Properties

Label 1150.4.a.q
Level $1150$
Weight $4$
Character orbit 1150.a
Self dual yes
Analytic conductor $67.852$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(1,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 107x^{3} - 3x^{2} + 2151x - 2916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (\beta_1 - 1) q^{3} + 4 q^{4} + ( - 2 \beta_1 + 2) q^{6} + (\beta_{3} + 1) q^{7} - 8 q^{8} + ( - \beta_{3} + \beta_{2} - 2 \beta_1 + 16) q^{9} + (\beta_{4} + \beta_{3} + \beta_{2} + \cdots - 5) q^{11}+ \cdots + ( - 38 \beta_{4} + 5 \beta_{3} + \cdots + 457) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 10 q^{2} - 5 q^{3} + 20 q^{4} + 10 q^{6} + 3 q^{7} - 40 q^{8} + 84 q^{9} - 26 q^{11} - 20 q^{12} + 61 q^{13} - 6 q^{14} + 80 q^{16} - 231 q^{17} - 168 q^{18} + 74 q^{19} - 88 q^{21} + 52 q^{22} - 115 q^{23}+ \cdots + 2397 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 107x^{3} - 3x^{2} + 2151x - 2916 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} - 3\nu^{3} - 53\nu^{2} + 111\nu - 567 ) / 45 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - 3\nu^{3} - 98\nu^{2} + 111\nu + 1323 ) / 45 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 2\nu^{4} + 9\nu^{3} - 196\nu^{2} - 753\nu + 2646 ) / 45 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{3} + \beta_{2} + 42 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{4} - 6\beta_{3} + 65\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 9\beta_{4} - 71\beta_{3} + 98\beta_{2} + 84\beta _1 + 2793 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−8.48510
−6.21006
1.53483
3.88892
9.27140
−2.00000 −9.48510 4.00000 0 18.9702 8.59355 −8.00000 62.9670 0
1.2 −2.00000 −7.21006 4.00000 0 14.4201 −19.8879 −8.00000 24.9850 0
1.3 −2.00000 0.534830 4.00000 0 −1.06966 28.9380 −8.00000 −26.7140 0
1.4 −2.00000 2.88892 4.00000 0 −5.77785 8.21839 −8.00000 −18.6541 0
1.5 −2.00000 8.27140 4.00000 0 −16.5428 −22.8621 −8.00000 41.4161 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1150.4.a.q 5
5.b even 2 1 1150.4.a.v yes 5
5.c odd 4 2 1150.4.b.r 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1150.4.a.q 5 1.a even 1 1 trivial
1150.4.a.v yes 5 5.b even 2 1
1150.4.b.r 10 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1150))\):

\( T_{3}^{5} + 5T_{3}^{4} - 97T_{3}^{3} - 314T_{3}^{2} + 1829T_{3} - 874 \) Copy content Toggle raw display
\( T_{7}^{5} - 3T_{7}^{4} - 944T_{7}^{3} + 972T_{7}^{2} + 165944T_{7} - 929248 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{5} \) Copy content Toggle raw display
$3$ \( T^{5} + 5 T^{4} + \cdots - 874 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} - 3 T^{4} + \cdots - 929248 \) Copy content Toggle raw display
$11$ \( T^{5} + 26 T^{4} + \cdots + 3242920 \) Copy content Toggle raw display
$13$ \( T^{5} - 61 T^{4} + \cdots - 166878 \) Copy content Toggle raw display
$17$ \( T^{5} + 231 T^{4} + \cdots - 414548320 \) Copy content Toggle raw display
$19$ \( T^{5} - 74 T^{4} + \cdots - 112577688 \) Copy content Toggle raw display
$23$ \( (T + 23)^{5} \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 20220755440 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots - 51046245360 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots + 5132681056 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 4982446167 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 39661228800 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 1683347184 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 18447971014656 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 1123269020040 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 2333556256768 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots + 35946409847360 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots - 5642844385736 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 95962864505643 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 12948718884224 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots - 31156649817688 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 1214254682896 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 79142464495296 \) Copy content Toggle raw display
show more
show less