Properties

Label 1150.4.a.q.1.2
Level $1150$
Weight $4$
Character 1150.1
Self dual yes
Analytic conductor $67.852$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(1,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 107x^{3} - 3x^{2} + 2151x - 2916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-6.21006\) of defining polynomial
Character \(\chi\) \(=\) 1150.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -7.21006 q^{3} +4.00000 q^{4} +14.4201 q^{6} -19.8879 q^{7} -8.00000 q^{8} +24.9850 q^{9} -31.0553 q^{11} -28.8402 q^{12} -7.15563 q^{13} +39.7757 q^{14} +16.0000 q^{16} -40.8326 q^{17} -49.9699 q^{18} +144.948 q^{19} +143.393 q^{21} +62.1106 q^{22} -23.0000 q^{23} +57.6805 q^{24} +14.3113 q^{26} +14.5286 q^{27} -79.5515 q^{28} -189.113 q^{29} +41.6222 q^{31} -32.0000 q^{32} +223.910 q^{33} +81.6652 q^{34} +99.9398 q^{36} -37.3828 q^{37} -289.896 q^{38} +51.5925 q^{39} +401.324 q^{41} -286.785 q^{42} -29.2550 q^{43} -124.221 q^{44} +46.0000 q^{46} -18.0210 q^{47} -115.361 q^{48} +52.5274 q^{49} +294.405 q^{51} -28.6225 q^{52} -214.024 q^{53} -29.0572 q^{54} +159.103 q^{56} -1045.08 q^{57} +378.226 q^{58} +313.495 q^{59} +452.293 q^{61} -83.2444 q^{62} -496.898 q^{63} +64.0000 q^{64} -447.821 q^{66} +858.562 q^{67} -163.330 q^{68} +165.831 q^{69} +451.196 q^{71} -199.880 q^{72} +742.705 q^{73} +74.7656 q^{74} +579.792 q^{76} +617.623 q^{77} -103.185 q^{78} +126.369 q^{79} -779.346 q^{81} -802.649 q^{82} +473.737 q^{83} +573.571 q^{84} +58.5100 q^{86} +1363.52 q^{87} +248.442 q^{88} -109.465 q^{89} +142.310 q^{91} -92.0000 q^{92} -300.099 q^{93} +36.0420 q^{94} +230.722 q^{96} +711.495 q^{97} -105.055 q^{98} -775.915 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 10 q^{2} - 5 q^{3} + 20 q^{4} + 10 q^{6} + 3 q^{7} - 40 q^{8} + 84 q^{9} - 26 q^{11} - 20 q^{12} + 61 q^{13} - 6 q^{14} + 80 q^{16} - 231 q^{17} - 168 q^{18} + 74 q^{19} - 88 q^{21} + 52 q^{22} - 115 q^{23}+ \cdots + 2397 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −7.21006 −1.38758 −0.693788 0.720179i \(-0.744060\pi\)
−0.693788 + 0.720179i \(0.744060\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 14.4201 0.981165
\(7\) −19.8879 −1.07384 −0.536922 0.843632i \(-0.680413\pi\)
−0.536922 + 0.843632i \(0.680413\pi\)
\(8\) −8.00000 −0.353553
\(9\) 24.9850 0.925369
\(10\) 0 0
\(11\) −31.0553 −0.851229 −0.425614 0.904905i \(-0.639942\pi\)
−0.425614 + 0.904905i \(0.639942\pi\)
\(12\) −28.8402 −0.693788
\(13\) −7.15563 −0.152663 −0.0763313 0.997083i \(-0.524321\pi\)
−0.0763313 + 0.997083i \(0.524321\pi\)
\(14\) 39.7757 0.759322
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −40.8326 −0.582551 −0.291275 0.956639i \(-0.594080\pi\)
−0.291275 + 0.956639i \(0.594080\pi\)
\(18\) −49.9699 −0.654335
\(19\) 144.948 1.75018 0.875089 0.483962i \(-0.160803\pi\)
0.875089 + 0.483962i \(0.160803\pi\)
\(20\) 0 0
\(21\) 143.393 1.49004
\(22\) 62.1106 0.601910
\(23\) −23.0000 −0.208514
\(24\) 57.6805 0.490582
\(25\) 0 0
\(26\) 14.3113 0.107949
\(27\) 14.5286 0.103557
\(28\) −79.5515 −0.536922
\(29\) −189.113 −1.21094 −0.605472 0.795866i \(-0.707016\pi\)
−0.605472 + 0.795866i \(0.707016\pi\)
\(30\) 0 0
\(31\) 41.6222 0.241147 0.120574 0.992704i \(-0.461527\pi\)
0.120574 + 0.992704i \(0.461527\pi\)
\(32\) −32.0000 −0.176777
\(33\) 223.910 1.18115
\(34\) 81.6652 0.411925
\(35\) 0 0
\(36\) 99.9398 0.462684
\(37\) −37.3828 −0.166100 −0.0830500 0.996545i \(-0.526466\pi\)
−0.0830500 + 0.996545i \(0.526466\pi\)
\(38\) −289.896 −1.23756
\(39\) 51.5925 0.211831
\(40\) 0 0
\(41\) 401.324 1.52869 0.764345 0.644807i \(-0.223062\pi\)
0.764345 + 0.644807i \(0.223062\pi\)
\(42\) −286.785 −1.05362
\(43\) −29.2550 −0.103752 −0.0518761 0.998654i \(-0.516520\pi\)
−0.0518761 + 0.998654i \(0.516520\pi\)
\(44\) −124.221 −0.425614
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) −18.0210 −0.0559284 −0.0279642 0.999609i \(-0.508902\pi\)
−0.0279642 + 0.999609i \(0.508902\pi\)
\(48\) −115.361 −0.346894
\(49\) 52.5274 0.153141
\(50\) 0 0
\(51\) 294.405 0.808333
\(52\) −28.6225 −0.0763313
\(53\) −214.024 −0.554689 −0.277344 0.960771i \(-0.589454\pi\)
−0.277344 + 0.960771i \(0.589454\pi\)
\(54\) −29.0572 −0.0732256
\(55\) 0 0
\(56\) 159.103 0.379661
\(57\) −1045.08 −2.42851
\(58\) 378.226 0.856267
\(59\) 313.495 0.691754 0.345877 0.938280i \(-0.387581\pi\)
0.345877 + 0.938280i \(0.387581\pi\)
\(60\) 0 0
\(61\) 452.293 0.949347 0.474674 0.880162i \(-0.342566\pi\)
0.474674 + 0.880162i \(0.342566\pi\)
\(62\) −83.2444 −0.170517
\(63\) −496.898 −0.993702
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −447.821 −0.835196
\(67\) 858.562 1.56552 0.782761 0.622322i \(-0.213811\pi\)
0.782761 + 0.622322i \(0.213811\pi\)
\(68\) −163.330 −0.291275
\(69\) 165.831 0.289330
\(70\) 0 0
\(71\) 451.196 0.754185 0.377093 0.926176i \(-0.376924\pi\)
0.377093 + 0.926176i \(0.376924\pi\)
\(72\) −199.880 −0.327167
\(73\) 742.705 1.19078 0.595390 0.803437i \(-0.296997\pi\)
0.595390 + 0.803437i \(0.296997\pi\)
\(74\) 74.7656 0.117450
\(75\) 0 0
\(76\) 579.792 0.875089
\(77\) 617.623 0.914087
\(78\) −103.185 −0.149787
\(79\) 126.369 0.179970 0.0899851 0.995943i \(-0.471318\pi\)
0.0899851 + 0.995943i \(0.471318\pi\)
\(80\) 0 0
\(81\) −779.346 −1.06906
\(82\) −802.649 −1.08095
\(83\) 473.737 0.626499 0.313249 0.949671i \(-0.398582\pi\)
0.313249 + 0.949671i \(0.398582\pi\)
\(84\) 573.571 0.745020
\(85\) 0 0
\(86\) 58.5100 0.0733639
\(87\) 1363.52 1.68028
\(88\) 248.442 0.300955
\(89\) −109.465 −0.130374 −0.0651869 0.997873i \(-0.520764\pi\)
−0.0651869 + 0.997873i \(0.520764\pi\)
\(90\) 0 0
\(91\) 142.310 0.163936
\(92\) −92.0000 −0.104257
\(93\) −300.099 −0.334610
\(94\) 36.0420 0.0395473
\(95\) 0 0
\(96\) 230.722 0.245291
\(97\) 711.495 0.744756 0.372378 0.928081i \(-0.378542\pi\)
0.372378 + 0.928081i \(0.378542\pi\)
\(98\) −105.055 −0.108287
\(99\) −775.915 −0.787701
\(100\) 0 0
\(101\) 910.988 0.897492 0.448746 0.893659i \(-0.351871\pi\)
0.448746 + 0.893659i \(0.351871\pi\)
\(102\) −588.811 −0.571578
\(103\) 199.834 0.191167 0.0955834 0.995421i \(-0.469528\pi\)
0.0955834 + 0.995421i \(0.469528\pi\)
\(104\) 57.2450 0.0539744
\(105\) 0 0
\(106\) 428.049 0.392224
\(107\) −1574.87 −1.42288 −0.711440 0.702746i \(-0.751957\pi\)
−0.711440 + 0.702746i \(0.751957\pi\)
\(108\) 58.1144 0.0517783
\(109\) −1530.65 −1.34504 −0.672522 0.740077i \(-0.734789\pi\)
−0.672522 + 0.740077i \(0.734789\pi\)
\(110\) 0 0
\(111\) 269.532 0.230476
\(112\) −318.206 −0.268461
\(113\) −1352.39 −1.12586 −0.562930 0.826505i \(-0.690326\pi\)
−0.562930 + 0.826505i \(0.690326\pi\)
\(114\) 2090.17 1.71721
\(115\) 0 0
\(116\) −756.452 −0.605472
\(117\) −178.783 −0.141269
\(118\) −626.989 −0.489144
\(119\) 812.073 0.625568
\(120\) 0 0
\(121\) −366.570 −0.275409
\(122\) −904.586 −0.671290
\(123\) −2893.57 −2.12118
\(124\) 166.489 0.120574
\(125\) 0 0
\(126\) 993.795 0.702653
\(127\) 1552.32 1.08461 0.542307 0.840180i \(-0.317551\pi\)
0.542307 + 0.840180i \(0.317551\pi\)
\(128\) −128.000 −0.0883883
\(129\) 210.930 0.143964
\(130\) 0 0
\(131\) 416.739 0.277944 0.138972 0.990296i \(-0.455620\pi\)
0.138972 + 0.990296i \(0.455620\pi\)
\(132\) 895.642 0.590573
\(133\) −2882.71 −1.87942
\(134\) −1717.12 −1.10699
\(135\) 0 0
\(136\) 326.661 0.205963
\(137\) 803.363 0.500992 0.250496 0.968118i \(-0.419406\pi\)
0.250496 + 0.968118i \(0.419406\pi\)
\(138\) −331.663 −0.204587
\(139\) −1838.71 −1.12200 −0.560998 0.827817i \(-0.689582\pi\)
−0.560998 + 0.827817i \(0.689582\pi\)
\(140\) 0 0
\(141\) 129.932 0.0776049
\(142\) −902.393 −0.533289
\(143\) 222.220 0.129951
\(144\) 399.759 0.231342
\(145\) 0 0
\(146\) −1485.41 −0.842009
\(147\) −378.726 −0.212495
\(148\) −149.531 −0.0830500
\(149\) −2083.27 −1.14542 −0.572711 0.819757i \(-0.694108\pi\)
−0.572711 + 0.819757i \(0.694108\pi\)
\(150\) 0 0
\(151\) 2370.61 1.27760 0.638799 0.769374i \(-0.279432\pi\)
0.638799 + 0.769374i \(0.279432\pi\)
\(152\) −1159.58 −0.618781
\(153\) −1020.20 −0.539074
\(154\) −1235.25 −0.646357
\(155\) 0 0
\(156\) 206.370 0.105916
\(157\) 2855.47 1.45153 0.725767 0.687940i \(-0.241485\pi\)
0.725767 + 0.687940i \(0.241485\pi\)
\(158\) −252.738 −0.127258
\(159\) 1543.13 0.769673
\(160\) 0 0
\(161\) 457.421 0.223912
\(162\) 1558.69 0.755941
\(163\) −1719.64 −0.826335 −0.413167 0.910655i \(-0.635578\pi\)
−0.413167 + 0.910655i \(0.635578\pi\)
\(164\) 1605.30 0.764345
\(165\) 0 0
\(166\) −947.474 −0.443001
\(167\) 2346.02 1.08707 0.543535 0.839387i \(-0.317086\pi\)
0.543535 + 0.839387i \(0.317086\pi\)
\(168\) −1147.14 −0.526809
\(169\) −2145.80 −0.976694
\(170\) 0 0
\(171\) 3621.52 1.61956
\(172\) −117.020 −0.0518761
\(173\) −3242.07 −1.42480 −0.712398 0.701776i \(-0.752391\pi\)
−0.712398 + 0.701776i \(0.752391\pi\)
\(174\) −2727.03 −1.18814
\(175\) 0 0
\(176\) −496.884 −0.212807
\(177\) −2260.31 −0.959862
\(178\) 218.930 0.0921881
\(179\) −1249.56 −0.521768 −0.260884 0.965370i \(-0.584014\pi\)
−0.260884 + 0.965370i \(0.584014\pi\)
\(180\) 0 0
\(181\) −1369.10 −0.562236 −0.281118 0.959673i \(-0.590705\pi\)
−0.281118 + 0.959673i \(0.590705\pi\)
\(182\) −284.620 −0.115920
\(183\) −3261.06 −1.31729
\(184\) 184.000 0.0737210
\(185\) 0 0
\(186\) 600.197 0.236605
\(187\) 1268.07 0.495884
\(188\) −72.0840 −0.0279642
\(189\) −288.943 −0.111204
\(190\) 0 0
\(191\) 394.212 0.149341 0.0746706 0.997208i \(-0.476209\pi\)
0.0746706 + 0.997208i \(0.476209\pi\)
\(192\) −461.444 −0.173447
\(193\) −3700.44 −1.38012 −0.690060 0.723752i \(-0.742416\pi\)
−0.690060 + 0.723752i \(0.742416\pi\)
\(194\) −1422.99 −0.526622
\(195\) 0 0
\(196\) 210.110 0.0765706
\(197\) −1211.64 −0.438200 −0.219100 0.975702i \(-0.570312\pi\)
−0.219100 + 0.975702i \(0.570312\pi\)
\(198\) 1551.83 0.556988
\(199\) −5141.99 −1.83169 −0.915845 0.401532i \(-0.868478\pi\)
−0.915845 + 0.401532i \(0.868478\pi\)
\(200\) 0 0
\(201\) −6190.28 −2.17228
\(202\) −1821.98 −0.634622
\(203\) 3761.05 1.30037
\(204\) 1177.62 0.404167
\(205\) 0 0
\(206\) −399.667 −0.135175
\(207\) −574.654 −0.192953
\(208\) −114.490 −0.0381657
\(209\) −4501.40 −1.48980
\(210\) 0 0
\(211\) −2390.46 −0.779932 −0.389966 0.920829i \(-0.627513\pi\)
−0.389966 + 0.920829i \(0.627513\pi\)
\(212\) −856.097 −0.277344
\(213\) −3253.15 −1.04649
\(214\) 3149.74 1.00613
\(215\) 0 0
\(216\) −116.229 −0.0366128
\(217\) −827.777 −0.258955
\(218\) 3061.30 0.951090
\(219\) −5354.94 −1.65230
\(220\) 0 0
\(221\) 292.183 0.0889337
\(222\) −539.065 −0.162971
\(223\) 313.417 0.0941164 0.0470582 0.998892i \(-0.485015\pi\)
0.0470582 + 0.998892i \(0.485015\pi\)
\(224\) 636.412 0.189831
\(225\) 0 0
\(226\) 2704.78 0.796103
\(227\) 778.016 0.227483 0.113742 0.993510i \(-0.463716\pi\)
0.113742 + 0.993510i \(0.463716\pi\)
\(228\) −4180.34 −1.21425
\(229\) 280.476 0.0809360 0.0404680 0.999181i \(-0.487115\pi\)
0.0404680 + 0.999181i \(0.487115\pi\)
\(230\) 0 0
\(231\) −4453.10 −1.26837
\(232\) 1512.90 0.428134
\(233\) −1284.93 −0.361283 −0.180641 0.983549i \(-0.557817\pi\)
−0.180641 + 0.983549i \(0.557817\pi\)
\(234\) 357.566 0.0998924
\(235\) 0 0
\(236\) 1253.98 0.345877
\(237\) −911.130 −0.249722
\(238\) −1624.15 −0.442344
\(239\) 3726.71 1.00862 0.504311 0.863522i \(-0.331747\pi\)
0.504311 + 0.863522i \(0.331747\pi\)
\(240\) 0 0
\(241\) −3089.79 −0.825854 −0.412927 0.910764i \(-0.635493\pi\)
−0.412927 + 0.910764i \(0.635493\pi\)
\(242\) 733.140 0.194744
\(243\) 5226.86 1.37985
\(244\) 1809.17 0.474674
\(245\) 0 0
\(246\) 5787.14 1.49990
\(247\) −1037.19 −0.267187
\(248\) −332.978 −0.0852585
\(249\) −3415.67 −0.869315
\(250\) 0 0
\(251\) 1139.61 0.286580 0.143290 0.989681i \(-0.454232\pi\)
0.143290 + 0.989681i \(0.454232\pi\)
\(252\) −1987.59 −0.496851
\(253\) 714.271 0.177493
\(254\) −3104.64 −0.766939
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −8186.05 −1.98689 −0.993447 0.114289i \(-0.963541\pi\)
−0.993447 + 0.114289i \(0.963541\pi\)
\(258\) −421.860 −0.101798
\(259\) 743.465 0.178365
\(260\) 0 0
\(261\) −4724.98 −1.12057
\(262\) −833.478 −0.196536
\(263\) 5077.03 1.19035 0.595177 0.803595i \(-0.297082\pi\)
0.595177 + 0.803595i \(0.297082\pi\)
\(264\) −1791.28 −0.417598
\(265\) 0 0
\(266\) 5765.42 1.32895
\(267\) 789.249 0.180904
\(268\) 3434.25 0.782761
\(269\) 4729.95 1.07208 0.536041 0.844192i \(-0.319919\pi\)
0.536041 + 0.844192i \(0.319919\pi\)
\(270\) 0 0
\(271\) −4388.84 −0.983774 −0.491887 0.870659i \(-0.663693\pi\)
−0.491887 + 0.870659i \(0.663693\pi\)
\(272\) −653.322 −0.145638
\(273\) −1026.07 −0.227474
\(274\) −1606.73 −0.354255
\(275\) 0 0
\(276\) 663.325 0.144665
\(277\) −3382.55 −0.733709 −0.366855 0.930278i \(-0.619565\pi\)
−0.366855 + 0.930278i \(0.619565\pi\)
\(278\) 3677.42 0.793370
\(279\) 1039.93 0.223150
\(280\) 0 0
\(281\) 3328.66 0.706660 0.353330 0.935499i \(-0.385049\pi\)
0.353330 + 0.935499i \(0.385049\pi\)
\(282\) −259.865 −0.0548749
\(283\) 8202.56 1.72294 0.861469 0.507810i \(-0.169545\pi\)
0.861469 + 0.507810i \(0.169545\pi\)
\(284\) 1804.79 0.377093
\(285\) 0 0
\(286\) −444.440 −0.0918891
\(287\) −7981.49 −1.64158
\(288\) −799.519 −0.163584
\(289\) −3245.70 −0.660635
\(290\) 0 0
\(291\) −5129.92 −1.03341
\(292\) 2970.82 0.595390
\(293\) −5893.87 −1.17517 −0.587583 0.809164i \(-0.699921\pi\)
−0.587583 + 0.809164i \(0.699921\pi\)
\(294\) 757.451 0.150257
\(295\) 0 0
\(296\) 299.063 0.0587252
\(297\) −451.189 −0.0881504
\(298\) 4166.54 0.809936
\(299\) 164.579 0.0318324
\(300\) 0 0
\(301\) 581.819 0.111414
\(302\) −4741.21 −0.903398
\(303\) −6568.27 −1.24534
\(304\) 2319.17 0.437544
\(305\) 0 0
\(306\) 2040.40 0.381183
\(307\) −378.111 −0.0702930 −0.0351465 0.999382i \(-0.511190\pi\)
−0.0351465 + 0.999382i \(0.511190\pi\)
\(308\) 2470.49 0.457044
\(309\) −1440.81 −0.265259
\(310\) 0 0
\(311\) −5368.01 −0.978752 −0.489376 0.872073i \(-0.662775\pi\)
−0.489376 + 0.872073i \(0.662775\pi\)
\(312\) −412.740 −0.0748936
\(313\) −331.040 −0.0597810 −0.0298905 0.999553i \(-0.509516\pi\)
−0.0298905 + 0.999553i \(0.509516\pi\)
\(314\) −5710.93 −1.02639
\(315\) 0 0
\(316\) 505.477 0.0899851
\(317\) 7028.20 1.24525 0.622623 0.782522i \(-0.286067\pi\)
0.622623 + 0.782522i \(0.286067\pi\)
\(318\) −3086.26 −0.544241
\(319\) 5872.95 1.03079
\(320\) 0 0
\(321\) 11354.9 1.97436
\(322\) −914.842 −0.158330
\(323\) −5918.61 −1.01957
\(324\) −3117.38 −0.534531
\(325\) 0 0
\(326\) 3439.28 0.584307
\(327\) 11036.1 1.86635
\(328\) −3210.59 −0.540474
\(329\) 358.399 0.0600583
\(330\) 0 0
\(331\) 446.633 0.0741667 0.0370833 0.999312i \(-0.488193\pi\)
0.0370833 + 0.999312i \(0.488193\pi\)
\(332\) 1894.95 0.313249
\(333\) −934.008 −0.153704
\(334\) −4692.04 −0.768674
\(335\) 0 0
\(336\) 2294.28 0.372510
\(337\) −9601.38 −1.55199 −0.775995 0.630739i \(-0.782752\pi\)
−0.775995 + 0.630739i \(0.782752\pi\)
\(338\) 4291.59 0.690627
\(339\) 9750.82 1.56222
\(340\) 0 0
\(341\) −1292.59 −0.205272
\(342\) −7243.04 −1.14520
\(343\) 5776.88 0.909394
\(344\) 234.040 0.0366819
\(345\) 0 0
\(346\) 6484.13 1.00748
\(347\) −1757.75 −0.271934 −0.135967 0.990713i \(-0.543414\pi\)
−0.135967 + 0.990713i \(0.543414\pi\)
\(348\) 5454.06 0.840139
\(349\) 2119.93 0.325150 0.162575 0.986696i \(-0.448020\pi\)
0.162575 + 0.986696i \(0.448020\pi\)
\(350\) 0 0
\(351\) −103.961 −0.0158092
\(352\) 993.769 0.150477
\(353\) 6770.14 1.02079 0.510394 0.859940i \(-0.329499\pi\)
0.510394 + 0.859940i \(0.329499\pi\)
\(354\) 4520.63 0.678725
\(355\) 0 0
\(356\) −437.860 −0.0651869
\(357\) −5855.10 −0.868024
\(358\) 2499.12 0.368946
\(359\) −5360.80 −0.788112 −0.394056 0.919086i \(-0.628928\pi\)
−0.394056 + 0.919086i \(0.628928\pi\)
\(360\) 0 0
\(361\) 14151.0 2.06312
\(362\) 2738.21 0.397561
\(363\) 2642.99 0.382152
\(364\) 569.241 0.0819679
\(365\) 0 0
\(366\) 6522.12 0.931466
\(367\) 9655.69 1.37336 0.686680 0.726960i \(-0.259068\pi\)
0.686680 + 0.726960i \(0.259068\pi\)
\(368\) −368.000 −0.0521286
\(369\) 10027.1 1.41460
\(370\) 0 0
\(371\) 4256.49 0.595649
\(372\) −1200.39 −0.167305
\(373\) 3035.77 0.421411 0.210705 0.977550i \(-0.432424\pi\)
0.210705 + 0.977550i \(0.432424\pi\)
\(374\) −2536.13 −0.350643
\(375\) 0 0
\(376\) 144.168 0.0197737
\(377\) 1353.22 0.184866
\(378\) 577.885 0.0786328
\(379\) 395.166 0.0535576 0.0267788 0.999641i \(-0.491475\pi\)
0.0267788 + 0.999641i \(0.491475\pi\)
\(380\) 0 0
\(381\) −11192.3 −1.50499
\(382\) −788.423 −0.105600
\(383\) −10699.6 −1.42748 −0.713740 0.700410i \(-0.753000\pi\)
−0.713740 + 0.700410i \(0.753000\pi\)
\(384\) 922.888 0.122646
\(385\) 0 0
\(386\) 7400.87 0.975892
\(387\) −730.935 −0.0960090
\(388\) 2845.98 0.372378
\(389\) −1598.78 −0.208384 −0.104192 0.994557i \(-0.533226\pi\)
−0.104192 + 0.994557i \(0.533226\pi\)
\(390\) 0 0
\(391\) 939.150 0.121470
\(392\) −420.219 −0.0541436
\(393\) −3004.71 −0.385669
\(394\) 2423.27 0.309855
\(395\) 0 0
\(396\) −3103.66 −0.393850
\(397\) 7841.03 0.991260 0.495630 0.868534i \(-0.334937\pi\)
0.495630 + 0.868534i \(0.334937\pi\)
\(398\) 10284.0 1.29520
\(399\) 20784.5 2.60784
\(400\) 0 0
\(401\) −11218.9 −1.39712 −0.698562 0.715550i \(-0.746176\pi\)
−0.698562 + 0.715550i \(0.746176\pi\)
\(402\) 12380.6 1.53604
\(403\) −297.833 −0.0368142
\(404\) 3643.95 0.448746
\(405\) 0 0
\(406\) −7522.11 −0.919497
\(407\) 1160.93 0.141389
\(408\) −2355.24 −0.285789
\(409\) −3978.47 −0.480985 −0.240492 0.970651i \(-0.577309\pi\)
−0.240492 + 0.970651i \(0.577309\pi\)
\(410\) 0 0
\(411\) −5792.29 −0.695165
\(412\) 799.334 0.0955834
\(413\) −6234.74 −0.742836
\(414\) 1149.31 0.136438
\(415\) 0 0
\(416\) 228.980 0.0269872
\(417\) 13257.2 1.55685
\(418\) 9002.81 1.05345
\(419\) −10561.2 −1.23138 −0.615692 0.787987i \(-0.711124\pi\)
−0.615692 + 0.787987i \(0.711124\pi\)
\(420\) 0 0
\(421\) 9325.67 1.07958 0.539792 0.841798i \(-0.318503\pi\)
0.539792 + 0.841798i \(0.318503\pi\)
\(422\) 4780.91 0.551495
\(423\) −450.254 −0.0517543
\(424\) 1712.19 0.196112
\(425\) 0 0
\(426\) 6506.30 0.739980
\(427\) −8995.15 −1.01945
\(428\) −6299.47 −0.711440
\(429\) −1602.22 −0.180317
\(430\) 0 0
\(431\) −4826.62 −0.539420 −0.269710 0.962942i \(-0.586928\pi\)
−0.269710 + 0.962942i \(0.586928\pi\)
\(432\) 232.457 0.0258891
\(433\) 13581.4 1.50735 0.753674 0.657248i \(-0.228280\pi\)
0.753674 + 0.657248i \(0.228280\pi\)
\(434\) 1655.55 0.183109
\(435\) 0 0
\(436\) −6122.61 −0.672522
\(437\) −3333.81 −0.364937
\(438\) 10709.9 1.16835
\(439\) −3991.11 −0.433907 −0.216953 0.976182i \(-0.569612\pi\)
−0.216953 + 0.976182i \(0.569612\pi\)
\(440\) 0 0
\(441\) 1312.39 0.141712
\(442\) −584.366 −0.0628856
\(443\) 749.024 0.0803322 0.0401661 0.999193i \(-0.487211\pi\)
0.0401661 + 0.999193i \(0.487211\pi\)
\(444\) 1078.13 0.115238
\(445\) 0 0
\(446\) −626.834 −0.0665504
\(447\) 15020.5 1.58936
\(448\) −1272.82 −0.134231
\(449\) −7842.42 −0.824291 −0.412146 0.911118i \(-0.635221\pi\)
−0.412146 + 0.911118i \(0.635221\pi\)
\(450\) 0 0
\(451\) −12463.2 −1.30127
\(452\) −5409.56 −0.562930
\(453\) −17092.2 −1.77276
\(454\) −1556.03 −0.160855
\(455\) 0 0
\(456\) 8360.68 0.858606
\(457\) −11131.4 −1.13939 −0.569697 0.821855i \(-0.692940\pi\)
−0.569697 + 0.821855i \(0.692940\pi\)
\(458\) −560.951 −0.0572304
\(459\) −593.240 −0.0603270
\(460\) 0 0
\(461\) 11089.8 1.12039 0.560197 0.828359i \(-0.310725\pi\)
0.560197 + 0.828359i \(0.310725\pi\)
\(462\) 8906.20 0.896870
\(463\) 11853.1 1.18977 0.594883 0.803812i \(-0.297198\pi\)
0.594883 + 0.803812i \(0.297198\pi\)
\(464\) −3025.81 −0.302736
\(465\) 0 0
\(466\) 2569.87 0.255465
\(467\) 13.9804 0.00138530 0.000692650 1.00000i \(-0.499780\pi\)
0.000692650 1.00000i \(0.499780\pi\)
\(468\) −715.132 −0.0706346
\(469\) −17075.0 −1.68113
\(470\) 0 0
\(471\) −20588.1 −2.01412
\(472\) −2507.96 −0.244572
\(473\) 908.522 0.0883168
\(474\) 1822.26 0.176580
\(475\) 0 0
\(476\) 3248.29 0.312784
\(477\) −5347.39 −0.513292
\(478\) −7453.41 −0.713203
\(479\) 3710.42 0.353932 0.176966 0.984217i \(-0.443372\pi\)
0.176966 + 0.984217i \(0.443372\pi\)
\(480\) 0 0
\(481\) 267.498 0.0253572
\(482\) 6179.58 0.583967
\(483\) −3298.03 −0.310695
\(484\) −1466.28 −0.137705
\(485\) 0 0
\(486\) −10453.7 −0.975700
\(487\) 6095.23 0.567148 0.283574 0.958950i \(-0.408480\pi\)
0.283574 + 0.958950i \(0.408480\pi\)
\(488\) −3618.34 −0.335645
\(489\) 12398.7 1.14660
\(490\) 0 0
\(491\) 1517.73 0.139500 0.0697499 0.997565i \(-0.477780\pi\)
0.0697499 + 0.997565i \(0.477780\pi\)
\(492\) −11574.3 −1.06059
\(493\) 7721.97 0.705436
\(494\) 2074.39 0.188930
\(495\) 0 0
\(496\) 665.955 0.0602868
\(497\) −8973.33 −0.809877
\(498\) 6831.34 0.614698
\(499\) 7433.49 0.666871 0.333435 0.942773i \(-0.391792\pi\)
0.333435 + 0.942773i \(0.391792\pi\)
\(500\) 0 0
\(501\) −16915.0 −1.50839
\(502\) −2279.22 −0.202643
\(503\) 3281.58 0.290891 0.145446 0.989366i \(-0.453538\pi\)
0.145446 + 0.989366i \(0.453538\pi\)
\(504\) 3975.18 0.351327
\(505\) 0 0
\(506\) −1428.54 −0.125507
\(507\) 15471.3 1.35524
\(508\) 6209.28 0.542307
\(509\) −16218.6 −1.41233 −0.706165 0.708048i \(-0.749576\pi\)
−0.706165 + 0.708048i \(0.749576\pi\)
\(510\) 0 0
\(511\) −14770.8 −1.27871
\(512\) −512.000 −0.0441942
\(513\) 2105.89 0.181242
\(514\) 16372.1 1.40495
\(515\) 0 0
\(516\) 843.721 0.0719820
\(517\) 559.647 0.0476078
\(518\) −1486.93 −0.126123
\(519\) 23375.5 1.97701
\(520\) 0 0
\(521\) −18519.3 −1.55729 −0.778644 0.627466i \(-0.784092\pi\)
−0.778644 + 0.627466i \(0.784092\pi\)
\(522\) 9449.96 0.792363
\(523\) −1761.43 −0.147270 −0.0736348 0.997285i \(-0.523460\pi\)
−0.0736348 + 0.997285i \(0.523460\pi\)
\(524\) 1666.96 0.138972
\(525\) 0 0
\(526\) −10154.1 −0.841708
\(527\) −1699.54 −0.140480
\(528\) 3582.57 0.295286
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 7832.65 0.640128
\(532\) −11530.8 −0.939709
\(533\) −2871.73 −0.233374
\(534\) −1578.50 −0.127918
\(535\) 0 0
\(536\) −6868.49 −0.553496
\(537\) 9009.40 0.723993
\(538\) −9459.89 −0.758076
\(539\) −1631.25 −0.130358
\(540\) 0 0
\(541\) 23184.0 1.84244 0.921220 0.389043i \(-0.127194\pi\)
0.921220 + 0.389043i \(0.127194\pi\)
\(542\) 8777.67 0.695633
\(543\) 9871.32 0.780146
\(544\) 1306.64 0.102981
\(545\) 0 0
\(546\) 2052.13 0.160848
\(547\) −5111.78 −0.399569 −0.199784 0.979840i \(-0.564024\pi\)
−0.199784 + 0.979840i \(0.564024\pi\)
\(548\) 3213.45 0.250496
\(549\) 11300.5 0.878496
\(550\) 0 0
\(551\) −27411.6 −2.11937
\(552\) −1326.65 −0.102294
\(553\) −2513.21 −0.193260
\(554\) 6765.09 0.518811
\(555\) 0 0
\(556\) −7354.84 −0.560998
\(557\) −11154.6 −0.848540 −0.424270 0.905536i \(-0.639469\pi\)
−0.424270 + 0.905536i \(0.639469\pi\)
\(558\) −2079.86 −0.157791
\(559\) 209.338 0.0158391
\(560\) 0 0
\(561\) −9142.84 −0.688077
\(562\) −6657.33 −0.499684
\(563\) −15250.7 −1.14163 −0.570817 0.821078i \(-0.693373\pi\)
−0.570817 + 0.821078i \(0.693373\pi\)
\(564\) 519.730 0.0388024
\(565\) 0 0
\(566\) −16405.1 −1.21830
\(567\) 15499.5 1.14801
\(568\) −3609.57 −0.266645
\(569\) −758.697 −0.0558985 −0.0279492 0.999609i \(-0.508898\pi\)
−0.0279492 + 0.999609i \(0.508898\pi\)
\(570\) 0 0
\(571\) −7021.46 −0.514604 −0.257302 0.966331i \(-0.582834\pi\)
−0.257302 + 0.966331i \(0.582834\pi\)
\(572\) 888.880 0.0649754
\(573\) −2842.29 −0.207222
\(574\) 15963.0 1.16077
\(575\) 0 0
\(576\) 1599.04 0.115671
\(577\) 23370.4 1.68618 0.843088 0.537775i \(-0.180735\pi\)
0.843088 + 0.537775i \(0.180735\pi\)
\(578\) 6491.40 0.467139
\(579\) 26680.4 1.91502
\(580\) 0 0
\(581\) −9421.62 −0.672762
\(582\) 10259.8 0.730729
\(583\) 6646.59 0.472167
\(584\) −5941.64 −0.421005
\(585\) 0 0
\(586\) 11787.7 0.830968
\(587\) 8041.44 0.565427 0.282713 0.959204i \(-0.408765\pi\)
0.282713 + 0.959204i \(0.408765\pi\)
\(588\) −1514.90 −0.106248
\(589\) 6033.06 0.422051
\(590\) 0 0
\(591\) 8735.97 0.608037
\(592\) −598.125 −0.0415250
\(593\) 5040.16 0.349030 0.174515 0.984655i \(-0.444164\pi\)
0.174515 + 0.984655i \(0.444164\pi\)
\(594\) 902.379 0.0623317
\(595\) 0 0
\(596\) −8333.07 −0.572711
\(597\) 37074.1 2.54161
\(598\) −329.159 −0.0225089
\(599\) 25123.5 1.71372 0.856862 0.515546i \(-0.172411\pi\)
0.856862 + 0.515546i \(0.172411\pi\)
\(600\) 0 0
\(601\) 23406.4 1.58863 0.794316 0.607504i \(-0.207829\pi\)
0.794316 + 0.607504i \(0.207829\pi\)
\(602\) −1163.64 −0.0787814
\(603\) 21451.1 1.44869
\(604\) 9482.42 0.638799
\(605\) 0 0
\(606\) 13136.5 0.880587
\(607\) −16932.3 −1.13222 −0.566112 0.824328i \(-0.691553\pi\)
−0.566112 + 0.824328i \(0.691553\pi\)
\(608\) −4638.34 −0.309391
\(609\) −27117.4 −1.80436
\(610\) 0 0
\(611\) 128.952 0.00853817
\(612\) −4080.80 −0.269537
\(613\) 18473.4 1.21719 0.608593 0.793482i \(-0.291734\pi\)
0.608593 + 0.793482i \(0.291734\pi\)
\(614\) 756.222 0.0497046
\(615\) 0 0
\(616\) −4940.99 −0.323179
\(617\) 18550.8 1.21042 0.605208 0.796067i \(-0.293090\pi\)
0.605208 + 0.796067i \(0.293090\pi\)
\(618\) 2881.62 0.187566
\(619\) −5080.21 −0.329872 −0.164936 0.986304i \(-0.552742\pi\)
−0.164936 + 0.986304i \(0.552742\pi\)
\(620\) 0 0
\(621\) −334.158 −0.0215930
\(622\) 10736.0 0.692082
\(623\) 2177.02 0.140001
\(624\) 825.480 0.0529578
\(625\) 0 0
\(626\) 662.079 0.0422716
\(627\) 32455.4 2.06721
\(628\) 11421.9 0.725767
\(629\) 1526.44 0.0967616
\(630\) 0 0
\(631\) −15351.4 −0.968508 −0.484254 0.874928i \(-0.660909\pi\)
−0.484254 + 0.874928i \(0.660909\pi\)
\(632\) −1010.95 −0.0636291
\(633\) 17235.3 1.08222
\(634\) −14056.4 −0.880523
\(635\) 0 0
\(636\) 6172.51 0.384837
\(637\) −375.867 −0.0233789
\(638\) −11745.9 −0.728879
\(639\) 11273.1 0.697899
\(640\) 0 0
\(641\) −19024.4 −1.17226 −0.586130 0.810217i \(-0.699349\pi\)
−0.586130 + 0.810217i \(0.699349\pi\)
\(642\) −22709.8 −1.39608
\(643\) 3926.85 0.240840 0.120420 0.992723i \(-0.461576\pi\)
0.120420 + 0.992723i \(0.461576\pi\)
\(644\) 1829.68 0.111956
\(645\) 0 0
\(646\) 11837.2 0.720943
\(647\) −9550.19 −0.580304 −0.290152 0.956981i \(-0.593706\pi\)
−0.290152 + 0.956981i \(0.593706\pi\)
\(648\) 6234.77 0.377970
\(649\) −9735.66 −0.588841
\(650\) 0 0
\(651\) 5968.32 0.359319
\(652\) −6878.56 −0.413167
\(653\) −23074.9 −1.38283 −0.691416 0.722457i \(-0.743013\pi\)
−0.691416 + 0.722457i \(0.743013\pi\)
\(654\) −22072.2 −1.31971
\(655\) 0 0
\(656\) 6421.19 0.382173
\(657\) 18556.4 1.10191
\(658\) −716.799 −0.0424677
\(659\) −20087.4 −1.18740 −0.593698 0.804688i \(-0.702333\pi\)
−0.593698 + 0.804688i \(0.702333\pi\)
\(660\) 0 0
\(661\) 27061.7 1.59240 0.796201 0.605032i \(-0.206840\pi\)
0.796201 + 0.605032i \(0.206840\pi\)
\(662\) −893.266 −0.0524438
\(663\) −2106.66 −0.123402
\(664\) −3789.90 −0.221501
\(665\) 0 0
\(666\) 1868.02 0.108685
\(667\) 4349.60 0.252499
\(668\) 9384.09 0.543535
\(669\) −2259.76 −0.130594
\(670\) 0 0
\(671\) −14046.1 −0.808112
\(672\) −4588.57 −0.263405
\(673\) −24014.8 −1.37549 −0.687743 0.725954i \(-0.741399\pi\)
−0.687743 + 0.725954i \(0.741399\pi\)
\(674\) 19202.8 1.09742
\(675\) 0 0
\(676\) −8583.19 −0.488347
\(677\) 9473.17 0.537790 0.268895 0.963170i \(-0.413342\pi\)
0.268895 + 0.963170i \(0.413342\pi\)
\(678\) −19501.6 −1.10465
\(679\) −14150.1 −0.799752
\(680\) 0 0
\(681\) −5609.54 −0.315651
\(682\) 2585.18 0.145149
\(683\) −26177.4 −1.46655 −0.733274 0.679934i \(-0.762009\pi\)
−0.733274 + 0.679934i \(0.762009\pi\)
\(684\) 14486.1 0.809780
\(685\) 0 0
\(686\) −11553.8 −0.643039
\(687\) −2022.25 −0.112305
\(688\) −468.080 −0.0259380
\(689\) 1531.48 0.0846802
\(690\) 0 0
\(691\) 5912.51 0.325503 0.162751 0.986667i \(-0.447963\pi\)
0.162751 + 0.986667i \(0.447963\pi\)
\(692\) −12968.3 −0.712398
\(693\) 15431.3 0.845868
\(694\) 3515.51 0.192287
\(695\) 0 0
\(696\) −10908.1 −0.594068
\(697\) −16387.1 −0.890540
\(698\) −4239.87 −0.229916
\(699\) 9264.45 0.501307
\(700\) 0 0
\(701\) −7228.60 −0.389473 −0.194737 0.980856i \(-0.562385\pi\)
−0.194737 + 0.980856i \(0.562385\pi\)
\(702\) 207.922 0.0111788
\(703\) −5418.57 −0.290704
\(704\) −1987.54 −0.106404
\(705\) 0 0
\(706\) −13540.3 −0.721807
\(707\) −18117.6 −0.963766
\(708\) −9041.26 −0.479931
\(709\) 9704.32 0.514038 0.257019 0.966406i \(-0.417260\pi\)
0.257019 + 0.966406i \(0.417260\pi\)
\(710\) 0 0
\(711\) 3157.33 0.166539
\(712\) 875.720 0.0460941
\(713\) −957.311 −0.0502827
\(714\) 11710.2 0.613786
\(715\) 0 0
\(716\) −4998.24 −0.260884
\(717\) −26869.8 −1.39954
\(718\) 10721.6 0.557279
\(719\) 1257.53 0.0652265 0.0326132 0.999468i \(-0.489617\pi\)
0.0326132 + 0.999468i \(0.489617\pi\)
\(720\) 0 0
\(721\) −3974.26 −0.205283
\(722\) −28301.9 −1.45885
\(723\) 22277.6 1.14594
\(724\) −5476.42 −0.281118
\(725\) 0 0
\(726\) −5285.98 −0.270222
\(727\) −5083.78 −0.259349 −0.129675 0.991557i \(-0.541393\pi\)
−0.129675 + 0.991557i \(0.541393\pi\)
\(728\) −1138.48 −0.0579601
\(729\) −16643.6 −0.845583
\(730\) 0 0
\(731\) 1194.56 0.0604409
\(732\) −13044.2 −0.658646
\(733\) 2278.52 0.114815 0.0574074 0.998351i \(-0.481717\pi\)
0.0574074 + 0.998351i \(0.481717\pi\)
\(734\) −19311.4 −0.971112
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −26662.9 −1.33262
\(738\) −20054.1 −1.00028
\(739\) −34632.0 −1.72389 −0.861947 0.506998i \(-0.830755\pi\)
−0.861947 + 0.506998i \(0.830755\pi\)
\(740\) 0 0
\(741\) 7478.24 0.370742
\(742\) −8512.98 −0.421188
\(743\) 27831.5 1.37421 0.687105 0.726558i \(-0.258881\pi\)
0.687105 + 0.726558i \(0.258881\pi\)
\(744\) 2400.79 0.118303
\(745\) 0 0
\(746\) −6071.54 −0.297982
\(747\) 11836.3 0.579742
\(748\) 5072.27 0.247942
\(749\) 31320.8 1.52795
\(750\) 0 0
\(751\) 31443.6 1.52782 0.763910 0.645323i \(-0.223277\pi\)
0.763910 + 0.645323i \(0.223277\pi\)
\(752\) −288.336 −0.0139821
\(753\) −8216.66 −0.397652
\(754\) −2706.44 −0.130720
\(755\) 0 0
\(756\) −1155.77 −0.0556018
\(757\) −22166.6 −1.06428 −0.532138 0.846657i \(-0.678611\pi\)
−0.532138 + 0.846657i \(0.678611\pi\)
\(758\) −790.332 −0.0378709
\(759\) −5149.94 −0.246286
\(760\) 0 0
\(761\) −1609.00 −0.0766443 −0.0383221 0.999265i \(-0.512201\pi\)
−0.0383221 + 0.999265i \(0.512201\pi\)
\(762\) 22384.6 1.06419
\(763\) 30441.4 1.44437
\(764\) 1576.85 0.0746706
\(765\) 0 0
\(766\) 21399.2 1.00938
\(767\) −2243.25 −0.105605
\(768\) −1845.78 −0.0867235
\(769\) −16630.8 −0.779872 −0.389936 0.920842i \(-0.627503\pi\)
−0.389936 + 0.920842i \(0.627503\pi\)
\(770\) 0 0
\(771\) 59021.9 2.75697
\(772\) −14801.7 −0.690060
\(773\) 42083.0 1.95811 0.979057 0.203587i \(-0.0652601\pi\)
0.979057 + 0.203587i \(0.0652601\pi\)
\(774\) 1461.87 0.0678886
\(775\) 0 0
\(776\) −5691.96 −0.263311
\(777\) −5360.42 −0.247496
\(778\) 3197.57 0.147350
\(779\) 58171.2 2.67548
\(780\) 0 0
\(781\) −14012.0 −0.641984
\(782\) −1878.30 −0.0858924
\(783\) −2747.54 −0.125401
\(784\) 840.438 0.0382853
\(785\) 0 0
\(786\) 6009.43 0.272709
\(787\) −5370.59 −0.243254 −0.121627 0.992576i \(-0.538811\pi\)
−0.121627 + 0.992576i \(0.538811\pi\)
\(788\) −4846.54 −0.219100
\(789\) −36605.7 −1.65171
\(790\) 0 0
\(791\) 26896.2 1.20900
\(792\) 6207.32 0.278494
\(793\) −3236.44 −0.144930
\(794\) −15682.1 −0.700926
\(795\) 0 0
\(796\) −20568.0 −0.915845
\(797\) −39819.9 −1.76975 −0.884876 0.465827i \(-0.845757\pi\)
−0.884876 + 0.465827i \(0.845757\pi\)
\(798\) −41569.0 −1.84402
\(799\) 735.844 0.0325811
\(800\) 0 0
\(801\) −2734.98 −0.120644
\(802\) 22437.8 0.987915
\(803\) −23064.9 −1.01363
\(804\) −24761.1 −1.08614
\(805\) 0 0
\(806\) 595.666 0.0260316
\(807\) −34103.2 −1.48759
\(808\) −7287.90 −0.317311
\(809\) −16747.3 −0.727815 −0.363908 0.931435i \(-0.618558\pi\)
−0.363908 + 0.931435i \(0.618558\pi\)
\(810\) 0 0
\(811\) 41283.4 1.78749 0.893746 0.448573i \(-0.148068\pi\)
0.893746 + 0.448573i \(0.148068\pi\)
\(812\) 15044.2 0.650183
\(813\) 31643.8 1.36506
\(814\) −2321.87 −0.0999772
\(815\) 0 0
\(816\) 4710.49 0.202083
\(817\) −4240.45 −0.181585
\(818\) 7956.94 0.340107
\(819\) 3555.61 0.151701
\(820\) 0 0
\(821\) 996.361 0.0423547 0.0211774 0.999776i \(-0.493259\pi\)
0.0211774 + 0.999776i \(0.493259\pi\)
\(822\) 11584.6 0.491556
\(823\) 25984.5 1.10056 0.550282 0.834979i \(-0.314520\pi\)
0.550282 + 0.834979i \(0.314520\pi\)
\(824\) −1598.67 −0.0675877
\(825\) 0 0
\(826\) 12469.5 0.525265
\(827\) 21559.7 0.906533 0.453267 0.891375i \(-0.350259\pi\)
0.453267 + 0.891375i \(0.350259\pi\)
\(828\) −2298.62 −0.0964764
\(829\) −23510.9 −0.985005 −0.492502 0.870311i \(-0.663918\pi\)
−0.492502 + 0.870311i \(0.663918\pi\)
\(830\) 0 0
\(831\) 24388.4 1.01808
\(832\) −457.960 −0.0190828
\(833\) −2144.83 −0.0892124
\(834\) −26514.4 −1.10086
\(835\) 0 0
\(836\) −18005.6 −0.744901
\(837\) 604.712 0.0249724
\(838\) 21122.5 0.870720
\(839\) −7341.21 −0.302082 −0.151041 0.988528i \(-0.548263\pi\)
−0.151041 + 0.988528i \(0.548263\pi\)
\(840\) 0 0
\(841\) 11374.7 0.466386
\(842\) −18651.3 −0.763382
\(843\) −23999.9 −0.980545
\(844\) −9561.82 −0.389966
\(845\) 0 0
\(846\) 900.508 0.0365959
\(847\) 7290.29 0.295747
\(848\) −3424.39 −0.138672
\(849\) −59140.9 −2.39071
\(850\) 0 0
\(851\) 859.805 0.0346342
\(852\) −13012.6 −0.523245
\(853\) −8666.53 −0.347874 −0.173937 0.984757i \(-0.555649\pi\)
−0.173937 + 0.984757i \(0.555649\pi\)
\(854\) 17990.3 0.720861
\(855\) 0 0
\(856\) 12598.9 0.503064
\(857\) −1719.95 −0.0685557 −0.0342778 0.999412i \(-0.510913\pi\)
−0.0342778 + 0.999412i \(0.510913\pi\)
\(858\) 3204.44 0.127503
\(859\) 32940.3 1.30839 0.654196 0.756325i \(-0.273007\pi\)
0.654196 + 0.756325i \(0.273007\pi\)
\(860\) 0 0
\(861\) 57547.0 2.27781
\(862\) 9653.24 0.381428
\(863\) −15387.2 −0.606936 −0.303468 0.952842i \(-0.598145\pi\)
−0.303468 + 0.952842i \(0.598145\pi\)
\(864\) −464.915 −0.0183064
\(865\) 0 0
\(866\) −27162.9 −1.06586
\(867\) 23401.7 0.916681
\(868\) −3311.11 −0.129477
\(869\) −3924.43 −0.153196
\(870\) 0 0
\(871\) −6143.55 −0.238997
\(872\) 12245.2 0.475545
\(873\) 17776.7 0.689174
\(874\) 6667.61 0.258050
\(875\) 0 0
\(876\) −21419.8 −0.826150
\(877\) 13393.3 0.515691 0.257845 0.966186i \(-0.416987\pi\)
0.257845 + 0.966186i \(0.416987\pi\)
\(878\) 7982.21 0.306818
\(879\) 42495.2 1.63063
\(880\) 0 0
\(881\) −43474.3 −1.66253 −0.831263 0.555879i \(-0.812382\pi\)
−0.831263 + 0.555879i \(0.812382\pi\)
\(882\) −2624.79 −0.100206
\(883\) −10494.8 −0.399976 −0.199988 0.979798i \(-0.564090\pi\)
−0.199988 + 0.979798i \(0.564090\pi\)
\(884\) 1168.73 0.0444668
\(885\) 0 0
\(886\) −1498.05 −0.0568035
\(887\) −36634.1 −1.38676 −0.693378 0.720574i \(-0.743878\pi\)
−0.693378 + 0.720574i \(0.743878\pi\)
\(888\) −2156.26 −0.0814857
\(889\) −30872.3 −1.16471
\(890\) 0 0
\(891\) 24202.8 0.910016
\(892\) 1253.67 0.0470582
\(893\) −2612.11 −0.0978846
\(894\) −30041.0 −1.12385
\(895\) 0 0
\(896\) 2545.65 0.0949153
\(897\) −1186.63 −0.0441698
\(898\) 15684.8 0.582862
\(899\) −7871.30 −0.292016
\(900\) 0 0
\(901\) 8739.17 0.323134
\(902\) 24926.5 0.920134
\(903\) −4194.95 −0.154595
\(904\) 10819.1 0.398052
\(905\) 0 0
\(906\) 34184.4 1.25353
\(907\) −3552.27 −0.130045 −0.0650227 0.997884i \(-0.520712\pi\)
−0.0650227 + 0.997884i \(0.520712\pi\)
\(908\) 3112.06 0.113742
\(909\) 22761.0 0.830511
\(910\) 0 0
\(911\) 7216.97 0.262469 0.131234 0.991351i \(-0.458106\pi\)
0.131234 + 0.991351i \(0.458106\pi\)
\(912\) −16721.4 −0.607126
\(913\) −14712.0 −0.533294
\(914\) 22262.7 0.805674
\(915\) 0 0
\(916\) 1121.90 0.0404680
\(917\) −8288.05 −0.298469
\(918\) 1186.48 0.0426576
\(919\) 12618.4 0.452932 0.226466 0.974019i \(-0.427283\pi\)
0.226466 + 0.974019i \(0.427283\pi\)
\(920\) 0 0
\(921\) 2726.20 0.0975369
\(922\) −22179.5 −0.792239
\(923\) −3228.59 −0.115136
\(924\) −17812.4 −0.634183
\(925\) 0 0
\(926\) −23706.3 −0.841292
\(927\) 4992.83 0.176900
\(928\) 6051.61 0.214067
\(929\) −39009.3 −1.37767 −0.688834 0.724919i \(-0.741877\pi\)
−0.688834 + 0.724919i \(0.741877\pi\)
\(930\) 0 0
\(931\) 7613.75 0.268024
\(932\) −5139.74 −0.180641
\(933\) 38703.6 1.35809
\(934\) −27.9608 −0.000979555 0
\(935\) 0 0
\(936\) 1430.26 0.0499462
\(937\) −30772.4 −1.07288 −0.536441 0.843938i \(-0.680232\pi\)
−0.536441 + 0.843938i \(0.680232\pi\)
\(938\) 34149.9 1.18874
\(939\) 2386.81 0.0829507
\(940\) 0 0
\(941\) 29910.9 1.03620 0.518101 0.855319i \(-0.326639\pi\)
0.518101 + 0.855319i \(0.326639\pi\)
\(942\) 41176.2 1.42419
\(943\) −9230.46 −0.318754
\(944\) 5015.91 0.172939
\(945\) 0 0
\(946\) −1817.04 −0.0624494
\(947\) 36389.7 1.24869 0.624344 0.781149i \(-0.285366\pi\)
0.624344 + 0.781149i \(0.285366\pi\)
\(948\) −3644.52 −0.124861
\(949\) −5314.52 −0.181788
\(950\) 0 0
\(951\) −50673.8 −1.72788
\(952\) −6496.59 −0.221172
\(953\) 1937.31 0.0658506 0.0329253 0.999458i \(-0.489518\pi\)
0.0329253 + 0.999458i \(0.489518\pi\)
\(954\) 10694.8 0.362952
\(955\) 0 0
\(956\) 14906.8 0.504311
\(957\) −42344.3 −1.43030
\(958\) −7420.85 −0.250268
\(959\) −15977.2 −0.537987
\(960\) 0 0
\(961\) −28058.6 −0.941848
\(962\) −534.995 −0.0179303
\(963\) −39348.0 −1.31669
\(964\) −12359.2 −0.412927
\(965\) 0 0
\(966\) 6596.07 0.219695
\(967\) 2138.21 0.0711066 0.0355533 0.999368i \(-0.488681\pi\)
0.0355533 + 0.999368i \(0.488681\pi\)
\(968\) 2932.56 0.0973719
\(969\) 42673.5 1.41473
\(970\) 0 0
\(971\) −7943.13 −0.262520 −0.131260 0.991348i \(-0.541902\pi\)
−0.131260 + 0.991348i \(0.541902\pi\)
\(972\) 20907.4 0.689924
\(973\) 36568.0 1.20485
\(974\) −12190.5 −0.401034
\(975\) 0 0
\(976\) 7236.69 0.237337
\(977\) −10563.3 −0.345904 −0.172952 0.984930i \(-0.555331\pi\)
−0.172952 + 0.984930i \(0.555331\pi\)
\(978\) −24797.4 −0.810770
\(979\) 3399.46 0.110978
\(980\) 0 0
\(981\) −38243.3 −1.24466
\(982\) −3035.47 −0.0986413
\(983\) −59851.9 −1.94199 −0.970997 0.239091i \(-0.923151\pi\)
−0.970997 + 0.239091i \(0.923151\pi\)
\(984\) 23148.6 0.749949
\(985\) 0 0
\(986\) −15443.9 −0.498819
\(987\) −2584.08 −0.0833355
\(988\) −4148.78 −0.133593
\(989\) 672.865 0.0216338
\(990\) 0 0
\(991\) 2534.12 0.0812300 0.0406150 0.999175i \(-0.487068\pi\)
0.0406150 + 0.999175i \(0.487068\pi\)
\(992\) −1331.91 −0.0426292
\(993\) −3220.25 −0.102912
\(994\) 17946.7 0.572670
\(995\) 0 0
\(996\) −13662.7 −0.434657
\(997\) 42439.2 1.34811 0.674054 0.738682i \(-0.264551\pi\)
0.674054 + 0.738682i \(0.264551\pi\)
\(998\) −14867.0 −0.471549
\(999\) −543.120 −0.0172007
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.a.q.1.2 5
5.2 odd 4 1150.4.b.r.599.4 10
5.3 odd 4 1150.4.b.r.599.7 10
5.4 even 2 1150.4.a.v.1.4 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1150.4.a.q.1.2 5 1.1 even 1 trivial
1150.4.a.v.1.4 yes 5 5.4 even 2
1150.4.b.r.599.4 10 5.2 odd 4
1150.4.b.r.599.7 10 5.3 odd 4