Properties

Label 1150.4.a.o.1.4
Level $1150$
Weight $4$
Character 1150.1
Self dual yes
Analytic conductor $67.852$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1150,4,Mod(1,1150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1150.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 84x^{2} - 11x + 1242 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(8.16920\) of defining polynomial
Character \(\chi\) \(=\) 1150.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +7.16920 q^{3} +4.00000 q^{4} -14.3384 q^{6} +25.3945 q^{7} -8.00000 q^{8} +24.3974 q^{9} +67.0072 q^{11} +28.6768 q^{12} +2.41842 q^{13} -50.7891 q^{14} +16.0000 q^{16} +12.5097 q^{17} -48.7949 q^{18} +104.553 q^{19} +182.058 q^{21} -134.014 q^{22} -23.0000 q^{23} -57.3536 q^{24} -4.83684 q^{26} -18.6584 q^{27} +101.578 q^{28} +221.014 q^{29} -102.786 q^{31} -32.0000 q^{32} +480.388 q^{33} -25.0194 q^{34} +97.5897 q^{36} -2.56360 q^{37} -209.106 q^{38} +17.3382 q^{39} -89.4364 q^{41} -364.117 q^{42} -5.94181 q^{43} +268.029 q^{44} +46.0000 q^{46} -549.164 q^{47} +114.707 q^{48} +301.882 q^{49} +89.6845 q^{51} +9.67369 q^{52} -159.714 q^{53} +37.3167 q^{54} -203.156 q^{56} +749.560 q^{57} -442.029 q^{58} +593.563 q^{59} -894.952 q^{61} +205.572 q^{62} +619.561 q^{63} +64.0000 q^{64} -960.776 q^{66} -525.060 q^{67} +50.0388 q^{68} -164.892 q^{69} -57.4296 q^{71} -195.179 q^{72} +870.328 q^{73} +5.12720 q^{74} +418.211 q^{76} +1701.62 q^{77} -34.6763 q^{78} +578.999 q^{79} -792.496 q^{81} +178.873 q^{82} +345.704 q^{83} +728.234 q^{84} +11.8836 q^{86} +1584.50 q^{87} -536.058 q^{88} +311.282 q^{89} +61.4147 q^{91} -92.0000 q^{92} -736.894 q^{93} +1098.33 q^{94} -229.414 q^{96} -1815.23 q^{97} -603.764 q^{98} +1634.80 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} - 4 q^{3} + 16 q^{4} + 8 q^{6} - 26 q^{7} - 32 q^{8} + 64 q^{9} + 93 q^{11} - 16 q^{12} - 32 q^{13} + 52 q^{14} + 64 q^{16} - 108 q^{17} - 128 q^{18} + 185 q^{19} + 302 q^{21} - 186 q^{22}+ \cdots + 2013 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 7.16920 1.37971 0.689857 0.723946i \(-0.257674\pi\)
0.689857 + 0.723946i \(0.257674\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) −14.3384 −0.975605
\(7\) 25.3945 1.37118 0.685588 0.727990i \(-0.259545\pi\)
0.685588 + 0.727990i \(0.259545\pi\)
\(8\) −8.00000 −0.353553
\(9\) 24.3974 0.903608
\(10\) 0 0
\(11\) 67.0072 1.83668 0.918338 0.395798i \(-0.129532\pi\)
0.918338 + 0.395798i \(0.129532\pi\)
\(12\) 28.6768 0.689857
\(13\) 2.41842 0.0515961 0.0257981 0.999667i \(-0.491787\pi\)
0.0257981 + 0.999667i \(0.491787\pi\)
\(14\) −50.7891 −0.969568
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 12.5097 0.178473 0.0892366 0.996010i \(-0.471557\pi\)
0.0892366 + 0.996010i \(0.471557\pi\)
\(18\) −48.7949 −0.638948
\(19\) 104.553 1.26242 0.631212 0.775610i \(-0.282558\pi\)
0.631212 + 0.775610i \(0.282558\pi\)
\(20\) 0 0
\(21\) 182.058 1.89183
\(22\) −134.014 −1.29873
\(23\) −23.0000 −0.208514
\(24\) −57.3536 −0.487802
\(25\) 0 0
\(26\) −4.83684 −0.0364840
\(27\) −18.6584 −0.132993
\(28\) 101.578 0.685588
\(29\) 221.014 1.41522 0.707609 0.706604i \(-0.249774\pi\)
0.707609 + 0.706604i \(0.249774\pi\)
\(30\) 0 0
\(31\) −102.786 −0.595514 −0.297757 0.954642i \(-0.596238\pi\)
−0.297757 + 0.954642i \(0.596238\pi\)
\(32\) −32.0000 −0.176777
\(33\) 480.388 2.53409
\(34\) −25.0194 −0.126200
\(35\) 0 0
\(36\) 97.5897 0.451804
\(37\) −2.56360 −0.0113906 −0.00569531 0.999984i \(-0.501813\pi\)
−0.00569531 + 0.999984i \(0.501813\pi\)
\(38\) −209.106 −0.892669
\(39\) 17.3382 0.0711879
\(40\) 0 0
\(41\) −89.4364 −0.340674 −0.170337 0.985386i \(-0.554486\pi\)
−0.170337 + 0.985386i \(0.554486\pi\)
\(42\) −364.117 −1.33773
\(43\) −5.94181 −0.0210725 −0.0105363 0.999944i \(-0.503354\pi\)
−0.0105363 + 0.999944i \(0.503354\pi\)
\(44\) 268.029 0.918338
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) −549.164 −1.70434 −0.852168 0.523269i \(-0.824712\pi\)
−0.852168 + 0.523269i \(0.824712\pi\)
\(48\) 114.707 0.344928
\(49\) 301.882 0.880123
\(50\) 0 0
\(51\) 89.6845 0.246242
\(52\) 9.67369 0.0257981
\(53\) −159.714 −0.413931 −0.206966 0.978348i \(-0.566359\pi\)
−0.206966 + 0.978348i \(0.566359\pi\)
\(54\) 37.3167 0.0940400
\(55\) 0 0
\(56\) −203.156 −0.484784
\(57\) 749.560 1.74178
\(58\) −442.029 −1.00071
\(59\) 593.563 1.30975 0.654876 0.755737i \(-0.272721\pi\)
0.654876 + 0.755737i \(0.272721\pi\)
\(60\) 0 0
\(61\) −894.952 −1.87847 −0.939237 0.343270i \(-0.888465\pi\)
−0.939237 + 0.343270i \(0.888465\pi\)
\(62\) 205.572 0.421092
\(63\) 619.561 1.23901
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −960.776 −1.79187
\(67\) −525.060 −0.957407 −0.478703 0.877977i \(-0.658893\pi\)
−0.478703 + 0.877977i \(0.658893\pi\)
\(68\) 50.0388 0.0892366
\(69\) −164.892 −0.287690
\(70\) 0 0
\(71\) −57.4296 −0.0959950 −0.0479975 0.998847i \(-0.515284\pi\)
−0.0479975 + 0.998847i \(0.515284\pi\)
\(72\) −195.179 −0.319474
\(73\) 870.328 1.39540 0.697700 0.716390i \(-0.254207\pi\)
0.697700 + 0.716390i \(0.254207\pi\)
\(74\) 5.12720 0.00805439
\(75\) 0 0
\(76\) 418.211 0.631212
\(77\) 1701.62 2.51840
\(78\) −34.6763 −0.0503374
\(79\) 578.999 0.824589 0.412294 0.911051i \(-0.364728\pi\)
0.412294 + 0.911051i \(0.364728\pi\)
\(80\) 0 0
\(81\) −792.496 −1.08710
\(82\) 178.873 0.240893
\(83\) 345.704 0.457180 0.228590 0.973523i \(-0.426589\pi\)
0.228590 + 0.973523i \(0.426589\pi\)
\(84\) 728.234 0.945915
\(85\) 0 0
\(86\) 11.8836 0.0149005
\(87\) 1584.50 1.95260
\(88\) −536.058 −0.649363
\(89\) 311.282 0.370740 0.185370 0.982669i \(-0.440652\pi\)
0.185370 + 0.982669i \(0.440652\pi\)
\(90\) 0 0
\(91\) 61.4147 0.0707474
\(92\) −92.0000 −0.104257
\(93\) −736.894 −0.821638
\(94\) 1098.33 1.20515
\(95\) 0 0
\(96\) −229.414 −0.243901
\(97\) −1815.23 −1.90009 −0.950043 0.312120i \(-0.898961\pi\)
−0.950043 + 0.312120i \(0.898961\pi\)
\(98\) −603.764 −0.622341
\(99\) 1634.80 1.65964
\(100\) 0 0
\(101\) −1492.17 −1.47006 −0.735032 0.678033i \(-0.762833\pi\)
−0.735032 + 0.678033i \(0.762833\pi\)
\(102\) −179.369 −0.174119
\(103\) 250.888 0.240007 0.120004 0.992773i \(-0.461709\pi\)
0.120004 + 0.992773i \(0.461709\pi\)
\(104\) −19.3474 −0.0182420
\(105\) 0 0
\(106\) 319.427 0.292693
\(107\) 1035.24 0.935331 0.467665 0.883906i \(-0.345095\pi\)
0.467665 + 0.883906i \(0.345095\pi\)
\(108\) −74.6334 −0.0664963
\(109\) 354.522 0.311533 0.155766 0.987794i \(-0.450215\pi\)
0.155766 + 0.987794i \(0.450215\pi\)
\(110\) 0 0
\(111\) −18.3790 −0.0157158
\(112\) 406.312 0.342794
\(113\) −1102.86 −0.918131 −0.459065 0.888402i \(-0.651816\pi\)
−0.459065 + 0.888402i \(0.651816\pi\)
\(114\) −1499.12 −1.23163
\(115\) 0 0
\(116\) 884.058 0.707609
\(117\) 59.0033 0.0466227
\(118\) −1187.13 −0.926134
\(119\) 317.678 0.244718
\(120\) 0 0
\(121\) 3158.96 2.37338
\(122\) 1789.90 1.32828
\(123\) −641.187 −0.470032
\(124\) −411.144 −0.297757
\(125\) 0 0
\(126\) −1239.12 −0.876110
\(127\) −503.148 −0.351553 −0.175776 0.984430i \(-0.556244\pi\)
−0.175776 + 0.984430i \(0.556244\pi\)
\(128\) −128.000 −0.0883883
\(129\) −42.5981 −0.0290740
\(130\) 0 0
\(131\) 2880.53 1.92117 0.960586 0.277985i \(-0.0896664\pi\)
0.960586 + 0.277985i \(0.0896664\pi\)
\(132\) 1921.55 1.26704
\(133\) 2655.07 1.73101
\(134\) 1050.12 0.676989
\(135\) 0 0
\(136\) −100.078 −0.0630998
\(137\) −1888.31 −1.17758 −0.588792 0.808285i \(-0.700396\pi\)
−0.588792 + 0.808285i \(0.700396\pi\)
\(138\) 329.783 0.203428
\(139\) −1429.79 −0.872472 −0.436236 0.899832i \(-0.643689\pi\)
−0.436236 + 0.899832i \(0.643689\pi\)
\(140\) 0 0
\(141\) −3937.06 −2.35149
\(142\) 114.859 0.0678787
\(143\) 162.052 0.0947653
\(144\) 390.359 0.225902
\(145\) 0 0
\(146\) −1740.66 −0.986697
\(147\) 2164.25 1.21432
\(148\) −10.2544 −0.00569531
\(149\) −1268.34 −0.697357 −0.348679 0.937242i \(-0.613370\pi\)
−0.348679 + 0.937242i \(0.613370\pi\)
\(150\) 0 0
\(151\) 2335.87 1.25888 0.629438 0.777050i \(-0.283285\pi\)
0.629438 + 0.777050i \(0.283285\pi\)
\(152\) −836.423 −0.446334
\(153\) 305.204 0.161270
\(154\) −3403.23 −1.78078
\(155\) 0 0
\(156\) 69.3526 0.0355939
\(157\) −2989.36 −1.51960 −0.759799 0.650158i \(-0.774703\pi\)
−0.759799 + 0.650158i \(0.774703\pi\)
\(158\) −1158.00 −0.583072
\(159\) −1145.02 −0.571106
\(160\) 0 0
\(161\) −584.074 −0.285910
\(162\) 1584.99 0.768696
\(163\) −700.254 −0.336492 −0.168246 0.985745i \(-0.553810\pi\)
−0.168246 + 0.985745i \(0.553810\pi\)
\(164\) −357.746 −0.170337
\(165\) 0 0
\(166\) −691.408 −0.323275
\(167\) −1.69236 −0.000784185 0 −0.000392093 1.00000i \(-0.500125\pi\)
−0.000392093 1.00000i \(0.500125\pi\)
\(168\) −1456.47 −0.668863
\(169\) −2191.15 −0.997338
\(170\) 0 0
\(171\) 2550.82 1.14074
\(172\) −23.7673 −0.0105363
\(173\) 781.543 0.343466 0.171733 0.985144i \(-0.445063\pi\)
0.171733 + 0.985144i \(0.445063\pi\)
\(174\) −3168.99 −1.38069
\(175\) 0 0
\(176\) 1072.12 0.459169
\(177\) 4255.37 1.80708
\(178\) −622.564 −0.262152
\(179\) 2670.22 1.11498 0.557490 0.830184i \(-0.311765\pi\)
0.557490 + 0.830184i \(0.311765\pi\)
\(180\) 0 0
\(181\) −1230.09 −0.505149 −0.252574 0.967577i \(-0.581277\pi\)
−0.252574 + 0.967577i \(0.581277\pi\)
\(182\) −122.829 −0.0500259
\(183\) −6416.09 −2.59175
\(184\) 184.000 0.0737210
\(185\) 0 0
\(186\) 1473.79 0.580986
\(187\) 838.239 0.327797
\(188\) −2196.65 −0.852168
\(189\) −473.820 −0.182356
\(190\) 0 0
\(191\) −1433.23 −0.542959 −0.271480 0.962444i \(-0.587513\pi\)
−0.271480 + 0.962444i \(0.587513\pi\)
\(192\) 458.829 0.172464
\(193\) −4348.12 −1.62168 −0.810841 0.585266i \(-0.800990\pi\)
−0.810841 + 0.585266i \(0.800990\pi\)
\(194\) 3630.45 1.34356
\(195\) 0 0
\(196\) 1207.53 0.440062
\(197\) 2551.15 0.922649 0.461324 0.887232i \(-0.347374\pi\)
0.461324 + 0.887232i \(0.347374\pi\)
\(198\) −3269.61 −1.17354
\(199\) 1230.65 0.438386 0.219193 0.975682i \(-0.429658\pi\)
0.219193 + 0.975682i \(0.429658\pi\)
\(200\) 0 0
\(201\) −3764.26 −1.32095
\(202\) 2984.34 1.03949
\(203\) 5612.56 1.94051
\(204\) 358.738 0.123121
\(205\) 0 0
\(206\) −501.777 −0.169711
\(207\) −561.141 −0.188415
\(208\) 38.6948 0.0128990
\(209\) 7005.79 2.31866
\(210\) 0 0
\(211\) 2834.05 0.924663 0.462332 0.886707i \(-0.347013\pi\)
0.462332 + 0.886707i \(0.347013\pi\)
\(212\) −638.854 −0.206966
\(213\) −411.724 −0.132446
\(214\) −2070.48 −0.661379
\(215\) 0 0
\(216\) 149.267 0.0470200
\(217\) −2610.20 −0.816554
\(218\) −709.045 −0.220287
\(219\) 6239.56 1.92525
\(220\) 0 0
\(221\) 30.2537 0.00920853
\(222\) 36.7579 0.0111127
\(223\) 391.251 0.117489 0.0587446 0.998273i \(-0.481290\pi\)
0.0587446 + 0.998273i \(0.481290\pi\)
\(224\) −812.625 −0.242392
\(225\) 0 0
\(226\) 2205.73 0.649216
\(227\) −1245.79 −0.364256 −0.182128 0.983275i \(-0.558298\pi\)
−0.182128 + 0.983275i \(0.558298\pi\)
\(228\) 2998.24 0.870892
\(229\) 6497.87 1.87507 0.937535 0.347890i \(-0.113102\pi\)
0.937535 + 0.347890i \(0.113102\pi\)
\(230\) 0 0
\(231\) 12199.2 3.47468
\(232\) −1768.12 −0.500355
\(233\) 3076.87 0.865118 0.432559 0.901606i \(-0.357611\pi\)
0.432559 + 0.901606i \(0.357611\pi\)
\(234\) −118.007 −0.0329672
\(235\) 0 0
\(236\) 2374.25 0.654876
\(237\) 4150.96 1.13770
\(238\) −635.355 −0.173042
\(239\) 532.313 0.144069 0.0720344 0.997402i \(-0.477051\pi\)
0.0720344 + 0.997402i \(0.477051\pi\)
\(240\) 0 0
\(241\) −830.944 −0.222099 −0.111049 0.993815i \(-0.535421\pi\)
−0.111049 + 0.993815i \(0.535421\pi\)
\(242\) −6317.93 −1.67823
\(243\) −5177.79 −1.36689
\(244\) −3579.81 −0.939237
\(245\) 0 0
\(246\) 1282.37 0.332363
\(247\) 252.853 0.0651362
\(248\) 822.288 0.210546
\(249\) 2478.42 0.630777
\(250\) 0 0
\(251\) 3729.71 0.937916 0.468958 0.883220i \(-0.344629\pi\)
0.468958 + 0.883220i \(0.344629\pi\)
\(252\) 2478.25 0.619503
\(253\) −1541.17 −0.382973
\(254\) 1006.30 0.248585
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 7399.44 1.79597 0.897985 0.440027i \(-0.145031\pi\)
0.897985 + 0.440027i \(0.145031\pi\)
\(258\) 85.1961 0.0205584
\(259\) −65.1014 −0.0156185
\(260\) 0 0
\(261\) 5392.18 1.27880
\(262\) −5761.07 −1.35847
\(263\) 1907.88 0.447319 0.223659 0.974667i \(-0.428200\pi\)
0.223659 + 0.974667i \(0.428200\pi\)
\(264\) −3843.10 −0.895934
\(265\) 0 0
\(266\) −5310.14 −1.22401
\(267\) 2231.64 0.511514
\(268\) −2100.24 −0.478703
\(269\) −1291.74 −0.292784 −0.146392 0.989227i \(-0.546766\pi\)
−0.146392 + 0.989227i \(0.546766\pi\)
\(270\) 0 0
\(271\) −5361.16 −1.20172 −0.600862 0.799353i \(-0.705176\pi\)
−0.600862 + 0.799353i \(0.705176\pi\)
\(272\) 200.155 0.0446183
\(273\) 440.294 0.0976111
\(274\) 3776.61 0.832677
\(275\) 0 0
\(276\) −659.566 −0.143845
\(277\) 839.923 0.182188 0.0910940 0.995842i \(-0.470964\pi\)
0.0910940 + 0.995842i \(0.470964\pi\)
\(278\) 2859.59 0.616931
\(279\) −2507.72 −0.538111
\(280\) 0 0
\(281\) −610.965 −0.129705 −0.0648525 0.997895i \(-0.520658\pi\)
−0.0648525 + 0.997895i \(0.520658\pi\)
\(282\) 7874.13 1.66276
\(283\) 8568.90 1.79989 0.899944 0.436006i \(-0.143607\pi\)
0.899944 + 0.436006i \(0.143607\pi\)
\(284\) −229.718 −0.0479975
\(285\) 0 0
\(286\) −324.103 −0.0670092
\(287\) −2271.20 −0.467123
\(288\) −780.718 −0.159737
\(289\) −4756.51 −0.968147
\(290\) 0 0
\(291\) −13013.7 −2.62157
\(292\) 3481.31 0.697700
\(293\) 9728.79 1.93980 0.969901 0.243498i \(-0.0782949\pi\)
0.969901 + 0.243498i \(0.0782949\pi\)
\(294\) −4328.51 −0.858652
\(295\) 0 0
\(296\) 20.5088 0.00402719
\(297\) −1250.24 −0.244264
\(298\) 2536.67 0.493106
\(299\) −55.6237 −0.0107585
\(300\) 0 0
\(301\) −150.890 −0.0288941
\(302\) −4671.74 −0.890160
\(303\) −10697.7 −2.02827
\(304\) 1672.85 0.315606
\(305\) 0 0
\(306\) −610.409 −0.114035
\(307\) 8115.58 1.50873 0.754366 0.656454i \(-0.227945\pi\)
0.754366 + 0.656454i \(0.227945\pi\)
\(308\) 6806.47 1.25920
\(309\) 1798.67 0.331141
\(310\) 0 0
\(311\) −6433.83 −1.17308 −0.586542 0.809919i \(-0.699511\pi\)
−0.586542 + 0.809919i \(0.699511\pi\)
\(312\) −138.705 −0.0251687
\(313\) −2674.76 −0.483023 −0.241512 0.970398i \(-0.577643\pi\)
−0.241512 + 0.970398i \(0.577643\pi\)
\(314\) 5978.72 1.07452
\(315\) 0 0
\(316\) 2316.00 0.412294
\(317\) 8720.03 1.54500 0.772501 0.635013i \(-0.219005\pi\)
0.772501 + 0.635013i \(0.219005\pi\)
\(318\) 2290.04 0.403833
\(319\) 14809.6 2.59930
\(320\) 0 0
\(321\) 7421.84 1.29049
\(322\) 1168.15 0.202169
\(323\) 1307.92 0.225309
\(324\) −3169.98 −0.543550
\(325\) 0 0
\(326\) 1400.51 0.237936
\(327\) 2541.64 0.429826
\(328\) 715.491 0.120446
\(329\) −13945.8 −2.33694
\(330\) 0 0
\(331\) −3384.40 −0.562005 −0.281002 0.959707i \(-0.590667\pi\)
−0.281002 + 0.959707i \(0.590667\pi\)
\(332\) 1382.82 0.228590
\(333\) −62.5452 −0.0102927
\(334\) 3.38472 0.000554503 0
\(335\) 0 0
\(336\) 2912.94 0.472957
\(337\) −9334.10 −1.50879 −0.754393 0.656423i \(-0.772069\pi\)
−0.754393 + 0.656423i \(0.772069\pi\)
\(338\) 4382.30 0.705224
\(339\) −7906.66 −1.26676
\(340\) 0 0
\(341\) −6887.40 −1.09377
\(342\) −5101.64 −0.806623
\(343\) −1044.17 −0.164372
\(344\) 47.5345 0.00745026
\(345\) 0 0
\(346\) −1563.09 −0.242867
\(347\) 1943.02 0.300595 0.150298 0.988641i \(-0.451977\pi\)
0.150298 + 0.988641i \(0.451977\pi\)
\(348\) 6337.99 0.976298
\(349\) 6978.55 1.07035 0.535177 0.844740i \(-0.320245\pi\)
0.535177 + 0.844740i \(0.320245\pi\)
\(350\) 0 0
\(351\) −45.1238 −0.00686191
\(352\) −2144.23 −0.324681
\(353\) −6854.18 −1.03346 −0.516730 0.856149i \(-0.672851\pi\)
−0.516730 + 0.856149i \(0.672851\pi\)
\(354\) −8510.75 −1.27780
\(355\) 0 0
\(356\) 1245.13 0.185370
\(357\) 2277.50 0.337641
\(358\) −5340.43 −0.788410
\(359\) 10618.3 1.56104 0.780522 0.625128i \(-0.214953\pi\)
0.780522 + 0.625128i \(0.214953\pi\)
\(360\) 0 0
\(361\) 4072.29 0.593715
\(362\) 2460.18 0.357194
\(363\) 22647.2 3.27458
\(364\) 245.659 0.0353737
\(365\) 0 0
\(366\) 12832.2 1.83265
\(367\) 9250.18 1.31568 0.657841 0.753157i \(-0.271470\pi\)
0.657841 + 0.753157i \(0.271470\pi\)
\(368\) −368.000 −0.0521286
\(369\) −2182.02 −0.307836
\(370\) 0 0
\(371\) −4055.85 −0.567572
\(372\) −2947.57 −0.410819
\(373\) −8505.24 −1.18066 −0.590328 0.807163i \(-0.701002\pi\)
−0.590328 + 0.807163i \(0.701002\pi\)
\(374\) −1676.48 −0.231788
\(375\) 0 0
\(376\) 4393.31 0.602573
\(377\) 534.506 0.0730198
\(378\) 947.640 0.128945
\(379\) 1047.43 0.141960 0.0709798 0.997478i \(-0.477387\pi\)
0.0709798 + 0.997478i \(0.477387\pi\)
\(380\) 0 0
\(381\) −3607.17 −0.485042
\(382\) 2866.47 0.383930
\(383\) −9072.64 −1.21042 −0.605209 0.796066i \(-0.706911\pi\)
−0.605209 + 0.796066i \(0.706911\pi\)
\(384\) −917.658 −0.121951
\(385\) 0 0
\(386\) 8696.25 1.14670
\(387\) −144.965 −0.0190413
\(388\) −7260.90 −0.950043
\(389\) −6880.63 −0.896817 −0.448408 0.893829i \(-0.648009\pi\)
−0.448408 + 0.893829i \(0.648009\pi\)
\(390\) 0 0
\(391\) −287.723 −0.0372143
\(392\) −2415.06 −0.311170
\(393\) 20651.1 2.65067
\(394\) −5102.30 −0.652411
\(395\) 0 0
\(396\) 6539.21 0.829818
\(397\) −9297.23 −1.17535 −0.587676 0.809096i \(-0.699957\pi\)
−0.587676 + 0.809096i \(0.699957\pi\)
\(398\) −2461.31 −0.309986
\(399\) 19034.7 2.38829
\(400\) 0 0
\(401\) −4904.30 −0.610745 −0.305373 0.952233i \(-0.598781\pi\)
−0.305373 + 0.952233i \(0.598781\pi\)
\(402\) 7528.52 0.934051
\(403\) −248.580 −0.0307262
\(404\) −5968.68 −0.735032
\(405\) 0 0
\(406\) −11225.1 −1.37215
\(407\) −171.780 −0.0209209
\(408\) −717.476 −0.0870597
\(409\) −11856.7 −1.43344 −0.716719 0.697362i \(-0.754357\pi\)
−0.716719 + 0.697362i \(0.754357\pi\)
\(410\) 0 0
\(411\) −13537.6 −1.62473
\(412\) 1003.55 0.120004
\(413\) 15073.3 1.79590
\(414\) 1122.28 0.133230
\(415\) 0 0
\(416\) −77.3895 −0.00912099
\(417\) −10250.5 −1.20376
\(418\) −14011.6 −1.63954
\(419\) 12497.2 1.45711 0.728554 0.684988i \(-0.240193\pi\)
0.728554 + 0.684988i \(0.240193\pi\)
\(420\) 0 0
\(421\) −2341.63 −0.271079 −0.135539 0.990772i \(-0.543277\pi\)
−0.135539 + 0.990772i \(0.543277\pi\)
\(422\) −5668.10 −0.653836
\(423\) −13398.2 −1.54005
\(424\) 1277.71 0.146347
\(425\) 0 0
\(426\) 823.449 0.0936531
\(427\) −22726.9 −2.57572
\(428\) 4140.96 0.467665
\(429\) 1161.78 0.130749
\(430\) 0 0
\(431\) −14047.2 −1.56990 −0.784951 0.619558i \(-0.787312\pi\)
−0.784951 + 0.619558i \(0.787312\pi\)
\(432\) −298.534 −0.0332482
\(433\) −9877.43 −1.09626 −0.548128 0.836394i \(-0.684659\pi\)
−0.548128 + 0.836394i \(0.684659\pi\)
\(434\) 5220.41 0.577391
\(435\) 0 0
\(436\) 1418.09 0.155766
\(437\) −2404.72 −0.263234
\(438\) −12479.1 −1.36136
\(439\) −7028.36 −0.764113 −0.382056 0.924139i \(-0.624784\pi\)
−0.382056 + 0.924139i \(0.624784\pi\)
\(440\) 0 0
\(441\) 7365.15 0.795287
\(442\) −60.5074 −0.00651141
\(443\) 13486.7 1.44644 0.723219 0.690618i \(-0.242662\pi\)
0.723219 + 0.690618i \(0.242662\pi\)
\(444\) −73.5158 −0.00785790
\(445\) 0 0
\(446\) −782.502 −0.0830774
\(447\) −9092.96 −0.962153
\(448\) 1625.25 0.171397
\(449\) −6435.76 −0.676441 −0.338221 0.941067i \(-0.609825\pi\)
−0.338221 + 0.941067i \(0.609825\pi\)
\(450\) 0 0
\(451\) −5992.88 −0.625707
\(452\) −4411.46 −0.459065
\(453\) 16746.3 1.73689
\(454\) 2491.58 0.257568
\(455\) 0 0
\(456\) −5996.48 −0.615814
\(457\) 14325.5 1.46634 0.733172 0.680043i \(-0.238039\pi\)
0.733172 + 0.680043i \(0.238039\pi\)
\(458\) −12995.7 −1.32588
\(459\) −233.410 −0.0237356
\(460\) 0 0
\(461\) 9966.13 1.00687 0.503437 0.864032i \(-0.332069\pi\)
0.503437 + 0.864032i \(0.332069\pi\)
\(462\) −24398.5 −2.45697
\(463\) −3629.06 −0.364270 −0.182135 0.983274i \(-0.558301\pi\)
−0.182135 + 0.983274i \(0.558301\pi\)
\(464\) 3536.23 0.353805
\(465\) 0 0
\(466\) −6153.74 −0.611731
\(467\) 4453.81 0.441323 0.220661 0.975350i \(-0.429178\pi\)
0.220661 + 0.975350i \(0.429178\pi\)
\(468\) 236.013 0.0233113
\(469\) −13333.6 −1.31277
\(470\) 0 0
\(471\) −21431.3 −2.09661
\(472\) −4748.50 −0.463067
\(473\) −398.144 −0.0387034
\(474\) −8301.92 −0.804473
\(475\) 0 0
\(476\) 1270.71 0.122359
\(477\) −3896.60 −0.374032
\(478\) −1064.63 −0.101872
\(479\) 3196.91 0.304949 0.152475 0.988307i \(-0.451276\pi\)
0.152475 + 0.988307i \(0.451276\pi\)
\(480\) 0 0
\(481\) −6.19986 −0.000587712 0
\(482\) 1661.89 0.157047
\(483\) −4187.34 −0.394474
\(484\) 12635.9 1.18669
\(485\) 0 0
\(486\) 10355.6 0.966540
\(487\) −9506.29 −0.884540 −0.442270 0.896882i \(-0.645827\pi\)
−0.442270 + 0.896882i \(0.645827\pi\)
\(488\) 7159.62 0.664141
\(489\) −5020.26 −0.464262
\(490\) 0 0
\(491\) −9924.98 −0.912236 −0.456118 0.889919i \(-0.650761\pi\)
−0.456118 + 0.889919i \(0.650761\pi\)
\(492\) −2564.75 −0.235016
\(493\) 2764.82 0.252579
\(494\) −505.706 −0.0460583
\(495\) 0 0
\(496\) −1644.58 −0.148878
\(497\) −1458.40 −0.131626
\(498\) −4956.84 −0.446027
\(499\) 3186.71 0.285885 0.142942 0.989731i \(-0.454344\pi\)
0.142942 + 0.989731i \(0.454344\pi\)
\(500\) 0 0
\(501\) −12.1329 −0.00108195
\(502\) −7459.41 −0.663207
\(503\) −1222.87 −0.108399 −0.0541997 0.998530i \(-0.517261\pi\)
−0.0541997 + 0.998530i \(0.517261\pi\)
\(504\) −4956.49 −0.438055
\(505\) 0 0
\(506\) 3082.33 0.270803
\(507\) −15708.8 −1.37604
\(508\) −2012.59 −0.175776
\(509\) −19858.4 −1.72929 −0.864644 0.502385i \(-0.832456\pi\)
−0.864644 + 0.502385i \(0.832456\pi\)
\(510\) 0 0
\(511\) 22101.6 1.91334
\(512\) −512.000 −0.0441942
\(513\) −1950.78 −0.167893
\(514\) −14798.9 −1.26994
\(515\) 0 0
\(516\) −170.392 −0.0145370
\(517\) −36797.9 −3.13031
\(518\) 130.203 0.0110440
\(519\) 5603.04 0.473884
\(520\) 0 0
\(521\) −1723.35 −0.144916 −0.0724581 0.997371i \(-0.523084\pi\)
−0.0724581 + 0.997371i \(0.523084\pi\)
\(522\) −10784.4 −0.904251
\(523\) −21592.8 −1.80533 −0.902663 0.430347i \(-0.858391\pi\)
−0.902663 + 0.430347i \(0.858391\pi\)
\(524\) 11522.1 0.960586
\(525\) 0 0
\(526\) −3815.76 −0.316302
\(527\) −1285.82 −0.106283
\(528\) 7686.21 0.633521
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 14481.4 1.18350
\(532\) 10620.3 0.865503
\(533\) −216.295 −0.0175774
\(534\) −4463.29 −0.361695
\(535\) 0 0
\(536\) 4200.48 0.338494
\(537\) 19143.3 1.53835
\(538\) 2583.49 0.207030
\(539\) 20228.3 1.61650
\(540\) 0 0
\(541\) −20473.8 −1.62706 −0.813528 0.581525i \(-0.802456\pi\)
−0.813528 + 0.581525i \(0.802456\pi\)
\(542\) 10722.3 0.849747
\(543\) −8818.77 −0.696960
\(544\) −400.310 −0.0315499
\(545\) 0 0
\(546\) −880.589 −0.0690214
\(547\) 3212.07 0.251075 0.125538 0.992089i \(-0.459934\pi\)
0.125538 + 0.992089i \(0.459934\pi\)
\(548\) −7553.23 −0.588792
\(549\) −21834.5 −1.69740
\(550\) 0 0
\(551\) 23107.7 1.78661
\(552\) 1319.13 0.101714
\(553\) 14703.4 1.13066
\(554\) −1679.85 −0.128826
\(555\) 0 0
\(556\) −5719.18 −0.436236
\(557\) −14789.3 −1.12503 −0.562515 0.826787i \(-0.690166\pi\)
−0.562515 + 0.826787i \(0.690166\pi\)
\(558\) 5015.43 0.380502
\(559\) −14.3698 −0.00108726
\(560\) 0 0
\(561\) 6009.51 0.452267
\(562\) 1221.93 0.0917153
\(563\) 24632.1 1.84391 0.921953 0.387302i \(-0.126593\pi\)
0.921953 + 0.387302i \(0.126593\pi\)
\(564\) −15748.3 −1.17575
\(565\) 0 0
\(566\) −17137.8 −1.27271
\(567\) −20125.1 −1.49061
\(568\) 459.437 0.0339393
\(569\) −16924.5 −1.24695 −0.623473 0.781845i \(-0.714279\pi\)
−0.623473 + 0.781845i \(0.714279\pi\)
\(570\) 0 0
\(571\) −907.889 −0.0665394 −0.0332697 0.999446i \(-0.510592\pi\)
−0.0332697 + 0.999446i \(0.510592\pi\)
\(572\) 648.207 0.0473827
\(573\) −10275.1 −0.749128
\(574\) 4542.39 0.330306
\(575\) 0 0
\(576\) 1561.44 0.112951
\(577\) −21160.0 −1.52669 −0.763346 0.645990i \(-0.776445\pi\)
−0.763346 + 0.645990i \(0.776445\pi\)
\(578\) 9513.02 0.684584
\(579\) −31172.6 −2.23746
\(580\) 0 0
\(581\) 8778.99 0.626874
\(582\) 26027.4 1.85373
\(583\) −10702.0 −0.760257
\(584\) −6962.62 −0.493348
\(585\) 0 0
\(586\) −19457.6 −1.37165
\(587\) −10085.6 −0.709159 −0.354579 0.935026i \(-0.615376\pi\)
−0.354579 + 0.935026i \(0.615376\pi\)
\(588\) 8657.02 0.607159
\(589\) −10746.6 −0.751791
\(590\) 0 0
\(591\) 18289.7 1.27299
\(592\) −41.0176 −0.00284766
\(593\) −24405.1 −1.69004 −0.845022 0.534731i \(-0.820413\pi\)
−0.845022 + 0.534731i \(0.820413\pi\)
\(594\) 2500.49 0.172721
\(595\) 0 0
\(596\) −5073.35 −0.348679
\(597\) 8822.81 0.604847
\(598\) 111.247 0.00760743
\(599\) −5361.08 −0.365689 −0.182845 0.983142i \(-0.558531\pi\)
−0.182845 + 0.983142i \(0.558531\pi\)
\(600\) 0 0
\(601\) 15225.4 1.03338 0.516688 0.856174i \(-0.327165\pi\)
0.516688 + 0.856174i \(0.327165\pi\)
\(602\) 301.779 0.0204312
\(603\) −12810.1 −0.865121
\(604\) 9343.48 0.629438
\(605\) 0 0
\(606\) 21395.3 1.43420
\(607\) 11891.3 0.795148 0.397574 0.917570i \(-0.369852\pi\)
0.397574 + 0.917570i \(0.369852\pi\)
\(608\) −3345.69 −0.223167
\(609\) 40237.5 2.67735
\(610\) 0 0
\(611\) −1328.11 −0.0879371
\(612\) 1220.82 0.0806350
\(613\) −155.039 −0.0102153 −0.00510765 0.999987i \(-0.501626\pi\)
−0.00510765 + 0.999987i \(0.501626\pi\)
\(614\) −16231.2 −1.06683
\(615\) 0 0
\(616\) −13612.9 −0.890391
\(617\) −6028.99 −0.393384 −0.196692 0.980465i \(-0.563020\pi\)
−0.196692 + 0.980465i \(0.563020\pi\)
\(618\) −3597.34 −0.234152
\(619\) −23232.7 −1.50856 −0.754282 0.656550i \(-0.772015\pi\)
−0.754282 + 0.656550i \(0.772015\pi\)
\(620\) 0 0
\(621\) 429.142 0.0277309
\(622\) 12867.7 0.829496
\(623\) 7904.86 0.508349
\(624\) 277.410 0.0177970
\(625\) 0 0
\(626\) 5349.52 0.341549
\(627\) 50225.9 3.19909
\(628\) −11957.4 −0.759799
\(629\) −32.0698 −0.00203292
\(630\) 0 0
\(631\) 14910.2 0.940673 0.470337 0.882487i \(-0.344132\pi\)
0.470337 + 0.882487i \(0.344132\pi\)
\(632\) −4631.99 −0.291536
\(633\) 20317.9 1.27577
\(634\) −17440.1 −1.09248
\(635\) 0 0
\(636\) −4580.07 −0.285553
\(637\) 730.079 0.0454109
\(638\) −29619.1 −1.83798
\(639\) −1401.14 −0.0867419
\(640\) 0 0
\(641\) 22653.9 1.39591 0.697953 0.716144i \(-0.254095\pi\)
0.697953 + 0.716144i \(0.254095\pi\)
\(642\) −14843.7 −0.912513
\(643\) 9024.61 0.553493 0.276746 0.960943i \(-0.410744\pi\)
0.276746 + 0.960943i \(0.410744\pi\)
\(644\) −2336.30 −0.142955
\(645\) 0 0
\(646\) −2615.85 −0.159318
\(647\) 6904.07 0.419516 0.209758 0.977753i \(-0.432732\pi\)
0.209758 + 0.977753i \(0.432732\pi\)
\(648\) 6339.97 0.384348
\(649\) 39773.0 2.40559
\(650\) 0 0
\(651\) −18713.1 −1.12661
\(652\) −2801.02 −0.168246
\(653\) 6242.60 0.374107 0.187054 0.982350i \(-0.440106\pi\)
0.187054 + 0.982350i \(0.440106\pi\)
\(654\) −5083.28 −0.303933
\(655\) 0 0
\(656\) −1430.98 −0.0851684
\(657\) 21233.8 1.26090
\(658\) 27891.5 1.65247
\(659\) 30150.4 1.78224 0.891118 0.453773i \(-0.149922\pi\)
0.891118 + 0.453773i \(0.149922\pi\)
\(660\) 0 0
\(661\) −7567.21 −0.445280 −0.222640 0.974901i \(-0.571468\pi\)
−0.222640 + 0.974901i \(0.571468\pi\)
\(662\) 6768.80 0.397397
\(663\) 216.895 0.0127051
\(664\) −2765.63 −0.161637
\(665\) 0 0
\(666\) 125.090 0.00727801
\(667\) −5083.33 −0.295094
\(668\) −6.76945 −0.000392093 0
\(669\) 2804.96 0.162101
\(670\) 0 0
\(671\) −59968.2 −3.45015
\(672\) −5825.87 −0.334431
\(673\) 941.239 0.0539110 0.0269555 0.999637i \(-0.491419\pi\)
0.0269555 + 0.999637i \(0.491419\pi\)
\(674\) 18668.2 1.06687
\(675\) 0 0
\(676\) −8764.60 −0.498669
\(677\) −20383.3 −1.15716 −0.578578 0.815627i \(-0.696392\pi\)
−0.578578 + 0.815627i \(0.696392\pi\)
\(678\) 15813.3 0.895733
\(679\) −46096.8 −2.60535
\(680\) 0 0
\(681\) −8931.33 −0.502569
\(682\) 13774.8 0.773409
\(683\) 2076.87 0.116353 0.0581765 0.998306i \(-0.481471\pi\)
0.0581765 + 0.998306i \(0.481471\pi\)
\(684\) 10203.3 0.570369
\(685\) 0 0
\(686\) 2088.33 0.116229
\(687\) 46584.5 2.58706
\(688\) −95.0690 −0.00526813
\(689\) −386.255 −0.0213572
\(690\) 0 0
\(691\) 17273.6 0.950969 0.475484 0.879724i \(-0.342273\pi\)
0.475484 + 0.879724i \(0.342273\pi\)
\(692\) 3126.17 0.171733
\(693\) 41515.1 2.27565
\(694\) −3886.03 −0.212553
\(695\) 0 0
\(696\) −12676.0 −0.690347
\(697\) −1118.82 −0.0608011
\(698\) −13957.1 −0.756854
\(699\) 22058.7 1.19361
\(700\) 0 0
\(701\) 23844.5 1.28473 0.642364 0.766399i \(-0.277954\pi\)
0.642364 + 0.766399i \(0.277954\pi\)
\(702\) 90.2476 0.00485210
\(703\) −268.031 −0.0143798
\(704\) 4288.46 0.229584
\(705\) 0 0
\(706\) 13708.4 0.730766
\(707\) −37892.9 −2.01572
\(708\) 17021.5 0.903541
\(709\) −9773.89 −0.517724 −0.258862 0.965914i \(-0.583347\pi\)
−0.258862 + 0.965914i \(0.583347\pi\)
\(710\) 0 0
\(711\) 14126.1 0.745105
\(712\) −2490.26 −0.131076
\(713\) 2364.08 0.124173
\(714\) −4554.99 −0.238748
\(715\) 0 0
\(716\) 10680.9 0.557490
\(717\) 3816.26 0.198774
\(718\) −21236.7 −1.10382
\(719\) −15782.2 −0.818605 −0.409303 0.912399i \(-0.634228\pi\)
−0.409303 + 0.912399i \(0.634228\pi\)
\(720\) 0 0
\(721\) 6371.19 0.329092
\(722\) −8144.59 −0.419820
\(723\) −5957.20 −0.306432
\(724\) −4920.36 −0.252574
\(725\) 0 0
\(726\) −45294.5 −2.31548
\(727\) −9655.80 −0.492591 −0.246295 0.969195i \(-0.579213\pi\)
−0.246295 + 0.969195i \(0.579213\pi\)
\(728\) −491.318 −0.0250130
\(729\) −15723.2 −0.798821
\(730\) 0 0
\(731\) −74.3303 −0.00376088
\(732\) −25664.4 −1.29588
\(733\) 7159.73 0.360779 0.180389 0.983595i \(-0.442264\pi\)
0.180389 + 0.983595i \(0.442264\pi\)
\(734\) −18500.4 −0.930328
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −35182.8 −1.75845
\(738\) 4364.04 0.217673
\(739\) −3017.01 −0.150179 −0.0750897 0.997177i \(-0.523924\pi\)
−0.0750897 + 0.997177i \(0.523924\pi\)
\(740\) 0 0
\(741\) 1812.75 0.0898693
\(742\) 8111.70 0.401334
\(743\) −36291.7 −1.79194 −0.895971 0.444112i \(-0.853519\pi\)
−0.895971 + 0.444112i \(0.853519\pi\)
\(744\) 5895.15 0.290493
\(745\) 0 0
\(746\) 17010.5 0.834850
\(747\) 8434.29 0.413112
\(748\) 3352.96 0.163899
\(749\) 26289.4 1.28250
\(750\) 0 0
\(751\) −22258.2 −1.08151 −0.540754 0.841181i \(-0.681861\pi\)
−0.540754 + 0.841181i \(0.681861\pi\)
\(752\) −8786.62 −0.426084
\(753\) 26739.0 1.29406
\(754\) −1069.01 −0.0516328
\(755\) 0 0
\(756\) −1895.28 −0.0911782
\(757\) −13222.9 −0.634868 −0.317434 0.948280i \(-0.602821\pi\)
−0.317434 + 0.948280i \(0.602821\pi\)
\(758\) −2094.85 −0.100381
\(759\) −11048.9 −0.528393
\(760\) 0 0
\(761\) −1297.65 −0.0618129 −0.0309065 0.999522i \(-0.509839\pi\)
−0.0309065 + 0.999522i \(0.509839\pi\)
\(762\) 7214.34 0.342976
\(763\) 9002.93 0.427166
\(764\) −5732.94 −0.271480
\(765\) 0 0
\(766\) 18145.3 0.855895
\(767\) 1435.49 0.0675781
\(768\) 1835.32 0.0862321
\(769\) 19892.1 0.932803 0.466402 0.884573i \(-0.345550\pi\)
0.466402 + 0.884573i \(0.345550\pi\)
\(770\) 0 0
\(771\) 53048.0 2.47792
\(772\) −17392.5 −0.810841
\(773\) 7926.68 0.368826 0.184413 0.982849i \(-0.440962\pi\)
0.184413 + 0.982849i \(0.440962\pi\)
\(774\) 289.930 0.0134642
\(775\) 0 0
\(776\) 14521.8 0.671782
\(777\) −466.725 −0.0215491
\(778\) 13761.3 0.634145
\(779\) −9350.83 −0.430075
\(780\) 0 0
\(781\) −3848.20 −0.176312
\(782\) 575.446 0.0263144
\(783\) −4123.77 −0.188214
\(784\) 4830.12 0.220031
\(785\) 0 0
\(786\) −41302.2 −1.87430
\(787\) 2543.20 0.115191 0.0575955 0.998340i \(-0.481657\pi\)
0.0575955 + 0.998340i \(0.481657\pi\)
\(788\) 10204.6 0.461324
\(789\) 13678.0 0.617171
\(790\) 0 0
\(791\) −28006.7 −1.25892
\(792\) −13078.4 −0.586770
\(793\) −2164.37 −0.0969220
\(794\) 18594.5 0.831099
\(795\) 0 0
\(796\) 4922.62 0.219193
\(797\) −6813.74 −0.302829 −0.151415 0.988470i \(-0.548383\pi\)
−0.151415 + 0.988470i \(0.548383\pi\)
\(798\) −38069.5 −1.68878
\(799\) −6869.87 −0.304178
\(800\) 0 0
\(801\) 7594.48 0.335003
\(802\) 9808.59 0.431862
\(803\) 58318.2 2.56290
\(804\) −15057.0 −0.660473
\(805\) 0 0
\(806\) 497.160 0.0217267
\(807\) −9260.77 −0.403958
\(808\) 11937.4 0.519746
\(809\) −14588.3 −0.633991 −0.316996 0.948427i \(-0.602674\pi\)
−0.316996 + 0.948427i \(0.602674\pi\)
\(810\) 0 0
\(811\) −22659.3 −0.981106 −0.490553 0.871411i \(-0.663205\pi\)
−0.490553 + 0.871411i \(0.663205\pi\)
\(812\) 22450.2 0.970257
\(813\) −38435.2 −1.65803
\(814\) 343.559 0.0147933
\(815\) 0 0
\(816\) 1434.95 0.0615605
\(817\) −621.234 −0.0266025
\(818\) 23713.4 1.01359
\(819\) 1498.36 0.0639279
\(820\) 0 0
\(821\) −15236.4 −0.647689 −0.323845 0.946110i \(-0.604975\pi\)
−0.323845 + 0.946110i \(0.604975\pi\)
\(822\) 27075.3 1.14886
\(823\) 11201.4 0.474430 0.237215 0.971457i \(-0.423765\pi\)
0.237215 + 0.971457i \(0.423765\pi\)
\(824\) −2007.11 −0.0848554
\(825\) 0 0
\(826\) −30146.5 −1.26989
\(827\) −23651.0 −0.994468 −0.497234 0.867617i \(-0.665651\pi\)
−0.497234 + 0.867617i \(0.665651\pi\)
\(828\) −2244.56 −0.0942077
\(829\) −13484.2 −0.564929 −0.282465 0.959278i \(-0.591152\pi\)
−0.282465 + 0.959278i \(0.591152\pi\)
\(830\) 0 0
\(831\) 6021.57 0.251367
\(832\) 154.779 0.00644952
\(833\) 3776.45 0.157078
\(834\) 20501.0 0.851187
\(835\) 0 0
\(836\) 28023.2 1.15933
\(837\) 1917.82 0.0791989
\(838\) −24994.4 −1.03033
\(839\) 13389.9 0.550978 0.275489 0.961304i \(-0.411160\pi\)
0.275489 + 0.961304i \(0.411160\pi\)
\(840\) 0 0
\(841\) 24458.4 1.00284
\(842\) 4683.26 0.191681
\(843\) −4380.13 −0.178956
\(844\) 11336.2 0.462332
\(845\) 0 0
\(846\) 26796.4 1.08898
\(847\) 80220.4 3.25432
\(848\) −2555.42 −0.103483
\(849\) 61432.1 2.48333
\(850\) 0 0
\(851\) 58.9628 0.00237511
\(852\) −1646.90 −0.0662228
\(853\) 5212.82 0.209242 0.104621 0.994512i \(-0.466637\pi\)
0.104621 + 0.994512i \(0.466637\pi\)
\(854\) 45453.8 1.82131
\(855\) 0 0
\(856\) −8281.92 −0.330689
\(857\) 29998.6 1.19572 0.597861 0.801600i \(-0.296017\pi\)
0.597861 + 0.801600i \(0.296017\pi\)
\(858\) −2323.56 −0.0924535
\(859\) 36624.0 1.45471 0.727354 0.686263i \(-0.240750\pi\)
0.727354 + 0.686263i \(0.240750\pi\)
\(860\) 0 0
\(861\) −16282.7 −0.644496
\(862\) 28094.3 1.11009
\(863\) 16979.4 0.669740 0.334870 0.942264i \(-0.391308\pi\)
0.334870 + 0.942264i \(0.391308\pi\)
\(864\) 597.067 0.0235100
\(865\) 0 0
\(866\) 19754.9 0.775170
\(867\) −34100.4 −1.33577
\(868\) −10440.8 −0.408277
\(869\) 38797.1 1.51450
\(870\) 0 0
\(871\) −1269.82 −0.0493985
\(872\) −2836.18 −0.110144
\(873\) −44286.8 −1.71693
\(874\) 4809.43 0.186134
\(875\) 0 0
\(876\) 24958.2 0.962626
\(877\) −17155.7 −0.660554 −0.330277 0.943884i \(-0.607142\pi\)
−0.330277 + 0.943884i \(0.607142\pi\)
\(878\) 14056.7 0.540309
\(879\) 69747.7 2.67637
\(880\) 0 0
\(881\) 37047.2 1.41675 0.708373 0.705839i \(-0.249430\pi\)
0.708373 + 0.705839i \(0.249430\pi\)
\(882\) −14730.3 −0.562353
\(883\) −36958.1 −1.40854 −0.704270 0.709932i \(-0.748725\pi\)
−0.704270 + 0.709932i \(0.748725\pi\)
\(884\) 121.015 0.00460427
\(885\) 0 0
\(886\) −26973.4 −1.02279
\(887\) 40755.4 1.54277 0.771383 0.636372i \(-0.219566\pi\)
0.771383 + 0.636372i \(0.219566\pi\)
\(888\) 147.032 0.00555637
\(889\) −12777.2 −0.482040
\(890\) 0 0
\(891\) −53102.9 −1.99665
\(892\) 1565.00 0.0587446
\(893\) −57416.6 −2.15159
\(894\) 18185.9 0.680345
\(895\) 0 0
\(896\) −3250.50 −0.121196
\(897\) −398.778 −0.0148437
\(898\) 12871.5 0.478316
\(899\) −22717.2 −0.842782
\(900\) 0 0
\(901\) −1997.97 −0.0738756
\(902\) 11985.8 0.442442
\(903\) −1081.76 −0.0398656
\(904\) 8822.92 0.324608
\(905\) 0 0
\(906\) −33492.6 −1.22817
\(907\) 28701.3 1.05073 0.525365 0.850877i \(-0.323929\pi\)
0.525365 + 0.850877i \(0.323929\pi\)
\(908\) −4983.16 −0.182128
\(909\) −36405.1 −1.32836
\(910\) 0 0
\(911\) −30965.9 −1.12618 −0.563088 0.826397i \(-0.690387\pi\)
−0.563088 + 0.826397i \(0.690387\pi\)
\(912\) 11993.0 0.435446
\(913\) 23164.6 0.839691
\(914\) −28651.0 −1.03686
\(915\) 0 0
\(916\) 25991.5 0.937535
\(917\) 73149.8 2.63426
\(918\) 466.821 0.0167836
\(919\) −12189.9 −0.437550 −0.218775 0.975775i \(-0.570206\pi\)
−0.218775 + 0.975775i \(0.570206\pi\)
\(920\) 0 0
\(921\) 58182.2 2.08162
\(922\) −19932.3 −0.711968
\(923\) −138.889 −0.00495297
\(924\) 48796.9 1.73734
\(925\) 0 0
\(926\) 7258.12 0.257577
\(927\) 6121.03 0.216873
\(928\) −7072.46 −0.250178
\(929\) −47633.5 −1.68224 −0.841121 0.540846i \(-0.818104\pi\)
−0.841121 + 0.540846i \(0.818104\pi\)
\(930\) 0 0
\(931\) 31562.6 1.11109
\(932\) 12307.5 0.432559
\(933\) −46125.4 −1.61852
\(934\) −8907.62 −0.312062
\(935\) 0 0
\(936\) −472.026 −0.0164836
\(937\) −17375.8 −0.605809 −0.302904 0.953021i \(-0.597956\pi\)
−0.302904 + 0.953021i \(0.597956\pi\)
\(938\) 26667.3 0.928271
\(939\) −19175.9 −0.666434
\(940\) 0 0
\(941\) 27101.7 0.938883 0.469442 0.882964i \(-0.344455\pi\)
0.469442 + 0.882964i \(0.344455\pi\)
\(942\) 42862.6 1.48253
\(943\) 2057.04 0.0710354
\(944\) 9497.01 0.327438
\(945\) 0 0
\(946\) 796.289 0.0273674
\(947\) 15867.2 0.544472 0.272236 0.962230i \(-0.412237\pi\)
0.272236 + 0.962230i \(0.412237\pi\)
\(948\) 16603.8 0.568848
\(949\) 2104.82 0.0719972
\(950\) 0 0
\(951\) 62515.7 2.13166
\(952\) −2541.42 −0.0865210
\(953\) −5010.38 −0.170306 −0.0851532 0.996368i \(-0.527138\pi\)
−0.0851532 + 0.996368i \(0.527138\pi\)
\(954\) 7793.20 0.264480
\(955\) 0 0
\(956\) 2129.25 0.0720344
\(957\) 106173. 3.58629
\(958\) −6393.82 −0.215632
\(959\) −47952.7 −1.61467
\(960\) 0 0
\(961\) −19226.0 −0.645364
\(962\) 12.3997 0.000415575 0
\(963\) 25257.2 0.845173
\(964\) −3323.77 −0.111049
\(965\) 0 0
\(966\) 8374.69 0.278935
\(967\) 35041.9 1.16533 0.582663 0.812714i \(-0.302011\pi\)
0.582663 + 0.812714i \(0.302011\pi\)
\(968\) −25271.7 −0.839115
\(969\) 9376.77 0.310862
\(970\) 0 0
\(971\) −17750.1 −0.586641 −0.293321 0.956014i \(-0.594760\pi\)
−0.293321 + 0.956014i \(0.594760\pi\)
\(972\) −20711.1 −0.683447
\(973\) −36309.0 −1.19631
\(974\) 19012.6 0.625464
\(975\) 0 0
\(976\) −14319.2 −0.469618
\(977\) −46981.1 −1.53844 −0.769221 0.638983i \(-0.779356\pi\)
−0.769221 + 0.638983i \(0.779356\pi\)
\(978\) 10040.5 0.328283
\(979\) 20858.1 0.680928
\(980\) 0 0
\(981\) 8649.43 0.281504
\(982\) 19850.0 0.645049
\(983\) −3552.85 −0.115278 −0.0576390 0.998337i \(-0.518357\pi\)
−0.0576390 + 0.998337i \(0.518357\pi\)
\(984\) 5129.50 0.166181
\(985\) 0 0
\(986\) −5529.64 −0.178600
\(987\) −99979.9 −3.22431
\(988\) 1011.41 0.0325681
\(989\) 136.662 0.00439392
\(990\) 0 0
\(991\) −29989.4 −0.961295 −0.480648 0.876914i \(-0.659598\pi\)
−0.480648 + 0.876914i \(0.659598\pi\)
\(992\) 3289.15 0.105273
\(993\) −24263.5 −0.775405
\(994\) 2916.80 0.0930736
\(995\) 0 0
\(996\) 9913.68 0.315389
\(997\) 59911.2 1.90312 0.951559 0.307467i \(-0.0994814\pi\)
0.951559 + 0.307467i \(0.0994814\pi\)
\(998\) −6373.41 −0.202151
\(999\) 47.8325 0.00151487
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.a.o.1.4 4
5.2 odd 4 1150.4.b.m.599.1 8
5.3 odd 4 1150.4.b.m.599.8 8
5.4 even 2 230.4.a.i.1.1 4
15.14 odd 2 2070.4.a.bi.1.1 4
20.19 odd 2 1840.4.a.l.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.i.1.1 4 5.4 even 2
1150.4.a.o.1.4 4 1.1 even 1 trivial
1150.4.b.m.599.1 8 5.2 odd 4
1150.4.b.m.599.8 8 5.3 odd 4
1840.4.a.l.1.4 4 20.19 odd 2
2070.4.a.bi.1.1 4 15.14 odd 2