Properties

Label 1150.4.a.s
Level $1150$
Weight $4$
Character orbit 1150.a
Self dual yes
Analytic conductor $67.852$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(1,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 38x^{3} + 38x^{2} + 202x + 101 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (\beta_{2} + 2) q^{3} + 4 q^{4} + ( - 2 \beta_{2} - 4) q^{6} + ( - \beta_{4} + \beta_{3} - 4) q^{7} - 8 q^{8} + ( - \beta_{4} + 7 \beta_{2} + 2 \beta_1 - 1) q^{9} + ( - 3 \beta_{4} + \beta_{3} - 3 \beta_1 - 8) q^{11}+ \cdots + (49 \beta_{4} - 5 \beta_{3} + \cdots - 342) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 10 q^{2} + 12 q^{3} + 20 q^{4} - 24 q^{6} - 24 q^{7} - 40 q^{8} + 11 q^{9} - 54 q^{11} + 48 q^{12} + 36 q^{13} + 48 q^{14} + 80 q^{16} + 132 q^{17} - 22 q^{18} - 50 q^{19} - 158 q^{21} + 108 q^{22}+ \cdots - 1740 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 38x^{3} + 38x^{2} + 202x + 101 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{4} + \nu^{3} + 66\nu^{2} - 64\nu - 163 ) / 21 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + \nu - 16 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -5\nu^{4} + 13\nu^{3} + 186\nu^{2} - 433\nu - 691 ) / 21 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{3} - \beta _1 + 32 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{4} - 2\beta_{3} - 5\beta_{2} + 14\beta _1 - 5 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 2\beta_{4} + 64\beta_{3} - 26\beta_{2} - 51\beta _1 + 888 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.612813
5.33268
−5.76842
−1.50693
3.55548
−2.00000 −2.73841 4.00000 0 5.47681 −3.11829 −8.00000 −19.5011 0
1.2 −2.00000 −2.43578 4.00000 0 4.87156 3.42292 −8.00000 −21.0670 0
1.3 −2.00000 1.80744 4.00000 0 −3.61488 9.19471 −8.00000 −23.7332 0
1.4 −2.00000 5.31348 4.00000 0 −10.6270 −34.1697 −8.00000 1.23302 0
1.5 −2.00000 10.0533 4.00000 0 −20.1065 0.670353 −8.00000 74.0682 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1150.4.a.s 5
5.b even 2 1 1150.4.a.t yes 5
5.c odd 4 2 1150.4.b.p 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1150.4.a.s 5 1.a even 1 1 trivial
1150.4.a.t yes 5 5.b even 2 1
1150.4.b.p 10 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1150))\):

\( T_{3}^{5} - 12T_{3}^{4} - T_{3}^{3} + 209T_{3}^{2} + 42T_{3} - 644 \) Copy content Toggle raw display
\( T_{7}^{5} + 24T_{7}^{4} - 349T_{7}^{3} + 52T_{7}^{2} + 3468T_{7} - 2248 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - 12 T^{4} + \cdots - 644 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} + 24 T^{4} + \cdots - 2248 \) Copy content Toggle raw display
$11$ \( T^{5} + 54 T^{4} + \cdots + 65678040 \) Copy content Toggle raw display
$13$ \( T^{5} - 36 T^{4} + \cdots - 97982647 \) Copy content Toggle raw display
$17$ \( T^{5} - 132 T^{4} + \cdots + 880467840 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots + 2606683072 \) Copy content Toggle raw display
$23$ \( (T + 23)^{5} \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots + 24501628185 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 11316658220 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 473407383904 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 235392970113 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 842722287576 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 13861936377828 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 1970528354784 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 433939150092 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 19500464743200 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 234780561408 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 569270032548 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 8346922024119 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 85004646248488 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 5507631839808 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots - 710453302020000 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 416344669121248 \) Copy content Toggle raw display
show more
show less