi\)
−0.0752068 + 0.997168i \(0.523962\pi\)
\(212\) 1520.87 0.492707
\(213\) 736.693 0.236983
\(214\) −1709.98 −0.546224
\(215\) 0 0
\(216\) −936.644 −0.295049
\(217\) −901.872 −0.282134
\(218\) 2625.42 0.815669
\(219\) 646.594 0.199510
\(220\) 0 0
\(221\) 3365.76 1.02446
\(222\) −693.594 −0.209689
\(223\) −5375.30 −1.61416 −0.807078 0.590445i \(-0.798952\pi\)
−0.807078 + 0.590445i \(0.798952\pi\)
\(224\) −109.533 −0.0326719
\(225\) 0 0
\(226\) 3609.24 1.06231
\(227\) −2426.32 −0.709430 −0.354715 0.934975i \(-0.615422\pi\)
−0.354715 + 0.934975i \(0.615422\pi\)
\(228\) 563.109 0.163565
\(229\) 2811.80 0.811394 0.405697 0.914008i \(-0.367029\pi\)
0.405697 + 0.914008i \(0.367029\pi\)
\(230\) 0 0
\(231\) 444.118 0.126497
\(232\) 436.308 0.123470
\(233\) −1953.94 −0.549386 −0.274693 0.961532i \(-0.588576\pi\)
−0.274693 + 0.961532i \(0.588576\pi\)
\(234\) −1218.78 −0.340487
\(235\) 0 0
\(236\) −2612.25 −0.720522
\(237\) 2880.72 0.789548
\(238\) 796.561 0.216947
\(239\) −5743.81 −1.55454 −0.777272 0.629165i \(-0.783397\pi\)
−0.777272 + 0.629165i \(0.783397\pi\)
\(240\) 0 0
\(241\) 2650.58 0.708461 0.354230 0.935158i \(-0.384743\pi\)
0.354230 + 0.935158i \(0.384743\pi\)
\(242\) −3012.90 −0.800315
\(243\) −3852.03 −1.01690
\(244\) −2030.96 −0.532865
\(245\) 0 0
\(246\) 1540.56 0.399279
\(247\) 1671.81 0.430666
\(248\) 2107.84 0.539710
\(249\) 1193.11 0.303656
\(250\) 0 0
\(251\) 1044.43 0.262646 0.131323 0.991340i \(-0.458078\pi\)
0.131323 + 0.991340i \(0.458078\pi\)
\(252\) −288.442 −0.0721038
\(253\) 1225.16 0.304446
\(254\) 4208.62 1.03965
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 6368.51 1.54575 0.772873 0.634560i \(-0.218819\pi\)
0.772873 + 0.634560i \(0.218819\pi\)
\(258\) 1148.76 0.277204
\(259\) −487.342 −0.116919
\(260\) 0 0
\(261\) 1148.96 0.272486
\(262\) −2323.18 −0.547810
\(263\) 1142.77 0.267931 0.133966 0.990986i \(-0.457229\pi\)
0.133966 + 0.990986i \(0.457229\pi\)
\(264\) −1037.99 −0.241984
\(265\) 0 0
\(266\) 395.660 0.0912010
\(267\) −1181.04 −0.270706
\(268\) 2963.25 0.675408
\(269\) −6164.14 −1.39715 −0.698577 0.715535i \(-0.746183\pi\)
−0.698577 + 0.715535i \(0.746183\pi\)
\(270\) 0 0
\(271\) −1921.34 −0.430676 −0.215338 0.976540i \(-0.569085\pi\)
−0.215338 + 0.976540i \(0.569085\pi\)
\(272\) −1861.71 −0.415010
\(273\) 241.172 0.0534665
\(274\) −5509.75 −1.21480
\(275\) 0 0
\(276\) 224.092 0.0488722
\(277\) 5499.03 1.19280 0.596398 0.802689i \(-0.296598\pi\)
0.596398 + 0.802689i \(0.296598\pi\)
\(278\) 2959.21 0.638423
\(279\) 5550.74 1.19109
\(280\) 0 0
\(281\) −1313.72 −0.278896 −0.139448 0.990229i \(-0.544533\pi\)
−0.139448 + 0.990229i \(0.544533\pi\)
\(282\) 2458.95 0.519249
\(283\) 4002.49 0.840718 0.420359 0.907358i \(-0.361904\pi\)
0.420359 + 0.907358i \(0.361904\pi\)
\(284\) −1209.79 −0.252773
\(285\) 0 0
\(286\) −3081.66 −0.637142
\(287\) 1082.45 0.222631
\(288\) 674.143 0.137932
\(289\) 8625.92 1.75573
\(290\) 0 0
\(291\) 2903.61 0.584922
\(292\) −1061.83 −0.212804
\(293\) 6904.82 1.37674 0.688368 0.725362i \(-0.258327\pi\)
0.688368 + 0.725362i \(0.258327\pi\)
\(294\) −1613.87 −0.320145
\(295\) 0 0
\(296\) 1139.01 0.223661
\(297\) −6236.61 −1.21847
\(298\) −129.727 −0.0252177
\(299\) 665.303 0.128680
\(300\) 0 0
\(301\) 807.157 0.154564
\(302\) −6469.43 −1.23270
\(303\) −4130.54 −0.783147
\(304\) −924.730 −0.174464
\(305\) 0 0
\(306\) −4902.58 −0.915888
\(307\) −5126.59 −0.953061 −0.476531 0.879158i \(-0.658106\pi\)
−0.476531 + 0.879158i \(0.658106\pi\)
\(308\) −729.324 −0.134926
\(309\) −1872.86 −0.344800
\(310\) 0 0
\(311\) 4637.42 0.845543 0.422772 0.906236i \(-0.361057\pi\)
0.422772 + 0.906236i \(0.361057\pi\)
\(312\) −563.663 −0.102279
\(313\) 459.272 0.0829380 0.0414690 0.999140i \(-0.486796\pi\)
0.0414690 + 0.999140i \(0.486796\pi\)
\(314\) 6055.03 1.08823
\(315\) 0 0
\(316\) −4730.68 −0.842156
\(317\) 3397.75 0.602008 0.301004 0.953623i \(-0.402678\pi\)
0.301004 + 0.953623i \(0.402678\pi\)
\(318\) 1852.25 0.326633
\(319\) 2905.14 0.509895
\(320\) 0 0
\(321\) −2082.57 −0.362111
\(322\) 157.454 0.0272503
\(323\) 6724.92 1.15847
\(324\) 1134.51 0.194531
\(325\) 0 0
\(326\) −825.646 −0.140271
\(327\) 3197.47 0.540735
\(328\) −2529.89 −0.425884
\(329\) 1727.74 0.289524
\(330\) 0 0
\(331\) −4112.38 −0.682891 −0.341445 0.939902i \(-0.610916\pi\)
−0.341445 + 0.939902i \(0.610916\pi\)
\(332\) −1959.31 −0.323889
\(333\) 2999.44 0.493598
\(334\) −2267.35 −0.371449
\(335\) 0 0
\(336\) −133.400 −0.0216594
\(337\) −1791.60 −0.289598 −0.144799 0.989461i \(-0.546254\pi\)
−0.144799 + 0.989461i \(0.546254\pi\)
\(338\) 2720.55 0.437806
\(339\) 4395.65 0.704245
\(340\) 0 0
\(341\) 14035.0 2.22885
\(342\) −2435.16 −0.385024
\(343\) −2308.02 −0.363327
\(344\) −1886.47 −0.295674
\(345\) 0 0
\(346\) −7144.89 −1.11015
\(347\) −5134.49 −0.794335 −0.397167 0.917746i \(-0.630007\pi\)
−0.397167 + 0.917746i \(0.630007\pi\)
\(348\) 531.374 0.0818525
\(349\) −5278.46 −0.809597 −0.404799 0.914406i \(-0.632658\pi\)
−0.404799 + 0.914406i \(0.632658\pi\)
\(350\) 0 0
\(351\) −3386.69 −0.515010
\(352\) 1704.57 0.258107
\(353\) −7027.23 −1.05955 −0.529775 0.848138i \(-0.677724\pi\)
−0.529775 + 0.848138i \(0.677724\pi\)
\(354\) −3181.44 −0.477659
\(355\) 0 0
\(356\) 1939.48 0.288743
\(357\) 970.123 0.143822
\(358\) 7070.15 1.04377
\(359\) 7592.72 1.11623 0.558117 0.829762i \(-0.311524\pi\)
0.558117 + 0.829762i \(0.311524\pi\)
\(360\) 0 0
\(361\) −3518.67 −0.513000
\(362\) −4427.59 −0.642842
\(363\) −3669.37 −0.530557
\(364\) −396.048 −0.0570291
\(365\) 0 0
\(366\) −2473.49 −0.353255
\(367\) −1964.86 −0.279468 −0.139734 0.990189i \(-0.544625\pi\)
−0.139734 + 0.990189i \(0.544625\pi\)
\(368\) −368.000 −0.0521286
\(369\) −6662.14 −0.939885
\(370\) 0 0
\(371\) 1301.46 0.182125
\(372\) 2567.12 0.357793
\(373\) −5152.92 −0.715303 −0.357652 0.933855i \(-0.616422\pi\)
−0.357652 + 0.933855i \(0.616422\pi\)
\(374\) −12396.1 −1.71387
\(375\) 0 0
\(376\) −4038.05 −0.553847
\(377\) 1577.59 0.215517
\(378\) −801.515 −0.109062
\(379\) 12293.3 1.66613 0.833066 0.553174i \(-0.186584\pi\)
0.833066 + 0.553174i \(0.186584\pi\)
\(380\) 0 0
\(381\) 5125.63 0.689223
\(382\) −5351.69 −0.716797
\(383\) −5120.93 −0.683204 −0.341602 0.939845i \(-0.610969\pi\)
−0.341602 + 0.939845i \(0.610969\pi\)
\(384\) 311.780 0.0414334
\(385\) 0 0
\(386\) −7325.62 −0.965969
\(387\) −4967.79 −0.652525
\(388\) −4768.26 −0.623896
\(389\) 5810.57 0.757346 0.378673 0.925530i \(-0.376380\pi\)
0.378673 + 0.925530i \(0.376380\pi\)
\(390\) 0 0
\(391\) 2676.21 0.346142
\(392\) 2650.27 0.341477
\(393\) −2829.37 −0.363163
\(394\) 5925.70 0.757697
\(395\) 0 0
\(396\) 4488.76 0.569618
\(397\) 5594.61 0.707268 0.353634 0.935384i \(-0.384946\pi\)
0.353634 + 0.935384i \(0.384946\pi\)
\(398\) −10662.4 −1.34286
\(399\) 481.870 0.0604603
\(400\) 0 0
\(401\) −11832.5 −1.47354 −0.736769 0.676145i \(-0.763649\pi\)
−0.736769 + 0.676145i \(0.763649\pi\)
\(402\) 3608.91 0.447752
\(403\) 7621.49 0.942068
\(404\) 6783.12 0.835329
\(405\) 0 0
\(406\) 373.362 0.0456395
\(407\) 7584.05 0.923655
\(408\) −2267.36 −0.275125
\(409\) −9352.34 −1.13067 −0.565334 0.824862i \(-0.691253\pi\)
−0.565334 + 0.824862i \(0.691253\pi\)
\(410\) 0 0
\(411\) −6710.27 −0.805336
\(412\) 3075.58 0.367774
\(413\) −2235.38 −0.266334
\(414\) −969.081 −0.115043
\(415\) 0 0
\(416\) 925.638 0.109094
\(417\) 3603.99 0.423233
\(418\) −6157.28 −0.720484
\(419\) −11362.2 −1.32477 −0.662386 0.749163i \(-0.730456\pi\)
−0.662386 + 0.749163i \(0.730456\pi\)
\(420\) 0 0
\(421\) 7193.77 0.832786 0.416393 0.909185i \(-0.363294\pi\)
0.416393 + 0.909185i \(0.363294\pi\)
\(422\) 922.020 0.106358
\(423\) −10633.7 −1.22229
\(424\) −3041.75 −0.348397
\(425\) 0 0
\(426\) −1473.39 −0.167572
\(427\) −1737.96 −0.196969
\(428\) 3419.96 0.386239
\(429\) −3753.13 −0.422384
\(430\) 0 0
\(431\) −1955.83 −0.218583 −0.109291 0.994010i \(-0.534858\pi\)
−0.109291 + 0.994010i \(0.534858\pi\)
\(432\) 1873.29 0.208631
\(433\) −5924.76 −0.657566 −0.328783 0.944406i \(-0.606638\pi\)
−0.328783 + 0.944406i \(0.606638\pi\)
\(434\) 1803.74 0.199499
\(435\) 0 0
\(436\) −5250.84 −0.576765
\(437\) 1329.30 0.145513
\(438\) −1293.19 −0.141075
\(439\) 835.218 0.0908036 0.0454018 0.998969i \(-0.485543\pi\)
0.0454018 + 0.998969i \(0.485543\pi\)
\(440\) 0 0
\(441\) 6979.15 0.753606
\(442\) −6731.52 −0.724403
\(443\) −6203.12 −0.665280 −0.332640 0.943054i \(-0.607939\pi\)
−0.332640 + 0.943054i \(0.607939\pi\)
\(444\) 1387.19 0.148273
\(445\) 0 0
\(446\) 10750.6 1.14138
\(447\) −157.993 −0.0167177
\(448\) 219.067 0.0231025
\(449\) 14091.7 1.48113 0.740567 0.671983i \(-0.234557\pi\)
0.740567 + 0.671983i \(0.234557\pi\)
\(450\) 0 0
\(451\) −16845.2 −1.75878
\(452\) −7218.48 −0.751170
\(453\) −7879.06 −0.817197
\(454\) 4852.64 0.501642
\(455\) 0 0
\(456\) −1126.22 −0.115658
\(457\) −604.386 −0.0618643 −0.0309321 0.999521i \(-0.509848\pi\)
−0.0309321 + 0.999521i \(0.509848\pi\)
\(458\) −5623.61 −0.573742
\(459\) −13623.1 −1.38534
\(460\) 0 0
\(461\) −6531.56 −0.659881 −0.329940 0.944002i \(-0.607029\pi\)
−0.329940 + 0.944002i \(0.607029\pi\)
\(462\) −888.236 −0.0894470
\(463\) 856.811 0.0860030 0.0430015 0.999075i \(-0.486308\pi\)
0.0430015 + 0.999075i \(0.486308\pi\)
\(464\) −872.615 −0.0873064
\(465\) 0 0
\(466\) 3907.88 0.388474
\(467\) −314.136 −0.0311273 −0.0155637 0.999879i \(-0.504954\pi\)
−0.0155637 + 0.999879i \(0.504954\pi\)
\(468\) 2437.55 0.240760
\(469\) 2535.74 0.249658
\(470\) 0 0
\(471\) 7374.36 0.721428
\(472\) 5224.51 0.509486
\(473\) −12561.0 −1.22105
\(474\) −5761.44 −0.558295
\(475\) 0 0
\(476\) −1593.12 −0.153405
\(477\) −8010.05 −0.768878
\(478\) 11487.6 1.09923
\(479\) 17059.1 1.62724 0.813621 0.581396i \(-0.197493\pi\)
0.813621 + 0.581396i \(0.197493\pi\)
\(480\) 0 0
\(481\) 4118.40 0.390401
\(482\) −5301.16 −0.500957
\(483\) 191.762 0.0180652
\(484\) 6025.79 0.565908
\(485\) 0 0
\(486\) 7704.05 0.719059
\(487\) −8170.42 −0.760241 −0.380120 0.924937i \(-0.624117\pi\)
−0.380120 + 0.924937i \(0.624117\pi\)
\(488\) 4061.93 0.376793
\(489\) −1005.55 −0.0929905
\(490\) 0 0
\(491\) −12815.1 −1.17788 −0.588940 0.808177i \(-0.700455\pi\)
−0.588940 + 0.808177i \(0.700455\pi\)
\(492\) −3081.13 −0.282333
\(493\) 6345.92 0.579728
\(494\) −3343.62 −0.304527
\(495\) 0 0
\(496\) −4215.69 −0.381633
\(497\) −1035.25 −0.0934352
\(498\) −2386.22 −0.214717
\(499\) −12617.1 −1.13190 −0.565951 0.824439i \(-0.691491\pi\)
−0.565951 + 0.824439i \(0.691491\pi\)
\(500\) 0 0
\(501\) −2761.38 −0.246246
\(502\) −2088.87 −0.185718
\(503\) −442.974 −0.0392669 −0.0196334 0.999807i \(-0.506250\pi\)
−0.0196334 + 0.999807i \(0.506250\pi\)
\(504\) 576.885 0.0509851
\(505\) 0 0
\(506\) −2450.31 −0.215276
\(507\) 3313.33 0.290237
\(508\) −8417.23 −0.735146
\(509\) 6420.52 0.559106 0.279553 0.960130i \(-0.409814\pi\)
0.279553 + 0.960130i \(0.409814\pi\)
\(510\) 0 0
\(511\) −908.637 −0.0786609
\(512\) −512.000 −0.0441942
\(513\) −6766.74 −0.582376
\(514\) −12737.0 −1.09301
\(515\) 0 0
\(516\) −2297.52 −0.196013
\(517\) −26887.2 −2.28723
\(518\) 974.685 0.0826741
\(519\) −8701.68 −0.735956
\(520\) 0 0
\(521\) 17068.2 1.43527 0.717633 0.696422i \(-0.245226\pi\)
0.717633 + 0.696422i \(0.245226\pi\)
\(522\) −2297.92 −0.192677
\(523\) −15522.6 −1.29781 −0.648907 0.760867i \(-0.724774\pi\)
−0.648907 + 0.760867i \(0.724774\pi\)
\(524\) 4646.35 0.387360
\(525\) 0 0
\(526\) −2285.53 −0.189456
\(527\) 30657.8 2.53410
\(528\) 2075.97 0.171108
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 13758.1 1.12439
\(532\) −791.319 −0.0644888
\(533\) −9147.51 −0.743382
\(534\) 2362.08 0.191418
\(535\) 0 0
\(536\) −5926.50 −0.477586
\(537\) 8610.66 0.691950
\(538\) 12328.3 0.987937
\(539\) 17646.7 1.41020
\(540\) 0 0
\(541\) −1483.28 −0.117877 −0.0589384 0.998262i \(-0.518772\pi\)
−0.0589384 + 0.998262i \(0.518772\pi\)
\(542\) 3842.69 0.304534
\(543\) −5392.31 −0.426163
\(544\) 3723.42 0.293456
\(545\) 0 0
\(546\) −482.343 −0.0378066
\(547\) 12652.0 0.988958 0.494479 0.869190i \(-0.335359\pi\)
0.494479 + 0.869190i \(0.335359\pi\)
\(548\) 11019.5 0.858996
\(549\) 10696.6 0.831545
\(550\) 0 0
\(551\) 3152.08 0.243708
\(552\) −448.183 −0.0345579
\(553\) −4048.18 −0.311295
\(554\) −10998.1 −0.843435
\(555\) 0 0
\(556\) −5918.42 −0.451433
\(557\) 12077.5 0.918741 0.459370 0.888245i \(-0.348075\pi\)
0.459370 + 0.888245i \(0.348075\pi\)
\(558\) −11101.5 −0.842227
\(559\) −6821.07 −0.516101
\(560\) 0 0
\(561\) −15097.1 −1.13619
\(562\) 2627.44 0.197209
\(563\) −3687.15 −0.276012 −0.138006 0.990431i \(-0.544069\pi\)
−0.138006 + 0.990431i \(0.544069\pi\)
\(564\) −4917.90 −0.367165
\(565\) 0 0
\(566\) −8004.98 −0.594478
\(567\) 970.830 0.0719066
\(568\) 2419.57 0.178738
\(569\) −16302.1 −1.20109 −0.600544 0.799592i \(-0.705049\pi\)
−0.600544 + 0.799592i \(0.705049\pi\)
\(570\) 0 0
\(571\) −26612.6 −1.95044 −0.975221 0.221232i \(-0.928992\pi\)
−0.975221 + 0.221232i \(0.928992\pi\)
\(572\) 6163.33 0.450527
\(573\) −6517.77 −0.475190
\(574\) −2164.90 −0.157424
\(575\) 0 0
\(576\) −1348.29 −0.0975323
\(577\) 8796.67 0.634680 0.317340 0.948312i \(-0.397210\pi\)
0.317340 + 0.948312i \(0.397210\pi\)
\(578\) −17251.8 −1.24149
\(579\) −8921.79 −0.640375
\(580\) 0 0
\(581\) −1676.64 −0.119722
\(582\) −5807.21 −0.413603
\(583\) −20253.3 −1.43878
\(584\) 2123.65 0.150475
\(585\) 0 0
\(586\) −13809.6 −0.973499
\(587\) −18951.5 −1.33256 −0.666279 0.745703i \(-0.732114\pi\)
−0.666279 + 0.745703i \(0.732114\pi\)
\(588\) 3227.73 0.226377
\(589\) 15228.0 1.06530
\(590\) 0 0
\(591\) 7216.85 0.502304
\(592\) −2278.02 −0.158152
\(593\) −15133.0 −1.04795 −0.523976 0.851733i \(-0.675552\pi\)
−0.523976 + 0.851733i \(0.675552\pi\)
\(594\) 12473.2 0.861587
\(595\) 0 0
\(596\) 259.454 0.0178316
\(597\) −12985.7 −0.890231
\(598\) −1330.61 −0.0909908
\(599\) −3606.66 −0.246017 −0.123008 0.992406i \(-0.539254\pi\)
−0.123008 + 0.992406i \(0.539254\pi\)
\(600\) 0 0
\(601\) 9249.64 0.627788 0.313894 0.949458i \(-0.398366\pi\)
0.313894 + 0.949458i \(0.398366\pi\)
\(602\) −1614.31 −0.109293
\(603\) −15606.7 −1.05399
\(604\) 12938.9 0.871648
\(605\) 0 0
\(606\) 8261.09 0.553769
\(607\) −5624.31 −0.376085 −0.188043 0.982161i \(-0.560214\pi\)
−0.188043 + 0.982161i \(0.560214\pi\)
\(608\) 1849.46 0.123364
\(609\) 454.713 0.0302560
\(610\) 0 0
\(611\) −14600.7 −0.966743
\(612\) 9805.15 0.647630
\(613\) 22217.5 1.46388 0.731938 0.681371i \(-0.238616\pi\)
0.731938 + 0.681371i \(0.238616\pi\)
\(614\) 10253.2 0.673916
\(615\) 0 0
\(616\) 1458.65 0.0954069
\(617\) 18489.6 1.20642 0.603211 0.797582i \(-0.293888\pi\)
0.603211 + 0.797582i \(0.293888\pi\)
\(618\) 3745.72 0.243810
\(619\) 4607.09 0.299151 0.149575 0.988750i \(-0.452209\pi\)
0.149575 + 0.988750i \(0.452209\pi\)
\(620\) 0 0
\(621\) −2692.85 −0.174010
\(622\) −9274.84 −0.597889
\(623\) 1659.68 0.106731
\(624\) 1127.33 0.0723223
\(625\) 0 0
\(626\) −918.544 −0.0586460
\(627\) −7498.89 −0.477634
\(628\) −12110.1 −0.769497
\(629\) 16566.4 1.05016
\(630\) 0 0
\(631\) −22988.7 −1.45034 −0.725170 0.688570i \(-0.758239\pi\)
−0.725170 + 0.688570i \(0.758239\pi\)
\(632\) 9461.36 0.595495
\(633\) 1122.92 0.0705087
\(634\) −6795.50 −0.425684
\(635\) 0 0
\(636\) −3704.51 −0.230964
\(637\) 9582.78 0.596049
\(638\) −5810.28 −0.360550
\(639\) 6371.63 0.394457
\(640\) 0 0
\(641\) 1602.02 0.0987144 0.0493572 0.998781i \(-0.484283\pi\)
0.0493572 + 0.998781i \(0.484283\pi\)
\(642\) 4165.14 0.256051
\(643\) −23798.8 −1.45962 −0.729809 0.683651i \(-0.760391\pi\)
−0.729809 + 0.683651i \(0.760391\pi\)
\(644\) −314.909 −0.0192689
\(645\) 0 0
\(646\) −13449.8 −0.819159
\(647\) 8096.76 0.491988 0.245994 0.969271i \(-0.420886\pi\)
0.245994 + 0.969271i \(0.420886\pi\)
\(648\) −2269.01 −0.137554
\(649\) 34787.2 2.10403
\(650\) 0 0
\(651\) 2196.76 0.132255
\(652\) 1651.29 0.0991865
\(653\) 21008.0 1.25897 0.629483 0.777014i \(-0.283267\pi\)
0.629483 + 0.777014i \(0.283267\pi\)
\(654\) −6394.94 −0.382358
\(655\) 0 0
\(656\) 5059.78 0.301145
\(657\) 5592.37 0.332084
\(658\) −3455.48 −0.204724
\(659\) −15473.7 −0.914672 −0.457336 0.889294i \(-0.651196\pi\)
−0.457336 + 0.889294i \(0.651196\pi\)
\(660\) 0 0
\(661\) 10836.2 0.637638 0.318819 0.947816i \(-0.396714\pi\)
0.318819 + 0.947816i \(0.396714\pi\)
\(662\) 8224.76 0.482877
\(663\) −8198.25 −0.480232
\(664\) 3918.62 0.229024
\(665\) 0 0
\(666\) −5998.87 −0.349027
\(667\) 1254.38 0.0728185
\(668\) 4534.70 0.262654
\(669\) 13093.0 0.756661
\(670\) 0 0
\(671\) 27046.2 1.55605
\(672\) 266.799 0.0153155
\(673\) 25480.4 1.45943 0.729715 0.683752i \(-0.239653\pi\)
0.729715 + 0.683752i \(0.239653\pi\)
\(674\) 3583.20 0.204777
\(675\) 0 0
\(676\) −5441.10 −0.309576
\(677\) −10514.6 −0.596913 −0.298457 0.954423i \(-0.596472\pi\)
−0.298457 + 0.954423i \(0.596472\pi\)
\(678\) −8791.31 −0.497977
\(679\) −4080.34 −0.230617
\(680\) 0 0
\(681\) 5909.98 0.332556
\(682\) −28070.0 −1.57603
\(683\) 13868.7 0.776973 0.388487 0.921454i \(-0.372998\pi\)
0.388487 + 0.921454i \(0.372998\pi\)
\(684\) 4870.32 0.272253
\(685\) 0 0
\(686\) 4616.04 0.256911
\(687\) −6848.93 −0.380354
\(688\) 3772.95 0.209073
\(689\) −10998.3 −0.608129
\(690\) 0 0
\(691\) 12877.1 0.708928 0.354464 0.935070i \(-0.384663\pi\)
0.354464 + 0.935070i \(0.384663\pi\)
\(692\) 14289.8 0.784994
\(693\) 3841.17 0.210554
\(694\) 10269.0 0.561679
\(695\) 0 0
\(696\) −1062.75 −0.0578784
\(697\) −36796.3 −1.99965
\(698\) 10556.9 0.572472
\(699\) 4759.37 0.257533
\(700\) 0 0
\(701\) −9869.22 −0.531748 −0.265874 0.964008i \(-0.585661\pi\)
−0.265874 + 0.964008i \(0.585661\pi\)
\(702\) 6773.39 0.364167
\(703\) 8228.72 0.441468
\(704\) −3409.13 −0.182509
\(705\) 0 0
\(706\) 14054.5 0.749216
\(707\) 5804.52 0.308771
\(708\) 6362.87 0.337756
\(709\) −3479.51 −0.184310 −0.0921551 0.995745i \(-0.529376\pi\)
−0.0921551 + 0.995745i \(0.529376\pi\)
\(710\) 0 0
\(711\) 24915.3 1.31420
\(712\) −3878.97 −0.204172
\(713\) 6060.05 0.318304
\(714\) −1940.25 −0.101697
\(715\) 0 0
\(716\) −14140.3 −0.738055
\(717\) 13990.6 0.728717
\(718\) −15185.4 −0.789297
\(719\) −2812.17 −0.145864 −0.0729319 0.997337i \(-0.523236\pi\)
−0.0729319 + 0.997337i \(0.523236\pi\)
\(720\) 0 0
\(721\) 2631.87 0.135944
\(722\) 7037.33 0.362746
\(723\) −6456.23 −0.332102
\(724\) 8855.18 0.454558
\(725\) 0 0
\(726\) 7338.75 0.375160
\(727\) −3326.25 −0.169689 −0.0848445 0.996394i \(-0.527039\pi\)
−0.0848445 + 0.996394i \(0.527039\pi\)
\(728\) 792.097 0.0403256
\(729\) 1724.77 0.0876274
\(730\) 0 0
\(731\) −27438.0 −1.38828
\(732\) 4946.98 0.249789
\(733\) −6522.98 −0.328693 −0.164346 0.986403i \(-0.552552\pi\)
−0.164346 + 0.986403i \(0.552552\pi\)
\(734\) 3929.71 0.197613
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −39461.4 −1.97229
\(738\) 13324.3 0.664599
\(739\) −17729.7 −0.882541 −0.441271 0.897374i \(-0.645472\pi\)
−0.441271 + 0.897374i \(0.645472\pi\)
\(740\) 0 0
\(741\) −4072.15 −0.201882
\(742\) −2602.91 −0.128782
\(743\) 12465.1 0.615480 0.307740 0.951470i \(-0.400427\pi\)
0.307740 + 0.951470i \(0.400427\pi\)
\(744\) −5134.24 −0.252998
\(745\) 0 0
\(746\) 10305.8 0.505796
\(747\) 10319.2 0.505434
\(748\) 24792.2 1.21189
\(749\) 2926.57 0.142770
\(750\) 0 0
\(751\) 14658.7 0.712253 0.356127 0.934438i \(-0.384097\pi\)
0.356127 + 0.934438i \(0.384097\pi\)
\(752\) 8076.10 0.391629
\(753\) −2544.01 −0.123119
\(754\) −3155.18 −0.152394
\(755\) 0 0
\(756\) 1603.03 0.0771185
\(757\) −35441.4 −1.70164 −0.850819 0.525459i \(-0.823894\pi\)
−0.850819 + 0.525459i \(0.823894\pi\)
\(758\) −24586.6 −1.17813
\(759\) −2984.21 −0.142714
\(760\) 0 0
\(761\) −17542.8 −0.835647 −0.417824 0.908528i \(-0.637207\pi\)
−0.417824 + 0.908528i \(0.637207\pi\)
\(762\) −10251.3 −0.487354
\(763\) −4493.30 −0.213196
\(764\) 10703.4 0.506852
\(765\) 0 0
\(766\) 10241.9 0.483098
\(767\) 18890.6 0.889311
\(768\) −623.559 −0.0292979
\(769\) −23071.0 −1.08187 −0.540937 0.841063i \(-0.681930\pi\)
−0.540937 + 0.841063i \(0.681930\pi\)
\(770\) 0 0
\(771\) −15512.3 −0.724593
\(772\) 14651.2 0.683043
\(773\) 21356.1 0.993693 0.496846 0.867838i \(-0.334491\pi\)
0.496846 + 0.867838i \(0.334491\pi\)
\(774\) 9935.58 0.461405
\(775\) 0 0
\(776\) 9536.52 0.441161
\(777\) 1187.06 0.0548076
\(778\) −11621.1 −0.535525
\(779\) −18277.1 −0.840622
\(780\) 0 0
\(781\) 16110.6 0.738135
\(782\) −5352.42 −0.244760
\(783\) −6385.39 −0.291437
\(784\) −5300.54 −0.241460
\(785\) 0 0
\(786\) 5658.74 0.256795
\(787\) −23753.3 −1.07588 −0.537938 0.842984i \(-0.680797\pi\)
−0.537938 + 0.842984i \(0.680797\pi\)
\(788\) −11851.4 −0.535772
\(789\) −2783.52 −0.125597
\(790\) 0 0
\(791\) −6177.07 −0.277663
\(792\) −8977.52 −0.402781
\(793\) 14687.0 0.657694
\(794\) −11189.2 −0.500114
\(795\) 0 0
\(796\) 21324.9 0.949547
\(797\) −10129.9 −0.450213 −0.225106 0.974334i \(-0.572273\pi\)
−0.225106 + 0.974334i \(0.572273\pi\)
\(798\) −963.739 −0.0427519
\(799\) −58731.8 −2.60048
\(800\) 0 0
\(801\) −10214.8 −0.450588
\(802\) 23665.1 1.04195
\(803\) 14140.3 0.621419
\(804\) −7217.82 −0.316608
\(805\) 0 0
\(806\) −15243.0 −0.666142
\(807\) 15014.5 0.654938
\(808\) −13566.2 −0.590667
\(809\) 37955.8 1.64951 0.824757 0.565488i \(-0.191312\pi\)
0.824757 + 0.565488i \(0.191312\pi\)
\(810\) 0 0
\(811\) 37134.1 1.60784 0.803918 0.594740i \(-0.202745\pi\)
0.803918 + 0.594740i \(0.202745\pi\)
\(812\) −746.723 −0.0322720
\(813\) 4679.96 0.201886
\(814\) −15168.1 −0.653123
\(815\) 0 0
\(816\) 4534.71 0.194543
\(817\) −13628.7 −0.583610
\(818\) 18704.7 0.799503
\(819\) 2085.89 0.0889948
\(820\) 0 0
\(821\) −15633.1 −0.664553 −0.332277 0.943182i \(-0.607817\pi\)
−0.332277 + 0.943182i \(0.607817\pi\)
\(822\) 13420.5 0.569459
\(823\) 31827.6 1.34805 0.674023 0.738711i \(-0.264565\pi\)
0.674023 + 0.738711i \(0.264565\pi\)
\(824\) −6151.16 −0.260056
\(825\) 0 0
\(826\) 4470.77 0.188327
\(827\) 1635.92 0.0687866 0.0343933 0.999408i \(-0.489050\pi\)
0.0343933 + 0.999408i \(0.489050\pi\)
\(828\) 1938.16 0.0813476
\(829\) 12715.0 0.532703 0.266351 0.963876i \(-0.414182\pi\)
0.266351 + 0.963876i \(0.414182\pi\)
\(830\) 0 0
\(831\) −13394.4 −0.559142
\(832\) −1851.28 −0.0771412
\(833\) 38547.1 1.60334
\(834\) −7207.98 −0.299271
\(835\) 0 0
\(836\) 12314.6 0.509459
\(837\) −30848.4 −1.27393
\(838\) 22724.4 0.936756
\(839\) −9126.14 −0.375529 −0.187765 0.982214i \(-0.560124\pi\)
−0.187765 + 0.982214i \(0.560124\pi\)
\(840\) 0 0
\(841\) −21414.6 −0.878042
\(842\) −14387.5 −0.588869
\(843\) 3199.93 0.130737
\(844\) −1844.04 −0.0752068
\(845\) 0 0
\(846\) 21267.4 0.864288
\(847\) 5156.45 0.209183
\(848\) 6083.49 0.246354
\(849\) −9749.18 −0.394100
\(850\) 0 0
\(851\) 3274.65 0.131908
\(852\) 2946.77 0.118491
\(853\) 26436.9 1.06117 0.530587 0.847631i \(-0.321972\pi\)
0.530587 + 0.847631i \(0.321972\pi\)
\(854\) 3475.91 0.139278
\(855\) 0 0
\(856\) −6839.93 −0.273112
\(857\) 32204.7 1.28366 0.641828 0.766849i \(-0.278176\pi\)
0.641828 + 0.766849i \(0.278176\pi\)
\(858\) 7506.25 0.298670
\(859\) 32712.2 1.29933 0.649666 0.760220i \(-0.274909\pi\)
0.649666 + 0.760220i \(0.274909\pi\)
\(860\) 0 0
\(861\) −2636.61 −0.104362
\(862\) 3911.67 0.154561
\(863\) −16384.9 −0.646291 −0.323145 0.946349i \(-0.604740\pi\)
−0.323145 + 0.946349i \(0.604740\pi\)
\(864\) −3746.58 −0.147524
\(865\) 0 0
\(866\) 11849.5 0.464969
\(867\) −21010.8 −0.823028
\(868\) −3607.49 −0.141067
\(869\) 62998.1 2.45922
\(870\) 0 0
\(871\) −21428.9 −0.833629
\(872\) 10501.7 0.407834
\(873\) 25113.2 0.973601
\(874\) −2658.60 −0.102893
\(875\) 0 0
\(876\) 2586.37 0.0997551
\(877\) 52.2430 0.00201154 0.00100577 0.999999i \(-0.499680\pi\)
0.00100577 + 0.999999i \(0.499680\pi\)
\(878\) −1670.44 −0.0642078
\(879\) −16818.6 −0.645367
\(880\) 0 0
\(881\) 27812.9 1.06361 0.531806 0.846866i \(-0.321514\pi\)
0.531806 + 0.846866i \(0.321514\pi\)
\(882\) −13958.3 −0.532880
\(883\) −16718.1 −0.637157 −0.318578 0.947897i \(-0.603205\pi\)
−0.318578 + 0.947897i \(0.603205\pi\)
\(884\) 13463.0 0.512230
\(885\) 0 0
\(886\) 12406.2 0.470424
\(887\) 16171.1 0.612144 0.306072 0.952008i \(-0.400985\pi\)
0.306072 + 0.952008i \(0.400985\pi\)
\(888\) −2774.38 −0.104845
\(889\) −7202.88 −0.271740
\(890\) 0 0
\(891\) −15108.1 −0.568060
\(892\) −21501.2 −0.807078
\(893\) −29172.7 −1.09320
\(894\) 315.986 0.0118212
\(895\) 0 0
\(896\) −438.134 −0.0163360
\(897\) −1620.53 −0.0603210
\(898\) −28183.4 −1.04732
\(899\) 14369.8 0.533104
\(900\) 0 0
\(901\) −44241.0 −1.63583
\(902\) 33690.4 1.24364
\(903\) −1966.06 −0.0724543
\(904\) 14437.0 0.531157
\(905\) 0 0
\(906\) 15758.1 0.577846
\(907\) −26499.5 −0.970124 −0.485062 0.874480i \(-0.661203\pi\)
−0.485062 + 0.874480i \(0.661203\pi\)
\(908\) −9705.28 −0.354715
\(909\) −35725.0 −1.30354
\(910\) 0 0
\(911\) −26021.5 −0.946357 −0.473178 0.880967i \(-0.656893\pi\)
−0.473178 + 0.880967i \(0.656893\pi\)
\(912\) 2252.44 0.0817825
\(913\) 26092.0 0.945803
\(914\) 1208.77 0.0437447
\(915\) 0 0
\(916\) 11247.2 0.405697
\(917\) 3976.02 0.143184
\(918\) 27246.2 0.979586
\(919\) −12637.1 −0.453599 −0.226800 0.973941i \(-0.572826\pi\)
−0.226800 + 0.973941i \(0.572826\pi\)
\(920\) 0 0
\(921\) 12487.2 0.446763
\(922\) 13063.1 0.466606
\(923\) 8748.63 0.311988
\(924\) 1776.47 0.0632486
\(925\) 0 0
\(926\) −1713.62 −0.0608133
\(927\) −16198.3 −0.573918
\(928\) 1745.23 0.0617349
\(929\) −3755.28 −0.132623 −0.0663115 0.997799i \(-0.521123\pi\)
−0.0663115 + 0.997799i \(0.521123\pi\)
\(930\) 0 0
\(931\) 19146.7 0.674016
\(932\) −7815.76 −0.274693
\(933\) −11295.7 −0.396362
\(934\) 628.271 0.0220103
\(935\) 0 0
\(936\) −4875.10 −0.170243
\(937\) −5107.90 −0.178087 −0.0890437 0.996028i \(-0.528381\pi\)
−0.0890437 + 0.996028i \(0.528381\pi\)
\(938\) −5071.49 −0.176535
\(939\) −1118.69 −0.0388785
\(940\) 0 0
\(941\) 15383.2 0.532919 0.266460 0.963846i \(-0.414146\pi\)
0.266460 + 0.963846i \(0.414146\pi\)
\(942\) −14748.7 −0.510127
\(943\) −7273.43 −0.251172
\(944\) −10449.0 −0.360261
\(945\) 0 0
\(946\) 25122.0 0.863412
\(947\) −22066.7 −0.757203 −0.378601 0.925560i \(-0.623595\pi\)
−0.378601 + 0.925560i \(0.623595\pi\)
\(948\) 11522.9 0.394774
\(949\) 7678.65 0.262655
\(950\) 0 0
\(951\) −8276.17 −0.282201
\(952\) 3186.24 0.108473
\(953\) −6299.93 −0.214139 −0.107070 0.994252i \(-0.534147\pi\)
−0.107070 + 0.994252i \(0.534147\pi\)
\(954\) 16020.1 0.543679
\(955\) 0 0
\(956\) −22975.2 −0.777272
\(957\) −7076.27 −0.239021
\(958\) −34118.1 −1.15063
\(959\) 9429.72 0.317520
\(960\) 0 0
\(961\) 39630.9 1.33030
\(962\) −8236.81 −0.276055
\(963\) −18012.1 −0.602732
\(964\) 10602.3 0.354230
\(965\) 0 0
\(966\) −383.524 −0.0127740
\(967\) 40723.0 1.35425 0.677127 0.735866i \(-0.263225\pi\)
0.677127 + 0.735866i \(0.263225\pi\)
\(968\) −12051.6 −0.400158
\(969\) −16380.4 −0.543049
\(970\) 0 0
\(971\) −15502.8 −0.512368 −0.256184 0.966628i \(-0.582465\pi\)
−0.256184 + 0.966628i \(0.582465\pi\)
\(972\) −15408.1 −0.508452
\(973\) −5064.57 −0.166868
\(974\) 16340.8 0.537571
\(975\) 0 0
\(976\) −8123.85 −0.266433
\(977\) 52622.6 1.72318 0.861589 0.507606i \(-0.169469\pi\)
0.861589 + 0.507606i \(0.169469\pi\)
\(978\) 2011.09 0.0657542
\(979\) −25828.0 −0.843172
\(980\) 0 0
\(981\) 27654.8 0.900052
\(982\) 25630.3 0.832887
\(983\) 52619.3 1.70732 0.853659 0.520832i \(-0.174378\pi\)
0.853659 + 0.520832i \(0.174378\pi\)
\(984\) 6162.25 0.199640
\(985\) 0 0
\(986\) −12691.8 −0.409930
\(987\) −4208.39 −0.135719
\(988\) 6687.23 0.215333
\(989\) −5423.62 −0.174379
\(990\) 0 0
\(991\) −396.488 −0.0127092 −0.00635461 0.999980i \(-0.502023\pi\)
−0.00635461 + 0.999980i \(0.502023\pi\)
\(992\) 8431.37 0.269855
\(993\) 10016.8 0.320116
\(994\) 2070.50 0.0660687
\(995\) 0 0
\(996\) 4772.44 0.151828
\(997\) −40506.0 −1.28670 −0.643349 0.765573i \(-0.722456\pi\)
−0.643349 + 0.765573i \(0.722456\pi\)
\(998\) 25234.2 0.800375
\(999\) −16669.5 −0.527927
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.a.s.1.2 5
5.2 odd 4 1150.4.b.p.599.4 10
5.3 odd 4 1150.4.b.p.599.7 10
5.4 even 2 1150.4.a.t.1.4 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1150.4.a.s.1.2 5 1.1 even 1 trivial
1150.4.a.t.1.4 yes 5 5.4 even 2
1150.4.b.p.599.4 10 5.2 odd 4
1150.4.b.p.599.7 10 5.3 odd 4