Properties

Label 1150.4.a.s.1.1
Level $1150$
Weight $4$
Character 1150.1
Self dual yes
Analytic conductor $67.852$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(1,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 38x^{3} + 38x^{2} + 202x + 101 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.612813\) of defining polynomial
Character \(\chi\) \(=\) 1150.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -2.73841 q^{3} +4.00000 q^{4} +5.47681 q^{6} -3.11829 q^{7} -8.00000 q^{8} -19.5011 q^{9} +30.7965 q^{11} -10.9536 q^{12} +46.0234 q^{13} +6.23659 q^{14} +16.0000 q^{16} +65.4212 q^{17} +39.0022 q^{18} -145.754 q^{19} +8.53916 q^{21} -61.5931 q^{22} -23.0000 q^{23} +21.9073 q^{24} -92.0468 q^{26} +127.339 q^{27} -12.4732 q^{28} +121.515 q^{29} -112.620 q^{31} -32.0000 q^{32} -84.3335 q^{33} -130.842 q^{34} -78.0045 q^{36} +143.450 q^{37} +291.508 q^{38} -126.031 q^{39} -346.345 q^{41} -17.0783 q^{42} +395.672 q^{43} +123.186 q^{44} +46.0000 q^{46} -373.653 q^{47} -43.8145 q^{48} -333.276 q^{49} -179.150 q^{51} +184.094 q^{52} -573.622 q^{53} -254.678 q^{54} +24.9463 q^{56} +399.133 q^{57} -243.029 q^{58} +241.063 q^{59} +846.540 q^{61} +225.240 q^{62} +60.8102 q^{63} +64.0000 q^{64} +168.667 q^{66} +82.8746 q^{67} +261.685 q^{68} +62.9834 q^{69} -178.779 q^{71} +156.009 q^{72} +1114.99 q^{73} -286.900 q^{74} -583.015 q^{76} -96.0327 q^{77} +252.062 q^{78} -238.255 q^{79} +177.824 q^{81} +692.689 q^{82} -450.052 q^{83} +34.1566 q^{84} -791.344 q^{86} -332.757 q^{87} -246.372 q^{88} -1497.22 q^{89} -143.515 q^{91} -92.0000 q^{92} +308.399 q^{93} +747.306 q^{94} +87.6290 q^{96} +1381.69 q^{97} +666.552 q^{98} -600.567 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 10 q^{2} + 12 q^{3} + 20 q^{4} - 24 q^{6} - 24 q^{7} - 40 q^{8} + 11 q^{9} - 54 q^{11} + 48 q^{12} + 36 q^{13} + 48 q^{14} + 80 q^{16} + 132 q^{17} - 22 q^{18} - 50 q^{19} - 158 q^{21} + 108 q^{22}+ \cdots - 1740 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −2.73841 −0.527007 −0.263503 0.964658i \(-0.584878\pi\)
−0.263503 + 0.964658i \(0.584878\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 5.47681 0.372650
\(7\) −3.11829 −0.168372 −0.0841860 0.996450i \(-0.526829\pi\)
−0.0841860 + 0.996450i \(0.526829\pi\)
\(8\) −8.00000 −0.353553
\(9\) −19.5011 −0.722264
\(10\) 0 0
\(11\) 30.7965 0.844137 0.422069 0.906564i \(-0.361304\pi\)
0.422069 + 0.906564i \(0.361304\pi\)
\(12\) −10.9536 −0.263503
\(13\) 46.0234 0.981892 0.490946 0.871190i \(-0.336651\pi\)
0.490946 + 0.871190i \(0.336651\pi\)
\(14\) 6.23659 0.119057
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 65.4212 0.933351 0.466675 0.884429i \(-0.345452\pi\)
0.466675 + 0.884429i \(0.345452\pi\)
\(18\) 39.0022 0.510718
\(19\) −145.754 −1.75991 −0.879953 0.475061i \(-0.842426\pi\)
−0.879953 + 0.475061i \(0.842426\pi\)
\(20\) 0 0
\(21\) 8.53916 0.0887332
\(22\) −61.5931 −0.596895
\(23\) −23.0000 −0.208514
\(24\) 21.9073 0.186325
\(25\) 0 0
\(26\) −92.0468 −0.694303
\(27\) 127.339 0.907645
\(28\) −12.4732 −0.0841860
\(29\) 121.515 0.778094 0.389047 0.921218i \(-0.372804\pi\)
0.389047 + 0.921218i \(0.372804\pi\)
\(30\) 0 0
\(31\) −112.620 −0.652488 −0.326244 0.945286i \(-0.605783\pi\)
−0.326244 + 0.945286i \(0.605783\pi\)
\(32\) −32.0000 −0.176777
\(33\) −84.3335 −0.444866
\(34\) −130.842 −0.659979
\(35\) 0 0
\(36\) −78.0045 −0.361132
\(37\) 143.450 0.637380 0.318690 0.947859i \(-0.396757\pi\)
0.318690 + 0.947859i \(0.396757\pi\)
\(38\) 291.508 1.24444
\(39\) −126.031 −0.517464
\(40\) 0 0
\(41\) −346.345 −1.31927 −0.659633 0.751588i \(-0.729288\pi\)
−0.659633 + 0.751588i \(0.729288\pi\)
\(42\) −17.0783 −0.0627438
\(43\) 395.672 1.40324 0.701621 0.712550i \(-0.252460\pi\)
0.701621 + 0.712550i \(0.252460\pi\)
\(44\) 123.186 0.422069
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) −373.653 −1.15964 −0.579818 0.814746i \(-0.696876\pi\)
−0.579818 + 0.814746i \(0.696876\pi\)
\(48\) −43.8145 −0.131752
\(49\) −333.276 −0.971651
\(50\) 0 0
\(51\) −179.150 −0.491882
\(52\) 184.094 0.490946
\(53\) −573.622 −1.48666 −0.743330 0.668924i \(-0.766755\pi\)
−0.743330 + 0.668924i \(0.766755\pi\)
\(54\) −254.678 −0.641802
\(55\) 0 0
\(56\) 24.9463 0.0595285
\(57\) 399.133 0.927482
\(58\) −243.029 −0.550195
\(59\) 241.063 0.531927 0.265963 0.963983i \(-0.414310\pi\)
0.265963 + 0.963983i \(0.414310\pi\)
\(60\) 0 0
\(61\) 846.540 1.77686 0.888429 0.459014i \(-0.151797\pi\)
0.888429 + 0.459014i \(0.151797\pi\)
\(62\) 225.240 0.461379
\(63\) 60.8102 0.121609
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 168.667 0.314568
\(67\) 82.8746 0.151116 0.0755578 0.997141i \(-0.475926\pi\)
0.0755578 + 0.997141i \(0.475926\pi\)
\(68\) 261.685 0.466675
\(69\) 62.9834 0.109889
\(70\) 0 0
\(71\) −178.779 −0.298833 −0.149417 0.988774i \(-0.547740\pi\)
−0.149417 + 0.988774i \(0.547740\pi\)
\(72\) 156.009 0.255359
\(73\) 1114.99 1.78767 0.893835 0.448396i \(-0.148005\pi\)
0.893835 + 0.448396i \(0.148005\pi\)
\(74\) −286.900 −0.450696
\(75\) 0 0
\(76\) −583.015 −0.879953
\(77\) −96.0327 −0.142129
\(78\) 252.062 0.365902
\(79\) −238.255 −0.339314 −0.169657 0.985503i \(-0.554266\pi\)
−0.169657 + 0.985503i \(0.554266\pi\)
\(80\) 0 0
\(81\) 177.824 0.243929
\(82\) 692.689 0.932862
\(83\) −450.052 −0.595177 −0.297588 0.954694i \(-0.596182\pi\)
−0.297588 + 0.954694i \(0.596182\pi\)
\(84\) 34.1566 0.0443666
\(85\) 0 0
\(86\) −791.344 −0.992242
\(87\) −332.757 −0.410061
\(88\) −246.372 −0.298447
\(89\) −1497.22 −1.78320 −0.891602 0.452820i \(-0.850418\pi\)
−0.891602 + 0.452820i \(0.850418\pi\)
\(90\) 0 0
\(91\) −143.515 −0.165323
\(92\) −92.0000 −0.104257
\(93\) 308.399 0.343866
\(94\) 747.306 0.819986
\(95\) 0 0
\(96\) 87.6290 0.0931625
\(97\) 1381.69 1.44629 0.723143 0.690699i \(-0.242697\pi\)
0.723143 + 0.690699i \(0.242697\pi\)
\(98\) 666.552 0.687061
\(99\) −600.567 −0.609690
\(100\) 0 0
\(101\) 972.455 0.958048 0.479024 0.877802i \(-0.340991\pi\)
0.479024 + 0.877802i \(0.340991\pi\)
\(102\) 358.300 0.347813
\(103\) −1653.81 −1.58209 −0.791044 0.611760i \(-0.790462\pi\)
−0.791044 + 0.611760i \(0.790462\pi\)
\(104\) −368.187 −0.347151
\(105\) 0 0
\(106\) 1147.24 1.05123
\(107\) 174.048 0.157251 0.0786254 0.996904i \(-0.474947\pi\)
0.0786254 + 0.996904i \(0.474947\pi\)
\(108\) 509.356 0.453822
\(109\) −1616.11 −1.42014 −0.710070 0.704131i \(-0.751337\pi\)
−0.710070 + 0.704131i \(0.751337\pi\)
\(110\) 0 0
\(111\) −392.825 −0.335904
\(112\) −49.8927 −0.0420930
\(113\) 1266.16 1.05408 0.527038 0.849841i \(-0.323302\pi\)
0.527038 + 0.849841i \(0.323302\pi\)
\(114\) −798.266 −0.655829
\(115\) 0 0
\(116\) 486.059 0.389047
\(117\) −897.508 −0.709185
\(118\) −482.125 −0.376129
\(119\) −204.002 −0.157150
\(120\) 0 0
\(121\) −382.573 −0.287433
\(122\) −1693.08 −1.25643
\(123\) 948.433 0.695262
\(124\) −450.480 −0.326244
\(125\) 0 0
\(126\) −121.620 −0.0859906
\(127\) −1077.49 −0.752849 −0.376424 0.926447i \(-0.622847\pi\)
−0.376424 + 0.926447i \(0.622847\pi\)
\(128\) −128.000 −0.0883883
\(129\) −1083.51 −0.739518
\(130\) 0 0
\(131\) 2734.80 1.82398 0.911988 0.410216i \(-0.134547\pi\)
0.911988 + 0.410216i \(0.134547\pi\)
\(132\) −337.334 −0.222433
\(133\) 454.503 0.296319
\(134\) −165.749 −0.106855
\(135\) 0 0
\(136\) −523.369 −0.329989
\(137\) −657.070 −0.409761 −0.204880 0.978787i \(-0.565681\pi\)
−0.204880 + 0.978787i \(0.565681\pi\)
\(138\) −125.967 −0.0777029
\(139\) −1923.60 −1.17380 −0.586899 0.809660i \(-0.699651\pi\)
−0.586899 + 0.809660i \(0.699651\pi\)
\(140\) 0 0
\(141\) 1023.21 0.611136
\(142\) 357.558 0.211307
\(143\) 1417.36 0.828852
\(144\) −312.018 −0.180566
\(145\) 0 0
\(146\) −2229.98 −1.26407
\(147\) 912.646 0.512067
\(148\) 573.801 0.318690
\(149\) 2242.83 1.23315 0.616577 0.787295i \(-0.288519\pi\)
0.616577 + 0.787295i \(0.288519\pi\)
\(150\) 0 0
\(151\) 2592.34 1.39710 0.698548 0.715563i \(-0.253830\pi\)
0.698548 + 0.715563i \(0.253830\pi\)
\(152\) 1166.03 0.622221
\(153\) −1275.79 −0.674125
\(154\) 192.065 0.100500
\(155\) 0 0
\(156\) −504.124 −0.258732
\(157\) 2755.08 1.40050 0.700252 0.713896i \(-0.253071\pi\)
0.700252 + 0.713896i \(0.253071\pi\)
\(158\) 476.510 0.239931
\(159\) 1570.81 0.783480
\(160\) 0 0
\(161\) 71.7208 0.0351080
\(162\) −355.648 −0.172484
\(163\) 659.189 0.316758 0.158379 0.987378i \(-0.449373\pi\)
0.158379 + 0.987378i \(0.449373\pi\)
\(164\) −1385.38 −0.659633
\(165\) 0 0
\(166\) 900.105 0.420854
\(167\) 1573.24 0.728987 0.364494 0.931206i \(-0.381242\pi\)
0.364494 + 0.931206i \(0.381242\pi\)
\(168\) −68.3133 −0.0313719
\(169\) −78.8446 −0.0358874
\(170\) 0 0
\(171\) 2842.36 1.27112
\(172\) 1582.69 0.701621
\(173\) 4377.36 1.92373 0.961863 0.273532i \(-0.0881920\pi\)
0.961863 + 0.273532i \(0.0881920\pi\)
\(174\) 665.514 0.289957
\(175\) 0 0
\(176\) 492.745 0.211034
\(177\) −660.127 −0.280329
\(178\) 2994.44 1.26092
\(179\) 3378.61 1.41078 0.705389 0.708821i \(-0.250773\pi\)
0.705389 + 0.708821i \(0.250773\pi\)
\(180\) 0 0
\(181\) −1898.03 −0.779444 −0.389722 0.920933i \(-0.627429\pi\)
−0.389722 + 0.920933i \(0.627429\pi\)
\(182\) 287.029 0.116901
\(183\) −2318.17 −0.936416
\(184\) 184.000 0.0737210
\(185\) 0 0
\(186\) −616.799 −0.243150
\(187\) 2014.75 0.787876
\(188\) −1494.61 −0.579818
\(189\) −397.080 −0.152822
\(190\) 0 0
\(191\) 4638.05 1.75705 0.878527 0.477692i \(-0.158526\pi\)
0.878527 + 0.477692i \(0.158526\pi\)
\(192\) −175.258 −0.0658758
\(193\) −680.705 −0.253877 −0.126938 0.991911i \(-0.540515\pi\)
−0.126938 + 0.991911i \(0.540515\pi\)
\(194\) −2763.39 −1.02268
\(195\) 0 0
\(196\) −1333.10 −0.485825
\(197\) 3629.78 1.31275 0.656373 0.754437i \(-0.272090\pi\)
0.656373 + 0.754437i \(0.272090\pi\)
\(198\) 1201.13 0.431116
\(199\) −500.413 −0.178258 −0.0891290 0.996020i \(-0.528408\pi\)
−0.0891290 + 0.996020i \(0.528408\pi\)
\(200\) 0 0
\(201\) −226.944 −0.0796389
\(202\) −1944.91 −0.677442
\(203\) −378.919 −0.131009
\(204\) −716.599 −0.245941
\(205\) 0 0
\(206\) 3307.62 1.11870
\(207\) 448.526 0.150602
\(208\) 736.375 0.245473
\(209\) −4488.71 −1.48560
\(210\) 0 0
\(211\) 558.594 0.182252 0.0911261 0.995839i \(-0.470953\pi\)
0.0911261 + 0.995839i \(0.470953\pi\)
\(212\) −2294.49 −0.743330
\(213\) 489.570 0.157487
\(214\) −348.095 −0.111193
\(215\) 0 0
\(216\) −1018.71 −0.320901
\(217\) 351.182 0.109861
\(218\) 3232.22 1.00419
\(219\) −3053.30 −0.942114
\(220\) 0 0
\(221\) 3010.91 0.916450
\(222\) 785.650 0.237520
\(223\) 4533.20 1.36128 0.680641 0.732617i \(-0.261701\pi\)
0.680641 + 0.732617i \(0.261701\pi\)
\(224\) 99.7854 0.0297643
\(225\) 0 0
\(226\) −2532.33 −0.745345
\(227\) 4733.75 1.38410 0.692049 0.721851i \(-0.256708\pi\)
0.692049 + 0.721851i \(0.256708\pi\)
\(228\) 1596.53 0.463741
\(229\) 1812.74 0.523096 0.261548 0.965190i \(-0.415767\pi\)
0.261548 + 0.965190i \(0.415767\pi\)
\(230\) 0 0
\(231\) 262.977 0.0749030
\(232\) −972.118 −0.275098
\(233\) 579.945 0.163062 0.0815310 0.996671i \(-0.474019\pi\)
0.0815310 + 0.996671i \(0.474019\pi\)
\(234\) 1795.02 0.501470
\(235\) 0 0
\(236\) 964.250 0.265963
\(237\) 652.439 0.178821
\(238\) 408.005 0.111122
\(239\) 3777.51 1.02237 0.511186 0.859470i \(-0.329206\pi\)
0.511186 + 0.859470i \(0.329206\pi\)
\(240\) 0 0
\(241\) 6426.57 1.71773 0.858863 0.512205i \(-0.171171\pi\)
0.858863 + 0.512205i \(0.171171\pi\)
\(242\) 765.146 0.203246
\(243\) −3925.11 −1.03620
\(244\) 3386.16 0.888429
\(245\) 0 0
\(246\) −1896.87 −0.491625
\(247\) −6708.09 −1.72804
\(248\) 900.959 0.230689
\(249\) 1232.43 0.313662
\(250\) 0 0
\(251\) 3038.94 0.764209 0.382104 0.924119i \(-0.375199\pi\)
0.382104 + 0.924119i \(0.375199\pi\)
\(252\) 243.241 0.0608045
\(253\) −708.320 −0.176015
\(254\) 2154.98 0.532345
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −5545.87 −1.34608 −0.673038 0.739608i \(-0.735011\pi\)
−0.673038 + 0.739608i \(0.735011\pi\)
\(258\) 2167.02 0.522918
\(259\) −447.320 −0.107317
\(260\) 0 0
\(261\) −2369.67 −0.561989
\(262\) −5469.61 −1.28975
\(263\) 3637.09 0.852746 0.426373 0.904547i \(-0.359791\pi\)
0.426373 + 0.904547i \(0.359791\pi\)
\(264\) 674.668 0.157284
\(265\) 0 0
\(266\) −909.006 −0.209529
\(267\) 4100.00 0.939760
\(268\) 331.498 0.0755578
\(269\) 541.024 0.122628 0.0613138 0.998119i \(-0.480471\pi\)
0.0613138 + 0.998119i \(0.480471\pi\)
\(270\) 0 0
\(271\) −5831.04 −1.30705 −0.653525 0.756905i \(-0.726710\pi\)
−0.653525 + 0.756905i \(0.726710\pi\)
\(272\) 1046.74 0.233338
\(273\) 393.001 0.0871265
\(274\) 1314.14 0.289745
\(275\) 0 0
\(276\) 251.933 0.0549443
\(277\) −6150.80 −1.33417 −0.667086 0.744981i \(-0.732459\pi\)
−0.667086 + 0.744981i \(0.732459\pi\)
\(278\) 3847.20 0.830000
\(279\) 2196.22 0.471269
\(280\) 0 0
\(281\) 5792.07 1.22963 0.614814 0.788672i \(-0.289231\pi\)
0.614814 + 0.788672i \(0.289231\pi\)
\(282\) −2046.43 −0.432138
\(283\) 2060.79 0.432867 0.216434 0.976297i \(-0.430558\pi\)
0.216434 + 0.976297i \(0.430558\pi\)
\(284\) −715.116 −0.149417
\(285\) 0 0
\(286\) −2834.72 −0.586087
\(287\) 1080.00 0.222128
\(288\) 624.036 0.127679
\(289\) −633.073 −0.128857
\(290\) 0 0
\(291\) −3783.64 −0.762202
\(292\) 4459.97 0.893835
\(293\) 4064.48 0.810408 0.405204 0.914226i \(-0.367201\pi\)
0.405204 + 0.914226i \(0.367201\pi\)
\(294\) −1825.29 −0.362086
\(295\) 0 0
\(296\) −1147.60 −0.225348
\(297\) 3921.60 0.766176
\(298\) −4485.66 −0.871971
\(299\) −1058.54 −0.204739
\(300\) 0 0
\(301\) −1233.82 −0.236267
\(302\) −5184.68 −0.987897
\(303\) −2662.98 −0.504898
\(304\) −2332.06 −0.439976
\(305\) 0 0
\(306\) 2551.57 0.476679
\(307\) 5482.89 1.01930 0.509650 0.860382i \(-0.329775\pi\)
0.509650 + 0.860382i \(0.329775\pi\)
\(308\) −384.131 −0.0710645
\(309\) 4528.81 0.833771
\(310\) 0 0
\(311\) −6876.16 −1.25373 −0.626867 0.779126i \(-0.715663\pi\)
−0.626867 + 0.779126i \(0.715663\pi\)
\(312\) 1008.25 0.182951
\(313\) 4839.09 0.873871 0.436936 0.899493i \(-0.356064\pi\)
0.436936 + 0.899493i \(0.356064\pi\)
\(314\) −5510.16 −0.990306
\(315\) 0 0
\(316\) −953.020 −0.169657
\(317\) 820.177 0.145318 0.0726589 0.997357i \(-0.476852\pi\)
0.0726589 + 0.997357i \(0.476852\pi\)
\(318\) −3141.62 −0.554004
\(319\) 3742.23 0.656818
\(320\) 0 0
\(321\) −476.614 −0.0828722
\(322\) −143.442 −0.0248251
\(323\) −9535.38 −1.64261
\(324\) 711.297 0.121964
\(325\) 0 0
\(326\) −1318.38 −0.223982
\(327\) 4425.57 0.748423
\(328\) 2770.76 0.466431
\(329\) 1165.16 0.195250
\(330\) 0 0
\(331\) −175.385 −0.0291239 −0.0145620 0.999894i \(-0.504635\pi\)
−0.0145620 + 0.999894i \(0.504635\pi\)
\(332\) −1800.21 −0.297588
\(333\) −2797.44 −0.460357
\(334\) −3146.48 −0.515472
\(335\) 0 0
\(336\) 136.627 0.0221833
\(337\) −5814.29 −0.939836 −0.469918 0.882710i \(-0.655717\pi\)
−0.469918 + 0.882710i \(0.655717\pi\)
\(338\) 157.689 0.0253762
\(339\) −3467.27 −0.555506
\(340\) 0 0
\(341\) −3468.30 −0.550789
\(342\) −5684.73 −0.898815
\(343\) 2108.83 0.331971
\(344\) −3165.38 −0.496121
\(345\) 0 0
\(346\) −8754.72 −1.36028
\(347\) 981.915 0.151908 0.0759538 0.997111i \(-0.475800\pi\)
0.0759538 + 0.997111i \(0.475800\pi\)
\(348\) −1331.03 −0.205030
\(349\) 11132.7 1.70750 0.853752 0.520680i \(-0.174321\pi\)
0.853752 + 0.520680i \(0.174321\pi\)
\(350\) 0 0
\(351\) 5860.58 0.891209
\(352\) −985.489 −0.149224
\(353\) 3475.84 0.524081 0.262040 0.965057i \(-0.415605\pi\)
0.262040 + 0.965057i \(0.415605\pi\)
\(354\) 1320.25 0.198222
\(355\) 0 0
\(356\) −5988.88 −0.891602
\(357\) 558.642 0.0828192
\(358\) −6757.22 −0.997570
\(359\) −1627.67 −0.239290 −0.119645 0.992817i \(-0.538176\pi\)
−0.119645 + 0.992817i \(0.538176\pi\)
\(360\) 0 0
\(361\) 14385.2 2.09727
\(362\) 3796.06 0.551150
\(363\) 1047.64 0.151479
\(364\) −574.058 −0.0826616
\(365\) 0 0
\(366\) 4636.34 0.662146
\(367\) −2081.53 −0.296063 −0.148031 0.988983i \(-0.547294\pi\)
−0.148031 + 0.988983i \(0.547294\pi\)
\(368\) −368.000 −0.0521286
\(369\) 6754.11 0.952859
\(370\) 0 0
\(371\) 1788.72 0.250312
\(372\) 1233.60 0.171933
\(373\) −1729.99 −0.240149 −0.120074 0.992765i \(-0.538313\pi\)
−0.120074 + 0.992765i \(0.538313\pi\)
\(374\) −4029.49 −0.557112
\(375\) 0 0
\(376\) 2989.22 0.409993
\(377\) 5592.52 0.764004
\(378\) 794.161 0.108061
\(379\) −10704.8 −1.45083 −0.725417 0.688309i \(-0.758353\pi\)
−0.725417 + 0.688309i \(0.758353\pi\)
\(380\) 0 0
\(381\) 2950.61 0.396756
\(382\) −9276.10 −1.24243
\(383\) 4.17758 0.000557349 0 0.000278674 1.00000i \(-0.499911\pi\)
0.000278674 1.00000i \(0.499911\pi\)
\(384\) 350.516 0.0465813
\(385\) 0 0
\(386\) 1361.41 0.179518
\(387\) −7716.05 −1.01351
\(388\) 5526.77 0.723143
\(389\) 6012.53 0.783669 0.391835 0.920036i \(-0.371841\pi\)
0.391835 + 0.920036i \(0.371841\pi\)
\(390\) 0 0
\(391\) −1504.69 −0.194617
\(392\) 2666.21 0.343530
\(393\) −7489.01 −0.961248
\(394\) −7259.55 −0.928251
\(395\) 0 0
\(396\) −2402.27 −0.304845
\(397\) −1246.96 −0.157640 −0.0788200 0.996889i \(-0.525115\pi\)
−0.0788200 + 0.996889i \(0.525115\pi\)
\(398\) 1000.83 0.126047
\(399\) −1244.61 −0.156162
\(400\) 0 0
\(401\) −10179.5 −1.26768 −0.633839 0.773465i \(-0.718522\pi\)
−0.633839 + 0.773465i \(0.718522\pi\)
\(402\) 453.889 0.0563132
\(403\) −5183.15 −0.640673
\(404\) 3889.82 0.479024
\(405\) 0 0
\(406\) 757.837 0.0926375
\(407\) 4417.77 0.538036
\(408\) 1433.20 0.173907
\(409\) 640.201 0.0773983 0.0386992 0.999251i \(-0.487679\pi\)
0.0386992 + 0.999251i \(0.487679\pi\)
\(410\) 0 0
\(411\) 1799.32 0.215947
\(412\) −6615.25 −0.791044
\(413\) −751.704 −0.0895615
\(414\) −897.052 −0.106492
\(415\) 0 0
\(416\) −1472.75 −0.173576
\(417\) 5267.61 0.618599
\(418\) 8977.42 1.05048
\(419\) 6850.34 0.798714 0.399357 0.916795i \(-0.369233\pi\)
0.399357 + 0.916795i \(0.369233\pi\)
\(420\) 0 0
\(421\) −5478.84 −0.634257 −0.317129 0.948383i \(-0.602719\pi\)
−0.317129 + 0.948383i \(0.602719\pi\)
\(422\) −1117.19 −0.128872
\(423\) 7286.65 0.837563
\(424\) 4588.97 0.525614
\(425\) 0 0
\(426\) −979.140 −0.111360
\(427\) −2639.76 −0.299173
\(428\) 696.191 0.0786254
\(429\) −3881.32 −0.436810
\(430\) 0 0
\(431\) 1975.76 0.220810 0.110405 0.993887i \(-0.464785\pi\)
0.110405 + 0.993887i \(0.464785\pi\)
\(432\) 2037.42 0.226911
\(433\) −15769.8 −1.75022 −0.875111 0.483923i \(-0.839212\pi\)
−0.875111 + 0.483923i \(0.839212\pi\)
\(434\) −702.364 −0.0776833
\(435\) 0 0
\(436\) −6464.44 −0.710070
\(437\) 3352.34 0.366966
\(438\) 6106.60 0.666175
\(439\) 2307.58 0.250877 0.125438 0.992101i \(-0.459966\pi\)
0.125438 + 0.992101i \(0.459966\pi\)
\(440\) 0 0
\(441\) 6499.26 0.701788
\(442\) −6021.81 −0.648028
\(443\) −13876.1 −1.48820 −0.744101 0.668068i \(-0.767122\pi\)
−0.744101 + 0.668068i \(0.767122\pi\)
\(444\) −1571.30 −0.167952
\(445\) 0 0
\(446\) −9066.41 −0.962572
\(447\) −6141.79 −0.649880
\(448\) −199.571 −0.0210465
\(449\) −9252.47 −0.972497 −0.486249 0.873821i \(-0.661635\pi\)
−0.486249 + 0.873821i \(0.661635\pi\)
\(450\) 0 0
\(451\) −10666.2 −1.11364
\(452\) 5064.66 0.527038
\(453\) −7098.88 −0.736279
\(454\) −9467.50 −0.978705
\(455\) 0 0
\(456\) −3193.07 −0.327914
\(457\) 8941.99 0.915293 0.457646 0.889134i \(-0.348693\pi\)
0.457646 + 0.889134i \(0.348693\pi\)
\(458\) −3625.47 −0.369885
\(459\) 8330.67 0.847151
\(460\) 0 0
\(461\) 5684.17 0.574269 0.287134 0.957890i \(-0.407297\pi\)
0.287134 + 0.957890i \(0.407297\pi\)
\(462\) −525.953 −0.0529644
\(463\) −12185.0 −1.22308 −0.611538 0.791215i \(-0.709449\pi\)
−0.611538 + 0.791215i \(0.709449\pi\)
\(464\) 1944.24 0.194523
\(465\) 0 0
\(466\) −1159.89 −0.115302
\(467\) −5783.34 −0.573064 −0.286532 0.958071i \(-0.592503\pi\)
−0.286532 + 0.958071i \(0.592503\pi\)
\(468\) −3590.03 −0.354593
\(469\) −258.427 −0.0254436
\(470\) 0 0
\(471\) −7544.53 −0.738075
\(472\) −1928.50 −0.188064
\(473\) 12185.3 1.18453
\(474\) −1304.88 −0.126445
\(475\) 0 0
\(476\) −816.009 −0.0785751
\(477\) 11186.3 1.07376
\(478\) −7555.03 −0.722927
\(479\) −862.300 −0.0822536 −0.0411268 0.999154i \(-0.513095\pi\)
−0.0411268 + 0.999154i \(0.513095\pi\)
\(480\) 0 0
\(481\) 6602.07 0.625839
\(482\) −12853.1 −1.21462
\(483\) −196.401 −0.0185022
\(484\) −1530.29 −0.143716
\(485\) 0 0
\(486\) 7850.22 0.732702
\(487\) 9245.42 0.860267 0.430134 0.902765i \(-0.358466\pi\)
0.430134 + 0.902765i \(0.358466\pi\)
\(488\) −6772.32 −0.628214
\(489\) −1805.13 −0.166934
\(490\) 0 0
\(491\) −143.399 −0.0131802 −0.00659011 0.999978i \(-0.502098\pi\)
−0.00659011 + 0.999978i \(0.502098\pi\)
\(492\) 3793.73 0.347631
\(493\) 7949.63 0.726234
\(494\) 13416.2 1.22191
\(495\) 0 0
\(496\) −1801.92 −0.163122
\(497\) 557.486 0.0503152
\(498\) −2464.85 −0.221793
\(499\) −10448.8 −0.937378 −0.468689 0.883363i \(-0.655273\pi\)
−0.468689 + 0.883363i \(0.655273\pi\)
\(500\) 0 0
\(501\) −4308.17 −0.384181
\(502\) −6077.89 −0.540377
\(503\) −13208.2 −1.17082 −0.585412 0.810736i \(-0.699067\pi\)
−0.585412 + 0.810736i \(0.699067\pi\)
\(504\) −486.482 −0.0429953
\(505\) 0 0
\(506\) 1416.64 0.124461
\(507\) 215.909 0.0189129
\(508\) −4309.96 −0.376424
\(509\) 18167.0 1.58200 0.791002 0.611813i \(-0.209560\pi\)
0.791002 + 0.611813i \(0.209560\pi\)
\(510\) 0 0
\(511\) −3476.87 −0.300994
\(512\) −512.000 −0.0441942
\(513\) −18560.1 −1.59737
\(514\) 11091.7 0.951820
\(515\) 0 0
\(516\) −4334.05 −0.369759
\(517\) −11507.2 −0.978891
\(518\) 894.639 0.0758846
\(519\) −11987.0 −1.01382
\(520\) 0 0
\(521\) 10365.5 0.871631 0.435815 0.900036i \(-0.356460\pi\)
0.435815 + 0.900036i \(0.356460\pi\)
\(522\) 4739.35 0.397386
\(523\) −15496.3 −1.29562 −0.647809 0.761803i \(-0.724314\pi\)
−0.647809 + 0.761803i \(0.724314\pi\)
\(524\) 10939.2 0.911988
\(525\) 0 0
\(526\) −7274.17 −0.602983
\(527\) −7367.73 −0.609000
\(528\) −1349.34 −0.111216
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −4700.99 −0.384191
\(532\) 1818.01 0.148159
\(533\) −15940.0 −1.29538
\(534\) −8200.00 −0.664511
\(535\) 0 0
\(536\) −662.997 −0.0534274
\(537\) −9252.01 −0.743489
\(538\) −1082.05 −0.0867108
\(539\) −10263.8 −0.820206
\(540\) 0 0
\(541\) 17055.2 1.35538 0.677689 0.735349i \(-0.262982\pi\)
0.677689 + 0.735349i \(0.262982\pi\)
\(542\) 11662.1 0.924223
\(543\) 5197.58 0.410772
\(544\) −2093.48 −0.164995
\(545\) 0 0
\(546\) −786.003 −0.0616077
\(547\) −16809.6 −1.31394 −0.656971 0.753916i \(-0.728163\pi\)
−0.656971 + 0.753916i \(0.728163\pi\)
\(548\) −2628.28 −0.204880
\(549\) −16508.5 −1.28336
\(550\) 0 0
\(551\) −17711.2 −1.36937
\(552\) −503.867 −0.0388515
\(553\) 742.949 0.0571309
\(554\) 12301.6 0.943402
\(555\) 0 0
\(556\) −7694.41 −0.586899
\(557\) 5297.34 0.402972 0.201486 0.979491i \(-0.435423\pi\)
0.201486 + 0.979491i \(0.435423\pi\)
\(558\) −4392.43 −0.333237
\(559\) 18210.2 1.37783
\(560\) 0 0
\(561\) −5517.19 −0.415216
\(562\) −11584.1 −0.869479
\(563\) −21852.9 −1.63586 −0.817932 0.575314i \(-0.804880\pi\)
−0.817932 + 0.575314i \(0.804880\pi\)
\(564\) 4092.86 0.305568
\(565\) 0 0
\(566\) −4121.58 −0.306083
\(567\) −554.508 −0.0410708
\(568\) 1430.23 0.105654
\(569\) 15184.9 1.11877 0.559387 0.828906i \(-0.311036\pi\)
0.559387 + 0.828906i \(0.311036\pi\)
\(570\) 0 0
\(571\) 25838.9 1.89374 0.946868 0.321622i \(-0.104228\pi\)
0.946868 + 0.321622i \(0.104228\pi\)
\(572\) 5669.45 0.414426
\(573\) −12700.9 −0.925980
\(574\) −2160.01 −0.157068
\(575\) 0 0
\(576\) −1248.07 −0.0902830
\(577\) 11113.7 0.801854 0.400927 0.916110i \(-0.368688\pi\)
0.400927 + 0.916110i \(0.368688\pi\)
\(578\) 1266.15 0.0911155
\(579\) 1864.05 0.133795
\(580\) 0 0
\(581\) 1403.40 0.100211
\(582\) 7567.28 0.538958
\(583\) −17665.6 −1.25495
\(584\) −8919.93 −0.632037
\(585\) 0 0
\(586\) −8128.96 −0.573045
\(587\) 20629.9 1.45057 0.725287 0.688447i \(-0.241707\pi\)
0.725287 + 0.688447i \(0.241707\pi\)
\(588\) 3650.58 0.256033
\(589\) 16414.8 1.14832
\(590\) 0 0
\(591\) −9939.80 −0.691826
\(592\) 2295.20 0.159345
\(593\) 22070.7 1.52839 0.764194 0.644986i \(-0.223137\pi\)
0.764194 + 0.644986i \(0.223137\pi\)
\(594\) −7843.20 −0.541769
\(595\) 0 0
\(596\) 8971.32 0.616577
\(597\) 1370.34 0.0939432
\(598\) 2117.08 0.144772
\(599\) −3299.87 −0.225090 −0.112545 0.993647i \(-0.535900\pi\)
−0.112545 + 0.993647i \(0.535900\pi\)
\(600\) 0 0
\(601\) −17617.1 −1.19570 −0.597849 0.801608i \(-0.703978\pi\)
−0.597849 + 0.801608i \(0.703978\pi\)
\(602\) 2467.64 0.167066
\(603\) −1616.15 −0.109145
\(604\) 10369.4 0.698548
\(605\) 0 0
\(606\) 5325.96 0.357017
\(607\) 74.0280 0.00495009 0.00247504 0.999997i \(-0.499212\pi\)
0.00247504 + 0.999997i \(0.499212\pi\)
\(608\) 4664.12 0.311110
\(609\) 1037.63 0.0690428
\(610\) 0 0
\(611\) −17196.8 −1.13864
\(612\) −5103.14 −0.337063
\(613\) 21583.6 1.42211 0.711054 0.703138i \(-0.248218\pi\)
0.711054 + 0.703138i \(0.248218\pi\)
\(614\) −10965.8 −0.720754
\(615\) 0 0
\(616\) 768.261 0.0502502
\(617\) 10922.4 0.712673 0.356337 0.934358i \(-0.384026\pi\)
0.356337 + 0.934358i \(0.384026\pi\)
\(618\) −9057.62 −0.589565
\(619\) −5974.14 −0.387918 −0.193959 0.981010i \(-0.562133\pi\)
−0.193959 + 0.981010i \(0.562133\pi\)
\(620\) 0 0
\(621\) −2928.80 −0.189257
\(622\) 13752.3 0.886524
\(623\) 4668.77 0.300242
\(624\) −2016.49 −0.129366
\(625\) 0 0
\(626\) −9678.19 −0.617920
\(627\) 12291.9 0.782922
\(628\) 11020.3 0.700252
\(629\) 9384.67 0.594899
\(630\) 0 0
\(631\) −11707.3 −0.738603 −0.369301 0.929310i \(-0.620403\pi\)
−0.369301 + 0.929310i \(0.620403\pi\)
\(632\) 1906.04 0.119965
\(633\) −1529.66 −0.0960481
\(634\) −1640.35 −0.102755
\(635\) 0 0
\(636\) 6283.24 0.391740
\(637\) −15338.5 −0.954057
\(638\) −7484.47 −0.464440
\(639\) 3486.39 0.215837
\(640\) 0 0
\(641\) −7900.35 −0.486810 −0.243405 0.969925i \(-0.578264\pi\)
−0.243405 + 0.969925i \(0.578264\pi\)
\(642\) 953.227 0.0585995
\(643\) 7156.10 0.438894 0.219447 0.975624i \(-0.429575\pi\)
0.219447 + 0.975624i \(0.429575\pi\)
\(644\) 286.883 0.0175540
\(645\) 0 0
\(646\) 19070.8 1.16150
\(647\) 22643.9 1.37592 0.687962 0.725747i \(-0.258506\pi\)
0.687962 + 0.725747i \(0.258506\pi\)
\(648\) −1422.59 −0.0862419
\(649\) 7423.89 0.449019
\(650\) 0 0
\(651\) −961.679 −0.0578974
\(652\) 2636.75 0.158379
\(653\) 2633.02 0.157792 0.0788958 0.996883i \(-0.474861\pi\)
0.0788958 + 0.996883i \(0.474861\pi\)
\(654\) −8851.13 −0.529215
\(655\) 0 0
\(656\) −5541.51 −0.329817
\(657\) −21743.6 −1.29117
\(658\) −2330.32 −0.138063
\(659\) 28880.3 1.70715 0.853577 0.520966i \(-0.174428\pi\)
0.853577 + 0.520966i \(0.174428\pi\)
\(660\) 0 0
\(661\) −9424.84 −0.554590 −0.277295 0.960785i \(-0.589438\pi\)
−0.277295 + 0.960785i \(0.589438\pi\)
\(662\) 350.770 0.0205937
\(663\) −8245.09 −0.482975
\(664\) 3600.42 0.210427
\(665\) 0 0
\(666\) 5594.88 0.325521
\(667\) −2794.84 −0.162244
\(668\) 6292.96 0.364494
\(669\) −12413.8 −0.717405
\(670\) 0 0
\(671\) 26070.5 1.49991
\(672\) −273.253 −0.0156860
\(673\) 8544.52 0.489401 0.244701 0.969599i \(-0.421310\pi\)
0.244701 + 0.969599i \(0.421310\pi\)
\(674\) 11628.6 0.664564
\(675\) 0 0
\(676\) −315.378 −0.0179437
\(677\) −16025.6 −0.909767 −0.454883 0.890551i \(-0.650319\pi\)
−0.454883 + 0.890551i \(0.650319\pi\)
\(678\) 6934.55 0.392802
\(679\) −4308.53 −0.243514
\(680\) 0 0
\(681\) −12962.9 −0.729429
\(682\) 6936.61 0.389467
\(683\) 22270.1 1.24765 0.623824 0.781565i \(-0.285578\pi\)
0.623824 + 0.781565i \(0.285578\pi\)
\(684\) 11369.5 0.635558
\(685\) 0 0
\(686\) −4217.66 −0.234739
\(687\) −4964.01 −0.275675
\(688\) 6330.75 0.350811
\(689\) −26400.0 −1.45974
\(690\) 0 0
\(691\) −27377.9 −1.50724 −0.753621 0.657309i \(-0.771695\pi\)
−0.753621 + 0.657309i \(0.771695\pi\)
\(692\) 17509.4 0.961863
\(693\) 1872.74 0.102655
\(694\) −1963.83 −0.107415
\(695\) 0 0
\(696\) 2662.06 0.144978
\(697\) −22658.3 −1.23134
\(698\) −22265.4 −1.20739
\(699\) −1588.12 −0.0859348
\(700\) 0 0
\(701\) 6907.69 0.372182 0.186091 0.982532i \(-0.440418\pi\)
0.186091 + 0.982532i \(0.440418\pi\)
\(702\) −11721.2 −0.630180
\(703\) −20908.4 −1.12173
\(704\) 1970.98 0.105517
\(705\) 0 0
\(706\) −6951.69 −0.370581
\(707\) −3032.40 −0.161309
\(708\) −2640.51 −0.140164
\(709\) 4227.19 0.223914 0.111957 0.993713i \(-0.464288\pi\)
0.111957 + 0.993713i \(0.464288\pi\)
\(710\) 0 0
\(711\) 4646.24 0.245074
\(712\) 11977.8 0.630458
\(713\) 2590.26 0.136053
\(714\) −1117.28 −0.0585620
\(715\) 0 0
\(716\) 13514.4 0.705389
\(717\) −10344.4 −0.538797
\(718\) 3255.34 0.169204
\(719\) −25555.1 −1.32551 −0.662756 0.748835i \(-0.730614\pi\)
−0.662756 + 0.748835i \(0.730614\pi\)
\(720\) 0 0
\(721\) 5157.07 0.266379
\(722\) −28770.3 −1.48299
\(723\) −17598.6 −0.905253
\(724\) −7592.12 −0.389722
\(725\) 0 0
\(726\) −2095.28 −0.107112
\(727\) −13638.7 −0.695778 −0.347889 0.937536i \(-0.613101\pi\)
−0.347889 + 0.937536i \(0.613101\pi\)
\(728\) 1148.12 0.0584506
\(729\) 5947.29 0.302154
\(730\) 0 0
\(731\) 25885.3 1.30972
\(732\) −9272.69 −0.468208
\(733\) 788.421 0.0397285 0.0198643 0.999803i \(-0.493677\pi\)
0.0198643 + 0.999803i \(0.493677\pi\)
\(734\) 4163.06 0.209348
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) 2552.25 0.127562
\(738\) −13508.2 −0.673773
\(739\) 9564.14 0.476079 0.238040 0.971255i \(-0.423495\pi\)
0.238040 + 0.971255i \(0.423495\pi\)
\(740\) 0 0
\(741\) 18369.5 0.910688
\(742\) −3577.44 −0.176997
\(743\) −15210.1 −0.751018 −0.375509 0.926819i \(-0.622532\pi\)
−0.375509 + 0.926819i \(0.622532\pi\)
\(744\) −2467.19 −0.121575
\(745\) 0 0
\(746\) 3459.98 0.169811
\(747\) 8776.53 0.429875
\(748\) 8058.98 0.393938
\(749\) −542.732 −0.0264766
\(750\) 0 0
\(751\) −18877.5 −0.917241 −0.458620 0.888632i \(-0.651656\pi\)
−0.458620 + 0.888632i \(0.651656\pi\)
\(752\) −5978.45 −0.289909
\(753\) −8321.86 −0.402743
\(754\) −11185.0 −0.540233
\(755\) 0 0
\(756\) −1588.32 −0.0764110
\(757\) 10995.1 0.527905 0.263953 0.964536i \(-0.414974\pi\)
0.263953 + 0.964536i \(0.414974\pi\)
\(758\) 21409.5 1.02589
\(759\) 1939.67 0.0927610
\(760\) 0 0
\(761\) 20823.5 0.991919 0.495959 0.868346i \(-0.334817\pi\)
0.495959 + 0.868346i \(0.334817\pi\)
\(762\) −5901.22 −0.280549
\(763\) 5039.50 0.239112
\(764\) 18552.2 0.878527
\(765\) 0 0
\(766\) −8.35516 −0.000394105 0
\(767\) 11094.5 0.522295
\(768\) −701.032 −0.0329379
\(769\) −6039.20 −0.283198 −0.141599 0.989924i \(-0.545224\pi\)
−0.141599 + 0.989924i \(0.545224\pi\)
\(770\) 0 0
\(771\) 15186.8 0.709391
\(772\) −2722.82 −0.126938
\(773\) 2376.05 0.110557 0.0552784 0.998471i \(-0.482395\pi\)
0.0552784 + 0.998471i \(0.482395\pi\)
\(774\) 15432.1 0.716661
\(775\) 0 0
\(776\) −11053.5 −0.511339
\(777\) 1224.94 0.0565568
\(778\) −12025.1 −0.554138
\(779\) 50481.0 2.32178
\(780\) 0 0
\(781\) −5505.78 −0.252256
\(782\) 3009.37 0.137615
\(783\) 15473.6 0.706233
\(784\) −5332.42 −0.242913
\(785\) 0 0
\(786\) 14978.0 0.679705
\(787\) 1845.74 0.0836004 0.0418002 0.999126i \(-0.486691\pi\)
0.0418002 + 0.999126i \(0.486691\pi\)
\(788\) 14519.1 0.656373
\(789\) −9959.82 −0.449403
\(790\) 0 0
\(791\) −3948.27 −0.177477
\(792\) 4804.54 0.215558
\(793\) 38960.7 1.74468
\(794\) 2493.92 0.111468
\(795\) 0 0
\(796\) −2001.65 −0.0891290
\(797\) 4811.23 0.213830 0.106915 0.994268i \(-0.465903\pi\)
0.106915 + 0.994268i \(0.465903\pi\)
\(798\) 2489.23 0.110423
\(799\) −24444.8 −1.08235
\(800\) 0 0
\(801\) 29197.5 1.28794
\(802\) 20359.0 0.896384
\(803\) 34337.9 1.50904
\(804\) −907.777 −0.0398195
\(805\) 0 0
\(806\) 10366.3 0.453024
\(807\) −1481.54 −0.0646255
\(808\) −7779.64 −0.338721
\(809\) −8654.37 −0.376108 −0.188054 0.982159i \(-0.560218\pi\)
−0.188054 + 0.982159i \(0.560218\pi\)
\(810\) 0 0
\(811\) −17826.3 −0.771846 −0.385923 0.922531i \(-0.626117\pi\)
−0.385923 + 0.922531i \(0.626117\pi\)
\(812\) −1515.67 −0.0655046
\(813\) 15967.8 0.688824
\(814\) −8835.54 −0.380449
\(815\) 0 0
\(816\) −2866.40 −0.122971
\(817\) −57670.7 −2.46957
\(818\) −1280.40 −0.0547289
\(819\) 2798.70 0.119407
\(820\) 0 0
\(821\) −8505.57 −0.361567 −0.180783 0.983523i \(-0.557863\pi\)
−0.180783 + 0.983523i \(0.557863\pi\)
\(822\) −3598.65 −0.152697
\(823\) −5281.84 −0.223710 −0.111855 0.993725i \(-0.535679\pi\)
−0.111855 + 0.993725i \(0.535679\pi\)
\(824\) 13230.5 0.559352
\(825\) 0 0
\(826\) 1503.41 0.0633296
\(827\) −18254.5 −0.767560 −0.383780 0.923425i \(-0.625378\pi\)
−0.383780 + 0.923425i \(0.625378\pi\)
\(828\) 1794.10 0.0753012
\(829\) 17262.0 0.723201 0.361601 0.932333i \(-0.382230\pi\)
0.361601 + 0.932333i \(0.382230\pi\)
\(830\) 0 0
\(831\) 16843.4 0.703118
\(832\) 2945.50 0.122737
\(833\) −21803.3 −0.906891
\(834\) −10535.2 −0.437416
\(835\) 0 0
\(836\) −17954.8 −0.742801
\(837\) −14340.9 −0.592228
\(838\) −13700.7 −0.564776
\(839\) 13744.9 0.565588 0.282794 0.959181i \(-0.408739\pi\)
0.282794 + 0.959181i \(0.408739\pi\)
\(840\) 0 0
\(841\) −9623.17 −0.394570
\(842\) 10957.7 0.448488
\(843\) −15861.0 −0.648023
\(844\) 2234.38 0.0911261
\(845\) 0 0
\(846\) −14573.3 −0.592246
\(847\) 1192.97 0.0483956
\(848\) −9177.95 −0.371665
\(849\) −5643.29 −0.228124
\(850\) 0 0
\(851\) −3299.35 −0.132903
\(852\) 1958.28 0.0787436
\(853\) 48141.5 1.93240 0.966198 0.257801i \(-0.0829980\pi\)
0.966198 + 0.257801i \(0.0829980\pi\)
\(854\) 5279.52 0.211547
\(855\) 0 0
\(856\) −1392.38 −0.0555965
\(857\) 2897.47 0.115491 0.0577454 0.998331i \(-0.481609\pi\)
0.0577454 + 0.998331i \(0.481609\pi\)
\(858\) 7762.63 0.308872
\(859\) −34787.8 −1.38177 −0.690887 0.722962i \(-0.742780\pi\)
−0.690887 + 0.722962i \(0.742780\pi\)
\(860\) 0 0
\(861\) −2957.49 −0.117063
\(862\) −3951.53 −0.156136
\(863\) 28071.4 1.10725 0.553627 0.832765i \(-0.313243\pi\)
0.553627 + 0.832765i \(0.313243\pi\)
\(864\) −4074.85 −0.160450
\(865\) 0 0
\(866\) 31539.5 1.23759
\(867\) 1733.61 0.0679084
\(868\) 1404.73 0.0549304
\(869\) −7337.43 −0.286427
\(870\) 0 0
\(871\) 3814.17 0.148379
\(872\) 12928.9 0.502095
\(873\) −26944.6 −1.04460
\(874\) −6704.67 −0.259484
\(875\) 0 0
\(876\) −12213.2 −0.471057
\(877\) −6108.99 −0.235218 −0.117609 0.993060i \(-0.537523\pi\)
−0.117609 + 0.993060i \(0.537523\pi\)
\(878\) −4615.16 −0.177397
\(879\) −11130.2 −0.427090
\(880\) 0 0
\(881\) −15515.1 −0.593322 −0.296661 0.954983i \(-0.595873\pi\)
−0.296661 + 0.954983i \(0.595873\pi\)
\(882\) −12998.5 −0.496239
\(883\) 50045.4 1.90732 0.953658 0.300892i \(-0.0972843\pi\)
0.953658 + 0.300892i \(0.0972843\pi\)
\(884\) 12043.6 0.458225
\(885\) 0 0
\(886\) 27752.2 1.05232
\(887\) −25049.6 −0.948232 −0.474116 0.880462i \(-0.657232\pi\)
−0.474116 + 0.880462i \(0.657232\pi\)
\(888\) 3142.60 0.118760
\(889\) 3359.93 0.126759
\(890\) 0 0
\(891\) 5476.37 0.205909
\(892\) 18132.8 0.680641
\(893\) 54461.3 2.04085
\(894\) 12283.6 0.459535
\(895\) 0 0
\(896\) 399.142 0.0148821
\(897\) 2898.71 0.107899
\(898\) 18504.9 0.687659
\(899\) −13685.0 −0.507697
\(900\) 0 0
\(901\) −37527.0 −1.38758
\(902\) 21332.4 0.787464
\(903\) 3378.71 0.124514
\(904\) −10129.3 −0.372672
\(905\) 0 0
\(906\) 14197.8 0.520628
\(907\) −36780.7 −1.34651 −0.673254 0.739412i \(-0.735104\pi\)
−0.673254 + 0.739412i \(0.735104\pi\)
\(908\) 18935.0 0.692049
\(909\) −18964.0 −0.691964
\(910\) 0 0
\(911\) −16915.8 −0.615199 −0.307600 0.951516i \(-0.599526\pi\)
−0.307600 + 0.951516i \(0.599526\pi\)
\(912\) 6386.13 0.231871
\(913\) −13860.1 −0.502411
\(914\) −17884.0 −0.647210
\(915\) 0 0
\(916\) 7250.94 0.261548
\(917\) −8527.92 −0.307107
\(918\) −16661.3 −0.599026
\(919\) −36523.8 −1.31100 −0.655500 0.755195i \(-0.727542\pi\)
−0.655500 + 0.755195i \(0.727542\pi\)
\(920\) 0 0
\(921\) −15014.4 −0.537178
\(922\) −11368.3 −0.406069
\(923\) −8228.03 −0.293422
\(924\) 1051.91 0.0374515
\(925\) 0 0
\(926\) 24370.0 0.864846
\(927\) 32251.2 1.14268
\(928\) −3888.47 −0.137549
\(929\) 14928.7 0.527226 0.263613 0.964628i \(-0.415086\pi\)
0.263613 + 0.964628i \(0.415086\pi\)
\(930\) 0 0
\(931\) 48576.3 1.71001
\(932\) 2319.78 0.0815310
\(933\) 18829.7 0.660727
\(934\) 11566.7 0.405218
\(935\) 0 0
\(936\) 7180.07 0.250735
\(937\) 16078.4 0.560574 0.280287 0.959916i \(-0.409570\pi\)
0.280287 + 0.959916i \(0.409570\pi\)
\(938\) 516.855 0.0179914
\(939\) −13251.4 −0.460536
\(940\) 0 0
\(941\) 14396.0 0.498720 0.249360 0.968411i \(-0.419780\pi\)
0.249360 + 0.968411i \(0.419780\pi\)
\(942\) 15089.1 0.521898
\(943\) 7965.92 0.275086
\(944\) 3857.00 0.132982
\(945\) 0 0
\(946\) −24370.7 −0.837588
\(947\) 18355.4 0.629854 0.314927 0.949116i \(-0.398020\pi\)
0.314927 + 0.949116i \(0.398020\pi\)
\(948\) 2609.76 0.0894103
\(949\) 51315.7 1.75530
\(950\) 0 0
\(951\) −2245.98 −0.0765835
\(952\) 1632.02 0.0555610
\(953\) −8601.43 −0.292369 −0.146184 0.989257i \(-0.546699\pi\)
−0.146184 + 0.989257i \(0.546699\pi\)
\(954\) −22372.5 −0.759264
\(955\) 0 0
\(956\) 15110.1 0.511186
\(957\) −10247.8 −0.346147
\(958\) 1724.60 0.0581621
\(959\) 2048.94 0.0689923
\(960\) 0 0
\(961\) −17107.8 −0.574259
\(962\) −13204.1 −0.442535
\(963\) −3394.13 −0.113577
\(964\) 25706.3 0.858863
\(965\) 0 0
\(966\) 392.801 0.0130830
\(967\) 11749.0 0.390716 0.195358 0.980732i \(-0.437413\pi\)
0.195358 + 0.980732i \(0.437413\pi\)
\(968\) 3060.58 0.101623
\(969\) 26111.8 0.865666
\(970\) 0 0
\(971\) −9950.94 −0.328878 −0.164439 0.986387i \(-0.552581\pi\)
−0.164439 + 0.986387i \(0.552581\pi\)
\(972\) −15700.4 −0.518098
\(973\) 5998.36 0.197635
\(974\) −18490.8 −0.608301
\(975\) 0 0
\(976\) 13544.6 0.444215
\(977\) 36998.6 1.21156 0.605778 0.795634i \(-0.292862\pi\)
0.605778 + 0.795634i \(0.292862\pi\)
\(978\) 3610.25 0.118040
\(979\) −46109.2 −1.50527
\(980\) 0 0
\(981\) 31515.9 1.02572
\(982\) 286.797 0.00931982
\(983\) 16860.1 0.547053 0.273527 0.961864i \(-0.411810\pi\)
0.273527 + 0.961864i \(0.411810\pi\)
\(984\) −7587.46 −0.245812
\(985\) 0 0
\(986\) −15899.3 −0.513525
\(987\) −3190.68 −0.102898
\(988\) −26832.4 −0.864019
\(989\) −9100.46 −0.292596
\(990\) 0 0
\(991\) −36029.8 −1.15492 −0.577460 0.816419i \(-0.695956\pi\)
−0.577460 + 0.816419i \(0.695956\pi\)
\(992\) 3603.84 0.115345
\(993\) 480.275 0.0153485
\(994\) −1114.97 −0.0355782
\(995\) 0 0
\(996\) 4929.71 0.156831
\(997\) −41319.5 −1.31254 −0.656269 0.754527i \(-0.727866\pi\)
−0.656269 + 0.754527i \(0.727866\pi\)
\(998\) 20897.6 0.662826
\(999\) 18266.8 0.578515
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.a.s.1.1 5
5.2 odd 4 1150.4.b.p.599.5 10
5.3 odd 4 1150.4.b.p.599.6 10
5.4 even 2 1150.4.a.t.1.5 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1150.4.a.s.1.1 5 1.1 even 1 trivial
1150.4.a.t.1.5 yes 5 5.4 even 2
1150.4.b.p.599.5 10 5.2 odd 4
1150.4.b.p.599.6 10 5.3 odd 4