Properties

Label 1150.4.a.q.1.4
Level $1150$
Weight $4$
Character 1150.1
Self dual yes
Analytic conductor $67.852$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(1,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 107x^{3} - 3x^{2} + 2151x - 2916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(3.88892\) of defining polynomial
Character \(\chi\) \(=\) 1150.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +2.88892 q^{3} +4.00000 q^{4} -5.77785 q^{6} +8.21839 q^{7} -8.00000 q^{8} -18.6541 q^{9} -71.5466 q^{11} +11.5557 q^{12} +66.1071 q^{13} -16.4368 q^{14} +16.0000 q^{16} +27.7650 q^{17} +37.3082 q^{18} +13.7670 q^{19} +23.7423 q^{21} +143.093 q^{22} -23.0000 q^{23} -23.1114 q^{24} -132.214 q^{26} -131.891 q^{27} +32.8736 q^{28} +274.558 q^{29} +265.877 q^{31} -32.0000 q^{32} -206.693 q^{33} -55.5300 q^{34} -74.6165 q^{36} -204.865 q^{37} -27.5341 q^{38} +190.978 q^{39} -69.5895 q^{41} -47.4846 q^{42} -187.919 q^{43} -286.186 q^{44} +46.0000 q^{46} -135.207 q^{47} +46.2228 q^{48} -275.458 q^{49} +80.2110 q^{51} +264.429 q^{52} -502.564 q^{53} +263.782 q^{54} -65.7472 q^{56} +39.7719 q^{57} -549.116 q^{58} -161.961 q^{59} -103.522 q^{61} -531.754 q^{62} -153.307 q^{63} +64.0000 q^{64} +413.385 q^{66} +985.315 q^{67} +111.060 q^{68} -66.4452 q^{69} -817.825 q^{71} +149.233 q^{72} -1119.51 q^{73} +409.729 q^{74} +55.0681 q^{76} -587.998 q^{77} -381.957 q^{78} +400.301 q^{79} +122.638 q^{81} +139.179 q^{82} -1113.02 q^{83} +94.9692 q^{84} +375.838 q^{86} +793.177 q^{87} +572.373 q^{88} -485.051 q^{89} +543.295 q^{91} -92.0000 q^{92} +768.098 q^{93} +270.413 q^{94} -92.4455 q^{96} +1036.55 q^{97} +550.916 q^{98} +1334.64 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 10 q^{2} - 5 q^{3} + 20 q^{4} + 10 q^{6} + 3 q^{7} - 40 q^{8} + 84 q^{9} - 26 q^{11} - 20 q^{12} + 61 q^{13} - 6 q^{14} + 80 q^{16} - 231 q^{17} - 168 q^{18} + 74 q^{19} - 88 q^{21} + 52 q^{22} - 115 q^{23}+ \cdots + 2397 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 2.88892 0.555973 0.277987 0.960585i \(-0.410333\pi\)
0.277987 + 0.960585i \(0.410333\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) −5.77785 −0.393133
\(7\) 8.21839 0.443752 0.221876 0.975075i \(-0.428782\pi\)
0.221876 + 0.975075i \(0.428782\pi\)
\(8\) −8.00000 −0.353553
\(9\) −18.6541 −0.690894
\(10\) 0 0
\(11\) −71.5466 −1.96110 −0.980551 0.196265i \(-0.937119\pi\)
−0.980551 + 0.196265i \(0.937119\pi\)
\(12\) 11.5557 0.277987
\(13\) 66.1071 1.41037 0.705185 0.709023i \(-0.250864\pi\)
0.705185 + 0.709023i \(0.250864\pi\)
\(14\) −16.4368 −0.313780
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 27.7650 0.396118 0.198059 0.980190i \(-0.436536\pi\)
0.198059 + 0.980190i \(0.436536\pi\)
\(18\) 37.3082 0.488535
\(19\) 13.7670 0.166230 0.0831151 0.996540i \(-0.473513\pi\)
0.0831151 + 0.996540i \(0.473513\pi\)
\(20\) 0 0
\(21\) 23.7423 0.246714
\(22\) 143.093 1.38671
\(23\) −23.0000 −0.208514
\(24\) −23.1114 −0.196566
\(25\) 0 0
\(26\) −132.214 −0.997283
\(27\) −131.891 −0.940092
\(28\) 32.8736 0.221876
\(29\) 274.558 1.75807 0.879037 0.476753i \(-0.158186\pi\)
0.879037 + 0.476753i \(0.158186\pi\)
\(30\) 0 0
\(31\) 265.877 1.54042 0.770208 0.637792i \(-0.220152\pi\)
0.770208 + 0.637792i \(0.220152\pi\)
\(32\) −32.0000 −0.176777
\(33\) −206.693 −1.09032
\(34\) −55.5300 −0.280098
\(35\) 0 0
\(36\) −74.6165 −0.345447
\(37\) −204.865 −0.910258 −0.455129 0.890425i \(-0.650407\pi\)
−0.455129 + 0.890425i \(0.650407\pi\)
\(38\) −27.5341 −0.117542
\(39\) 190.978 0.784129
\(40\) 0 0
\(41\) −69.5895 −0.265075 −0.132537 0.991178i \(-0.542312\pi\)
−0.132537 + 0.991178i \(0.542312\pi\)
\(42\) −47.4846 −0.174453
\(43\) −187.919 −0.666452 −0.333226 0.942847i \(-0.608137\pi\)
−0.333226 + 0.942847i \(0.608137\pi\)
\(44\) −286.186 −0.980551
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) −135.207 −0.419615 −0.209808 0.977743i \(-0.567284\pi\)
−0.209808 + 0.977743i \(0.567284\pi\)
\(48\) 46.2228 0.138993
\(49\) −275.458 −0.803085
\(50\) 0 0
\(51\) 80.2110 0.220231
\(52\) 264.429 0.705185
\(53\) −502.564 −1.30250 −0.651249 0.758864i \(-0.725755\pi\)
−0.651249 + 0.758864i \(0.725755\pi\)
\(54\) 263.782 0.664745
\(55\) 0 0
\(56\) −65.7472 −0.156890
\(57\) 39.7719 0.0924195
\(58\) −549.116 −1.24315
\(59\) −161.961 −0.357382 −0.178691 0.983905i \(-0.557186\pi\)
−0.178691 + 0.983905i \(0.557186\pi\)
\(60\) 0 0
\(61\) −103.522 −0.217290 −0.108645 0.994081i \(-0.534651\pi\)
−0.108645 + 0.994081i \(0.534651\pi\)
\(62\) −531.754 −1.08924
\(63\) −153.307 −0.306585
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 413.385 0.770973
\(67\) 985.315 1.79665 0.898324 0.439334i \(-0.144785\pi\)
0.898324 + 0.439334i \(0.144785\pi\)
\(68\) 111.060 0.198059
\(69\) −66.4452 −0.115928
\(70\) 0 0
\(71\) −817.825 −1.36701 −0.683507 0.729944i \(-0.739546\pi\)
−0.683507 + 0.729944i \(0.739546\pi\)
\(72\) 149.233 0.244268
\(73\) −1119.51 −1.79492 −0.897460 0.441096i \(-0.854590\pi\)
−0.897460 + 0.441096i \(0.854590\pi\)
\(74\) 409.729 0.643650
\(75\) 0 0
\(76\) 55.0681 0.0831151
\(77\) −587.998 −0.870242
\(78\) −381.957 −0.554463
\(79\) 400.301 0.570094 0.285047 0.958514i \(-0.407991\pi\)
0.285047 + 0.958514i \(0.407991\pi\)
\(80\) 0 0
\(81\) 122.638 0.168227
\(82\) 139.179 0.187436
\(83\) −1113.02 −1.47193 −0.735964 0.677020i \(-0.763271\pi\)
−0.735964 + 0.677020i \(0.763271\pi\)
\(84\) 94.9692 0.123357
\(85\) 0 0
\(86\) 375.838 0.471252
\(87\) 793.177 0.977443
\(88\) 572.373 0.693354
\(89\) −485.051 −0.577700 −0.288850 0.957374i \(-0.593273\pi\)
−0.288850 + 0.957374i \(0.593273\pi\)
\(90\) 0 0
\(91\) 543.295 0.625854
\(92\) −92.0000 −0.104257
\(93\) 768.098 0.856431
\(94\) 270.413 0.296713
\(95\) 0 0
\(96\) −92.4455 −0.0982832
\(97\) 1036.55 1.08500 0.542501 0.840055i \(-0.317477\pi\)
0.542501 + 0.840055i \(0.317477\pi\)
\(98\) 550.916 0.567867
\(99\) 1334.64 1.35491
\(100\) 0 0
\(101\) −1137.44 −1.12059 −0.560295 0.828293i \(-0.689312\pi\)
−0.560295 + 0.828293i \(0.689312\pi\)
\(102\) −160.422 −0.155727
\(103\) −102.870 −0.0984082 −0.0492041 0.998789i \(-0.515668\pi\)
−0.0492041 + 0.998789i \(0.515668\pi\)
\(104\) −528.857 −0.498641
\(105\) 0 0
\(106\) 1005.13 0.921006
\(107\) 607.332 0.548720 0.274360 0.961627i \(-0.411534\pi\)
0.274360 + 0.961627i \(0.411534\pi\)
\(108\) −527.565 −0.470046
\(109\) −2143.66 −1.88372 −0.941861 0.336002i \(-0.890925\pi\)
−0.941861 + 0.336002i \(0.890925\pi\)
\(110\) 0 0
\(111\) −591.838 −0.506079
\(112\) 131.494 0.110938
\(113\) −642.814 −0.535140 −0.267570 0.963538i \(-0.586221\pi\)
−0.267570 + 0.963538i \(0.586221\pi\)
\(114\) −79.5438 −0.0653505
\(115\) 0 0
\(116\) 1098.23 0.879037
\(117\) −1233.17 −0.974416
\(118\) 323.923 0.252708
\(119\) 228.184 0.175778
\(120\) 0 0
\(121\) 3787.92 2.84592
\(122\) 207.045 0.153647
\(123\) −201.039 −0.147374
\(124\) 1063.51 0.770208
\(125\) 0 0
\(126\) 306.614 0.216788
\(127\) −819.689 −0.572722 −0.286361 0.958122i \(-0.592446\pi\)
−0.286361 + 0.958122i \(0.592446\pi\)
\(128\) −128.000 −0.0883883
\(129\) −542.884 −0.370529
\(130\) 0 0
\(131\) 1730.93 1.15445 0.577223 0.816587i \(-0.304136\pi\)
0.577223 + 0.816587i \(0.304136\pi\)
\(132\) −826.771 −0.545160
\(133\) 113.143 0.0737649
\(134\) −1970.63 −1.27042
\(135\) 0 0
\(136\) −222.120 −0.140049
\(137\) −2385.91 −1.48790 −0.743950 0.668235i \(-0.767050\pi\)
−0.743950 + 0.668235i \(0.767050\pi\)
\(138\) 132.890 0.0819738
\(139\) 416.788 0.254327 0.127164 0.991882i \(-0.459413\pi\)
0.127164 + 0.991882i \(0.459413\pi\)
\(140\) 0 0
\(141\) −390.602 −0.233295
\(142\) 1635.65 0.966625
\(143\) −4729.74 −2.76588
\(144\) −298.466 −0.172723
\(145\) 0 0
\(146\) 2239.03 1.26920
\(147\) −795.777 −0.446494
\(148\) −819.459 −0.455129
\(149\) −3026.53 −1.66405 −0.832025 0.554739i \(-0.812818\pi\)
−0.832025 + 0.554739i \(0.812818\pi\)
\(150\) 0 0
\(151\) −734.096 −0.395628 −0.197814 0.980240i \(-0.563384\pi\)
−0.197814 + 0.980240i \(0.563384\pi\)
\(152\) −110.136 −0.0587712
\(153\) −517.932 −0.273675
\(154\) 1176.00 0.615354
\(155\) 0 0
\(156\) 763.914 0.392064
\(157\) −501.455 −0.254908 −0.127454 0.991845i \(-0.540680\pi\)
−0.127454 + 0.991845i \(0.540680\pi\)
\(158\) −800.603 −0.403117
\(159\) −1451.87 −0.724155
\(160\) 0 0
\(161\) −189.023 −0.0925286
\(162\) −245.275 −0.118955
\(163\) −976.374 −0.469175 −0.234588 0.972095i \(-0.575374\pi\)
−0.234588 + 0.972095i \(0.575374\pi\)
\(164\) −278.358 −0.132537
\(165\) 0 0
\(166\) 2226.04 1.04081
\(167\) 2431.80 1.12681 0.563407 0.826179i \(-0.309490\pi\)
0.563407 + 0.826179i \(0.309490\pi\)
\(168\) −189.938 −0.0872266
\(169\) 2173.15 0.989146
\(170\) 0 0
\(171\) −256.812 −0.114847
\(172\) −751.677 −0.333226
\(173\) 847.107 0.372280 0.186140 0.982523i \(-0.440402\pi\)
0.186140 + 0.982523i \(0.440402\pi\)
\(174\) −1586.35 −0.691156
\(175\) 0 0
\(176\) −1144.75 −0.490275
\(177\) −467.894 −0.198695
\(178\) 970.102 0.408496
\(179\) 4060.04 1.69532 0.847658 0.530544i \(-0.178012\pi\)
0.847658 + 0.530544i \(0.178012\pi\)
\(180\) 0 0
\(181\) −25.2071 −0.0103516 −0.00517578 0.999987i \(-0.501648\pi\)
−0.00517578 + 0.999987i \(0.501648\pi\)
\(182\) −1086.59 −0.442546
\(183\) −299.068 −0.120807
\(184\) 184.000 0.0737210
\(185\) 0 0
\(186\) −1536.20 −0.605588
\(187\) −1986.49 −0.776828
\(188\) −540.827 −0.209808
\(189\) −1083.93 −0.417167
\(190\) 0 0
\(191\) −1603.82 −0.607585 −0.303792 0.952738i \(-0.598253\pi\)
−0.303792 + 0.952738i \(0.598253\pi\)
\(192\) 184.891 0.0694967
\(193\) 2754.90 1.02747 0.513735 0.857949i \(-0.328261\pi\)
0.513735 + 0.857949i \(0.328261\pi\)
\(194\) −2073.09 −0.767212
\(195\) 0 0
\(196\) −1101.83 −0.401542
\(197\) −2406.44 −0.870314 −0.435157 0.900355i \(-0.643307\pi\)
−0.435157 + 0.900355i \(0.643307\pi\)
\(198\) −2669.28 −0.958068
\(199\) −5565.61 −1.98259 −0.991295 0.131660i \(-0.957969\pi\)
−0.991295 + 0.131660i \(0.957969\pi\)
\(200\) 0 0
\(201\) 2846.50 0.998888
\(202\) 2274.88 0.792377
\(203\) 2256.43 0.780148
\(204\) 320.844 0.110116
\(205\) 0 0
\(206\) 205.739 0.0695851
\(207\) 429.045 0.144061
\(208\) 1057.71 0.352593
\(209\) −984.984 −0.325994
\(210\) 0 0
\(211\) −1477.89 −0.482189 −0.241095 0.970502i \(-0.577506\pi\)
−0.241095 + 0.970502i \(0.577506\pi\)
\(212\) −2010.25 −0.651249
\(213\) −2362.63 −0.760024
\(214\) −1214.66 −0.388004
\(215\) 0 0
\(216\) 1055.13 0.332373
\(217\) 2185.08 0.683562
\(218\) 4287.33 1.33199
\(219\) −3234.19 −0.997928
\(220\) 0 0
\(221\) 1835.47 0.558673
\(222\) 1183.68 0.357852
\(223\) −6265.46 −1.88146 −0.940732 0.339152i \(-0.889860\pi\)
−0.940732 + 0.339152i \(0.889860\pi\)
\(224\) −262.989 −0.0784449
\(225\) 0 0
\(226\) 1285.63 0.378401
\(227\) −5108.12 −1.49356 −0.746780 0.665072i \(-0.768401\pi\)
−0.746780 + 0.665072i \(0.768401\pi\)
\(228\) 159.088 0.0462098
\(229\) 4598.10 1.32686 0.663430 0.748239i \(-0.269100\pi\)
0.663430 + 0.748239i \(0.269100\pi\)
\(230\) 0 0
\(231\) −1698.68 −0.483831
\(232\) −2196.46 −0.621573
\(233\) −3746.09 −1.05328 −0.526640 0.850088i \(-0.676548\pi\)
−0.526640 + 0.850088i \(0.676548\pi\)
\(234\) 2466.34 0.689016
\(235\) 0 0
\(236\) −647.845 −0.178691
\(237\) 1156.44 0.316957
\(238\) −456.368 −0.124294
\(239\) 4409.95 1.19354 0.596770 0.802413i \(-0.296451\pi\)
0.596770 + 0.802413i \(0.296451\pi\)
\(240\) 0 0
\(241\) −2747.38 −0.734334 −0.367167 0.930155i \(-0.619672\pi\)
−0.367167 + 0.930155i \(0.619672\pi\)
\(242\) −7575.84 −2.01237
\(243\) 3915.35 1.03362
\(244\) −414.090 −0.108645
\(245\) 0 0
\(246\) 402.078 0.104209
\(247\) 910.099 0.234446
\(248\) −2127.02 −0.544620
\(249\) −3215.44 −0.818353
\(250\) 0 0
\(251\) 3985.25 1.00218 0.501090 0.865395i \(-0.332933\pi\)
0.501090 + 0.865395i \(0.332933\pi\)
\(252\) −613.228 −0.153293
\(253\) 1645.57 0.408918
\(254\) 1639.38 0.404975
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 7998.42 1.94135 0.970677 0.240388i \(-0.0772746\pi\)
0.970677 + 0.240388i \(0.0772746\pi\)
\(258\) 1085.77 0.262004
\(259\) −1683.66 −0.403929
\(260\) 0 0
\(261\) −5121.64 −1.21464
\(262\) −3461.87 −0.816317
\(263\) −3988.79 −0.935207 −0.467603 0.883938i \(-0.654882\pi\)
−0.467603 + 0.883938i \(0.654882\pi\)
\(264\) 1653.54 0.385487
\(265\) 0 0
\(266\) −226.286 −0.0521597
\(267\) −1401.28 −0.321186
\(268\) 3941.26 0.898324
\(269\) −5546.77 −1.25722 −0.628611 0.777720i \(-0.716376\pi\)
−0.628611 + 0.777720i \(0.716376\pi\)
\(270\) 0 0
\(271\) 2660.23 0.596300 0.298150 0.954519i \(-0.403630\pi\)
0.298150 + 0.954519i \(0.403630\pi\)
\(272\) 444.240 0.0990295
\(273\) 1569.54 0.347958
\(274\) 4771.83 1.05210
\(275\) 0 0
\(276\) −265.781 −0.0579642
\(277\) −1756.71 −0.381048 −0.190524 0.981683i \(-0.561019\pi\)
−0.190524 + 0.981683i \(0.561019\pi\)
\(278\) −833.576 −0.179836
\(279\) −4959.70 −1.06426
\(280\) 0 0
\(281\) −3137.33 −0.666041 −0.333020 0.942920i \(-0.608068\pi\)
−0.333020 + 0.942920i \(0.608068\pi\)
\(282\) 781.203 0.164964
\(283\) −8279.78 −1.73916 −0.869579 0.493793i \(-0.835610\pi\)
−0.869579 + 0.493793i \(0.835610\pi\)
\(284\) −3271.30 −0.683507
\(285\) 0 0
\(286\) 9459.48 1.95577
\(287\) −571.914 −0.117627
\(288\) 596.932 0.122134
\(289\) −4142.10 −0.843091
\(290\) 0 0
\(291\) 2994.50 0.603232
\(292\) −4478.06 −0.897460
\(293\) −1677.69 −0.334510 −0.167255 0.985914i \(-0.553490\pi\)
−0.167255 + 0.985914i \(0.553490\pi\)
\(294\) 1591.55 0.315719
\(295\) 0 0
\(296\) 1638.92 0.321825
\(297\) 9436.37 1.84362
\(298\) 6053.07 1.17666
\(299\) −1520.46 −0.294083
\(300\) 0 0
\(301\) −1544.39 −0.295739
\(302\) 1468.19 0.279752
\(303\) −3285.98 −0.623018
\(304\) 220.272 0.0415575
\(305\) 0 0
\(306\) 1035.86 0.193518
\(307\) −1021.48 −0.189899 −0.0949497 0.995482i \(-0.530269\pi\)
−0.0949497 + 0.995482i \(0.530269\pi\)
\(308\) −2351.99 −0.435121
\(309\) −297.183 −0.0547124
\(310\) 0 0
\(311\) −492.850 −0.0898617 −0.0449308 0.998990i \(-0.514307\pi\)
−0.0449308 + 0.998990i \(0.514307\pi\)
\(312\) −1527.83 −0.277231
\(313\) −1711.97 −0.309157 −0.154579 0.987980i \(-0.549402\pi\)
−0.154579 + 0.987980i \(0.549402\pi\)
\(314\) 1002.91 0.180247
\(315\) 0 0
\(316\) 1601.21 0.285047
\(317\) 509.170 0.0902140 0.0451070 0.998982i \(-0.485637\pi\)
0.0451070 + 0.998982i \(0.485637\pi\)
\(318\) 2903.74 0.512055
\(319\) −19643.7 −3.44776
\(320\) 0 0
\(321\) 1754.54 0.305074
\(322\) 378.046 0.0654276
\(323\) 382.242 0.0658467
\(324\) 490.551 0.0841137
\(325\) 0 0
\(326\) 1952.75 0.331757
\(327\) −6192.88 −1.04730
\(328\) 556.716 0.0937180
\(329\) −1111.18 −0.186205
\(330\) 0 0
\(331\) 436.915 0.0725529 0.0362764 0.999342i \(-0.488450\pi\)
0.0362764 + 0.999342i \(0.488450\pi\)
\(332\) −4452.09 −0.735964
\(333\) 3821.57 0.628891
\(334\) −4863.59 −0.796778
\(335\) 0 0
\(336\) 379.877 0.0616785
\(337\) −10300.6 −1.66502 −0.832508 0.554013i \(-0.813096\pi\)
−0.832508 + 0.554013i \(0.813096\pi\)
\(338\) −4346.31 −0.699432
\(339\) −1857.04 −0.297524
\(340\) 0 0
\(341\) −19022.6 −3.02091
\(342\) 513.624 0.0812093
\(343\) −5082.73 −0.800122
\(344\) 1503.35 0.235626
\(345\) 0 0
\(346\) −1694.21 −0.263241
\(347\) −54.1055 −0.00837042 −0.00418521 0.999991i \(-0.501332\pi\)
−0.00418521 + 0.999991i \(0.501332\pi\)
\(348\) 3172.71 0.488721
\(349\) 9862.75 1.51272 0.756362 0.654153i \(-0.226975\pi\)
0.756362 + 0.654153i \(0.226975\pi\)
\(350\) 0 0
\(351\) −8718.95 −1.32588
\(352\) 2289.49 0.346677
\(353\) −7397.97 −1.11545 −0.557726 0.830025i \(-0.688326\pi\)
−0.557726 + 0.830025i \(0.688326\pi\)
\(354\) 935.787 0.140499
\(355\) 0 0
\(356\) −1940.20 −0.288850
\(357\) 659.206 0.0977279
\(358\) −8120.07 −1.19877
\(359\) 7112.06 1.04557 0.522786 0.852464i \(-0.324893\pi\)
0.522786 + 0.852464i \(0.324893\pi\)
\(360\) 0 0
\(361\) −6669.47 −0.972368
\(362\) 50.4143 0.00731966
\(363\) 10943.0 1.58226
\(364\) 2173.18 0.312927
\(365\) 0 0
\(366\) 598.136 0.0854237
\(367\) 10728.0 1.52588 0.762939 0.646470i \(-0.223755\pi\)
0.762939 + 0.646470i \(0.223755\pi\)
\(368\) −368.000 −0.0521286
\(369\) 1298.13 0.183138
\(370\) 0 0
\(371\) −4130.27 −0.577986
\(372\) 3072.39 0.428215
\(373\) 2519.27 0.349713 0.174856 0.984594i \(-0.444054\pi\)
0.174856 + 0.984594i \(0.444054\pi\)
\(374\) 3972.99 0.549300
\(375\) 0 0
\(376\) 1081.65 0.148356
\(377\) 18150.2 2.47954
\(378\) 2167.87 0.294982
\(379\) 2479.13 0.336001 0.168001 0.985787i \(-0.446269\pi\)
0.168001 + 0.985787i \(0.446269\pi\)
\(380\) 0 0
\(381\) −2368.02 −0.318418
\(382\) 3207.65 0.429627
\(383\) 1310.10 0.174786 0.0873928 0.996174i \(-0.472146\pi\)
0.0873928 + 0.996174i \(0.472146\pi\)
\(384\) −369.782 −0.0491416
\(385\) 0 0
\(386\) −5509.79 −0.726531
\(387\) 3505.47 0.460447
\(388\) 4146.18 0.542501
\(389\) 11197.1 1.45942 0.729712 0.683755i \(-0.239654\pi\)
0.729712 + 0.683755i \(0.239654\pi\)
\(390\) 0 0
\(391\) −638.595 −0.0825963
\(392\) 2203.66 0.283933
\(393\) 5000.54 0.641841
\(394\) 4812.88 0.615405
\(395\) 0 0
\(396\) 5338.56 0.677456
\(397\) −8185.02 −1.03475 −0.517373 0.855760i \(-0.673090\pi\)
−0.517373 + 0.855760i \(0.673090\pi\)
\(398\) 11131.2 1.40190
\(399\) 326.861 0.0410113
\(400\) 0 0
\(401\) 5779.36 0.719719 0.359860 0.933006i \(-0.382825\pi\)
0.359860 + 0.933006i \(0.382825\pi\)
\(402\) −5693.00 −0.706321
\(403\) 17576.4 2.17256
\(404\) −4549.76 −0.560295
\(405\) 0 0
\(406\) −4512.85 −0.551648
\(407\) 14657.4 1.78511
\(408\) −641.688 −0.0778635
\(409\) 11007.3 1.33074 0.665372 0.746512i \(-0.268273\pi\)
0.665372 + 0.746512i \(0.268273\pi\)
\(410\) 0 0
\(411\) −6892.72 −0.827233
\(412\) −411.479 −0.0492041
\(413\) −1331.06 −0.158589
\(414\) −858.090 −0.101867
\(415\) 0 0
\(416\) −2115.43 −0.249321
\(417\) 1204.07 0.141399
\(418\) 1969.97 0.230513
\(419\) −3827.76 −0.446297 −0.223148 0.974784i \(-0.571633\pi\)
−0.223148 + 0.974784i \(0.571633\pi\)
\(420\) 0 0
\(421\) 6671.63 0.772341 0.386170 0.922428i \(-0.373798\pi\)
0.386170 + 0.922428i \(0.373798\pi\)
\(422\) 2955.77 0.340959
\(423\) 2522.16 0.289909
\(424\) 4020.51 0.460503
\(425\) 0 0
\(426\) 4725.27 0.537418
\(427\) −850.788 −0.0964227
\(428\) 2429.33 0.274360
\(429\) −13663.9 −1.53776
\(430\) 0 0
\(431\) 2813.78 0.314466 0.157233 0.987562i \(-0.449743\pi\)
0.157233 + 0.987562i \(0.449743\pi\)
\(432\) −2110.26 −0.235023
\(433\) 14651.4 1.62610 0.813051 0.582193i \(-0.197805\pi\)
0.813051 + 0.582193i \(0.197805\pi\)
\(434\) −4370.16 −0.483352
\(435\) 0 0
\(436\) −8574.65 −0.941861
\(437\) −316.642 −0.0346614
\(438\) 6468.38 0.705642
\(439\) 15021.5 1.63311 0.816557 0.577265i \(-0.195880\pi\)
0.816557 + 0.577265i \(0.195880\pi\)
\(440\) 0 0
\(441\) 5138.43 0.554846
\(442\) −3670.93 −0.395042
\(443\) −14722.2 −1.57895 −0.789473 0.613785i \(-0.789646\pi\)
−0.789473 + 0.613785i \(0.789646\pi\)
\(444\) −2367.35 −0.253040
\(445\) 0 0
\(446\) 12530.9 1.33040
\(447\) −8743.42 −0.925167
\(448\) 525.977 0.0554690
\(449\) −6954.45 −0.730960 −0.365480 0.930819i \(-0.619095\pi\)
−0.365480 + 0.930819i \(0.619095\pi\)
\(450\) 0 0
\(451\) 4978.90 0.519838
\(452\) −2571.26 −0.267570
\(453\) −2120.75 −0.219959
\(454\) 10216.2 1.05611
\(455\) 0 0
\(456\) −318.175 −0.0326752
\(457\) 911.330 0.0932828 0.0466414 0.998912i \(-0.485148\pi\)
0.0466414 + 0.998912i \(0.485148\pi\)
\(458\) −9196.19 −0.938231
\(459\) −3661.96 −0.372387
\(460\) 0 0
\(461\) −5709.58 −0.576836 −0.288418 0.957505i \(-0.593129\pi\)
−0.288418 + 0.957505i \(0.593129\pi\)
\(462\) 3397.36 0.342121
\(463\) −5728.63 −0.575015 −0.287508 0.957778i \(-0.592827\pi\)
−0.287508 + 0.957778i \(0.592827\pi\)
\(464\) 4392.93 0.439519
\(465\) 0 0
\(466\) 7492.17 0.744781
\(467\) 4467.88 0.442717 0.221358 0.975193i \(-0.428951\pi\)
0.221358 + 0.975193i \(0.428951\pi\)
\(468\) −4932.68 −0.487208
\(469\) 8097.71 0.797265
\(470\) 0 0
\(471\) −1448.67 −0.141722
\(472\) 1295.69 0.126354
\(473\) 13445.0 1.30698
\(474\) −2312.88 −0.224123
\(475\) 0 0
\(476\) 912.736 0.0878890
\(477\) 9374.88 0.899888
\(478\) −8819.90 −0.843960
\(479\) 7246.30 0.691215 0.345607 0.938379i \(-0.387673\pi\)
0.345607 + 0.938379i \(0.387673\pi\)
\(480\) 0 0
\(481\) −13543.0 −1.28380
\(482\) 5494.77 0.519253
\(483\) −546.073 −0.0514434
\(484\) 15151.7 1.42296
\(485\) 0 0
\(486\) −7830.71 −0.730881
\(487\) 9362.52 0.871162 0.435581 0.900149i \(-0.356543\pi\)
0.435581 + 0.900149i \(0.356543\pi\)
\(488\) 828.179 0.0768236
\(489\) −2820.67 −0.260849
\(490\) 0 0
\(491\) 10220.5 0.939401 0.469700 0.882826i \(-0.344362\pi\)
0.469700 + 0.882826i \(0.344362\pi\)
\(492\) −804.155 −0.0736872
\(493\) 7623.11 0.696405
\(494\) −1820.20 −0.165778
\(495\) 0 0
\(496\) 4254.03 0.385104
\(497\) −6721.21 −0.606615
\(498\) 6430.87 0.578663
\(499\) 10463.5 0.938698 0.469349 0.883013i \(-0.344489\pi\)
0.469349 + 0.883013i \(0.344489\pi\)
\(500\) 0 0
\(501\) 7025.27 0.626479
\(502\) −7970.51 −0.708648
\(503\) −2129.28 −0.188748 −0.0943738 0.995537i \(-0.530085\pi\)
−0.0943738 + 0.995537i \(0.530085\pi\)
\(504\) 1226.46 0.108394
\(505\) 0 0
\(506\) −3291.14 −0.289149
\(507\) 6278.07 0.549939
\(508\) −3278.76 −0.286361
\(509\) 2890.57 0.251713 0.125857 0.992048i \(-0.459832\pi\)
0.125857 + 0.992048i \(0.459832\pi\)
\(510\) 0 0
\(511\) −9200.61 −0.796499
\(512\) −512.000 −0.0441942
\(513\) −1815.75 −0.156272
\(514\) −15996.8 −1.37274
\(515\) 0 0
\(516\) −2171.54 −0.185265
\(517\) 9673.58 0.822908
\(518\) 3367.32 0.285621
\(519\) 2447.23 0.206978
\(520\) 0 0
\(521\) 14109.0 1.18642 0.593212 0.805046i \(-0.297860\pi\)
0.593212 + 0.805046i \(0.297860\pi\)
\(522\) 10243.3 0.858882
\(523\) −7407.28 −0.619307 −0.309654 0.950849i \(-0.600213\pi\)
−0.309654 + 0.950849i \(0.600213\pi\)
\(524\) 6923.74 0.577223
\(525\) 0 0
\(526\) 7977.58 0.661291
\(527\) 7382.08 0.610187
\(528\) −3307.08 −0.272580
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 3021.25 0.246913
\(532\) 452.571 0.0368824
\(533\) −4600.36 −0.373853
\(534\) 2802.55 0.227113
\(535\) 0 0
\(536\) −7882.52 −0.635211
\(537\) 11729.1 0.942550
\(538\) 11093.5 0.888990
\(539\) 19708.1 1.57493
\(540\) 0 0
\(541\) −2546.42 −0.202365 −0.101182 0.994868i \(-0.532263\pi\)
−0.101182 + 0.994868i \(0.532263\pi\)
\(542\) −5320.45 −0.421648
\(543\) −72.8215 −0.00575519
\(544\) −888.481 −0.0700244
\(545\) 0 0
\(546\) −3139.07 −0.246044
\(547\) −10521.1 −0.822397 −0.411199 0.911546i \(-0.634890\pi\)
−0.411199 + 0.911546i \(0.634890\pi\)
\(548\) −9543.66 −0.743950
\(549\) 1931.12 0.150124
\(550\) 0 0
\(551\) 3779.85 0.292245
\(552\) 531.562 0.0409869
\(553\) 3289.83 0.252980
\(554\) 3513.41 0.269442
\(555\) 0 0
\(556\) 1667.15 0.127164
\(557\) 6773.86 0.515292 0.257646 0.966239i \(-0.417053\pi\)
0.257646 + 0.966239i \(0.417053\pi\)
\(558\) 9919.41 0.752548
\(559\) −12422.8 −0.939944
\(560\) 0 0
\(561\) −5738.83 −0.431896
\(562\) 6274.66 0.470962
\(563\) 1102.09 0.0825004 0.0412502 0.999149i \(-0.486866\pi\)
0.0412502 + 0.999149i \(0.486866\pi\)
\(564\) −1562.41 −0.116647
\(565\) 0 0
\(566\) 16559.6 1.22977
\(567\) 1007.89 0.0746512
\(568\) 6542.60 0.483312
\(569\) 11348.7 0.836137 0.418069 0.908415i \(-0.362707\pi\)
0.418069 + 0.908415i \(0.362707\pi\)
\(570\) 0 0
\(571\) −5324.14 −0.390207 −0.195104 0.980783i \(-0.562504\pi\)
−0.195104 + 0.980783i \(0.562504\pi\)
\(572\) −18919.0 −1.38294
\(573\) −4633.33 −0.337801
\(574\) 1143.83 0.0831750
\(575\) 0 0
\(576\) −1193.86 −0.0863617
\(577\) −3382.91 −0.244077 −0.122039 0.992525i \(-0.538943\pi\)
−0.122039 + 0.992525i \(0.538943\pi\)
\(578\) 8284.21 0.596155
\(579\) 7958.68 0.571246
\(580\) 0 0
\(581\) −9147.26 −0.653171
\(582\) −5989.00 −0.426550
\(583\) 35956.7 2.55433
\(584\) 8956.11 0.634600
\(585\) 0 0
\(586\) 3355.37 0.236534
\(587\) −5792.93 −0.407325 −0.203662 0.979041i \(-0.565285\pi\)
−0.203662 + 0.979041i \(0.565285\pi\)
\(588\) −3183.11 −0.223247
\(589\) 3660.34 0.256064
\(590\) 0 0
\(591\) −6952.02 −0.483871
\(592\) −3277.84 −0.227565
\(593\) −8483.73 −0.587496 −0.293748 0.955883i \(-0.594903\pi\)
−0.293748 + 0.955883i \(0.594903\pi\)
\(594\) −18872.7 −1.30363
\(595\) 0 0
\(596\) −12106.1 −0.832025
\(597\) −16078.6 −1.10227
\(598\) 3040.93 0.207948
\(599\) −10700.3 −0.729888 −0.364944 0.931030i \(-0.618912\pi\)
−0.364944 + 0.931030i \(0.618912\pi\)
\(600\) 0 0
\(601\) −23988.6 −1.62815 −0.814074 0.580761i \(-0.802755\pi\)
−0.814074 + 0.580761i \(0.802755\pi\)
\(602\) 3088.79 0.209119
\(603\) −18380.2 −1.24129
\(604\) −2936.38 −0.197814
\(605\) 0 0
\(606\) 6571.96 0.440541
\(607\) 10243.8 0.684978 0.342489 0.939522i \(-0.388730\pi\)
0.342489 + 0.939522i \(0.388730\pi\)
\(608\) −440.545 −0.0293856
\(609\) 6518.64 0.433742
\(610\) 0 0
\(611\) −8938.12 −0.591813
\(612\) −2071.73 −0.136838
\(613\) −6397.72 −0.421536 −0.210768 0.977536i \(-0.567596\pi\)
−0.210768 + 0.977536i \(0.567596\pi\)
\(614\) 2042.97 0.134279
\(615\) 0 0
\(616\) 4703.99 0.307677
\(617\) −12688.7 −0.827923 −0.413962 0.910294i \(-0.635855\pi\)
−0.413962 + 0.910294i \(0.635855\pi\)
\(618\) 594.365 0.0386875
\(619\) 11955.6 0.776310 0.388155 0.921594i \(-0.373113\pi\)
0.388155 + 0.921594i \(0.373113\pi\)
\(620\) 0 0
\(621\) 3033.50 0.196023
\(622\) 985.701 0.0635418
\(623\) −3986.34 −0.256355
\(624\) 3055.65 0.196032
\(625\) 0 0
\(626\) 3423.94 0.218607
\(627\) −2845.54 −0.181244
\(628\) −2005.82 −0.127454
\(629\) −5688.07 −0.360570
\(630\) 0 0
\(631\) 5947.90 0.375249 0.187625 0.982241i \(-0.439921\pi\)
0.187625 + 0.982241i \(0.439921\pi\)
\(632\) −3202.41 −0.201559
\(633\) −4269.50 −0.268084
\(634\) −1018.34 −0.0637909
\(635\) 0 0
\(636\) −5807.47 −0.362077
\(637\) −18209.7 −1.13265
\(638\) 39287.4 2.43794
\(639\) 15255.8 0.944461
\(640\) 0 0
\(641\) −27171.2 −1.67425 −0.837127 0.547009i \(-0.815766\pi\)
−0.837127 + 0.547009i \(0.815766\pi\)
\(642\) −3509.07 −0.215720
\(643\) 17656.8 1.08292 0.541460 0.840726i \(-0.317872\pi\)
0.541460 + 0.840726i \(0.317872\pi\)
\(644\) −756.092 −0.0462643
\(645\) 0 0
\(646\) −764.483 −0.0465607
\(647\) −8260.17 −0.501917 −0.250959 0.967998i \(-0.580746\pi\)
−0.250959 + 0.967998i \(0.580746\pi\)
\(648\) −981.102 −0.0594773
\(649\) 11587.8 0.700863
\(650\) 0 0
\(651\) 6312.53 0.380043
\(652\) −3905.50 −0.234588
\(653\) 25187.0 1.50941 0.754705 0.656065i \(-0.227780\pi\)
0.754705 + 0.656065i \(0.227780\pi\)
\(654\) 12385.8 0.740553
\(655\) 0 0
\(656\) −1113.43 −0.0662686
\(657\) 20883.5 1.24010
\(658\) 2222.36 0.131667
\(659\) 15212.2 0.899218 0.449609 0.893225i \(-0.351563\pi\)
0.449609 + 0.893225i \(0.351563\pi\)
\(660\) 0 0
\(661\) 3311.16 0.194840 0.0974201 0.995243i \(-0.468941\pi\)
0.0974201 + 0.995243i \(0.468941\pi\)
\(662\) −873.830 −0.0513026
\(663\) 5302.52 0.310608
\(664\) 8904.18 0.520405
\(665\) 0 0
\(666\) −7643.14 −0.444693
\(667\) −6314.84 −0.366584
\(668\) 9727.19 0.563407
\(669\) −18100.4 −1.04604
\(670\) 0 0
\(671\) 7406.68 0.426128
\(672\) −759.754 −0.0436133
\(673\) 6194.51 0.354801 0.177400 0.984139i \(-0.443231\pi\)
0.177400 + 0.984139i \(0.443231\pi\)
\(674\) 20601.2 1.17734
\(675\) 0 0
\(676\) 8692.61 0.494573
\(677\) −16181.4 −0.918613 −0.459307 0.888278i \(-0.651902\pi\)
−0.459307 + 0.888278i \(0.651902\pi\)
\(678\) 3714.08 0.210381
\(679\) 8518.74 0.481471
\(680\) 0 0
\(681\) −14757.0 −0.830379
\(682\) 38045.2 2.13611
\(683\) 3372.91 0.188962 0.0944810 0.995527i \(-0.469881\pi\)
0.0944810 + 0.995527i \(0.469881\pi\)
\(684\) −1027.25 −0.0574237
\(685\) 0 0
\(686\) 10165.5 0.565771
\(687\) 13283.5 0.737699
\(688\) −3006.71 −0.166613
\(689\) −33223.0 −1.83701
\(690\) 0 0
\(691\) 32121.7 1.76841 0.884203 0.467102i \(-0.154702\pi\)
0.884203 + 0.467102i \(0.154702\pi\)
\(692\) 3388.43 0.186140
\(693\) 10968.6 0.601245
\(694\) 108.211 0.00591878
\(695\) 0 0
\(696\) −6345.42 −0.345578
\(697\) −1932.15 −0.105001
\(698\) −19725.5 −1.06966
\(699\) −10822.2 −0.585596
\(700\) 0 0
\(701\) −29151.7 −1.57068 −0.785339 0.619066i \(-0.787511\pi\)
−0.785339 + 0.619066i \(0.787511\pi\)
\(702\) 17437.9 0.937537
\(703\) −2820.38 −0.151312
\(704\) −4578.98 −0.245138
\(705\) 0 0
\(706\) 14795.9 0.788743
\(707\) −9347.94 −0.497264
\(708\) −1871.57 −0.0993476
\(709\) −12848.7 −0.680594 −0.340297 0.940318i \(-0.610528\pi\)
−0.340297 + 0.940318i \(0.610528\pi\)
\(710\) 0 0
\(711\) −7467.27 −0.393874
\(712\) 3880.41 0.204248
\(713\) −6115.17 −0.321199
\(714\) −1318.41 −0.0691041
\(715\) 0 0
\(716\) 16240.1 0.847658
\(717\) 12740.0 0.663576
\(718\) −14224.1 −0.739331
\(719\) 24086.1 1.24932 0.624659 0.780897i \(-0.285238\pi\)
0.624659 + 0.780897i \(0.285238\pi\)
\(720\) 0 0
\(721\) −845.423 −0.0436688
\(722\) 13338.9 0.687568
\(723\) −7936.98 −0.408270
\(724\) −100.829 −0.00517578
\(725\) 0 0
\(726\) −21886.0 −1.11882
\(727\) 23213.1 1.18422 0.592110 0.805857i \(-0.298295\pi\)
0.592110 + 0.805857i \(0.298295\pi\)
\(728\) −4346.36 −0.221273
\(729\) 7999.94 0.406439
\(730\) 0 0
\(731\) −5217.58 −0.263993
\(732\) −1196.27 −0.0604037
\(733\) 9332.21 0.470250 0.235125 0.971965i \(-0.424450\pi\)
0.235125 + 0.971965i \(0.424450\pi\)
\(734\) −21456.0 −1.07896
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −70496.0 −3.52341
\(738\) −2596.26 −0.129498
\(739\) −8372.49 −0.416762 −0.208381 0.978048i \(-0.566819\pi\)
−0.208381 + 0.978048i \(0.566819\pi\)
\(740\) 0 0
\(741\) 2629.20 0.130346
\(742\) 8260.53 0.408698
\(743\) −37771.7 −1.86502 −0.932509 0.361146i \(-0.882386\pi\)
−0.932509 + 0.361146i \(0.882386\pi\)
\(744\) −6144.78 −0.302794
\(745\) 0 0
\(746\) −5038.54 −0.247284
\(747\) 20762.5 1.01695
\(748\) −7945.97 −0.388414
\(749\) 4991.30 0.243495
\(750\) 0 0
\(751\) −16002.6 −0.777556 −0.388778 0.921331i \(-0.627103\pi\)
−0.388778 + 0.921331i \(0.627103\pi\)
\(752\) −2163.31 −0.104904
\(753\) 11513.1 0.557185
\(754\) −36300.5 −1.75330
\(755\) 0 0
\(756\) −4335.74 −0.208584
\(757\) −5717.38 −0.274507 −0.137254 0.990536i \(-0.543828\pi\)
−0.137254 + 0.990536i \(0.543828\pi\)
\(758\) −4958.26 −0.237589
\(759\) 4753.93 0.227348
\(760\) 0 0
\(761\) −2454.12 −0.116901 −0.0584507 0.998290i \(-0.518616\pi\)
−0.0584507 + 0.998290i \(0.518616\pi\)
\(762\) 4736.04 0.225156
\(763\) −17617.5 −0.835905
\(764\) −6415.30 −0.303792
\(765\) 0 0
\(766\) −2620.20 −0.123592
\(767\) −10706.8 −0.504042
\(768\) 739.564 0.0347483
\(769\) −22439.3 −1.05225 −0.526125 0.850407i \(-0.676356\pi\)
−0.526125 + 0.850407i \(0.676356\pi\)
\(770\) 0 0
\(771\) 23106.8 1.07934
\(772\) 11019.6 0.513735
\(773\) 7376.09 0.343208 0.171604 0.985166i \(-0.445105\pi\)
0.171604 + 0.985166i \(0.445105\pi\)
\(774\) −7010.94 −0.325585
\(775\) 0 0
\(776\) −8292.36 −0.383606
\(777\) −4863.96 −0.224574
\(778\) −22394.2 −1.03197
\(779\) −958.041 −0.0440634
\(780\) 0 0
\(781\) 58512.6 2.68085
\(782\) 1277.19 0.0584044
\(783\) −36211.8 −1.65275
\(784\) −4407.33 −0.200771
\(785\) 0 0
\(786\) −10001.1 −0.453850
\(787\) 32539.0 1.47381 0.736906 0.675996i \(-0.236286\pi\)
0.736906 + 0.675996i \(0.236286\pi\)
\(788\) −9625.76 −0.435157
\(789\) −11523.3 −0.519950
\(790\) 0 0
\(791\) −5282.90 −0.237469
\(792\) −10677.1 −0.479034
\(793\) −6843.57 −0.306459
\(794\) 16370.0 0.731676
\(795\) 0 0
\(796\) −22262.4 −0.991295
\(797\) 9137.39 0.406101 0.203051 0.979168i \(-0.434914\pi\)
0.203051 + 0.979168i \(0.434914\pi\)
\(798\) −653.722 −0.0289994
\(799\) −3754.01 −0.166217
\(800\) 0 0
\(801\) 9048.20 0.399129
\(802\) −11558.7 −0.508918
\(803\) 80097.4 3.52002
\(804\) 11386.0 0.499444
\(805\) 0 0
\(806\) −35152.7 −1.53623
\(807\) −16024.2 −0.698982
\(808\) 9099.53 0.396188
\(809\) −38671.2 −1.68060 −0.840302 0.542119i \(-0.817622\pi\)
−0.840302 + 0.542119i \(0.817622\pi\)
\(810\) 0 0
\(811\) 3072.50 0.133033 0.0665166 0.997785i \(-0.478811\pi\)
0.0665166 + 0.997785i \(0.478811\pi\)
\(812\) 9025.71 0.390074
\(813\) 7685.19 0.331527
\(814\) −29314.8 −1.26226
\(815\) 0 0
\(816\) 1283.38 0.0550578
\(817\) −2587.09 −0.110784
\(818\) −22014.5 −0.940979
\(819\) −10134.7 −0.432399
\(820\) 0 0
\(821\) −33710.0 −1.43299 −0.716497 0.697590i \(-0.754256\pi\)
−0.716497 + 0.697590i \(0.754256\pi\)
\(822\) 13785.4 0.584942
\(823\) −23281.5 −0.986078 −0.493039 0.870007i \(-0.664114\pi\)
−0.493039 + 0.870007i \(0.664114\pi\)
\(824\) 822.957 0.0347926
\(825\) 0 0
\(826\) 2662.12 0.112139
\(827\) −4175.78 −0.175582 −0.0877908 0.996139i \(-0.527981\pi\)
−0.0877908 + 0.996139i \(0.527981\pi\)
\(828\) 1716.18 0.0720306
\(829\) −12532.6 −0.525061 −0.262530 0.964924i \(-0.584557\pi\)
−0.262530 + 0.964924i \(0.584557\pi\)
\(830\) 0 0
\(831\) −5074.99 −0.211853
\(832\) 4230.86 0.176296
\(833\) −7648.10 −0.318116
\(834\) −2408.14 −0.0999843
\(835\) 0 0
\(836\) −3939.94 −0.162997
\(837\) −35066.8 −1.44813
\(838\) 7655.52 0.315579
\(839\) −11496.2 −0.473055 −0.236527 0.971625i \(-0.576009\pi\)
−0.236527 + 0.971625i \(0.576009\pi\)
\(840\) 0 0
\(841\) 50993.1 2.09083
\(842\) −13343.3 −0.546127
\(843\) −9063.50 −0.370301
\(844\) −5911.55 −0.241095
\(845\) 0 0
\(846\) −5044.32 −0.204997
\(847\) 31130.6 1.26288
\(848\) −8041.02 −0.325625
\(849\) −23919.6 −0.966926
\(850\) 0 0
\(851\) 4711.89 0.189802
\(852\) −9450.54 −0.380012
\(853\) 18885.9 0.758080 0.379040 0.925380i \(-0.376254\pi\)
0.379040 + 0.925380i \(0.376254\pi\)
\(854\) 1701.58 0.0681812
\(855\) 0 0
\(856\) −4858.66 −0.194002
\(857\) 16127.6 0.642834 0.321417 0.946938i \(-0.395841\pi\)
0.321417 + 0.946938i \(0.395841\pi\)
\(858\) 27327.7 1.08736
\(859\) 27156.2 1.07865 0.539324 0.842098i \(-0.318680\pi\)
0.539324 + 0.842098i \(0.318680\pi\)
\(860\) 0 0
\(861\) −1652.22 −0.0653976
\(862\) −5627.56 −0.222361
\(863\) −335.975 −0.0132523 −0.00662614 0.999978i \(-0.502109\pi\)
−0.00662614 + 0.999978i \(0.502109\pi\)
\(864\) 4220.52 0.166186
\(865\) 0 0
\(866\) −29302.8 −1.14983
\(867\) −11966.2 −0.468736
\(868\) 8740.33 0.341781
\(869\) −28640.2 −1.11801
\(870\) 0 0
\(871\) 65136.4 2.53394
\(872\) 17149.3 0.665996
\(873\) −19335.8 −0.749621
\(874\) 633.283 0.0245093
\(875\) 0 0
\(876\) −12936.8 −0.498964
\(877\) −28305.8 −1.08988 −0.544938 0.838477i \(-0.683447\pi\)
−0.544938 + 0.838477i \(0.683447\pi\)
\(878\) −30043.0 −1.15479
\(879\) −4846.71 −0.185979
\(880\) 0 0
\(881\) 35994.4 1.37648 0.688242 0.725482i \(-0.258383\pi\)
0.688242 + 0.725482i \(0.258383\pi\)
\(882\) −10276.9 −0.392335
\(883\) −3444.45 −0.131274 −0.0656370 0.997844i \(-0.520908\pi\)
−0.0656370 + 0.997844i \(0.520908\pi\)
\(884\) 7341.86 0.279337
\(885\) 0 0
\(886\) 29444.4 1.11648
\(887\) −14360.6 −0.543608 −0.271804 0.962353i \(-0.587620\pi\)
−0.271804 + 0.962353i \(0.587620\pi\)
\(888\) 4734.71 0.178926
\(889\) −6736.53 −0.254146
\(890\) 0 0
\(891\) −8774.32 −0.329911
\(892\) −25061.8 −0.940732
\(893\) −1861.39 −0.0697527
\(894\) 17486.8 0.654192
\(895\) 0 0
\(896\) −1051.95 −0.0392225
\(897\) −4392.50 −0.163502
\(898\) 13908.9 0.516867
\(899\) 72998.7 2.70817
\(900\) 0 0
\(901\) −13953.7 −0.515943
\(902\) −9957.79 −0.367581
\(903\) −4461.64 −0.164423
\(904\) 5142.51 0.189201
\(905\) 0 0
\(906\) 4241.49 0.155534
\(907\) 29262.6 1.07128 0.535638 0.844447i \(-0.320071\pi\)
0.535638 + 0.844447i \(0.320071\pi\)
\(908\) −20432.5 −0.746780
\(909\) 21218.0 0.774208
\(910\) 0 0
\(911\) −17719.2 −0.644415 −0.322207 0.946669i \(-0.604425\pi\)
−0.322207 + 0.946669i \(0.604425\pi\)
\(912\) 636.350 0.0231049
\(913\) 79633.0 2.88660
\(914\) −1822.66 −0.0659609
\(915\) 0 0
\(916\) 18392.4 0.663430
\(917\) 14225.5 0.512287
\(918\) 7323.93 0.263318
\(919\) −19281.9 −0.692112 −0.346056 0.938214i \(-0.612479\pi\)
−0.346056 + 0.938214i \(0.612479\pi\)
\(920\) 0 0
\(921\) −2950.98 −0.105579
\(922\) 11419.2 0.407885
\(923\) −54064.1 −1.92800
\(924\) −6794.73 −0.241916
\(925\) 0 0
\(926\) 11457.3 0.406597
\(927\) 1918.94 0.0679896
\(928\) −8785.86 −0.310787
\(929\) 16260.8 0.574274 0.287137 0.957889i \(-0.407296\pi\)
0.287137 + 0.957889i \(0.407296\pi\)
\(930\) 0 0
\(931\) −3792.24 −0.133497
\(932\) −14984.3 −0.526640
\(933\) −1423.81 −0.0499607
\(934\) −8935.76 −0.313048
\(935\) 0 0
\(936\) 9865.37 0.344508
\(937\) 26752.5 0.932729 0.466365 0.884593i \(-0.345563\pi\)
0.466365 + 0.884593i \(0.345563\pi\)
\(938\) −16195.4 −0.563752
\(939\) −4945.75 −0.171883
\(940\) 0 0
\(941\) −11735.8 −0.406563 −0.203281 0.979120i \(-0.565161\pi\)
−0.203281 + 0.979120i \(0.565161\pi\)
\(942\) 2897.33 0.100212
\(943\) 1600.56 0.0552719
\(944\) −2591.38 −0.0893456
\(945\) 0 0
\(946\) −26890.0 −0.924174
\(947\) −28051.3 −0.962559 −0.481279 0.876567i \(-0.659828\pi\)
−0.481279 + 0.876567i \(0.659828\pi\)
\(948\) 4625.76 0.158479
\(949\) −74007.8 −2.53150
\(950\) 0 0
\(951\) 1470.95 0.0501566
\(952\) −1825.47 −0.0621469
\(953\) 3824.07 0.129983 0.0649915 0.997886i \(-0.479298\pi\)
0.0649915 + 0.997886i \(0.479298\pi\)
\(954\) −18749.8 −0.636317
\(955\) 0 0
\(956\) 17639.8 0.596770
\(957\) −56749.1 −1.91686
\(958\) −14492.6 −0.488763
\(959\) −19608.4 −0.660258
\(960\) 0 0
\(961\) 40899.6 1.37288
\(962\) 27086.0 0.907785
\(963\) −11329.3 −0.379107
\(964\) −10989.5 −0.367167
\(965\) 0 0
\(966\) 1092.15 0.0363760
\(967\) −23862.2 −0.793545 −0.396773 0.917917i \(-0.629870\pi\)
−0.396773 + 0.917917i \(0.629870\pi\)
\(968\) −30303.4 −1.00618
\(969\) 1104.27 0.0366090
\(970\) 0 0
\(971\) 9788.89 0.323523 0.161761 0.986830i \(-0.448283\pi\)
0.161761 + 0.986830i \(0.448283\pi\)
\(972\) 15661.4 0.516811
\(973\) 3425.33 0.112858
\(974\) −18725.0 −0.616005
\(975\) 0 0
\(976\) −1656.36 −0.0543225
\(977\) 315.225 0.0103224 0.00516118 0.999987i \(-0.498357\pi\)
0.00516118 + 0.999987i \(0.498357\pi\)
\(978\) 5641.34 0.184448
\(979\) 34703.8 1.13293
\(980\) 0 0
\(981\) 39988.2 1.30145
\(982\) −20441.0 −0.664257
\(983\) 5713.93 0.185398 0.0926988 0.995694i \(-0.470451\pi\)
0.0926988 + 0.995694i \(0.470451\pi\)
\(984\) 1608.31 0.0521047
\(985\) 0 0
\(986\) −15246.2 −0.492433
\(987\) −3210.12 −0.103525
\(988\) 3640.39 0.117223
\(989\) 4322.14 0.138965
\(990\) 0 0
\(991\) −32110.3 −1.02928 −0.514641 0.857406i \(-0.672075\pi\)
−0.514641 + 0.857406i \(0.672075\pi\)
\(992\) −8508.06 −0.272310
\(993\) 1262.21 0.0403375
\(994\) 13442.4 0.428941
\(995\) 0 0
\(996\) −12861.7 −0.409177
\(997\) −28704.5 −0.911817 −0.455909 0.890027i \(-0.650686\pi\)
−0.455909 + 0.890027i \(0.650686\pi\)
\(998\) −20927.0 −0.663760
\(999\) 27019.9 0.855726
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.a.q.1.4 5
5.2 odd 4 1150.4.b.r.599.2 10
5.3 odd 4 1150.4.b.r.599.9 10
5.4 even 2 1150.4.a.v.1.2 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1150.4.a.q.1.4 5 1.1 even 1 trivial
1150.4.a.v.1.2 yes 5 5.4 even 2
1150.4.b.r.599.2 10 5.2 odd 4
1150.4.b.r.599.9 10 5.3 odd 4