Properties

Label 1150.4.a.o.1.2
Level $1150$
Weight $4$
Character 1150.1
Self dual yes
Analytic conductor $67.852$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1150,4,Mod(1,1150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1150.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 84x^{2} - 11x + 1242 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-4.50148\) of defining polynomial
Character \(\chi\) \(=\) 1150.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -5.50148 q^{3} +4.00000 q^{4} +11.0030 q^{6} -0.0500526 q^{7} -8.00000 q^{8} +3.26627 q^{9} +35.1757 q^{11} -22.0059 q^{12} -86.1100 q^{13} +0.100105 q^{14} +16.0000 q^{16} -8.82793 q^{17} -6.53253 q^{18} +106.317 q^{19} +0.275364 q^{21} -70.3513 q^{22} -23.0000 q^{23} +44.0118 q^{24} +172.220 q^{26} +130.571 q^{27} -0.200211 q^{28} -280.754 q^{29} -117.077 q^{31} -32.0000 q^{32} -193.518 q^{33} +17.6559 q^{34} +13.0651 q^{36} -93.3088 q^{37} -212.633 q^{38} +473.732 q^{39} -58.0579 q^{41} -0.550727 q^{42} +508.101 q^{43} +140.703 q^{44} +46.0000 q^{46} +407.914 q^{47} -88.0237 q^{48} -342.997 q^{49} +48.5666 q^{51} -344.440 q^{52} -316.251 q^{53} -261.141 q^{54} +0.400421 q^{56} -584.899 q^{57} +561.507 q^{58} +129.500 q^{59} +299.008 q^{61} +234.155 q^{62} -0.163485 q^{63} +64.0000 q^{64} +387.036 q^{66} -596.326 q^{67} -35.3117 q^{68} +126.534 q^{69} -692.108 q^{71} -26.1301 q^{72} -842.098 q^{73} +186.618 q^{74} +425.267 q^{76} -1.76063 q^{77} -947.464 q^{78} -1161.06 q^{79} -806.521 q^{81} +116.116 q^{82} -1121.69 q^{83} +1.10145 q^{84} -1016.20 q^{86} +1544.56 q^{87} -281.405 q^{88} +409.092 q^{89} +4.31003 q^{91} -92.0000 q^{92} +644.098 q^{93} -815.828 q^{94} +176.047 q^{96} +1123.62 q^{97} +685.995 q^{98} +114.893 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} - 4 q^{3} + 16 q^{4} + 8 q^{6} - 26 q^{7} - 32 q^{8} + 64 q^{9} + 93 q^{11} - 16 q^{12} - 32 q^{13} + 52 q^{14} + 64 q^{16} - 108 q^{17} - 128 q^{18} + 185 q^{19} + 302 q^{21} - 186 q^{22}+ \cdots + 2013 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −5.50148 −1.05876 −0.529380 0.848385i \(-0.677575\pi\)
−0.529380 + 0.848385i \(0.677575\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 11.0030 0.748656
\(7\) −0.0500526 −0.00270259 −0.00135129 0.999999i \(-0.500430\pi\)
−0.00135129 + 0.999999i \(0.500430\pi\)
\(8\) −8.00000 −0.353553
\(9\) 3.26627 0.120973
\(10\) 0 0
\(11\) 35.1757 0.964169 0.482085 0.876125i \(-0.339880\pi\)
0.482085 + 0.876125i \(0.339880\pi\)
\(12\) −22.0059 −0.529380
\(13\) −86.1100 −1.83712 −0.918562 0.395277i \(-0.870649\pi\)
−0.918562 + 0.395277i \(0.870649\pi\)
\(14\) 0.100105 0.00191102
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −8.82793 −0.125946 −0.0629731 0.998015i \(-0.520058\pi\)
−0.0629731 + 0.998015i \(0.520058\pi\)
\(18\) −6.53253 −0.0855407
\(19\) 106.317 1.28372 0.641861 0.766821i \(-0.278163\pi\)
0.641861 + 0.766821i \(0.278163\pi\)
\(20\) 0 0
\(21\) 0.275364 0.00286139
\(22\) −70.3513 −0.681771
\(23\) −23.0000 −0.208514
\(24\) 44.0118 0.374328
\(25\) 0 0
\(26\) 172.220 1.29904
\(27\) 130.571 0.930679
\(28\) −0.200211 −0.00135129
\(29\) −280.754 −1.79775 −0.898873 0.438209i \(-0.855613\pi\)
−0.898873 + 0.438209i \(0.855613\pi\)
\(30\) 0 0
\(31\) −117.077 −0.678313 −0.339156 0.940730i \(-0.610142\pi\)
−0.339156 + 0.940730i \(0.610142\pi\)
\(32\) −32.0000 −0.176777
\(33\) −193.518 −1.02082
\(34\) 17.6559 0.0890575
\(35\) 0 0
\(36\) 13.0651 0.0604864
\(37\) −93.3088 −0.414591 −0.207296 0.978278i \(-0.566466\pi\)
−0.207296 + 0.978278i \(0.566466\pi\)
\(38\) −212.633 −0.907729
\(39\) 473.732 1.94507
\(40\) 0 0
\(41\) −58.0579 −0.221149 −0.110575 0.993868i \(-0.535269\pi\)
−0.110575 + 0.993868i \(0.535269\pi\)
\(42\) −0.550727 −0.00202331
\(43\) 508.101 1.80197 0.900985 0.433851i \(-0.142845\pi\)
0.900985 + 0.433851i \(0.142845\pi\)
\(44\) 140.703 0.482085
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) 407.914 1.26597 0.632983 0.774166i \(-0.281830\pi\)
0.632983 + 0.774166i \(0.281830\pi\)
\(48\) −88.0237 −0.264690
\(49\) −342.997 −0.999993
\(50\) 0 0
\(51\) 48.5666 0.133347
\(52\) −344.440 −0.918562
\(53\) −316.251 −0.819629 −0.409815 0.912169i \(-0.634407\pi\)
−0.409815 + 0.912169i \(0.634407\pi\)
\(54\) −261.141 −0.658089
\(55\) 0 0
\(56\) 0.400421 0.000955509 0
\(57\) −584.899 −1.35915
\(58\) 561.507 1.27120
\(59\) 129.500 0.285754 0.142877 0.989740i \(-0.454365\pi\)
0.142877 + 0.989740i \(0.454365\pi\)
\(60\) 0 0
\(61\) 299.008 0.627607 0.313804 0.949488i \(-0.398397\pi\)
0.313804 + 0.949488i \(0.398397\pi\)
\(62\) 234.155 0.479640
\(63\) −0.163485 −0.000326940 0
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 387.036 0.721831
\(67\) −596.326 −1.08736 −0.543678 0.839294i \(-0.682969\pi\)
−0.543678 + 0.839294i \(0.682969\pi\)
\(68\) −35.3117 −0.0629731
\(69\) 126.534 0.220767
\(70\) 0 0
\(71\) −692.108 −1.15687 −0.578437 0.815727i \(-0.696337\pi\)
−0.578437 + 0.815727i \(0.696337\pi\)
\(72\) −26.1301 −0.0427703
\(73\) −842.098 −1.35014 −0.675069 0.737755i \(-0.735886\pi\)
−0.675069 + 0.737755i \(0.735886\pi\)
\(74\) 186.618 0.293160
\(75\) 0 0
\(76\) 425.267 0.641861
\(77\) −1.76063 −0.00260575
\(78\) −947.464 −1.37537
\(79\) −1161.06 −1.65354 −0.826769 0.562542i \(-0.809823\pi\)
−0.826769 + 0.562542i \(0.809823\pi\)
\(80\) 0 0
\(81\) −806.521 −1.10634
\(82\) 116.116 0.156376
\(83\) −1121.69 −1.48340 −0.741699 0.670733i \(-0.765980\pi\)
−0.741699 + 0.670733i \(0.765980\pi\)
\(84\) 1.10145 0.00143070
\(85\) 0 0
\(86\) −1016.20 −1.27418
\(87\) 1544.56 1.90338
\(88\) −281.405 −0.340885
\(89\) 409.092 0.487232 0.243616 0.969872i \(-0.421666\pi\)
0.243616 + 0.969872i \(0.421666\pi\)
\(90\) 0 0
\(91\) 4.31003 0.00496499
\(92\) −92.0000 −0.104257
\(93\) 644.098 0.718170
\(94\) −815.828 −0.895173
\(95\) 0 0
\(96\) 176.047 0.187164
\(97\) 1123.62 1.17615 0.588075 0.808807i \(-0.299886\pi\)
0.588075 + 0.808807i \(0.299886\pi\)
\(98\) 685.995 0.707102
\(99\) 114.893 0.116638
\(100\) 0 0
\(101\) −981.824 −0.967278 −0.483639 0.875268i \(-0.660685\pi\)
−0.483639 + 0.875268i \(0.660685\pi\)
\(102\) −97.1333 −0.0942905
\(103\) 28.9575 0.0277016 0.0138508 0.999904i \(-0.495591\pi\)
0.0138508 + 0.999904i \(0.495591\pi\)
\(104\) 688.880 0.649521
\(105\) 0 0
\(106\) 632.501 0.579565
\(107\) 187.874 0.169742 0.0848712 0.996392i \(-0.472952\pi\)
0.0848712 + 0.996392i \(0.472952\pi\)
\(108\) 522.283 0.465339
\(109\) 2142.02 1.88228 0.941139 0.338018i \(-0.109757\pi\)
0.941139 + 0.338018i \(0.109757\pi\)
\(110\) 0 0
\(111\) 513.337 0.438953
\(112\) −0.800842 −0.000675647 0
\(113\) 1668.67 1.38916 0.694582 0.719414i \(-0.255589\pi\)
0.694582 + 0.719414i \(0.255589\pi\)
\(114\) 1169.80 0.961067
\(115\) 0 0
\(116\) −1123.01 −0.898873
\(117\) −281.258 −0.222242
\(118\) −259.001 −0.202059
\(119\) 0.441861 0.000340381 0
\(120\) 0 0
\(121\) −93.6729 −0.0703779
\(122\) −598.016 −0.443786
\(123\) 319.404 0.234144
\(124\) −468.309 −0.339156
\(125\) 0 0
\(126\) 0.326970 0.000231181 0
\(127\) 354.326 0.247570 0.123785 0.992309i \(-0.460497\pi\)
0.123785 + 0.992309i \(0.460497\pi\)
\(128\) −128.000 −0.0883883
\(129\) −2795.31 −1.90785
\(130\) 0 0
\(131\) −922.236 −0.615085 −0.307543 0.951534i \(-0.599507\pi\)
−0.307543 + 0.951534i \(0.599507\pi\)
\(132\) −774.073 −0.510412
\(133\) −5.32143 −0.00346937
\(134\) 1192.65 0.768877
\(135\) 0 0
\(136\) 70.6234 0.0445287
\(137\) 1664.96 1.03830 0.519149 0.854684i \(-0.326249\pi\)
0.519149 + 0.854684i \(0.326249\pi\)
\(138\) −253.068 −0.156106
\(139\) 2407.80 1.46926 0.734628 0.678470i \(-0.237357\pi\)
0.734628 + 0.678470i \(0.237357\pi\)
\(140\) 0 0
\(141\) −2244.13 −1.34035
\(142\) 1384.22 0.818034
\(143\) −3028.97 −1.77130
\(144\) 52.2603 0.0302432
\(145\) 0 0
\(146\) 1684.20 0.954692
\(147\) 1886.99 1.05875
\(148\) −373.235 −0.207296
\(149\) 1838.74 1.01098 0.505488 0.862834i \(-0.331312\pi\)
0.505488 + 0.862834i \(0.331312\pi\)
\(150\) 0 0
\(151\) −1276.86 −0.688139 −0.344070 0.938944i \(-0.611806\pi\)
−0.344070 + 0.938944i \(0.611806\pi\)
\(152\) −850.533 −0.453864
\(153\) −28.8344 −0.0152361
\(154\) 3.52127 0.00184255
\(155\) 0 0
\(156\) 1894.93 0.972537
\(157\) 1288.13 0.654804 0.327402 0.944885i \(-0.393827\pi\)
0.327402 + 0.944885i \(0.393827\pi\)
\(158\) 2322.12 1.16923
\(159\) 1739.85 0.867791
\(160\) 0 0
\(161\) 1.15121 0.000563529 0
\(162\) 1613.04 0.782299
\(163\) 995.942 0.478578 0.239289 0.970948i \(-0.423086\pi\)
0.239289 + 0.970948i \(0.423086\pi\)
\(164\) −232.231 −0.110575
\(165\) 0 0
\(166\) 2243.39 1.04892
\(167\) 1568.39 0.726742 0.363371 0.931645i \(-0.381626\pi\)
0.363371 + 0.931645i \(0.381626\pi\)
\(168\) −2.20291 −0.00101166
\(169\) 5217.93 2.37502
\(170\) 0 0
\(171\) 347.259 0.155295
\(172\) 2032.40 0.900985
\(173\) −2478.94 −1.08942 −0.544711 0.838624i \(-0.683361\pi\)
−0.544711 + 0.838624i \(0.683361\pi\)
\(174\) −3089.12 −1.34589
\(175\) 0 0
\(176\) 562.811 0.241042
\(177\) −712.444 −0.302545
\(178\) −818.183 −0.344525
\(179\) 3740.99 1.56210 0.781048 0.624471i \(-0.214686\pi\)
0.781048 + 0.624471i \(0.214686\pi\)
\(180\) 0 0
\(181\) −3841.87 −1.57770 −0.788851 0.614584i \(-0.789324\pi\)
−0.788851 + 0.614584i \(0.789324\pi\)
\(182\) −8.62006 −0.00351078
\(183\) −1644.99 −0.664486
\(184\) 184.000 0.0737210
\(185\) 0 0
\(186\) −1288.20 −0.507823
\(187\) −310.528 −0.121433
\(188\) 1631.66 0.632983
\(189\) −6.53540 −0.00251524
\(190\) 0 0
\(191\) 2097.13 0.794465 0.397233 0.917718i \(-0.369971\pi\)
0.397233 + 0.917718i \(0.369971\pi\)
\(192\) −352.095 −0.132345
\(193\) −1264.65 −0.471666 −0.235833 0.971794i \(-0.575782\pi\)
−0.235833 + 0.971794i \(0.575782\pi\)
\(194\) −2247.24 −0.831663
\(195\) 0 0
\(196\) −1371.99 −0.499996
\(197\) 850.129 0.307458 0.153729 0.988113i \(-0.450872\pi\)
0.153729 + 0.988113i \(0.450872\pi\)
\(198\) −229.786 −0.0824757
\(199\) −203.089 −0.0723447 −0.0361724 0.999346i \(-0.511517\pi\)
−0.0361724 + 0.999346i \(0.511517\pi\)
\(200\) 0 0
\(201\) 3280.68 1.15125
\(202\) 1963.65 0.683969
\(203\) 14.0525 0.00485857
\(204\) 194.267 0.0666734
\(205\) 0 0
\(206\) −57.9149 −0.0195880
\(207\) −75.1241 −0.0252246
\(208\) −1377.76 −0.459281
\(209\) 3739.76 1.23773
\(210\) 0 0
\(211\) 5612.25 1.83111 0.915553 0.402197i \(-0.131753\pi\)
0.915553 + 0.402197i \(0.131753\pi\)
\(212\) −1265.00 −0.409815
\(213\) 3807.62 1.22485
\(214\) −375.747 −0.120026
\(215\) 0 0
\(216\) −1044.57 −0.329045
\(217\) 5.86003 0.00183320
\(218\) −4284.04 −1.33097
\(219\) 4632.78 1.42947
\(220\) 0 0
\(221\) 760.172 0.231379
\(222\) −1026.67 −0.310386
\(223\) 557.909 0.167535 0.0837676 0.996485i \(-0.473305\pi\)
0.0837676 + 0.996485i \(0.473305\pi\)
\(224\) 1.60168 0.000477755 0
\(225\) 0 0
\(226\) −3337.35 −0.982287
\(227\) 684.858 0.200245 0.100123 0.994975i \(-0.468077\pi\)
0.100123 + 0.994975i \(0.468077\pi\)
\(228\) −2339.60 −0.679577
\(229\) 369.484 0.106621 0.0533104 0.998578i \(-0.483023\pi\)
0.0533104 + 0.998578i \(0.483023\pi\)
\(230\) 0 0
\(231\) 9.68609 0.00275887
\(232\) 2246.03 0.635599
\(233\) 5119.84 1.43954 0.719768 0.694215i \(-0.244248\pi\)
0.719768 + 0.694215i \(0.244248\pi\)
\(234\) 562.516 0.157149
\(235\) 0 0
\(236\) 518.002 0.142877
\(237\) 6387.55 1.75070
\(238\) −0.883722 −0.000240686 0
\(239\) 1665.03 0.450635 0.225317 0.974285i \(-0.427658\pi\)
0.225317 + 0.974285i \(0.427658\pi\)
\(240\) 0 0
\(241\) 5401.56 1.44376 0.721878 0.692020i \(-0.243279\pi\)
0.721878 + 0.692020i \(0.243279\pi\)
\(242\) 187.346 0.0497647
\(243\) 911.649 0.240668
\(244\) 1196.03 0.313804
\(245\) 0 0
\(246\) −638.808 −0.165565
\(247\) −9154.93 −2.35836
\(248\) 936.618 0.239820
\(249\) 6170.98 1.57056
\(250\) 0 0
\(251\) 4246.35 1.06784 0.533919 0.845535i \(-0.320719\pi\)
0.533919 + 0.845535i \(0.320719\pi\)
\(252\) −0.653941 −0.000163470 0
\(253\) −809.040 −0.201043
\(254\) −708.652 −0.175058
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 5585.56 1.35571 0.677855 0.735196i \(-0.262910\pi\)
0.677855 + 0.735196i \(0.262910\pi\)
\(258\) 5590.61 1.34906
\(259\) 4.67035 0.00112047
\(260\) 0 0
\(261\) −917.016 −0.217478
\(262\) 1844.47 0.434931
\(263\) 2131.01 0.499634 0.249817 0.968293i \(-0.419630\pi\)
0.249817 + 0.968293i \(0.419630\pi\)
\(264\) 1548.15 0.360916
\(265\) 0 0
\(266\) 10.6429 0.00245322
\(267\) −2250.61 −0.515862
\(268\) −2385.31 −0.543678
\(269\) −8003.32 −1.81402 −0.907009 0.421111i \(-0.861640\pi\)
−0.907009 + 0.421111i \(0.861640\pi\)
\(270\) 0 0
\(271\) 1349.33 0.302458 0.151229 0.988499i \(-0.451677\pi\)
0.151229 + 0.988499i \(0.451677\pi\)
\(272\) −141.247 −0.0314866
\(273\) −23.7115 −0.00525673
\(274\) −3329.92 −0.734188
\(275\) 0 0
\(276\) 506.136 0.110383
\(277\) 3762.76 0.816181 0.408091 0.912941i \(-0.366195\pi\)
0.408091 + 0.912941i \(0.366195\pi\)
\(278\) −4815.59 −1.03892
\(279\) −382.405 −0.0820574
\(280\) 0 0
\(281\) 2885.36 0.612548 0.306274 0.951943i \(-0.400918\pi\)
0.306274 + 0.951943i \(0.400918\pi\)
\(282\) 4488.26 0.947773
\(283\) −4809.11 −1.01015 −0.505074 0.863076i \(-0.668535\pi\)
−0.505074 + 0.863076i \(0.668535\pi\)
\(284\) −2768.43 −0.578437
\(285\) 0 0
\(286\) 6057.95 1.25250
\(287\) 2.90595 0.000597675 0
\(288\) −104.521 −0.0213852
\(289\) −4835.07 −0.984138
\(290\) 0 0
\(291\) −6181.58 −1.24526
\(292\) −3368.39 −0.675069
\(293\) 5362.69 1.06925 0.534627 0.845088i \(-0.320452\pi\)
0.534627 + 0.845088i \(0.320452\pi\)
\(294\) −3773.99 −0.748651
\(295\) 0 0
\(296\) 746.471 0.146580
\(297\) 4592.91 0.897332
\(298\) −3677.48 −0.714868
\(299\) 1980.53 0.383067
\(300\) 0 0
\(301\) −25.4318 −0.00486998
\(302\) 2553.71 0.486588
\(303\) 5401.48 1.02412
\(304\) 1701.07 0.320931
\(305\) 0 0
\(306\) 57.6687 0.0107735
\(307\) −6374.74 −1.18510 −0.592549 0.805534i \(-0.701879\pi\)
−0.592549 + 0.805534i \(0.701879\pi\)
\(308\) −7.04254 −0.00130288
\(309\) −159.309 −0.0293293
\(310\) 0 0
\(311\) 37.2799 0.00679727 0.00339863 0.999994i \(-0.498918\pi\)
0.00339863 + 0.999994i \(0.498918\pi\)
\(312\) −3789.86 −0.687687
\(313\) 3787.66 0.683998 0.341999 0.939700i \(-0.388896\pi\)
0.341999 + 0.939700i \(0.388896\pi\)
\(314\) −2576.27 −0.463016
\(315\) 0 0
\(316\) −4644.24 −0.826769
\(317\) 5633.36 0.998110 0.499055 0.866570i \(-0.333681\pi\)
0.499055 + 0.866570i \(0.333681\pi\)
\(318\) −3479.69 −0.613621
\(319\) −9875.70 −1.73333
\(320\) 0 0
\(321\) −1033.58 −0.179716
\(322\) −2.30242 −0.000398475 0
\(323\) −938.556 −0.161680
\(324\) −3226.08 −0.553169
\(325\) 0 0
\(326\) −1991.88 −0.338406
\(327\) −11784.3 −1.99288
\(328\) 464.463 0.0781880
\(329\) −20.4172 −0.00342138
\(330\) 0 0
\(331\) 4566.91 0.758369 0.379185 0.925321i \(-0.376204\pi\)
0.379185 + 0.925321i \(0.376204\pi\)
\(332\) −4486.78 −0.741699
\(333\) −304.771 −0.0501543
\(334\) −3136.79 −0.513884
\(335\) 0 0
\(336\) 4.40582 0.000715348 0
\(337\) −787.487 −0.127291 −0.0636456 0.997973i \(-0.520273\pi\)
−0.0636456 + 0.997973i \(0.520273\pi\)
\(338\) −10435.9 −1.67940
\(339\) −9180.17 −1.47079
\(340\) 0 0
\(341\) −4118.27 −0.654008
\(342\) −694.517 −0.109810
\(343\) 34.3360 0.00540516
\(344\) −4064.81 −0.637092
\(345\) 0 0
\(346\) 4957.87 0.770338
\(347\) 3738.52 0.578370 0.289185 0.957273i \(-0.406616\pi\)
0.289185 + 0.957273i \(0.406616\pi\)
\(348\) 6178.24 0.951691
\(349\) 425.210 0.0652177 0.0326088 0.999468i \(-0.489618\pi\)
0.0326088 + 0.999468i \(0.489618\pi\)
\(350\) 0 0
\(351\) −11243.4 −1.70977
\(352\) −1125.62 −0.170443
\(353\) −355.990 −0.0536755 −0.0268377 0.999640i \(-0.508544\pi\)
−0.0268377 + 0.999640i \(0.508544\pi\)
\(354\) 1424.89 0.213932
\(355\) 0 0
\(356\) 1636.37 0.243616
\(357\) −2.43089 −0.000360382 0
\(358\) −7481.99 −1.10457
\(359\) −3713.17 −0.545888 −0.272944 0.962030i \(-0.587997\pi\)
−0.272944 + 0.962030i \(0.587997\pi\)
\(360\) 0 0
\(361\) 4444.24 0.647942
\(362\) 7683.75 1.11560
\(363\) 515.340 0.0745133
\(364\) 17.2401 0.00248249
\(365\) 0 0
\(366\) 3289.97 0.469862
\(367\) −3908.40 −0.555904 −0.277952 0.960595i \(-0.589656\pi\)
−0.277952 + 0.960595i \(0.589656\pi\)
\(368\) −368.000 −0.0521286
\(369\) −189.632 −0.0267530
\(370\) 0 0
\(371\) 15.8292 0.00221512
\(372\) 2576.39 0.359085
\(373\) −13956.5 −1.93737 −0.968685 0.248293i \(-0.920130\pi\)
−0.968685 + 0.248293i \(0.920130\pi\)
\(374\) 621.056 0.0858664
\(375\) 0 0
\(376\) −3263.31 −0.447586
\(377\) 24175.7 3.30268
\(378\) 13.0708 0.00177854
\(379\) −343.162 −0.0465093 −0.0232547 0.999730i \(-0.507403\pi\)
−0.0232547 + 0.999730i \(0.507403\pi\)
\(380\) 0 0
\(381\) −1949.32 −0.262117
\(382\) −4194.26 −0.561772
\(383\) 13870.9 1.85057 0.925285 0.379273i \(-0.123826\pi\)
0.925285 + 0.379273i \(0.123826\pi\)
\(384\) 704.189 0.0935821
\(385\) 0 0
\(386\) 2529.30 0.333518
\(387\) 1659.59 0.217989
\(388\) 4494.49 0.588075
\(389\) 80.0920 0.0104391 0.00521957 0.999986i \(-0.498339\pi\)
0.00521957 + 0.999986i \(0.498339\pi\)
\(390\) 0 0
\(391\) 203.042 0.0262616
\(392\) 2743.98 0.353551
\(393\) 5073.66 0.651228
\(394\) −1700.26 −0.217406
\(395\) 0 0
\(396\) 459.572 0.0583191
\(397\) 5077.38 0.641880 0.320940 0.947099i \(-0.396001\pi\)
0.320940 + 0.947099i \(0.396001\pi\)
\(398\) 406.178 0.0511554
\(399\) 29.2757 0.00367323
\(400\) 0 0
\(401\) 1588.41 0.197809 0.0989045 0.995097i \(-0.468466\pi\)
0.0989045 + 0.995097i \(0.468466\pi\)
\(402\) −6561.35 −0.814056
\(403\) 10081.5 1.24614
\(404\) −3927.29 −0.483639
\(405\) 0 0
\(406\) −28.1049 −0.00343553
\(407\) −3282.20 −0.399736
\(408\) −388.533 −0.0471452
\(409\) 4704.53 0.568763 0.284381 0.958711i \(-0.408212\pi\)
0.284381 + 0.958711i \(0.408212\pi\)
\(410\) 0 0
\(411\) −9159.73 −1.09931
\(412\) 115.830 0.0138508
\(413\) −6.48184 −0.000772277 0
\(414\) 150.248 0.0178365
\(415\) 0 0
\(416\) 2755.52 0.324761
\(417\) −13246.4 −1.55559
\(418\) −7479.52 −0.875204
\(419\) 8774.62 1.02307 0.511537 0.859261i \(-0.329076\pi\)
0.511537 + 0.859261i \(0.329076\pi\)
\(420\) 0 0
\(421\) −12089.9 −1.39959 −0.699794 0.714345i \(-0.746725\pi\)
−0.699794 + 0.714345i \(0.746725\pi\)
\(422\) −11224.5 −1.29479
\(423\) 1332.36 0.153147
\(424\) 2530.00 0.289783
\(425\) 0 0
\(426\) −7615.23 −0.866102
\(427\) −14.9661 −0.00169616
\(428\) 751.495 0.0848712
\(429\) 16663.8 1.87538
\(430\) 0 0
\(431\) −901.917 −0.100798 −0.0503989 0.998729i \(-0.516049\pi\)
−0.0503989 + 0.998729i \(0.516049\pi\)
\(432\) 2089.13 0.232670
\(433\) −11009.9 −1.22194 −0.610972 0.791652i \(-0.709221\pi\)
−0.610972 + 0.791652i \(0.709221\pi\)
\(434\) −11.7201 −0.00129627
\(435\) 0 0
\(436\) 8568.08 0.941139
\(437\) −2445.28 −0.267675
\(438\) −9265.56 −1.01079
\(439\) 10645.7 1.15738 0.578690 0.815548i \(-0.303564\pi\)
0.578690 + 0.815548i \(0.303564\pi\)
\(440\) 0 0
\(441\) −1120.32 −0.120972
\(442\) −1520.34 −0.163610
\(443\) −3031.48 −0.325124 −0.162562 0.986698i \(-0.551976\pi\)
−0.162562 + 0.986698i \(0.551976\pi\)
\(444\) 2053.35 0.219476
\(445\) 0 0
\(446\) −1115.82 −0.118465
\(447\) −10115.8 −1.07038
\(448\) −3.20337 −0.000337824 0
\(449\) −2924.54 −0.307388 −0.153694 0.988118i \(-0.549117\pi\)
−0.153694 + 0.988118i \(0.549117\pi\)
\(450\) 0 0
\(451\) −2042.22 −0.213225
\(452\) 6674.69 0.694582
\(453\) 7024.59 0.728574
\(454\) −1369.72 −0.141595
\(455\) 0 0
\(456\) 4679.19 0.480533
\(457\) −16680.1 −1.70736 −0.853681 0.520797i \(-0.825635\pi\)
−0.853681 + 0.520797i \(0.825635\pi\)
\(458\) −738.968 −0.0753924
\(459\) −1152.67 −0.117216
\(460\) 0 0
\(461\) 10948.6 1.10613 0.553065 0.833138i \(-0.313458\pi\)
0.553065 + 0.833138i \(0.313458\pi\)
\(462\) −19.3722 −0.00195081
\(463\) −9101.09 −0.913528 −0.456764 0.889588i \(-0.650992\pi\)
−0.456764 + 0.889588i \(0.650992\pi\)
\(464\) −4492.06 −0.449437
\(465\) 0 0
\(466\) −10239.7 −1.01791
\(467\) −12728.2 −1.26122 −0.630609 0.776101i \(-0.717195\pi\)
−0.630609 + 0.776101i \(0.717195\pi\)
\(468\) −1125.03 −0.111121
\(469\) 29.8477 0.00293868
\(470\) 0 0
\(471\) −7086.63 −0.693280
\(472\) −1036.00 −0.101029
\(473\) 17872.8 1.73740
\(474\) −12775.1 −1.23793
\(475\) 0 0
\(476\) 1.76744 0.000170190 0
\(477\) −1032.96 −0.0991529
\(478\) −3330.05 −0.318647
\(479\) −858.175 −0.0818602 −0.0409301 0.999162i \(-0.513032\pi\)
−0.0409301 + 0.999162i \(0.513032\pi\)
\(480\) 0 0
\(481\) 8034.82 0.761656
\(482\) −10803.1 −1.02089
\(483\) −6.33336 −0.000596642 0
\(484\) −374.692 −0.0351889
\(485\) 0 0
\(486\) −1823.30 −0.170178
\(487\) −1777.12 −0.165357 −0.0826784 0.996576i \(-0.526347\pi\)
−0.0826784 + 0.996576i \(0.526347\pi\)
\(488\) −2392.06 −0.221893
\(489\) −5479.15 −0.506699
\(490\) 0 0
\(491\) 13458.2 1.23699 0.618495 0.785789i \(-0.287743\pi\)
0.618495 + 0.785789i \(0.287743\pi\)
\(492\) 1277.62 0.117072
\(493\) 2478.47 0.226419
\(494\) 18309.9 1.66761
\(495\) 0 0
\(496\) −1873.24 −0.169578
\(497\) 34.6418 0.00312656
\(498\) −12342.0 −1.11055
\(499\) 8470.02 0.759860 0.379930 0.925015i \(-0.375948\pi\)
0.379930 + 0.925015i \(0.375948\pi\)
\(500\) 0 0
\(501\) −8628.48 −0.769445
\(502\) −8492.71 −0.755076
\(503\) 3558.11 0.315404 0.157702 0.987487i \(-0.449591\pi\)
0.157702 + 0.987487i \(0.449591\pi\)
\(504\) 1.30788 0.000115591 0
\(505\) 0 0
\(506\) 1618.08 0.142159
\(507\) −28706.3 −2.51458
\(508\) 1417.30 0.123785
\(509\) −11039.9 −0.961370 −0.480685 0.876893i \(-0.659612\pi\)
−0.480685 + 0.876893i \(0.659612\pi\)
\(510\) 0 0
\(511\) 42.1492 0.00364887
\(512\) −512.000 −0.0441942
\(513\) 13881.8 1.19473
\(514\) −11171.1 −0.958632
\(515\) 0 0
\(516\) −11181.2 −0.953927
\(517\) 14348.6 1.22060
\(518\) −9.34071 −0.000792292 0
\(519\) 13637.8 1.15344
\(520\) 0 0
\(521\) 5846.79 0.491656 0.245828 0.969314i \(-0.420940\pi\)
0.245828 + 0.969314i \(0.420940\pi\)
\(522\) 1834.03 0.153780
\(523\) −17121.8 −1.43152 −0.715759 0.698348i \(-0.753919\pi\)
−0.715759 + 0.698348i \(0.753919\pi\)
\(524\) −3688.95 −0.307543
\(525\) 0 0
\(526\) −4262.02 −0.353294
\(527\) 1033.55 0.0854310
\(528\) −3096.29 −0.255206
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 422.983 0.0345685
\(532\) −21.2857 −0.00173469
\(533\) 4999.36 0.406278
\(534\) 4501.22 0.364769
\(535\) 0 0
\(536\) 4770.61 0.384438
\(537\) −20581.0 −1.65388
\(538\) 16006.6 1.28270
\(539\) −12065.2 −0.964162
\(540\) 0 0
\(541\) 12373.9 0.983352 0.491676 0.870778i \(-0.336384\pi\)
0.491676 + 0.870778i \(0.336384\pi\)
\(542\) −2698.66 −0.213870
\(543\) 21136.0 1.67041
\(544\) 282.494 0.0222644
\(545\) 0 0
\(546\) 47.4231 0.00371707
\(547\) 16142.0 1.26176 0.630881 0.775880i \(-0.282694\pi\)
0.630881 + 0.775880i \(0.282694\pi\)
\(548\) 6659.83 0.519149
\(549\) 976.640 0.0759234
\(550\) 0 0
\(551\) −29848.8 −2.30781
\(552\) −1012.27 −0.0780528
\(553\) 58.1141 0.00446883
\(554\) −7525.52 −0.577127
\(555\) 0 0
\(556\) 9631.19 0.734628
\(557\) −8855.85 −0.673671 −0.336835 0.941564i \(-0.609357\pi\)
−0.336835 + 0.941564i \(0.609357\pi\)
\(558\) 764.811 0.0580233
\(559\) −43752.6 −3.31044
\(560\) 0 0
\(561\) 1708.36 0.128569
\(562\) −5770.72 −0.433137
\(563\) 25526.5 1.91086 0.955428 0.295223i \(-0.0953939\pi\)
0.955428 + 0.295223i \(0.0953939\pi\)
\(564\) −8976.52 −0.670177
\(565\) 0 0
\(566\) 9618.22 0.714283
\(567\) 40.3685 0.00298998
\(568\) 5536.86 0.409017
\(569\) 5758.98 0.424304 0.212152 0.977237i \(-0.431953\pi\)
0.212152 + 0.977237i \(0.431953\pi\)
\(570\) 0 0
\(571\) −14978.9 −1.09781 −0.548903 0.835886i \(-0.684955\pi\)
−0.548903 + 0.835886i \(0.684955\pi\)
\(572\) −12115.9 −0.885649
\(573\) −11537.3 −0.841148
\(574\) −5.81190 −0.000422620 0
\(575\) 0 0
\(576\) 209.041 0.0151216
\(577\) −19218.9 −1.38664 −0.693322 0.720627i \(-0.743854\pi\)
−0.693322 + 0.720627i \(0.743854\pi\)
\(578\) 9670.14 0.695890
\(579\) 6957.45 0.499381
\(580\) 0 0
\(581\) 56.1438 0.00400901
\(582\) 12363.2 0.880532
\(583\) −11124.3 −0.790261
\(584\) 6736.78 0.477346
\(585\) 0 0
\(586\) −10725.4 −0.756077
\(587\) 4648.60 0.326863 0.163431 0.986555i \(-0.447744\pi\)
0.163431 + 0.986555i \(0.447744\pi\)
\(588\) 7547.97 0.529376
\(589\) −12447.3 −0.870765
\(590\) 0 0
\(591\) −4676.97 −0.325524
\(592\) −1492.94 −0.103648
\(593\) 22294.2 1.54387 0.771933 0.635703i \(-0.219290\pi\)
0.771933 + 0.635703i \(0.219290\pi\)
\(594\) −9185.82 −0.634509
\(595\) 0 0
\(596\) 7354.96 0.505488
\(597\) 1117.29 0.0765957
\(598\) −3961.06 −0.270869
\(599\) 14695.1 1.00238 0.501191 0.865336i \(-0.332895\pi\)
0.501191 + 0.865336i \(0.332895\pi\)
\(600\) 0 0
\(601\) −4381.79 −0.297399 −0.148699 0.988882i \(-0.547509\pi\)
−0.148699 + 0.988882i \(0.547509\pi\)
\(602\) 50.8636 0.00344360
\(603\) −1947.76 −0.131541
\(604\) −5107.42 −0.344070
\(605\) 0 0
\(606\) −10803.0 −0.724159
\(607\) −14325.9 −0.957943 −0.478971 0.877831i \(-0.658990\pi\)
−0.478971 + 0.877831i \(0.658990\pi\)
\(608\) −3402.13 −0.226932
\(609\) −77.3093 −0.00514406
\(610\) 0 0
\(611\) −35125.5 −2.32574
\(612\) −115.337 −0.00761804
\(613\) −12551.9 −0.827028 −0.413514 0.910498i \(-0.635699\pi\)
−0.413514 + 0.910498i \(0.635699\pi\)
\(614\) 12749.5 0.837991
\(615\) 0 0
\(616\) 14.0851 0.000921273 0
\(617\) −5556.60 −0.362561 −0.181281 0.983431i \(-0.558024\pi\)
−0.181281 + 0.983431i \(0.558024\pi\)
\(618\) 318.618 0.0207390
\(619\) 16504.3 1.07167 0.535834 0.844323i \(-0.319997\pi\)
0.535834 + 0.844323i \(0.319997\pi\)
\(620\) 0 0
\(621\) −3003.12 −0.194060
\(622\) −74.5598 −0.00480639
\(623\) −20.4761 −0.00131679
\(624\) 7579.71 0.486268
\(625\) 0 0
\(626\) −7575.33 −0.483660
\(627\) −20574.2 −1.31045
\(628\) 5152.53 0.327402
\(629\) 823.723 0.0522162
\(630\) 0 0
\(631\) 20737.5 1.30832 0.654158 0.756358i \(-0.273023\pi\)
0.654158 + 0.756358i \(0.273023\pi\)
\(632\) 9288.48 0.584614
\(633\) −30875.7 −1.93870
\(634\) −11266.7 −0.705770
\(635\) 0 0
\(636\) 6959.38 0.433895
\(637\) 29535.5 1.83711
\(638\) 19751.4 1.22565
\(639\) −2260.61 −0.139950
\(640\) 0 0
\(641\) −5138.54 −0.316630 −0.158315 0.987389i \(-0.550606\pi\)
−0.158315 + 0.987389i \(0.550606\pi\)
\(642\) 2067.17 0.127079
\(643\) 20288.1 1.24430 0.622149 0.782899i \(-0.286260\pi\)
0.622149 + 0.782899i \(0.286260\pi\)
\(644\) 4.60484 0.000281764 0
\(645\) 0 0
\(646\) 1877.11 0.114325
\(647\) 22823.9 1.38686 0.693432 0.720522i \(-0.256098\pi\)
0.693432 + 0.720522i \(0.256098\pi\)
\(648\) 6452.17 0.391150
\(649\) 4555.26 0.275516
\(650\) 0 0
\(651\) −32.2388 −0.00194092
\(652\) 3983.77 0.239289
\(653\) −27010.0 −1.61866 −0.809329 0.587356i \(-0.800169\pi\)
−0.809329 + 0.587356i \(0.800169\pi\)
\(654\) 23568.6 1.40918
\(655\) 0 0
\(656\) −928.926 −0.0552873
\(657\) −2750.52 −0.163330
\(658\) 40.8344 0.00241928
\(659\) −4630.23 −0.273700 −0.136850 0.990592i \(-0.543698\pi\)
−0.136850 + 0.990592i \(0.543698\pi\)
\(660\) 0 0
\(661\) −12644.2 −0.744028 −0.372014 0.928227i \(-0.621333\pi\)
−0.372014 + 0.928227i \(0.621333\pi\)
\(662\) −9133.83 −0.536248
\(663\) −4182.07 −0.244975
\(664\) 8973.56 0.524460
\(665\) 0 0
\(666\) 609.543 0.0354644
\(667\) 6457.33 0.374856
\(668\) 6273.57 0.363371
\(669\) −3069.32 −0.177380
\(670\) 0 0
\(671\) 10517.8 0.605120
\(672\) −8.81163 −0.000505828 0
\(673\) 10099.8 0.578482 0.289241 0.957256i \(-0.406597\pi\)
0.289241 + 0.957256i \(0.406597\pi\)
\(674\) 1574.97 0.0900085
\(675\) 0 0
\(676\) 20871.7 1.18751
\(677\) 10253.3 0.582075 0.291037 0.956712i \(-0.406000\pi\)
0.291037 + 0.956712i \(0.406000\pi\)
\(678\) 18360.3 1.04001
\(679\) −56.2402 −0.00317865
\(680\) 0 0
\(681\) −3767.73 −0.212012
\(682\) 8236.54 0.462454
\(683\) 5525.56 0.309560 0.154780 0.987949i \(-0.450533\pi\)
0.154780 + 0.987949i \(0.450533\pi\)
\(684\) 1389.03 0.0776477
\(685\) 0 0
\(686\) −68.6720 −0.00382202
\(687\) −2032.71 −0.112886
\(688\) 8129.62 0.450492
\(689\) 27232.3 1.50576
\(690\) 0 0
\(691\) 15754.4 0.867332 0.433666 0.901074i \(-0.357220\pi\)
0.433666 + 0.901074i \(0.357220\pi\)
\(692\) −9915.74 −0.544711
\(693\) −5.75070 −0.000315225 0
\(694\) −7477.05 −0.408969
\(695\) 0 0
\(696\) −12356.5 −0.672947
\(697\) 512.530 0.0278529
\(698\) −850.420 −0.0461158
\(699\) −28166.7 −1.52412
\(700\) 0 0
\(701\) 10304.0 0.555176 0.277588 0.960700i \(-0.410465\pi\)
0.277588 + 0.960700i \(0.410465\pi\)
\(702\) 22486.9 1.20899
\(703\) −9920.29 −0.532220
\(704\) 2251.24 0.120521
\(705\) 0 0
\(706\) 711.980 0.0379543
\(707\) 49.1429 0.00261415
\(708\) −2849.77 −0.151273
\(709\) −4916.67 −0.260436 −0.130218 0.991485i \(-0.541568\pi\)
−0.130218 + 0.991485i \(0.541568\pi\)
\(710\) 0 0
\(711\) −3792.33 −0.200033
\(712\) −3272.73 −0.172262
\(713\) 2692.78 0.141438
\(714\) 4.86178 0.000254828 0
\(715\) 0 0
\(716\) 14964.0 0.781048
\(717\) −9160.11 −0.477114
\(718\) 7426.35 0.386001
\(719\) −3323.08 −0.172364 −0.0861821 0.996279i \(-0.527467\pi\)
−0.0861821 + 0.996279i \(0.527467\pi\)
\(720\) 0 0
\(721\) −1.44940 −7.48660e−5 0
\(722\) −8888.47 −0.458164
\(723\) −29716.6 −1.52859
\(724\) −15367.5 −0.788851
\(725\) 0 0
\(726\) −1030.68 −0.0526888
\(727\) 29941.1 1.52745 0.763724 0.645543i \(-0.223369\pi\)
0.763724 + 0.645543i \(0.223369\pi\)
\(728\) −34.4802 −0.00175539
\(729\) 16760.6 0.851529
\(730\) 0 0
\(731\) −4485.48 −0.226951
\(732\) −6579.95 −0.332243
\(733\) 16395.5 0.826170 0.413085 0.910693i \(-0.364451\pi\)
0.413085 + 0.910693i \(0.364451\pi\)
\(734\) 7816.79 0.393083
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −20976.2 −1.04840
\(738\) 379.265 0.0189172
\(739\) −24881.9 −1.23856 −0.619279 0.785171i \(-0.712575\pi\)
−0.619279 + 0.785171i \(0.712575\pi\)
\(740\) 0 0
\(741\) 50365.6 2.49693
\(742\) −31.6583 −0.00156633
\(743\) 8845.30 0.436746 0.218373 0.975865i \(-0.429925\pi\)
0.218373 + 0.975865i \(0.429925\pi\)
\(744\) −5152.78 −0.253912
\(745\) 0 0
\(746\) 27913.0 1.36993
\(747\) −3663.75 −0.179451
\(748\) −1242.11 −0.0607167
\(749\) −9.40358 −0.000458744 0
\(750\) 0 0
\(751\) 33958.9 1.65004 0.825020 0.565104i \(-0.191164\pi\)
0.825020 + 0.565104i \(0.191164\pi\)
\(752\) 6526.63 0.316491
\(753\) −23361.2 −1.13058
\(754\) −48351.4 −2.33535
\(755\) 0 0
\(756\) −26.1416 −0.00125762
\(757\) 22718.8 1.09079 0.545395 0.838179i \(-0.316379\pi\)
0.545395 + 0.838179i \(0.316379\pi\)
\(758\) 686.323 0.0328871
\(759\) 4450.92 0.212856
\(760\) 0 0
\(761\) 21813.2 1.03906 0.519532 0.854451i \(-0.326106\pi\)
0.519532 + 0.854451i \(0.326106\pi\)
\(762\) 3898.63 0.185345
\(763\) −107.214 −0.00508703
\(764\) 8388.51 0.397233
\(765\) 0 0
\(766\) −27741.7 −1.30855
\(767\) −11151.3 −0.524966
\(768\) −1408.38 −0.0661725
\(769\) −15098.4 −0.708011 −0.354006 0.935243i \(-0.615181\pi\)
−0.354006 + 0.935243i \(0.615181\pi\)
\(770\) 0 0
\(771\) −30728.8 −1.43537
\(772\) −5058.60 −0.235833
\(773\) −4343.28 −0.202092 −0.101046 0.994882i \(-0.532219\pi\)
−0.101046 + 0.994882i \(0.532219\pi\)
\(774\) −3319.19 −0.154142
\(775\) 0 0
\(776\) −8988.97 −0.415832
\(777\) −25.6938 −0.00118631
\(778\) −160.184 −0.00738159
\(779\) −6172.52 −0.283894
\(780\) 0 0
\(781\) −24345.4 −1.11542
\(782\) −406.085 −0.0185698
\(783\) −36658.2 −1.67312
\(784\) −5487.96 −0.249998
\(785\) 0 0
\(786\) −10147.3 −0.460487
\(787\) −4399.04 −0.199249 −0.0996243 0.995025i \(-0.531764\pi\)
−0.0996243 + 0.995025i \(0.531764\pi\)
\(788\) 3400.52 0.153729
\(789\) −11723.7 −0.528992
\(790\) 0 0
\(791\) −83.5215 −0.00375434
\(792\) −919.145 −0.0412379
\(793\) −25747.6 −1.15299
\(794\) −10154.8 −0.453878
\(795\) 0 0
\(796\) −812.356 −0.0361724
\(797\) −16911.6 −0.751619 −0.375809 0.926697i \(-0.622635\pi\)
−0.375809 + 0.926697i \(0.622635\pi\)
\(798\) −58.5515 −0.00259737
\(799\) −3601.03 −0.159444
\(800\) 0 0
\(801\) 1336.20 0.0589418
\(802\) −3176.82 −0.139872
\(803\) −29621.3 −1.30176
\(804\) 13122.7 0.575625
\(805\) 0 0
\(806\) −20163.0 −0.881157
\(807\) 44030.1 1.92061
\(808\) 7854.59 0.341984
\(809\) −21310.5 −0.926128 −0.463064 0.886325i \(-0.653250\pi\)
−0.463064 + 0.886325i \(0.653250\pi\)
\(810\) 0 0
\(811\) −5999.06 −0.259748 −0.129874 0.991531i \(-0.541457\pi\)
−0.129874 + 0.991531i \(0.541457\pi\)
\(812\) 56.2098 0.00242928
\(813\) −7423.32 −0.320230
\(814\) 6564.40 0.282656
\(815\) 0 0
\(816\) 777.066 0.0333367
\(817\) 54019.6 2.31323
\(818\) −9409.06 −0.402176
\(819\) 14.0777 0.000600629 0
\(820\) 0 0
\(821\) −34257.7 −1.45628 −0.728138 0.685431i \(-0.759614\pi\)
−0.728138 + 0.685431i \(0.759614\pi\)
\(822\) 18319.5 0.777329
\(823\) 46224.1 1.95780 0.978902 0.204331i \(-0.0655020\pi\)
0.978902 + 0.204331i \(0.0655020\pi\)
\(824\) −231.660 −0.00979399
\(825\) 0 0
\(826\) 12.9637 0.000546082 0
\(827\) −37548.2 −1.57881 −0.789407 0.613870i \(-0.789612\pi\)
−0.789407 + 0.613870i \(0.789612\pi\)
\(828\) −300.496 −0.0126123
\(829\) −30920.8 −1.29544 −0.647721 0.761877i \(-0.724278\pi\)
−0.647721 + 0.761877i \(0.724278\pi\)
\(830\) 0 0
\(831\) −20700.7 −0.864140
\(832\) −5511.04 −0.229640
\(833\) 3027.96 0.125945
\(834\) 26492.9 1.09997
\(835\) 0 0
\(836\) 14959.0 0.618863
\(837\) −15286.9 −0.631291
\(838\) −17549.2 −0.723423
\(839\) 4014.99 0.165212 0.0826060 0.996582i \(-0.473676\pi\)
0.0826060 + 0.996582i \(0.473676\pi\)
\(840\) 0 0
\(841\) 54433.6 2.23189
\(842\) 24179.8 0.989658
\(843\) −15873.7 −0.648542
\(844\) 22449.0 0.915553
\(845\) 0 0
\(846\) −2664.71 −0.108292
\(847\) 4.68858 0.000190202 0
\(848\) −5060.01 −0.204907
\(849\) 26457.2 1.06950
\(850\) 0 0
\(851\) 2146.10 0.0864483
\(852\) 15230.5 0.612426
\(853\) 4140.42 0.166196 0.0830981 0.996541i \(-0.473519\pi\)
0.0830981 + 0.996541i \(0.473519\pi\)
\(854\) 29.9323 0.00119937
\(855\) 0 0
\(856\) −1502.99 −0.0600130
\(857\) 21402.7 0.853093 0.426547 0.904466i \(-0.359730\pi\)
0.426547 + 0.904466i \(0.359730\pi\)
\(858\) −33327.7 −1.32609
\(859\) 32876.0 1.30584 0.652919 0.757427i \(-0.273544\pi\)
0.652919 + 0.757427i \(0.273544\pi\)
\(860\) 0 0
\(861\) −15.9870 −0.000632794 0
\(862\) 1803.83 0.0712747
\(863\) −29257.0 −1.15402 −0.577010 0.816737i \(-0.695781\pi\)
−0.577010 + 0.816737i \(0.695781\pi\)
\(864\) −4178.26 −0.164522
\(865\) 0 0
\(866\) 22019.8 0.864046
\(867\) 26600.0 1.04197
\(868\) 23.4401 0.000916600 0
\(869\) −40841.0 −1.59429
\(870\) 0 0
\(871\) 51349.6 1.99761
\(872\) −17136.2 −0.665486
\(873\) 3670.05 0.142282
\(874\) 4890.57 0.189274
\(875\) 0 0
\(876\) 18531.1 0.714736
\(877\) 7545.57 0.290531 0.145266 0.989393i \(-0.453596\pi\)
0.145266 + 0.989393i \(0.453596\pi\)
\(878\) −21291.3 −0.818391
\(879\) −29502.7 −1.13208
\(880\) 0 0
\(881\) 19544.5 0.747414 0.373707 0.927547i \(-0.378087\pi\)
0.373707 + 0.927547i \(0.378087\pi\)
\(882\) 2240.64 0.0855401
\(883\) −28251.9 −1.07673 −0.538365 0.842712i \(-0.680958\pi\)
−0.538365 + 0.842712i \(0.680958\pi\)
\(884\) 3040.69 0.115689
\(885\) 0 0
\(886\) 6062.96 0.229897
\(887\) −8880.90 −0.336180 −0.168090 0.985772i \(-0.553760\pi\)
−0.168090 + 0.985772i \(0.553760\pi\)
\(888\) −4106.69 −0.155193
\(889\) −17.7349 −0.000669079 0
\(890\) 0 0
\(891\) −28369.9 −1.06670
\(892\) 2231.64 0.0837676
\(893\) 43368.1 1.62515
\(894\) 20231.6 0.756874
\(895\) 0 0
\(896\) 6.40674 0.000238877 0
\(897\) −10895.8 −0.405576
\(898\) 5849.07 0.217356
\(899\) 32869.9 1.21943
\(900\) 0 0
\(901\) 2791.84 0.103229
\(902\) 4084.45 0.150773
\(903\) 139.913 0.00515614
\(904\) −13349.4 −0.491144
\(905\) 0 0
\(906\) −14049.2 −0.515180
\(907\) −15437.3 −0.565147 −0.282574 0.959246i \(-0.591188\pi\)
−0.282574 + 0.959246i \(0.591188\pi\)
\(908\) 2739.43 0.100123
\(909\) −3206.90 −0.117014
\(910\) 0 0
\(911\) 33155.3 1.20580 0.602900 0.797817i \(-0.294012\pi\)
0.602900 + 0.797817i \(0.294012\pi\)
\(912\) −9358.38 −0.339788
\(913\) −39456.3 −1.43025
\(914\) 33360.3 1.20729
\(915\) 0 0
\(916\) 1477.94 0.0533104
\(917\) 46.1604 0.00166232
\(918\) 2305.34 0.0828839
\(919\) −12375.1 −0.444196 −0.222098 0.975024i \(-0.571291\pi\)
−0.222098 + 0.975024i \(0.571291\pi\)
\(920\) 0 0
\(921\) 35070.5 1.25474
\(922\) −21897.1 −0.782152
\(923\) 59597.4 2.12532
\(924\) 38.7444 0.00137943
\(925\) 0 0
\(926\) 18202.2 0.645962
\(927\) 94.5828 0.00335114
\(928\) 8984.12 0.317800
\(929\) 49693.8 1.75501 0.877504 0.479570i \(-0.159207\pi\)
0.877504 + 0.479570i \(0.159207\pi\)
\(930\) 0 0
\(931\) −36466.4 −1.28371
\(932\) 20479.4 0.719768
\(933\) −205.095 −0.00719668
\(934\) 25456.3 0.891816
\(935\) 0 0
\(936\) 2250.06 0.0785744
\(937\) 42717.9 1.48936 0.744682 0.667420i \(-0.232601\pi\)
0.744682 + 0.667420i \(0.232601\pi\)
\(938\) −59.6954 −0.00207796
\(939\) −20837.8 −0.724190
\(940\) 0 0
\(941\) 20273.7 0.702344 0.351172 0.936311i \(-0.385783\pi\)
0.351172 + 0.936311i \(0.385783\pi\)
\(942\) 14173.3 0.490223
\(943\) 1335.33 0.0461128
\(944\) 2072.01 0.0714386
\(945\) 0 0
\(946\) −35745.6 −1.22853
\(947\) −20905.2 −0.717347 −0.358674 0.933463i \(-0.616771\pi\)
−0.358674 + 0.933463i \(0.616771\pi\)
\(948\) 25550.2 0.875350
\(949\) 72513.0 2.48037
\(950\) 0 0
\(951\) −30991.8 −1.05676
\(952\) −3.53489 −0.000120343 0
\(953\) −39537.9 −1.34392 −0.671960 0.740587i \(-0.734548\pi\)
−0.671960 + 0.740587i \(0.734548\pi\)
\(954\) 2065.92 0.0701117
\(955\) 0 0
\(956\) 6660.11 0.225317
\(957\) 54330.9 1.83518
\(958\) 1716.35 0.0578839
\(959\) −83.3355 −0.00280609
\(960\) 0 0
\(961\) −16083.9 −0.539892
\(962\) −16069.6 −0.538572
\(963\) 613.646 0.0205342
\(964\) 21606.3 0.721878
\(965\) 0 0
\(966\) 12.6667 0.000421889 0
\(967\) −26356.2 −0.876482 −0.438241 0.898858i \(-0.644398\pi\)
−0.438241 + 0.898858i \(0.644398\pi\)
\(968\) 749.383 0.0248823
\(969\) 5163.44 0.171180
\(970\) 0 0
\(971\) 11885.8 0.392827 0.196413 0.980521i \(-0.437071\pi\)
0.196413 + 0.980521i \(0.437071\pi\)
\(972\) 3646.60 0.120334
\(973\) −120.517 −0.00397080
\(974\) 3554.23 0.116925
\(975\) 0 0
\(976\) 4784.13 0.156902
\(977\) 11798.1 0.386341 0.193171 0.981165i \(-0.438123\pi\)
0.193171 + 0.981165i \(0.438123\pi\)
\(978\) 10958.3 0.358290
\(979\) 14390.1 0.469774
\(980\) 0 0
\(981\) 6996.41 0.227705
\(982\) −26916.5 −0.874684
\(983\) 5991.38 0.194400 0.0972001 0.995265i \(-0.469011\pi\)
0.0972001 + 0.995265i \(0.469011\pi\)
\(984\) −2555.23 −0.0827823
\(985\) 0 0
\(986\) −4956.94 −0.160103
\(987\) 112.325 0.00362242
\(988\) −36619.7 −1.17918
\(989\) −11686.3 −0.375737
\(990\) 0 0
\(991\) −18597.3 −0.596129 −0.298065 0.954546i \(-0.596341\pi\)
−0.298065 + 0.954546i \(0.596341\pi\)
\(992\) 3746.47 0.119910
\(993\) −25124.8 −0.802931
\(994\) −69.2837 −0.00221081
\(995\) 0 0
\(996\) 24683.9 0.785281
\(997\) −21172.0 −0.672541 −0.336271 0.941765i \(-0.609166\pi\)
−0.336271 + 0.941765i \(0.609166\pi\)
\(998\) −16940.0 −0.537302
\(999\) −12183.4 −0.385851
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.a.o.1.2 4
5.2 odd 4 1150.4.b.m.599.3 8
5.3 odd 4 1150.4.b.m.599.6 8
5.4 even 2 230.4.a.i.1.3 4
15.14 odd 2 2070.4.a.bi.1.2 4
20.19 odd 2 1840.4.a.l.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.i.1.3 4 5.4 even 2
1150.4.a.o.1.2 4 1.1 even 1 trivial
1150.4.b.m.599.3 8 5.2 odd 4
1150.4.b.m.599.6 8 5.3 odd 4
1840.4.a.l.1.2 4 20.19 odd 2
2070.4.a.bi.1.2 4 15.14 odd 2