Properties

Label 1150.4.a.r
Level $1150$
Weight $4$
Character orbit 1150.a
Self dual yes
Analytic conductor $67.852$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(1,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 73x^{3} - 73x^{2} + 810x - 260 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} - \beta_1 q^{3} + 4 q^{4} + 2 \beta_1 q^{6} + (\beta_{3} - \beta_1 - 4) q^{7} - 8 q^{8} + (\beta_{2} + \beta_1 + 2) q^{9} + (\beta_{4} - \beta_{3} + \beta_{2} + \cdots + 3) q^{11} - 4 \beta_1 q^{12}+ \cdots + (7 \beta_{4} - 7 \beta_{3} + \cdots + 417) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 10 q^{2} + 20 q^{4} - 20 q^{7} - 40 q^{8} + 11 q^{9} + 16 q^{11} - 56 q^{13} + 40 q^{14} + 80 q^{16} - 70 q^{17} - 22 q^{18} + 32 q^{19} + 204 q^{21} - 32 q^{22} + 115 q^{23} + 112 q^{26} - 219 q^{27}+ \cdots + 2098 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 73x^{3} - 73x^{2} + 810x - 260 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 29 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 4\nu^{2} - 46\nu + 73 ) / 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} - 2\nu^{3} - 60\nu^{2} + 2\nu + 356 ) / 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 29 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} + 4\beta_{2} + 50\beta _1 + 43 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 9\beta_{4} + 6\beta_{3} + 68\beta_{2} + 158\beta _1 + 1470 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.40587
2.80523
0.334433
−5.17669
−6.36884
−2.00000 −8.40587 4.00000 0 16.8117 −13.1917 −8.00000 43.6586 0
1.2 −2.00000 −2.80523 4.00000 0 5.61046 −28.6194 −8.00000 −19.1307 0
1.3 −2.00000 −0.334433 4.00000 0 0.668867 14.7343 −8.00000 −26.8882 0
1.4 −2.00000 5.17669 4.00000 0 −10.3534 22.9133 −8.00000 −0.201881 0
1.5 −2.00000 6.36884 4.00000 0 −12.7377 −15.8364 −8.00000 13.5621 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1150.4.a.r 5
5.b even 2 1 1150.4.a.u yes 5
5.c odd 4 2 1150.4.b.q 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1150.4.a.r 5 1.a even 1 1 trivial
1150.4.a.u yes 5 5.b even 2 1
1150.4.b.q 10 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1150))\):

\( T_{3}^{5} - 73T_{3}^{3} + 73T_{3}^{2} + 810T_{3} + 260 \) Copy content Toggle raw display
\( T_{7}^{5} + 20T_{7}^{4} - 793T_{7}^{3} - 13700T_{7}^{2} + 125916T_{7} + 2018520 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - 73 T^{3} + \cdots + 260 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} + 20 T^{4} + \cdots + 2018520 \) Copy content Toggle raw display
$11$ \( T^{5} - 16 T^{4} + \cdots + 3859464 \) Copy content Toggle raw display
$13$ \( T^{5} + 56 T^{4} + \cdots + 86273217 \) Copy content Toggle raw display
$17$ \( T^{5} + 70 T^{4} + \cdots - 177045120 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots + 3001283496 \) Copy content Toggle raw display
$23$ \( (T - 23)^{5} \) Copy content Toggle raw display
$29$ \( T^{5} - 128 T^{4} + \cdots + 672972489 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots + 3684414060 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 24927292128 \) Copy content Toggle raw display
$41$ \( T^{5} + 102 T^{4} + \cdots - 974454795 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 18704792640 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 1763324403300 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 127529551872 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 7351600368780 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 3649011506400 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 20902706250240 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 1909230484860 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 16515313827759 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 1076509576512 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 56873063355048 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots - 29607769114848 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 649651401987168 \) Copy content Toggle raw display
show more
show less