Properties

Label 1150.4.a.p
Level $1150$
Weight $4$
Character orbit 1150.a
Self dual yes
Analytic conductor $67.852$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Defining polynomial: \(x^{4} - 68 x^{2} - 111 x + 342\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + ( 1 - \beta_{1} ) q^{3} + 4 q^{4} + ( 2 - 2 \beta_{1} ) q^{6} + ( -2 \beta_{1} - \beta_{2} ) q^{7} + 8 q^{8} + ( 8 + \beta_{3} ) q^{9} +O(q^{10})\) \( q + 2 q^{2} + ( 1 - \beta_{1} ) q^{3} + 4 q^{4} + ( 2 - 2 \beta_{1} ) q^{6} + ( -2 \beta_{1} - \beta_{2} ) q^{7} + 8 q^{8} + ( 8 + \beta_{3} ) q^{9} + ( -10 + \beta_{1} - \beta_{2} - \beta_{3} ) q^{11} + ( 4 - 4 \beta_{1} ) q^{12} + ( 5 - 8 \beta_{1} + \beta_{3} ) q^{13} + ( -4 \beta_{1} - 2 \beta_{2} ) q^{14} + 16 q^{16} + ( 6 - 13 \beta_{1} + \beta_{2} - \beta_{3} ) q^{17} + ( 16 + 2 \beta_{3} ) q^{18} + ( 14 + 2 \beta_{1} + 3 \beta_{2} - 2 \beta_{3} ) q^{19} + ( 74 + \beta_{1} - 4 \beta_{2} + 5 \beta_{3} ) q^{21} + ( -20 + 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} ) q^{22} + 23 q^{23} + ( 8 - 8 \beta_{1} ) q^{24} + ( 10 - 16 \beta_{1} + 2 \beta_{3} ) q^{26} + ( -35 + \beta_{1} - 3 \beta_{2} ) q^{27} + ( -8 \beta_{1} - 4 \beta_{2} ) q^{28} + ( 41 - 14 \beta_{1} + 3 \beta_{2} - 3 \beta_{3} ) q^{29} + ( 97 + 16 \beta_{1} - 5 \beta_{3} ) q^{31} + 32 q^{32} + ( -22 + 26 \beta_{1} - \beta_{2} + 2 \beta_{3} ) q^{33} + ( 12 - 26 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} ) q^{34} + ( 32 + 4 \beta_{3} ) q^{36} + ( -116 + 18 \beta_{1} + 2 \beta_{2} - 4 \beta_{3} ) q^{37} + ( 28 + 4 \beta_{1} + 6 \beta_{2} - 4 \beta_{3} ) q^{38} + ( 261 - 15 \beta_{1} - 3 \beta_{2} + 8 \beta_{3} ) q^{39} + ( 121 - \beta_{1} - 10 \beta_{3} ) q^{41} + ( 148 + 2 \beta_{1} - 8 \beta_{2} + 10 \beta_{3} ) q^{42} + ( -222 - 24 \beta_{1} + 6 \beta_{2} - 6 \beta_{3} ) q^{43} + ( -40 + 4 \beta_{1} - 4 \beta_{2} - 4 \beta_{3} ) q^{44} + 46 q^{46} + ( 67 - 44 \beta_{1} + 3 \beta_{2} + 11 \beta_{3} ) q^{47} + ( 16 - 16 \beta_{1} ) q^{48} + ( 411 - 49 \beta_{1} + \beta_{2} + 9 \beta_{3} ) q^{49} + ( 458 + 26 \beta_{1} + 7 \beta_{2} + 10 \beta_{3} ) q^{51} + ( 20 - 32 \beta_{1} + 4 \beta_{3} ) q^{52} + ( -146 + 40 \beta_{1} - 8 \beta_{2} - 8 \beta_{3} ) q^{53} + ( -70 + 2 \beta_{1} - 6 \beta_{2} ) q^{54} + ( -16 \beta_{1} - 8 \beta_{2} ) q^{56} + ( -40 + 23 \beta_{1} + 18 \beta_{2} - 11 \beta_{3} ) q^{57} + ( 82 - 28 \beta_{1} + 6 \beta_{2} - 6 \beta_{3} ) q^{58} + ( -20 + 10 \beta_{1} + 14 \beta_{2} + 2 \beta_{3} ) q^{59} + ( 290 + 33 \beta_{1} + 7 \beta_{2} - 19 \beta_{3} ) q^{61} + ( 194 + 32 \beta_{1} - 10 \beta_{3} ) q^{62} + ( -16 - 115 \beta_{1} - 4 \beta_{2} + 11 \beta_{3} ) q^{63} + 64 q^{64} + ( -44 + 52 \beta_{1} - 2 \beta_{2} + 4 \beta_{3} ) q^{66} + ( 368 - 28 \beta_{1} + 12 \beta_{3} ) q^{67} + ( 24 - 52 \beta_{1} + 4 \beta_{2} - 4 \beta_{3} ) q^{68} + ( 23 - 23 \beta_{1} ) q^{69} + ( 57 + 39 \beta_{1} + 28 \beta_{2} + 4 \beta_{3} ) q^{71} + ( 64 + 8 \beta_{3} ) q^{72} + ( -287 - 44 \beta_{1} - \beta_{2} + 3 \beta_{3} ) q^{73} + ( -232 + 36 \beta_{1} + 4 \beta_{2} - 8 \beta_{3} ) q^{74} + ( 56 + 8 \beta_{1} + 12 \beta_{2} - 8 \beta_{3} ) q^{76} + ( 548 + 61 \beta_{1} + 16 \beta_{2} - 17 \beta_{3} ) q^{77} + ( 522 - 30 \beta_{1} - 6 \beta_{2} + 16 \beta_{3} ) q^{78} + ( -232 - 72 \beta_{1} - 20 \beta_{2} - 16 \beta_{3} ) q^{79} + ( -267 + 31 \beta_{1} - 12 \beta_{2} - 19 \beta_{3} ) q^{81} + ( 242 - 2 \beta_{1} - 20 \beta_{3} ) q^{82} + ( 256 + 26 \beta_{1} - 24 \beta_{2} + 6 \beta_{3} ) q^{83} + ( 296 + 4 \beta_{1} - 16 \beta_{2} + 20 \beta_{3} ) q^{84} + ( -444 - 48 \beta_{1} + 12 \beta_{2} - 12 \beta_{3} ) q^{86} + ( 547 + 30 \beta_{1} + 21 \beta_{2} + 5 \beta_{3} ) q^{87} + ( -80 + 8 \beta_{1} - 8 \beta_{2} - 8 \beta_{3} ) q^{88} + ( -450 + 30 \beta_{1} - 16 \beta_{2} - 34 \beta_{3} ) q^{89} + ( 576 - 85 \beta_{1} - 25 \beta_{2} + 51 \beta_{3} ) q^{91} + 92 q^{92} + ( -367 - 23 \beta_{1} + 15 \beta_{2} - 16 \beta_{3} ) q^{93} + ( 134 - 88 \beta_{1} + 6 \beta_{2} + 22 \beta_{3} ) q^{94} + ( 32 - 32 \beta_{1} ) q^{96} + ( 504 + 137 \beta_{1} - 31 \beta_{2} - \beta_{3} ) q^{97} + ( 822 - 98 \beta_{1} + 2 \beta_{2} + 18 \beta_{3} ) q^{98} + ( -662 - 68 \beta_{1} + 17 \beta_{2} + 4 \beta_{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{2} + 4 q^{3} + 16 q^{4} + 8 q^{6} + q^{7} + 32 q^{8} + 32 q^{9} + O(q^{10}) \) \( 4 q + 8 q^{2} + 4 q^{3} + 16 q^{4} + 8 q^{6} + q^{7} + 32 q^{8} + 32 q^{9} - 39 q^{11} + 16 q^{12} + 20 q^{13} + 2 q^{14} + 64 q^{16} + 23 q^{17} + 64 q^{18} + 53 q^{19} + 300 q^{21} - 78 q^{22} + 92 q^{23} + 32 q^{24} + 40 q^{26} - 137 q^{27} + 4 q^{28} + 161 q^{29} + 388 q^{31} + 128 q^{32} - 87 q^{33} + 46 q^{34} + 128 q^{36} - 466 q^{37} + 106 q^{38} + 1047 q^{39} + 484 q^{41} + 600 q^{42} - 894 q^{43} - 156 q^{44} + 184 q^{46} + 265 q^{47} + 64 q^{48} + 1643 q^{49} + 1825 q^{51} + 80 q^{52} - 576 q^{53} - 274 q^{54} + 8 q^{56} - 178 q^{57} + 322 q^{58} - 94 q^{59} + 1153 q^{61} + 776 q^{62} - 60 q^{63} + 256 q^{64} - 174 q^{66} + 1472 q^{67} + 92 q^{68} + 92 q^{69} + 200 q^{71} + 256 q^{72} - 1147 q^{73} - 932 q^{74} + 212 q^{76} + 2176 q^{77} + 2094 q^{78} - 908 q^{79} - 1056 q^{81} + 968 q^{82} + 1048 q^{83} + 1200 q^{84} - 1788 q^{86} + 2167 q^{87} - 312 q^{88} - 1784 q^{89} + 2329 q^{91} + 368 q^{92} - 1483 q^{93} + 530 q^{94} + 128 q^{96} + 2047 q^{97} + 3286 q^{98} - 2665 q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - 68 x^{2} - 111 x + 342\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} - 3 \nu^{2} - 50 \nu + 18 \)\()/3\)
\(\beta_{3}\)\(=\)\( \nu^{2} - 2 \nu - 34 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{3} + 2 \beta_{1} + 34\)
\(\nu^{3}\)\(=\)\(3 \beta_{3} + 3 \beta_{2} + 56 \beta_{1} + 84\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
8.73081
1.58997
−3.74869
−6.57209
2.00000 −7.73081 4.00000 0 −15.4616 −23.5622 8.00000 32.7654 0
1.2 2.00000 −0.589969 4.00000 0 −1.17994 18.5077 8.00000 −26.6519 0
1.3 2.00000 4.74869 4.00000 0 9.49738 −29.3684 8.00000 −4.44993 0
1.4 2.00000 7.57209 4.00000 0 15.1442 35.4229 8.00000 30.3365 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(1\)
\(23\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1150.4.a.p 4
5.b even 2 1 230.4.a.h 4
5.c odd 4 2 1150.4.b.n 8
15.d odd 2 1 2070.4.a.bj 4
20.d odd 2 1 1840.4.a.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
230.4.a.h 4 5.b even 2 1
1150.4.a.p 4 1.a even 1 1 trivial
1150.4.b.n 8 5.c odd 4 2
1840.4.a.m 4 20.d odd 2 1
2070.4.a.bj 4 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1150))\):

\( T_{3}^{4} - 4 T_{3}^{3} - 62 T_{3}^{2} + 243 T_{3} + 164 \)
\( T_{7}^{4} - T_{7}^{3} - 1507 T_{7}^{2} - 2618 T_{7} + 453664 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( -2 + T )^{4} \)
$3$ \( 164 + 243 T - 62 T^{2} - 4 T^{3} + T^{4} \)
$5$ \( T^{4} \)
$7$ \( 453664 - 2618 T - 1507 T^{2} - T^{3} + T^{4} \)
$11$ \( -977536 - 94420 T - 1771 T^{2} + 39 T^{3} + T^{4} \)
$13$ \( 3059002 - 25481 T - 4948 T^{2} - 20 T^{3} + T^{4} \)
$17$ \( 1048184 + 590494 T - 14205 T^{2} - 23 T^{3} + T^{4} \)
$19$ \( -78336 + 340080 T - 15029 T^{2} - 53 T^{3} + T^{4} \)
$23$ \( ( -23 + T )^{4} \)
$29$ \( 1597064 + 1886712 T - 27260 T^{2} - 161 T^{3} + T^{4} \)
$31$ \( -397027152 + 5546709 T + 13076 T^{2} - 388 T^{3} + T^{4} \)
$37$ \( -7921024 + 681856 T + 37920 T^{2} + 466 T^{3} + T^{4} \)
$41$ \( 1506099394 + 17572043 T - 36232 T^{2} - 484 T^{3} + T^{4} \)
$43$ \( -5392023552 - 22823424 T + 166752 T^{2} + 894 T^{3} + T^{4} \)
$47$ \( 1306137888 + 43523988 T - 230390 T^{2} - 265 T^{3} + T^{4} \)
$53$ \( -3236491568 - 79775808 T - 107352 T^{2} + 576 T^{3} + T^{4} \)
$59$ \( 11673423616 - 20596976 T - 243460 T^{2} + 94 T^{3} + T^{4} \)
$61$ \( -42772329400 + 315388730 T - 54057 T^{2} - 1153 T^{3} + T^{4} \)
$67$ \( -10308616192 - 42702336 T + 602032 T^{2} - 1472 T^{3} + T^{4} \)
$71$ \( 274201266224 + 93278335 T - 1067322 T^{2} - 200 T^{3} + T^{4} \)
$73$ \( -4754107544 + 9049904 T + 356120 T^{2} + 1147 T^{3} + T^{4} \)
$79$ \( 145785325568 - 272612224 T - 923664 T^{2} + 908 T^{3} + T^{4} \)
$83$ \( -178673654272 + 675145440 T - 359444 T^{2} - 1048 T^{3} + T^{4} \)
$89$ \( -969417760000 - 2249185600 T - 492084 T^{2} + 1784 T^{3} + T^{4} \)
$97$ \( -658266694276 + 2746911284 T - 716799 T^{2} - 2047 T^{3} + T^{4} \)
show more
show less