Properties

Label 1150.4.a.o.1.3
Level $1150$
Weight $4$
Character 1150.1
Self dual yes
Analytic conductor $67.852$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1150,4,Mod(1,1150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1150.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 84x^{2} - 11x + 1242 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(4.26018\) of defining polynomial
Character \(\chi\) \(=\) 1150.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +3.26018 q^{3} +4.00000 q^{4} -6.52037 q^{6} -27.7921 q^{7} -8.00000 q^{8} -16.3712 q^{9} -10.8182 q^{11} +13.0407 q^{12} -36.9683 q^{13} +55.5842 q^{14} +16.0000 q^{16} -118.996 q^{17} +32.7424 q^{18} -19.3321 q^{19} -90.6073 q^{21} +21.6365 q^{22} -23.0000 q^{23} -26.0815 q^{24} +73.9366 q^{26} -141.398 q^{27} -111.168 q^{28} +234.499 q^{29} +165.319 q^{31} -32.0000 q^{32} -35.2694 q^{33} +237.992 q^{34} -65.4848 q^{36} -202.301 q^{37} +38.6643 q^{38} -120.523 q^{39} -295.846 q^{41} +181.215 q^{42} +65.9221 q^{43} -43.2729 q^{44} +46.0000 q^{46} +110.279 q^{47} +52.1630 q^{48} +429.400 q^{49} -387.949 q^{51} -147.873 q^{52} +688.135 q^{53} +282.796 q^{54} +222.337 q^{56} -63.0263 q^{57} -468.998 q^{58} +10.5847 q^{59} +110.579 q^{61} -330.639 q^{62} +454.990 q^{63} +64.0000 q^{64} +70.5388 q^{66} +643.290 q^{67} -475.984 q^{68} -74.9842 q^{69} +143.216 q^{71} +130.970 q^{72} +158.213 q^{73} +404.601 q^{74} -77.3285 q^{76} +300.661 q^{77} +241.047 q^{78} +1123.34 q^{79} -18.9616 q^{81} +591.692 q^{82} +824.600 q^{83} -362.429 q^{84} -131.844 q^{86} +764.510 q^{87} +86.5458 q^{88} -879.672 q^{89} +1027.43 q^{91} -92.0000 q^{92} +538.971 q^{93} -220.557 q^{94} -104.326 q^{96} +938.437 q^{97} -858.801 q^{98} +177.107 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} - 4 q^{3} + 16 q^{4} + 8 q^{6} - 26 q^{7} - 32 q^{8} + 64 q^{9} + 93 q^{11} - 16 q^{12} - 32 q^{13} + 52 q^{14} + 64 q^{16} - 108 q^{17} - 128 q^{18} + 185 q^{19} + 302 q^{21} - 186 q^{22}+ \cdots + 2013 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 3.26018 0.627423 0.313711 0.949518i \(-0.398428\pi\)
0.313711 + 0.949518i \(0.398428\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) −6.52037 −0.443655
\(7\) −27.7921 −1.50063 −0.750316 0.661079i \(-0.770099\pi\)
−0.750316 + 0.661079i \(0.770099\pi\)
\(8\) −8.00000 −0.353553
\(9\) −16.3712 −0.606341
\(10\) 0 0
\(11\) −10.8182 −0.296529 −0.148264 0.988948i \(-0.547369\pi\)
−0.148264 + 0.988948i \(0.547369\pi\)
\(12\) 13.0407 0.313711
\(13\) −36.9683 −0.788705 −0.394352 0.918959i \(-0.629031\pi\)
−0.394352 + 0.918959i \(0.629031\pi\)
\(14\) 55.5842 1.06111
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −118.996 −1.69769 −0.848847 0.528639i \(-0.822703\pi\)
−0.848847 + 0.528639i \(0.822703\pi\)
\(18\) 32.7424 0.428748
\(19\) −19.3321 −0.233426 −0.116713 0.993166i \(-0.537236\pi\)
−0.116713 + 0.993166i \(0.537236\pi\)
\(20\) 0 0
\(21\) −90.6073 −0.941531
\(22\) 21.6365 0.209678
\(23\) −23.0000 −0.208514
\(24\) −26.0815 −0.221827
\(25\) 0 0
\(26\) 73.9366 0.557699
\(27\) −141.398 −1.00785
\(28\) −111.168 −0.750316
\(29\) 234.499 1.50156 0.750782 0.660550i \(-0.229677\pi\)
0.750782 + 0.660550i \(0.229677\pi\)
\(30\) 0 0
\(31\) 165.319 0.957814 0.478907 0.877866i \(-0.341033\pi\)
0.478907 + 0.877866i \(0.341033\pi\)
\(32\) −32.0000 −0.176777
\(33\) −35.2694 −0.186049
\(34\) 237.992 1.20045
\(35\) 0 0
\(36\) −65.4848 −0.303170
\(37\) −202.301 −0.898865 −0.449432 0.893314i \(-0.648374\pi\)
−0.449432 + 0.893314i \(0.648374\pi\)
\(38\) 38.6643 0.165057
\(39\) −120.523 −0.494851
\(40\) 0 0
\(41\) −295.846 −1.12691 −0.563456 0.826146i \(-0.690529\pi\)
−0.563456 + 0.826146i \(0.690529\pi\)
\(42\) 181.215 0.665763
\(43\) 65.9221 0.233791 0.116896 0.993144i \(-0.462706\pi\)
0.116896 + 0.993144i \(0.462706\pi\)
\(44\) −43.2729 −0.148264
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) 110.279 0.342251 0.171126 0.985249i \(-0.445260\pi\)
0.171126 + 0.985249i \(0.445260\pi\)
\(48\) 52.1630 0.156856
\(49\) 429.400 1.25190
\(50\) 0 0
\(51\) −387.949 −1.06517
\(52\) −147.873 −0.394352
\(53\) 688.135 1.78345 0.891723 0.452582i \(-0.149497\pi\)
0.891723 + 0.452582i \(0.149497\pi\)
\(54\) 282.796 0.712661
\(55\) 0 0
\(56\) 222.337 0.530553
\(57\) −63.0263 −0.146457
\(58\) −468.998 −1.06177
\(59\) 10.5847 0.0233561 0.0116781 0.999932i \(-0.496283\pi\)
0.0116781 + 0.999932i \(0.496283\pi\)
\(60\) 0 0
\(61\) 110.579 0.232101 0.116050 0.993243i \(-0.462977\pi\)
0.116050 + 0.993243i \(0.462977\pi\)
\(62\) −330.639 −0.677276
\(63\) 454.990 0.909894
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 70.5388 0.131557
\(67\) 643.290 1.17299 0.586496 0.809952i \(-0.300507\pi\)
0.586496 + 0.809952i \(0.300507\pi\)
\(68\) −475.984 −0.848847
\(69\) −74.9842 −0.130827
\(70\) 0 0
\(71\) 143.216 0.239389 0.119695 0.992811i \(-0.461808\pi\)
0.119695 + 0.992811i \(0.461808\pi\)
\(72\) 130.970 0.214374
\(73\) 158.213 0.253664 0.126832 0.991924i \(-0.459519\pi\)
0.126832 + 0.991924i \(0.459519\pi\)
\(74\) 404.601 0.635593
\(75\) 0 0
\(76\) −77.3285 −0.116713
\(77\) 300.661 0.444981
\(78\) 241.047 0.349913
\(79\) 1123.34 1.59982 0.799912 0.600118i \(-0.204880\pi\)
0.799912 + 0.600118i \(0.204880\pi\)
\(80\) 0 0
\(81\) −18.9616 −0.0260104
\(82\) 591.692 0.796847
\(83\) 824.600 1.09050 0.545251 0.838273i \(-0.316434\pi\)
0.545251 + 0.838273i \(0.316434\pi\)
\(84\) −362.429 −0.470765
\(85\) 0 0
\(86\) −131.844 −0.165316
\(87\) 764.510 0.942115
\(88\) 86.5458 0.104839
\(89\) −879.672 −1.04770 −0.523849 0.851811i \(-0.675504\pi\)
−0.523849 + 0.851811i \(0.675504\pi\)
\(90\) 0 0
\(91\) 1027.43 1.18356
\(92\) −92.0000 −0.104257
\(93\) 538.971 0.600954
\(94\) −220.557 −0.242008
\(95\) 0 0
\(96\) −104.326 −0.110914
\(97\) 938.437 0.982308 0.491154 0.871073i \(-0.336575\pi\)
0.491154 + 0.871073i \(0.336575\pi\)
\(98\) −858.801 −0.885224
\(99\) 177.107 0.179798
\(100\) 0 0
\(101\) −688.428 −0.678229 −0.339114 0.940745i \(-0.610127\pi\)
−0.339114 + 0.940745i \(0.610127\pi\)
\(102\) 775.899 0.753190
\(103\) −2041.55 −1.95301 −0.976504 0.215500i \(-0.930862\pi\)
−0.976504 + 0.215500i \(0.930862\pi\)
\(104\) 295.746 0.278849
\(105\) 0 0
\(106\) −1376.27 −1.26109
\(107\) −287.420 −0.259682 −0.129841 0.991535i \(-0.541447\pi\)
−0.129841 + 0.991535i \(0.541447\pi\)
\(108\) −565.592 −0.503927
\(109\) −1211.29 −1.06441 −0.532204 0.846616i \(-0.678636\pi\)
−0.532204 + 0.846616i \(0.678636\pi\)
\(110\) 0 0
\(111\) −659.537 −0.563968
\(112\) −444.673 −0.375158
\(113\) −741.316 −0.617143 −0.308571 0.951201i \(-0.599851\pi\)
−0.308571 + 0.951201i \(0.599851\pi\)
\(114\) 126.053 0.103561
\(115\) 0 0
\(116\) 937.996 0.750782
\(117\) 605.215 0.478224
\(118\) −21.1694 −0.0165153
\(119\) 3307.15 2.54761
\(120\) 0 0
\(121\) −1213.97 −0.912071
\(122\) −221.157 −0.164120
\(123\) −964.513 −0.707050
\(124\) 661.277 0.478907
\(125\) 0 0
\(126\) −909.980 −0.643392
\(127\) −1579.99 −1.10395 −0.551976 0.833860i \(-0.686126\pi\)
−0.551976 + 0.833860i \(0.686126\pi\)
\(128\) −128.000 −0.0883883
\(129\) 214.918 0.146686
\(130\) 0 0
\(131\) −2348.86 −1.56657 −0.783285 0.621662i \(-0.786458\pi\)
−0.783285 + 0.621662i \(0.786458\pi\)
\(132\) −141.078 −0.0930245
\(133\) 537.280 0.350287
\(134\) −1286.58 −0.829430
\(135\) 0 0
\(136\) 951.969 0.600225
\(137\) 617.567 0.385127 0.192563 0.981285i \(-0.438320\pi\)
0.192563 + 0.981285i \(0.438320\pi\)
\(138\) 149.968 0.0925084
\(139\) 1509.75 0.921260 0.460630 0.887592i \(-0.347623\pi\)
0.460630 + 0.887592i \(0.347623\pi\)
\(140\) 0 0
\(141\) 359.529 0.214736
\(142\) −286.432 −0.169274
\(143\) 399.932 0.233874
\(144\) −261.939 −0.151585
\(145\) 0 0
\(146\) −316.427 −0.179368
\(147\) 1399.92 0.785468
\(148\) −809.202 −0.449432
\(149\) 1025.46 0.563818 0.281909 0.959441i \(-0.409032\pi\)
0.281909 + 0.959441i \(0.409032\pi\)
\(150\) 0 0
\(151\) −1516.67 −0.817383 −0.408692 0.912672i \(-0.634015\pi\)
−0.408692 + 0.912672i \(0.634015\pi\)
\(152\) 154.657 0.0825286
\(153\) 1948.11 1.02938
\(154\) −601.322 −0.314649
\(155\) 0 0
\(156\) −482.094 −0.247426
\(157\) 2757.31 1.40164 0.700819 0.713339i \(-0.252818\pi\)
0.700819 + 0.713339i \(0.252818\pi\)
\(158\) −2246.69 −1.13125
\(159\) 2243.45 1.11897
\(160\) 0 0
\(161\) 639.218 0.312903
\(162\) 37.9231 0.0183921
\(163\) −1263.29 −0.607047 −0.303524 0.952824i \(-0.598163\pi\)
−0.303524 + 0.952824i \(0.598163\pi\)
\(164\) −1183.38 −0.563456
\(165\) 0 0
\(166\) −1649.20 −0.771101
\(167\) 349.646 0.162014 0.0810072 0.996714i \(-0.474186\pi\)
0.0810072 + 0.996714i \(0.474186\pi\)
\(168\) 724.859 0.332881
\(169\) −830.344 −0.377945
\(170\) 0 0
\(171\) 316.490 0.141536
\(172\) 263.689 0.116896
\(173\) −2313.83 −1.01686 −0.508432 0.861102i \(-0.669775\pi\)
−0.508432 + 0.861102i \(0.669775\pi\)
\(174\) −1529.02 −0.666176
\(175\) 0 0
\(176\) −173.092 −0.0741322
\(177\) 34.5081 0.0146542
\(178\) 1759.34 0.740834
\(179\) −2347.69 −0.980306 −0.490153 0.871636i \(-0.663059\pi\)
−0.490153 + 0.871636i \(0.663059\pi\)
\(180\) 0 0
\(181\) 4396.31 1.80539 0.902695 0.430282i \(-0.141586\pi\)
0.902695 + 0.430282i \(0.141586\pi\)
\(182\) −2054.85 −0.836900
\(183\) 360.507 0.145625
\(184\) 184.000 0.0737210
\(185\) 0 0
\(186\) −1077.94 −0.424939
\(187\) 1287.33 0.503415
\(188\) 441.115 0.171126
\(189\) 3929.75 1.51242
\(190\) 0 0
\(191\) 4153.14 1.57335 0.786677 0.617365i \(-0.211800\pi\)
0.786677 + 0.617365i \(0.211800\pi\)
\(192\) 208.652 0.0784278
\(193\) 1020.52 0.380616 0.190308 0.981724i \(-0.439051\pi\)
0.190308 + 0.981724i \(0.439051\pi\)
\(194\) −1876.87 −0.694596
\(195\) 0 0
\(196\) 1717.60 0.625948
\(197\) 398.643 0.144173 0.0720866 0.997398i \(-0.477034\pi\)
0.0720866 + 0.997398i \(0.477034\pi\)
\(198\) −354.215 −0.127136
\(199\) 4131.40 1.47169 0.735847 0.677148i \(-0.236784\pi\)
0.735847 + 0.677148i \(0.236784\pi\)
\(200\) 0 0
\(201\) 2097.24 0.735961
\(202\) 1376.86 0.479580
\(203\) −6517.22 −2.25329
\(204\) −1551.80 −0.532586
\(205\) 0 0
\(206\) 4083.10 1.38098
\(207\) 376.538 0.126431
\(208\) −591.493 −0.197176
\(209\) 209.139 0.0692176
\(210\) 0 0
\(211\) 826.315 0.269601 0.134801 0.990873i \(-0.456961\pi\)
0.134801 + 0.990873i \(0.456961\pi\)
\(212\) 2752.54 0.891723
\(213\) 466.911 0.150198
\(214\) 574.840 0.183623
\(215\) 0 0
\(216\) 1131.18 0.356330
\(217\) −4594.57 −1.43733
\(218\) 2422.58 0.752650
\(219\) 515.805 0.159155
\(220\) 0 0
\(221\) 4399.08 1.33898
\(222\) 1319.07 0.398786
\(223\) −1110.09 −0.333351 −0.166676 0.986012i \(-0.553303\pi\)
−0.166676 + 0.986012i \(0.553303\pi\)
\(224\) 889.347 0.265277
\(225\) 0 0
\(226\) 1482.63 0.436386
\(227\) 4917.90 1.43794 0.718971 0.695040i \(-0.244614\pi\)
0.718971 + 0.695040i \(0.244614\pi\)
\(228\) −252.105 −0.0732284
\(229\) −1390.62 −0.401288 −0.200644 0.979664i \(-0.564304\pi\)
−0.200644 + 0.979664i \(0.564304\pi\)
\(230\) 0 0
\(231\) 980.211 0.279191
\(232\) −1875.99 −0.530883
\(233\) 3409.59 0.958668 0.479334 0.877633i \(-0.340878\pi\)
0.479334 + 0.877633i \(0.340878\pi\)
\(234\) −1210.43 −0.338155
\(235\) 0 0
\(236\) 42.3388 0.0116781
\(237\) 3662.31 1.00377
\(238\) −6614.30 −1.80143
\(239\) 2056.35 0.556544 0.278272 0.960502i \(-0.410238\pi\)
0.278272 + 0.960502i \(0.410238\pi\)
\(240\) 0 0
\(241\) −1957.03 −0.523085 −0.261543 0.965192i \(-0.584231\pi\)
−0.261543 + 0.965192i \(0.584231\pi\)
\(242\) 2427.93 0.644931
\(243\) 3755.93 0.991535
\(244\) 442.315 0.116050
\(245\) 0 0
\(246\) 1929.03 0.499960
\(247\) 714.676 0.184104
\(248\) −1322.55 −0.338638
\(249\) 2688.35 0.684205
\(250\) 0 0
\(251\) −1954.13 −0.491410 −0.245705 0.969345i \(-0.579019\pi\)
−0.245705 + 0.969345i \(0.579019\pi\)
\(252\) 1819.96 0.454947
\(253\) 248.819 0.0618306
\(254\) 3159.99 0.780612
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −1958.40 −0.475338 −0.237669 0.971346i \(-0.576383\pi\)
−0.237669 + 0.971346i \(0.576383\pi\)
\(258\) −429.837 −0.103723
\(259\) 5622.35 1.34887
\(260\) 0 0
\(261\) −3839.03 −0.910459
\(262\) 4697.72 1.10773
\(263\) −7205.23 −1.68933 −0.844665 0.535295i \(-0.820200\pi\)
−0.844665 + 0.535295i \(0.820200\pi\)
\(264\) 282.155 0.0657783
\(265\) 0 0
\(266\) −1074.56 −0.247690
\(267\) −2867.89 −0.657349
\(268\) 2573.16 0.586496
\(269\) −3764.30 −0.853210 −0.426605 0.904438i \(-0.640291\pi\)
−0.426605 + 0.904438i \(0.640291\pi\)
\(270\) 0 0
\(271\) −5208.88 −1.16759 −0.583795 0.811901i \(-0.698433\pi\)
−0.583795 + 0.811901i \(0.698433\pi\)
\(272\) −1903.94 −0.424423
\(273\) 3349.60 0.742590
\(274\) −1235.13 −0.272326
\(275\) 0 0
\(276\) −299.937 −0.0654133
\(277\) −1550.21 −0.336256 −0.168128 0.985765i \(-0.553772\pi\)
−0.168128 + 0.985765i \(0.553772\pi\)
\(278\) −3019.50 −0.651430
\(279\) −2706.47 −0.580761
\(280\) 0 0
\(281\) 7997.53 1.69784 0.848920 0.528522i \(-0.177254\pi\)
0.848920 + 0.528522i \(0.177254\pi\)
\(282\) −719.058 −0.151841
\(283\) 5808.41 1.22005 0.610025 0.792382i \(-0.291159\pi\)
0.610025 + 0.792382i \(0.291159\pi\)
\(284\) 572.864 0.119695
\(285\) 0 0
\(286\) −799.863 −0.165374
\(287\) 8222.18 1.69108
\(288\) 523.878 0.107187
\(289\) 9247.08 1.88216
\(290\) 0 0
\(291\) 3059.48 0.616322
\(292\) 632.854 0.126832
\(293\) 8854.66 1.76551 0.882756 0.469832i \(-0.155686\pi\)
0.882756 + 0.469832i \(0.155686\pi\)
\(294\) −2799.85 −0.555410
\(295\) 0 0
\(296\) 1618.40 0.317797
\(297\) 1529.68 0.298858
\(298\) −2050.92 −0.398680
\(299\) 850.271 0.164456
\(300\) 0 0
\(301\) −1832.11 −0.350835
\(302\) 3033.34 0.577977
\(303\) −2244.40 −0.425536
\(304\) −309.314 −0.0583565
\(305\) 0 0
\(306\) −3896.22 −0.727882
\(307\) 1501.03 0.279050 0.139525 0.990219i \(-0.455443\pi\)
0.139525 + 0.990219i \(0.455443\pi\)
\(308\) 1202.64 0.222490
\(309\) −6655.83 −1.22536
\(310\) 0 0
\(311\) −7440.48 −1.35663 −0.678313 0.734773i \(-0.737289\pi\)
−0.678313 + 0.734773i \(0.737289\pi\)
\(312\) 964.188 0.174956
\(313\) 2528.63 0.456634 0.228317 0.973587i \(-0.426678\pi\)
0.228317 + 0.973587i \(0.426678\pi\)
\(314\) −5514.61 −0.991107
\(315\) 0 0
\(316\) 4493.38 0.799912
\(317\) 9636.72 1.70742 0.853710 0.520749i \(-0.174347\pi\)
0.853710 + 0.520749i \(0.174347\pi\)
\(318\) −4486.89 −0.791234
\(319\) −2536.86 −0.445257
\(320\) 0 0
\(321\) −937.042 −0.162930
\(322\) −1278.44 −0.221256
\(323\) 2300.45 0.396286
\(324\) −75.8462 −0.0130052
\(325\) 0 0
\(326\) 2526.58 0.429247
\(327\) −3949.03 −0.667834
\(328\) 2366.77 0.398424
\(329\) −3064.88 −0.513593
\(330\) 0 0
\(331\) 2875.82 0.477551 0.238776 0.971075i \(-0.423254\pi\)
0.238776 + 0.971075i \(0.423254\pi\)
\(332\) 3298.40 0.545251
\(333\) 3311.90 0.545018
\(334\) −699.291 −0.114561
\(335\) 0 0
\(336\) −1449.72 −0.235383
\(337\) −9911.19 −1.60207 −0.801034 0.598619i \(-0.795717\pi\)
−0.801034 + 0.598619i \(0.795717\pi\)
\(338\) 1660.69 0.267247
\(339\) −2416.83 −0.387209
\(340\) 0 0
\(341\) −1788.46 −0.284019
\(342\) −632.980 −0.100081
\(343\) −2401.24 −0.378003
\(344\) −527.377 −0.0826578
\(345\) 0 0
\(346\) 4627.67 0.719031
\(347\) −4497.70 −0.695820 −0.347910 0.937528i \(-0.613108\pi\)
−0.347910 + 0.937528i \(0.613108\pi\)
\(348\) 3058.04 0.471058
\(349\) 888.112 0.136216 0.0681082 0.997678i \(-0.478304\pi\)
0.0681082 + 0.997678i \(0.478304\pi\)
\(350\) 0 0
\(351\) 5227.25 0.794900
\(352\) 346.183 0.0524194
\(353\) 11722.2 1.76745 0.883727 0.468002i \(-0.155026\pi\)
0.883727 + 0.468002i \(0.155026\pi\)
\(354\) −69.0161 −0.0103621
\(355\) 0 0
\(356\) −3518.69 −0.523849
\(357\) 10781.9 1.59843
\(358\) 4695.39 0.693181
\(359\) −1257.49 −0.184869 −0.0924343 0.995719i \(-0.529465\pi\)
−0.0924343 + 0.995719i \(0.529465\pi\)
\(360\) 0 0
\(361\) −6485.27 −0.945512
\(362\) −8792.63 −1.27660
\(363\) −3957.75 −0.572254
\(364\) 4109.71 0.591778
\(365\) 0 0
\(366\) −721.014 −0.102973
\(367\) −10122.2 −1.43972 −0.719859 0.694120i \(-0.755794\pi\)
−0.719859 + 0.694120i \(0.755794\pi\)
\(368\) −368.000 −0.0521286
\(369\) 4843.36 0.683293
\(370\) 0 0
\(371\) −19124.7 −2.67629
\(372\) 2155.89 0.300477
\(373\) −6530.08 −0.906473 −0.453237 0.891390i \(-0.649731\pi\)
−0.453237 + 0.891390i \(0.649731\pi\)
\(374\) −2574.65 −0.355968
\(375\) 0 0
\(376\) −882.230 −0.121004
\(377\) −8669.03 −1.18429
\(378\) −7859.50 −1.06944
\(379\) 277.850 0.0376575 0.0188288 0.999823i \(-0.494006\pi\)
0.0188288 + 0.999823i \(0.494006\pi\)
\(380\) 0 0
\(381\) −5151.07 −0.692644
\(382\) −8306.28 −1.11253
\(383\) 10679.6 1.42482 0.712408 0.701766i \(-0.247605\pi\)
0.712408 + 0.701766i \(0.247605\pi\)
\(384\) −417.304 −0.0554569
\(385\) 0 0
\(386\) −2041.05 −0.269136
\(387\) −1079.22 −0.141757
\(388\) 3753.75 0.491154
\(389\) 1546.05 0.201511 0.100756 0.994911i \(-0.467874\pi\)
0.100756 + 0.994911i \(0.467874\pi\)
\(390\) 0 0
\(391\) 2736.91 0.353994
\(392\) −3435.20 −0.442612
\(393\) −7657.71 −0.982902
\(394\) −797.285 −0.101946
\(395\) 0 0
\(396\) 708.429 0.0898988
\(397\) 12901.8 1.63103 0.815517 0.578733i \(-0.196453\pi\)
0.815517 + 0.578733i \(0.196453\pi\)
\(398\) −8262.80 −1.04064
\(399\) 1751.63 0.219778
\(400\) 0 0
\(401\) −8534.31 −1.06280 −0.531400 0.847121i \(-0.678334\pi\)
−0.531400 + 0.847121i \(0.678334\pi\)
\(402\) −4194.49 −0.520403
\(403\) −6111.57 −0.755432
\(404\) −2753.71 −0.339114
\(405\) 0 0
\(406\) 13034.4 1.59332
\(407\) 2188.53 0.266539
\(408\) 3103.59 0.376595
\(409\) 650.968 0.0787000 0.0393500 0.999225i \(-0.487471\pi\)
0.0393500 + 0.999225i \(0.487471\pi\)
\(410\) 0 0
\(411\) 2013.38 0.241637
\(412\) −8166.20 −0.976504
\(413\) −294.171 −0.0350489
\(414\) −753.075 −0.0894001
\(415\) 0 0
\(416\) 1182.99 0.139425
\(417\) 4922.06 0.578020
\(418\) −418.279 −0.0489442
\(419\) 13266.2 1.54677 0.773384 0.633938i \(-0.218563\pi\)
0.773384 + 0.633938i \(0.218563\pi\)
\(420\) 0 0
\(421\) −8274.69 −0.957918 −0.478959 0.877837i \(-0.658986\pi\)
−0.478959 + 0.877837i \(0.658986\pi\)
\(422\) −1652.63 −0.190637
\(423\) −1805.39 −0.207521
\(424\) −5505.08 −0.630543
\(425\) 0 0
\(426\) −933.822 −0.106206
\(427\) −3073.21 −0.348298
\(428\) −1149.68 −0.129841
\(429\) 1303.85 0.146738
\(430\) 0 0
\(431\) 724.084 0.0809232 0.0404616 0.999181i \(-0.487117\pi\)
0.0404616 + 0.999181i \(0.487117\pi\)
\(432\) −2262.37 −0.251964
\(433\) 11996.5 1.33145 0.665724 0.746198i \(-0.268123\pi\)
0.665724 + 0.746198i \(0.268123\pi\)
\(434\) 9189.14 1.01634
\(435\) 0 0
\(436\) −4845.16 −0.532204
\(437\) 444.639 0.0486727
\(438\) −1031.61 −0.112539
\(439\) −7765.40 −0.844242 −0.422121 0.906539i \(-0.638714\pi\)
−0.422121 + 0.906539i \(0.638714\pi\)
\(440\) 0 0
\(441\) −7029.80 −0.759075
\(442\) −8798.17 −0.946801
\(443\) 9061.54 0.971844 0.485922 0.874002i \(-0.338484\pi\)
0.485922 + 0.874002i \(0.338484\pi\)
\(444\) −2638.15 −0.281984
\(445\) 0 0
\(446\) 2220.19 0.235715
\(447\) 3343.19 0.353752
\(448\) −1778.69 −0.187579
\(449\) −10944.3 −1.15032 −0.575159 0.818041i \(-0.695060\pi\)
−0.575159 + 0.818041i \(0.695060\pi\)
\(450\) 0 0
\(451\) 3200.53 0.334162
\(452\) −2965.26 −0.308571
\(453\) −4944.63 −0.512845
\(454\) −9835.81 −1.01678
\(455\) 0 0
\(456\) 504.211 0.0517803
\(457\) −10934.9 −1.11928 −0.559641 0.828735i \(-0.689061\pi\)
−0.559641 + 0.828735i \(0.689061\pi\)
\(458\) 2781.25 0.283754
\(459\) 16825.8 1.71103
\(460\) 0 0
\(461\) 2652.25 0.267956 0.133978 0.990984i \(-0.457225\pi\)
0.133978 + 0.990984i \(0.457225\pi\)
\(462\) −1960.42 −0.197418
\(463\) −707.699 −0.0710358 −0.0355179 0.999369i \(-0.511308\pi\)
−0.0355179 + 0.999369i \(0.511308\pi\)
\(464\) 3751.98 0.375391
\(465\) 0 0
\(466\) −6819.18 −0.677880
\(467\) 10671.1 1.05738 0.528691 0.848814i \(-0.322683\pi\)
0.528691 + 0.848814i \(0.322683\pi\)
\(468\) 2420.86 0.239112
\(469\) −17878.4 −1.76023
\(470\) 0 0
\(471\) 8989.33 0.879419
\(472\) −84.6776 −0.00825763
\(473\) −713.161 −0.0693259
\(474\) −7324.62 −0.709770
\(475\) 0 0
\(476\) 13228.6 1.27381
\(477\) −11265.6 −1.08138
\(478\) −4112.69 −0.393536
\(479\) 1951.17 0.186119 0.0930597 0.995661i \(-0.470335\pi\)
0.0930597 + 0.995661i \(0.470335\pi\)
\(480\) 0 0
\(481\) 7478.71 0.708939
\(482\) 3914.06 0.369877
\(483\) 2083.97 0.196323
\(484\) −4855.86 −0.456035
\(485\) 0 0
\(486\) −7511.86 −0.701121
\(487\) −17071.2 −1.58844 −0.794220 0.607630i \(-0.792120\pi\)
−0.794220 + 0.607630i \(0.792120\pi\)
\(488\) −884.629 −0.0820600
\(489\) −4118.57 −0.380875
\(490\) 0 0
\(491\) 16979.9 1.56067 0.780337 0.625359i \(-0.215047\pi\)
0.780337 + 0.625359i \(0.215047\pi\)
\(492\) −3858.05 −0.353525
\(493\) −27904.5 −2.54920
\(494\) −1429.35 −0.130181
\(495\) 0 0
\(496\) 2645.11 0.239453
\(497\) −3980.28 −0.359235
\(498\) −5376.70 −0.483806
\(499\) −2788.83 −0.250191 −0.125095 0.992145i \(-0.539924\pi\)
−0.125095 + 0.992145i \(0.539924\pi\)
\(500\) 0 0
\(501\) 1139.91 0.101651
\(502\) 3908.27 0.347479
\(503\) 15525.1 1.37620 0.688102 0.725614i \(-0.258444\pi\)
0.688102 + 0.725614i \(0.258444\pi\)
\(504\) −3639.92 −0.321696
\(505\) 0 0
\(506\) −497.638 −0.0437208
\(507\) −2707.08 −0.237131
\(508\) −6319.98 −0.551976
\(509\) 9039.20 0.787143 0.393571 0.919294i \(-0.371239\pi\)
0.393571 + 0.919294i \(0.371239\pi\)
\(510\) 0 0
\(511\) −4397.08 −0.380657
\(512\) −512.000 −0.0441942
\(513\) 2733.53 0.235260
\(514\) 3916.81 0.336115
\(515\) 0 0
\(516\) 859.673 0.0733430
\(517\) −1193.02 −0.101487
\(518\) −11244.7 −0.953792
\(519\) −7543.52 −0.638004
\(520\) 0 0
\(521\) 1093.03 0.0919128 0.0459564 0.998943i \(-0.485366\pi\)
0.0459564 + 0.998943i \(0.485366\pi\)
\(522\) 7678.06 0.643792
\(523\) 4660.98 0.389695 0.194848 0.980834i \(-0.437579\pi\)
0.194848 + 0.980834i \(0.437579\pi\)
\(524\) −9395.44 −0.783285
\(525\) 0 0
\(526\) 14410.5 1.19454
\(527\) −19672.4 −1.62607
\(528\) −564.311 −0.0465123
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −173.284 −0.0141618
\(532\) 2149.12 0.175143
\(533\) 10936.9 0.888801
\(534\) 5735.79 0.464816
\(535\) 0 0
\(536\) −5146.32 −0.414715
\(537\) −7653.91 −0.615066
\(538\) 7528.60 0.603311
\(539\) −4645.35 −0.371223
\(540\) 0 0
\(541\) −8072.40 −0.641515 −0.320757 0.947161i \(-0.603937\pi\)
−0.320757 + 0.947161i \(0.603937\pi\)
\(542\) 10417.8 0.825611
\(543\) 14332.8 1.13274
\(544\) 3807.88 0.300113
\(545\) 0 0
\(546\) −6699.20 −0.525090
\(547\) 2877.27 0.224905 0.112452 0.993657i \(-0.464129\pi\)
0.112452 + 0.993657i \(0.464129\pi\)
\(548\) 2470.27 0.192563
\(549\) −1810.31 −0.140732
\(550\) 0 0
\(551\) −4533.36 −0.350504
\(552\) 599.874 0.0462542
\(553\) −31220.1 −2.40075
\(554\) 3100.42 0.237769
\(555\) 0 0
\(556\) 6038.99 0.460630
\(557\) −15928.7 −1.21171 −0.605855 0.795575i \(-0.707169\pi\)
−0.605855 + 0.795575i \(0.707169\pi\)
\(558\) 5412.95 0.410660
\(559\) −2437.03 −0.184392
\(560\) 0 0
\(561\) 4196.92 0.315854
\(562\) −15995.1 −1.20055
\(563\) −7988.51 −0.598003 −0.299001 0.954253i \(-0.596654\pi\)
−0.299001 + 0.954253i \(0.596654\pi\)
\(564\) 1438.12 0.107368
\(565\) 0 0
\(566\) −11616.8 −0.862706
\(567\) 526.981 0.0390320
\(568\) −1145.73 −0.0846368
\(569\) −6429.49 −0.473705 −0.236853 0.971546i \(-0.576116\pi\)
−0.236853 + 0.971546i \(0.576116\pi\)
\(570\) 0 0
\(571\) 2886.51 0.211553 0.105776 0.994390i \(-0.466267\pi\)
0.105776 + 0.994390i \(0.466267\pi\)
\(572\) 1599.73 0.116937
\(573\) 13540.0 0.987158
\(574\) −16444.4 −1.19577
\(575\) 0 0
\(576\) −1047.76 −0.0757926
\(577\) 9966.59 0.719089 0.359545 0.933128i \(-0.382932\pi\)
0.359545 + 0.933128i \(0.382932\pi\)
\(578\) −18494.2 −1.33089
\(579\) 3327.10 0.238807
\(580\) 0 0
\(581\) −22917.4 −1.63644
\(582\) −6118.95 −0.435806
\(583\) −7444.40 −0.528843
\(584\) −1265.71 −0.0896838
\(585\) 0 0
\(586\) −17709.3 −1.24841
\(587\) 3522.91 0.247710 0.123855 0.992300i \(-0.460474\pi\)
0.123855 + 0.992300i \(0.460474\pi\)
\(588\) 5599.70 0.392734
\(589\) −3195.97 −0.223579
\(590\) 0 0
\(591\) 1299.65 0.0904575
\(592\) −3236.81 −0.224716
\(593\) 28713.0 1.98837 0.994184 0.107695i \(-0.0343469\pi\)
0.994184 + 0.107695i \(0.0343469\pi\)
\(594\) −3059.35 −0.211325
\(595\) 0 0
\(596\) 4101.84 0.281909
\(597\) 13469.1 0.923374
\(598\) −1700.54 −0.116288
\(599\) 7736.44 0.527717 0.263858 0.964561i \(-0.415005\pi\)
0.263858 + 0.964561i \(0.415005\pi\)
\(600\) 0 0
\(601\) −3863.89 −0.262249 −0.131124 0.991366i \(-0.541859\pi\)
−0.131124 + 0.991366i \(0.541859\pi\)
\(602\) 3664.23 0.248078
\(603\) −10531.4 −0.711232
\(604\) −6066.68 −0.408692
\(605\) 0 0
\(606\) 4488.80 0.300900
\(607\) −24954.6 −1.66866 −0.834330 0.551265i \(-0.814145\pi\)
−0.834330 + 0.551265i \(0.814145\pi\)
\(608\) 618.628 0.0412643
\(609\) −21247.3 −1.41377
\(610\) 0 0
\(611\) −4076.82 −0.269935
\(612\) 7792.44 0.514690
\(613\) −12712.0 −0.837574 −0.418787 0.908085i \(-0.637545\pi\)
−0.418787 + 0.908085i \(0.637545\pi\)
\(614\) −3002.06 −0.197318
\(615\) 0 0
\(616\) −2405.29 −0.157324
\(617\) −11017.6 −0.718884 −0.359442 0.933167i \(-0.617033\pi\)
−0.359442 + 0.933167i \(0.617033\pi\)
\(618\) 13311.7 0.866461
\(619\) 6859.65 0.445416 0.222708 0.974885i \(-0.428510\pi\)
0.222708 + 0.974885i \(0.428510\pi\)
\(620\) 0 0
\(621\) 3252.16 0.210152
\(622\) 14881.0 0.959280
\(623\) 24447.9 1.57221
\(624\) −1928.38 −0.123713
\(625\) 0 0
\(626\) −5057.25 −0.322889
\(627\) 681.833 0.0434287
\(628\) 11029.2 0.700819
\(629\) 24073.0 1.52600
\(630\) 0 0
\(631\) −14104.0 −0.889815 −0.444907 0.895577i \(-0.646763\pi\)
−0.444907 + 0.895577i \(0.646763\pi\)
\(632\) −8986.75 −0.565623
\(633\) 2693.94 0.169154
\(634\) −19273.4 −1.20733
\(635\) 0 0
\(636\) 8973.79 0.559487
\(637\) −15874.2 −0.987376
\(638\) 5073.73 0.314844
\(639\) −2344.62 −0.145151
\(640\) 0 0
\(641\) −144.931 −0.00893047 −0.00446524 0.999990i \(-0.501421\pi\)
−0.00446524 + 0.999990i \(0.501421\pi\)
\(642\) 1874.08 0.115209
\(643\) −30891.4 −1.89461 −0.947307 0.320328i \(-0.896207\pi\)
−0.947307 + 0.320328i \(0.896207\pi\)
\(644\) 2556.87 0.156452
\(645\) 0 0
\(646\) −4600.90 −0.280217
\(647\) −22784.1 −1.38444 −0.692222 0.721684i \(-0.743368\pi\)
−0.692222 + 0.721684i \(0.743368\pi\)
\(648\) 151.692 0.00919605
\(649\) −114.508 −0.00692576
\(650\) 0 0
\(651\) −14979.1 −0.901811
\(652\) −5053.17 −0.303524
\(653\) 32125.7 1.92523 0.962617 0.270868i \(-0.0873106\pi\)
0.962617 + 0.270868i \(0.0873106\pi\)
\(654\) 7898.05 0.472230
\(655\) 0 0
\(656\) −4733.54 −0.281728
\(657\) −2590.14 −0.153807
\(658\) 6129.75 0.363165
\(659\) 15521.7 0.917508 0.458754 0.888563i \(-0.348296\pi\)
0.458754 + 0.888563i \(0.348296\pi\)
\(660\) 0 0
\(661\) 19428.4 1.14323 0.571617 0.820521i \(-0.306316\pi\)
0.571617 + 0.820521i \(0.306316\pi\)
\(662\) −5751.64 −0.337680
\(663\) 14341.8 0.840106
\(664\) −6596.80 −0.385550
\(665\) 0 0
\(666\) −6623.80 −0.385386
\(667\) −5393.48 −0.313098
\(668\) 1398.58 0.0810072
\(669\) −3619.11 −0.209152
\(670\) 0 0
\(671\) −1196.27 −0.0688246
\(672\) 2899.43 0.166441
\(673\) −18992.7 −1.08784 −0.543919 0.839138i \(-0.683060\pi\)
−0.543919 + 0.839138i \(0.683060\pi\)
\(674\) 19822.4 1.13283
\(675\) 0 0
\(676\) −3321.38 −0.188972
\(677\) −19104.3 −1.08455 −0.542273 0.840202i \(-0.682436\pi\)
−0.542273 + 0.840202i \(0.682436\pi\)
\(678\) 4833.65 0.273798
\(679\) −26081.1 −1.47408
\(680\) 0 0
\(681\) 16033.3 0.902197
\(682\) 3576.92 0.200832
\(683\) 24737.2 1.38586 0.692931 0.721004i \(-0.256319\pi\)
0.692931 + 0.721004i \(0.256319\pi\)
\(684\) 1265.96 0.0707679
\(685\) 0 0
\(686\) 4802.49 0.267288
\(687\) −4533.69 −0.251778
\(688\) 1054.75 0.0584479
\(689\) −25439.2 −1.40661
\(690\) 0 0
\(691\) 12957.9 0.713373 0.356687 0.934224i \(-0.383906\pi\)
0.356687 + 0.934224i \(0.383906\pi\)
\(692\) −9255.33 −0.508432
\(693\) −4922.18 −0.269810
\(694\) 8995.41 0.492019
\(695\) 0 0
\(696\) −6116.08 −0.333088
\(697\) 35204.5 1.91315
\(698\) −1776.22 −0.0963195
\(699\) 11115.9 0.601490
\(700\) 0 0
\(701\) 20730.7 1.11696 0.558478 0.829519i \(-0.311385\pi\)
0.558478 + 0.829519i \(0.311385\pi\)
\(702\) −10454.5 −0.562079
\(703\) 3910.90 0.209819
\(704\) −692.367 −0.0370661
\(705\) 0 0
\(706\) −23444.5 −1.24978
\(707\) 19132.8 1.01777
\(708\) 138.032 0.00732708
\(709\) −22191.2 −1.17547 −0.587735 0.809053i \(-0.699980\pi\)
−0.587735 + 0.809053i \(0.699980\pi\)
\(710\) 0 0
\(711\) −18390.5 −0.970038
\(712\) 7037.38 0.370417
\(713\) −3802.34 −0.199718
\(714\) −21563.8 −1.13026
\(715\) 0 0
\(716\) −9390.77 −0.490153
\(717\) 6704.07 0.349188
\(718\) 2514.98 0.130722
\(719\) −773.962 −0.0401445 −0.0200723 0.999799i \(-0.506390\pi\)
−0.0200723 + 0.999799i \(0.506390\pi\)
\(720\) 0 0
\(721\) 56738.9 2.93075
\(722\) 12970.5 0.668578
\(723\) −6380.29 −0.328196
\(724\) 17585.3 0.902695
\(725\) 0 0
\(726\) 7915.51 0.404645
\(727\) 32484.7 1.65721 0.828604 0.559835i \(-0.189136\pi\)
0.828604 + 0.559835i \(0.189136\pi\)
\(728\) −8219.41 −0.418450
\(729\) 12757.0 0.648122
\(730\) 0 0
\(731\) −7844.48 −0.396906
\(732\) 1442.03 0.0728127
\(733\) 13701.5 0.690416 0.345208 0.938526i \(-0.387808\pi\)
0.345208 + 0.938526i \(0.387808\pi\)
\(734\) 20244.5 1.01803
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −6959.26 −0.347826
\(738\) −9686.71 −0.483161
\(739\) −31474.2 −1.56671 −0.783354 0.621576i \(-0.786493\pi\)
−0.783354 + 0.621576i \(0.786493\pi\)
\(740\) 0 0
\(741\) 2329.98 0.115511
\(742\) 38249.4 1.89243
\(743\) −28664.2 −1.41533 −0.707664 0.706549i \(-0.750251\pi\)
−0.707664 + 0.706549i \(0.750251\pi\)
\(744\) −4311.77 −0.212469
\(745\) 0 0
\(746\) 13060.2 0.640974
\(747\) −13499.7 −0.661215
\(748\) 5149.31 0.251708
\(749\) 7988.00 0.389687
\(750\) 0 0
\(751\) −25904.0 −1.25866 −0.629328 0.777140i \(-0.716670\pi\)
−0.629328 + 0.777140i \(0.716670\pi\)
\(752\) 1764.46 0.0855628
\(753\) −6370.84 −0.308322
\(754\) 17338.1 0.837420
\(755\) 0 0
\(756\) 15719.0 0.756209
\(757\) −2569.70 −0.123378 −0.0616892 0.998095i \(-0.519649\pi\)
−0.0616892 + 0.998095i \(0.519649\pi\)
\(758\) −555.700 −0.0266279
\(759\) 811.197 0.0387939
\(760\) 0 0
\(761\) −23219.4 −1.10605 −0.553024 0.833165i \(-0.686526\pi\)
−0.553024 + 0.833165i \(0.686526\pi\)
\(762\) 10302.1 0.489774
\(763\) 33664.3 1.59728
\(764\) 16612.6 0.786677
\(765\) 0 0
\(766\) −21359.3 −1.00750
\(767\) −391.298 −0.0184211
\(768\) 834.607 0.0392139
\(769\) 34771.1 1.63053 0.815265 0.579088i \(-0.196591\pi\)
0.815265 + 0.579088i \(0.196591\pi\)
\(770\) 0 0
\(771\) −6384.76 −0.298238
\(772\) 4082.10 0.190308
\(773\) 36377.2 1.69262 0.846312 0.532687i \(-0.178818\pi\)
0.846312 + 0.532687i \(0.178818\pi\)
\(774\) 2158.45 0.100238
\(775\) 0 0
\(776\) −7507.50 −0.347298
\(777\) 18329.9 0.846309
\(778\) −3092.10 −0.142490
\(779\) 5719.34 0.263051
\(780\) 0 0
\(781\) −1549.34 −0.0709858
\(782\) −5473.82 −0.250311
\(783\) −33157.7 −1.51336
\(784\) 6870.40 0.312974
\(785\) 0 0
\(786\) 15315.4 0.695017
\(787\) 1814.43 0.0821824 0.0410912 0.999155i \(-0.486917\pi\)
0.0410912 + 0.999155i \(0.486917\pi\)
\(788\) 1594.57 0.0720866
\(789\) −23490.4 −1.05992
\(790\) 0 0
\(791\) 20602.7 0.926104
\(792\) −1416.86 −0.0635680
\(793\) −4087.91 −0.183059
\(794\) −25803.5 −1.15332
\(795\) 0 0
\(796\) 16525.6 0.735847
\(797\) 7958.23 0.353695 0.176848 0.984238i \(-0.443410\pi\)
0.176848 + 0.984238i \(0.443410\pi\)
\(798\) −3503.27 −0.155406
\(799\) −13122.7 −0.581038
\(800\) 0 0
\(801\) 14401.3 0.635261
\(802\) 17068.6 0.751513
\(803\) −1711.59 −0.0752188
\(804\) 8388.98 0.367981
\(805\) 0 0
\(806\) 12223.1 0.534171
\(807\) −12272.3 −0.535323
\(808\) 5507.42 0.239790
\(809\) 20506.9 0.891203 0.445601 0.895232i \(-0.352990\pi\)
0.445601 + 0.895232i \(0.352990\pi\)
\(810\) 0 0
\(811\) 1962.00 0.0849506 0.0424753 0.999098i \(-0.486476\pi\)
0.0424753 + 0.999098i \(0.486476\pi\)
\(812\) −26068.9 −1.12665
\(813\) −16981.9 −0.732573
\(814\) −4377.07 −0.188472
\(815\) 0 0
\(816\) −6207.19 −0.266293
\(817\) −1274.42 −0.0545730
\(818\) −1301.94 −0.0556493
\(819\) −16820.2 −0.717638
\(820\) 0 0
\(821\) 25168.1 1.06988 0.534941 0.844889i \(-0.320334\pi\)
0.534941 + 0.844889i \(0.320334\pi\)
\(822\) −4026.77 −0.170863
\(823\) −3337.33 −0.141351 −0.0706756 0.997499i \(-0.522516\pi\)
−0.0706756 + 0.997499i \(0.522516\pi\)
\(824\) 16332.4 0.690492
\(825\) 0 0
\(826\) 588.342 0.0247833
\(827\) 13087.4 0.550294 0.275147 0.961402i \(-0.411273\pi\)
0.275147 + 0.961402i \(0.411273\pi\)
\(828\) 1506.15 0.0632154
\(829\) −38486.8 −1.61243 −0.806213 0.591626i \(-0.798486\pi\)
−0.806213 + 0.591626i \(0.798486\pi\)
\(830\) 0 0
\(831\) −5053.97 −0.210975
\(832\) −2365.97 −0.0985881
\(833\) −51097.0 −2.12534
\(834\) −9844.12 −0.408722
\(835\) 0 0
\(836\) 836.558 0.0346088
\(837\) −23375.8 −0.965337
\(838\) −26532.4 −1.09373
\(839\) 8192.40 0.337107 0.168554 0.985692i \(-0.446090\pi\)
0.168554 + 0.985692i \(0.446090\pi\)
\(840\) 0 0
\(841\) 30600.7 1.25469
\(842\) 16549.4 0.677350
\(843\) 26073.4 1.06526
\(844\) 3305.26 0.134801
\(845\) 0 0
\(846\) 3610.79 0.146739
\(847\) 33738.7 1.36868
\(848\) 11010.2 0.445861
\(849\) 18936.5 0.765487
\(850\) 0 0
\(851\) 4652.91 0.187426
\(852\) 1867.64 0.0750991
\(853\) 6774.83 0.271941 0.135971 0.990713i \(-0.456585\pi\)
0.135971 + 0.990713i \(0.456585\pi\)
\(854\) 6146.42 0.246284
\(855\) 0 0
\(856\) 2299.36 0.0918113
\(857\) −19272.3 −0.768177 −0.384089 0.923296i \(-0.625484\pi\)
−0.384089 + 0.923296i \(0.625484\pi\)
\(858\) −2607.70 −0.103759
\(859\) −5991.11 −0.237968 −0.118984 0.992896i \(-0.537964\pi\)
−0.118984 + 0.992896i \(0.537964\pi\)
\(860\) 0 0
\(861\) 26805.8 1.06102
\(862\) −1448.17 −0.0572214
\(863\) −20711.4 −0.816945 −0.408472 0.912771i \(-0.633938\pi\)
−0.408472 + 0.912771i \(0.633938\pi\)
\(864\) 4524.74 0.178165
\(865\) 0 0
\(866\) −23993.1 −0.941476
\(867\) 30147.2 1.18091
\(868\) −18378.3 −0.718663
\(869\) −12152.6 −0.474394
\(870\) 0 0
\(871\) −23781.4 −0.925144
\(872\) 9690.31 0.376325
\(873\) −15363.3 −0.595613
\(874\) −889.278 −0.0344168
\(875\) 0 0
\(876\) 2063.22 0.0795774
\(877\) 45757.4 1.76182 0.880912 0.473281i \(-0.156930\pi\)
0.880912 + 0.473281i \(0.156930\pi\)
\(878\) 15530.8 0.596969
\(879\) 28867.8 1.10772
\(880\) 0 0
\(881\) 37019.6 1.41569 0.707845 0.706367i \(-0.249667\pi\)
0.707845 + 0.706367i \(0.249667\pi\)
\(882\) 14059.6 0.536747
\(883\) 9311.25 0.354868 0.177434 0.984133i \(-0.443220\pi\)
0.177434 + 0.984133i \(0.443220\pi\)
\(884\) 17596.3 0.669490
\(885\) 0 0
\(886\) −18123.1 −0.687197
\(887\) −33041.8 −1.25077 −0.625387 0.780315i \(-0.715059\pi\)
−0.625387 + 0.780315i \(0.715059\pi\)
\(888\) 5276.30 0.199393
\(889\) 43911.4 1.65662
\(890\) 0 0
\(891\) 205.130 0.00771283
\(892\) −4440.37 −0.166676
\(893\) −2131.92 −0.0798903
\(894\) −6686.37 −0.250141
\(895\) 0 0
\(896\) 3557.39 0.132638
\(897\) 2772.04 0.103184
\(898\) 21888.6 0.813398
\(899\) 38767.2 1.43822
\(900\) 0 0
\(901\) −81885.4 −3.02774
\(902\) −6401.06 −0.236288
\(903\) −5973.03 −0.220122
\(904\) 5930.53 0.218193
\(905\) 0 0
\(906\) 9889.25 0.362636
\(907\) 41359.1 1.51412 0.757060 0.653346i \(-0.226635\pi\)
0.757060 + 0.653346i \(0.226635\pi\)
\(908\) 19671.6 0.718971
\(909\) 11270.4 0.411238
\(910\) 0 0
\(911\) −16960.3 −0.616818 −0.308409 0.951254i \(-0.599797\pi\)
−0.308409 + 0.951254i \(0.599797\pi\)
\(912\) −1008.42 −0.0366142
\(913\) −8920.71 −0.323365
\(914\) 21869.8 0.791452
\(915\) 0 0
\(916\) −5562.50 −0.200644
\(917\) 65279.7 2.35085
\(918\) −33651.7 −1.20988
\(919\) 3085.38 0.110748 0.0553739 0.998466i \(-0.482365\pi\)
0.0553739 + 0.998466i \(0.482365\pi\)
\(920\) 0 0
\(921\) 4893.63 0.175082
\(922\) −5304.51 −0.189474
\(923\) −5294.46 −0.188807
\(924\) 3920.84 0.139596
\(925\) 0 0
\(926\) 1415.40 0.0502299
\(927\) 33422.6 1.18419
\(928\) −7503.97 −0.265442
\(929\) −42292.0 −1.49360 −0.746801 0.665048i \(-0.768411\pi\)
−0.746801 + 0.665048i \(0.768411\pi\)
\(930\) 0 0
\(931\) −8301.22 −0.292225
\(932\) 13638.4 0.479334
\(933\) −24257.3 −0.851178
\(934\) −21342.1 −0.747682
\(935\) 0 0
\(936\) −4841.72 −0.169078
\(937\) −15746.4 −0.549000 −0.274500 0.961587i \(-0.588512\pi\)
−0.274500 + 0.961587i \(0.588512\pi\)
\(938\) 35756.8 1.24467
\(939\) 8243.79 0.286502
\(940\) 0 0
\(941\) 52033.4 1.80259 0.901296 0.433204i \(-0.142617\pi\)
0.901296 + 0.433204i \(0.142617\pi\)
\(942\) −17978.7 −0.621843
\(943\) 6804.46 0.234977
\(944\) 169.355 0.00583903
\(945\) 0 0
\(946\) 1426.32 0.0490208
\(947\) 17293.2 0.593405 0.296702 0.954970i \(-0.404113\pi\)
0.296702 + 0.954970i \(0.404113\pi\)
\(948\) 14649.2 0.501883
\(949\) −5848.88 −0.200066
\(950\) 0 0
\(951\) 31417.5 1.07127
\(952\) −26457.2 −0.900717
\(953\) −8989.54 −0.305561 −0.152781 0.988260i \(-0.548823\pi\)
−0.152781 + 0.988260i \(0.548823\pi\)
\(954\) 22531.2 0.764648
\(955\) 0 0
\(956\) 8225.39 0.278272
\(957\) −8270.64 −0.279365
\(958\) −3902.34 −0.131606
\(959\) −17163.5 −0.577933
\(960\) 0 0
\(961\) −2460.53 −0.0825931
\(962\) −14957.4 −0.501296
\(963\) 4705.41 0.157456
\(964\) −7828.13 −0.261543
\(965\) 0 0
\(966\) −4167.94 −0.138821
\(967\) −23285.3 −0.774358 −0.387179 0.922005i \(-0.626550\pi\)
−0.387179 + 0.922005i \(0.626550\pi\)
\(968\) 9711.73 0.322466
\(969\) 7499.89 0.248639
\(970\) 0 0
\(971\) 44316.5 1.46466 0.732330 0.680950i \(-0.238433\pi\)
0.732330 + 0.680950i \(0.238433\pi\)
\(972\) 15023.7 0.495768
\(973\) −41959.1 −1.38247
\(974\) 34142.4 1.12320
\(975\) 0 0
\(976\) 1769.26 0.0580252
\(977\) −761.665 −0.0249415 −0.0124707 0.999922i \(-0.503970\pi\)
−0.0124707 + 0.999922i \(0.503970\pi\)
\(978\) 8237.13 0.269319
\(979\) 9516.49 0.310673
\(980\) 0 0
\(981\) 19830.3 0.645394
\(982\) −33959.8 −1.10356
\(983\) 17423.3 0.565328 0.282664 0.959219i \(-0.408782\pi\)
0.282664 + 0.959219i \(0.408782\pi\)
\(984\) 7716.10 0.249980
\(985\) 0 0
\(986\) 55808.9 1.80255
\(987\) −9992.06 −0.322240
\(988\) 2858.70 0.0920521
\(989\) −1516.21 −0.0487489
\(990\) 0 0
\(991\) −33873.1 −1.08579 −0.542894 0.839801i \(-0.682671\pi\)
−0.542894 + 0.839801i \(0.682671\pi\)
\(992\) −5290.22 −0.169319
\(993\) 9375.71 0.299626
\(994\) 7960.55 0.254017
\(995\) 0 0
\(996\) 10753.4 0.342103
\(997\) 31163.3 0.989921 0.494960 0.868915i \(-0.335183\pi\)
0.494960 + 0.868915i \(0.335183\pi\)
\(998\) 5577.66 0.176912
\(999\) 28604.9 0.905925
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.a.o.1.3 4
5.2 odd 4 1150.4.b.m.599.2 8
5.3 odd 4 1150.4.b.m.599.7 8
5.4 even 2 230.4.a.i.1.2 4
15.14 odd 2 2070.4.a.bi.1.4 4
20.19 odd 2 1840.4.a.l.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.i.1.2 4 5.4 even 2
1150.4.a.o.1.3 4 1.1 even 1 trivial
1150.4.b.m.599.2 8 5.2 odd 4
1150.4.b.m.599.7 8 5.3 odd 4
1840.4.a.l.1.3 4 20.19 odd 2
2070.4.a.bi.1.4 4 15.14 odd 2