Properties

Label 1150.4.a.o.1.1
Level $1150$
Weight $4$
Character 1150.1
Self dual yes
Analytic conductor $67.852$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1150,4,Mod(1,1150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1150.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-8,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 84x^{2} - 11x + 1242 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-7.92791\) of defining polynomial
Character \(\chi\) \(=\) 1150.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -8.92791 q^{3} +4.00000 q^{4} +17.8558 q^{6} -23.5524 q^{7} -8.00000 q^{8} +52.7075 q^{9} +1.63537 q^{11} -35.7116 q^{12} +88.6599 q^{13} +47.1048 q^{14} +16.0000 q^{16} +7.31435 q^{17} -105.415 q^{18} -6.53738 q^{19} +210.274 q^{21} -3.27074 q^{22} -23.0000 q^{23} +71.4232 q^{24} -177.320 q^{26} -229.514 q^{27} -94.2096 q^{28} +119.240 q^{29} -156.456 q^{31} -32.0000 q^{32} -14.6004 q^{33} -14.6287 q^{34} +210.830 q^{36} +293.173 q^{37} +13.0748 q^{38} -791.547 q^{39} +74.3404 q^{41} -420.547 q^{42} -468.081 q^{43} +6.54148 q^{44} +46.0000 q^{46} +393.971 q^{47} -142.846 q^{48} +211.715 q^{49} -65.3018 q^{51} +354.639 q^{52} -233.171 q^{53} +459.028 q^{54} +188.419 q^{56} +58.3651 q^{57} -238.481 q^{58} -766.648 q^{59} +178.365 q^{61} +312.912 q^{62} -1241.39 q^{63} +64.0000 q^{64} +29.2009 q^{66} -246.904 q^{67} +29.2574 q^{68} +205.342 q^{69} -650.678 q^{71} -421.660 q^{72} -695.444 q^{73} -586.346 q^{74} -26.1495 q^{76} -38.5169 q^{77} +1583.09 q^{78} +660.717 q^{79} +625.978 q^{81} -148.681 q^{82} +1328.39 q^{83} +841.094 q^{84} +936.163 q^{86} -1064.57 q^{87} -13.0830 q^{88} -824.702 q^{89} -2088.15 q^{91} -92.0000 q^{92} +1396.82 q^{93} -787.942 q^{94} +285.693 q^{96} -383.833 q^{97} -423.430 q^{98} +86.1963 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} - 4 q^{3} + 16 q^{4} + 8 q^{6} - 26 q^{7} - 32 q^{8} + 64 q^{9} + 93 q^{11} - 16 q^{12} - 32 q^{13} + 52 q^{14} + 64 q^{16} - 108 q^{17} - 128 q^{18} + 185 q^{19} + 302 q^{21} - 186 q^{22}+ \cdots + 2013 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −8.92791 −1.71818 −0.859088 0.511828i \(-0.828969\pi\)
−0.859088 + 0.511828i \(0.828969\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 17.8558 1.21493
\(7\) −23.5524 −1.27171 −0.635855 0.771809i \(-0.719352\pi\)
−0.635855 + 0.771809i \(0.719352\pi\)
\(8\) −8.00000 −0.353553
\(9\) 52.7075 1.95213
\(10\) 0 0
\(11\) 1.63537 0.0448257 0.0224129 0.999749i \(-0.492865\pi\)
0.0224129 + 0.999749i \(0.492865\pi\)
\(12\) −35.7116 −0.859088
\(13\) 88.6599 1.89152 0.945762 0.324860i \(-0.105317\pi\)
0.945762 + 0.324860i \(0.105317\pi\)
\(14\) 47.1048 0.899234
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 7.31435 0.104352 0.0521762 0.998638i \(-0.483384\pi\)
0.0521762 + 0.998638i \(0.483384\pi\)
\(18\) −105.415 −1.38036
\(19\) −6.53738 −0.0789357 −0.0394678 0.999221i \(-0.512566\pi\)
−0.0394678 + 0.999221i \(0.512566\pi\)
\(20\) 0 0
\(21\) 210.274 2.18502
\(22\) −3.27074 −0.0316966
\(23\) −23.0000 −0.208514
\(24\) 71.4232 0.607467
\(25\) 0 0
\(26\) −177.320 −1.33751
\(27\) −229.514 −1.63593
\(28\) −94.2096 −0.635855
\(29\) 119.240 0.763530 0.381765 0.924259i \(-0.375316\pi\)
0.381765 + 0.924259i \(0.375316\pi\)
\(30\) 0 0
\(31\) −156.456 −0.906462 −0.453231 0.891393i \(-0.649729\pi\)
−0.453231 + 0.891393i \(0.649729\pi\)
\(32\) −32.0000 −0.176777
\(33\) −14.6004 −0.0770185
\(34\) −14.6287 −0.0737883
\(35\) 0 0
\(36\) 210.830 0.976065
\(37\) 293.173 1.30263 0.651315 0.758807i \(-0.274218\pi\)
0.651315 + 0.758807i \(0.274218\pi\)
\(38\) 13.0748 0.0558159
\(39\) −791.547 −3.24997
\(40\) 0 0
\(41\) 74.3404 0.283171 0.141586 0.989926i \(-0.454780\pi\)
0.141586 + 0.989926i \(0.454780\pi\)
\(42\) −420.547 −1.54504
\(43\) −468.081 −1.66004 −0.830020 0.557733i \(-0.811671\pi\)
−0.830020 + 0.557733i \(0.811671\pi\)
\(44\) 6.54148 0.0224129
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) 393.971 1.22269 0.611346 0.791363i \(-0.290628\pi\)
0.611346 + 0.791363i \(0.290628\pi\)
\(48\) −142.846 −0.429544
\(49\) 211.715 0.617245
\(50\) 0 0
\(51\) −65.3018 −0.179296
\(52\) 354.639 0.945762
\(53\) −233.171 −0.604311 −0.302155 0.953259i \(-0.597706\pi\)
−0.302155 + 0.953259i \(0.597706\pi\)
\(54\) 459.028 1.15677
\(55\) 0 0
\(56\) 188.419 0.449617
\(57\) 58.3651 0.135625
\(58\) −238.481 −0.539897
\(59\) −766.648 −1.69168 −0.845840 0.533437i \(-0.820900\pi\)
−0.845840 + 0.533437i \(0.820900\pi\)
\(60\) 0 0
\(61\) 178.365 0.374383 0.187191 0.982323i \(-0.440062\pi\)
0.187191 + 0.982323i \(0.440062\pi\)
\(62\) 312.912 0.640965
\(63\) −1241.39 −2.48254
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 29.2009 0.0544603
\(67\) −246.904 −0.450211 −0.225105 0.974334i \(-0.572273\pi\)
−0.225105 + 0.974334i \(0.572273\pi\)
\(68\) 29.2574 0.0521762
\(69\) 205.342 0.358265
\(70\) 0 0
\(71\) −650.678 −1.08762 −0.543812 0.839207i \(-0.683020\pi\)
−0.543812 + 0.839207i \(0.683020\pi\)
\(72\) −421.660 −0.690182
\(73\) −695.444 −1.11501 −0.557504 0.830174i \(-0.688241\pi\)
−0.557504 + 0.830174i \(0.688241\pi\)
\(74\) −586.346 −0.921099
\(75\) 0 0
\(76\) −26.1495 −0.0394678
\(77\) −38.5169 −0.0570053
\(78\) 1583.09 2.29808
\(79\) 660.717 0.940967 0.470484 0.882409i \(-0.344079\pi\)
0.470484 + 0.882409i \(0.344079\pi\)
\(80\) 0 0
\(81\) 625.978 0.858681
\(82\) −148.681 −0.200232
\(83\) 1328.39 1.75674 0.878372 0.477977i \(-0.158630\pi\)
0.878372 + 0.477977i \(0.158630\pi\)
\(84\) 841.094 1.09251
\(85\) 0 0
\(86\) 936.163 1.17383
\(87\) −1064.57 −1.31188
\(88\) −13.0830 −0.0158483
\(89\) −824.702 −0.982227 −0.491113 0.871096i \(-0.663410\pi\)
−0.491113 + 0.871096i \(0.663410\pi\)
\(90\) 0 0
\(91\) −2088.15 −2.40547
\(92\) −92.0000 −0.104257
\(93\) 1396.82 1.55746
\(94\) −787.942 −0.864574
\(95\) 0 0
\(96\) 285.693 0.303734
\(97\) −383.833 −0.401776 −0.200888 0.979614i \(-0.564383\pi\)
−0.200888 + 0.979614i \(0.564383\pi\)
\(98\) −423.430 −0.436458
\(99\) 86.1963 0.0875056
\(100\) 0 0
\(101\) −674.579 −0.664586 −0.332293 0.943176i \(-0.607822\pi\)
−0.332293 + 0.943176i \(0.607822\pi\)
\(102\) 130.604 0.126781
\(103\) −169.297 −0.161955 −0.0809773 0.996716i \(-0.525804\pi\)
−0.0809773 + 0.996716i \(0.525804\pi\)
\(104\) −709.279 −0.668755
\(105\) 0 0
\(106\) 466.342 0.427312
\(107\) 1533.31 1.38533 0.692665 0.721259i \(-0.256436\pi\)
0.692665 + 0.721259i \(0.256436\pi\)
\(108\) −918.057 −0.817963
\(109\) 1239.75 1.08941 0.544707 0.838626i \(-0.316641\pi\)
0.544707 + 0.838626i \(0.316641\pi\)
\(110\) 0 0
\(111\) −2617.42 −2.23815
\(112\) −376.838 −0.317927
\(113\) −2299.49 −1.91432 −0.957159 0.289561i \(-0.906491\pi\)
−0.957159 + 0.289561i \(0.906491\pi\)
\(114\) −116.730 −0.0959016
\(115\) 0 0
\(116\) 476.961 0.381765
\(117\) 4673.04 3.69250
\(118\) 1533.30 1.19620
\(119\) −172.270 −0.132706
\(120\) 0 0
\(121\) −1328.33 −0.997991
\(122\) −356.731 −0.264729
\(123\) −663.704 −0.486538
\(124\) −625.824 −0.453231
\(125\) 0 0
\(126\) 2482.78 1.75542
\(127\) 1177.82 0.822948 0.411474 0.911422i \(-0.365014\pi\)
0.411474 + 0.911422i \(0.365014\pi\)
\(128\) −128.000 −0.0883883
\(129\) 4178.99 2.85224
\(130\) 0 0
\(131\) 2385.56 1.59105 0.795525 0.605921i \(-0.207195\pi\)
0.795525 + 0.605921i \(0.207195\pi\)
\(132\) −58.4017 −0.0385092
\(133\) 153.971 0.100383
\(134\) 493.808 0.318347
\(135\) 0 0
\(136\) −58.5148 −0.0368941
\(137\) −1123.22 −0.700460 −0.350230 0.936664i \(-0.613897\pi\)
−0.350230 + 0.936664i \(0.613897\pi\)
\(138\) −410.684 −0.253331
\(139\) −1801.75 −1.09944 −0.549721 0.835348i \(-0.685266\pi\)
−0.549721 + 0.835348i \(0.685266\pi\)
\(140\) 0 0
\(141\) −3517.33 −2.10080
\(142\) 1301.36 0.769067
\(143\) 144.992 0.0847889
\(144\) 843.320 0.488032
\(145\) 0 0
\(146\) 1390.89 0.788429
\(147\) −1890.17 −1.06054
\(148\) 1172.69 0.651315
\(149\) 663.138 0.364607 0.182303 0.983242i \(-0.441645\pi\)
0.182303 + 0.983242i \(0.441645\pi\)
\(150\) 0 0
\(151\) 1617.66 0.871808 0.435904 0.899993i \(-0.356429\pi\)
0.435904 + 0.899993i \(0.356429\pi\)
\(152\) 52.2990 0.0279080
\(153\) 385.521 0.203709
\(154\) 77.0338 0.0403088
\(155\) 0 0
\(156\) −3166.19 −1.62499
\(157\) −875.080 −0.444834 −0.222417 0.974952i \(-0.571395\pi\)
−0.222417 + 0.974952i \(0.571395\pi\)
\(158\) −1321.43 −0.665364
\(159\) 2081.73 1.03831
\(160\) 0 0
\(161\) 541.705 0.265170
\(162\) −1251.96 −0.607179
\(163\) −2532.39 −1.21689 −0.608443 0.793597i \(-0.708206\pi\)
−0.608443 + 0.793597i \(0.708206\pi\)
\(164\) 297.361 0.141586
\(165\) 0 0
\(166\) −2656.78 −1.24221
\(167\) 1131.65 0.524371 0.262186 0.965017i \(-0.415557\pi\)
0.262186 + 0.965017i \(0.415557\pi\)
\(168\) −1682.19 −0.772522
\(169\) 5663.57 2.57786
\(170\) 0 0
\(171\) −344.569 −0.154093
\(172\) −1872.33 −0.830020
\(173\) 3186.23 1.40026 0.700128 0.714017i \(-0.253126\pi\)
0.700128 + 0.714017i \(0.253126\pi\)
\(174\) 2129.13 0.927639
\(175\) 0 0
\(176\) 26.1659 0.0112064
\(177\) 6844.56 2.90660
\(178\) 1649.40 0.694539
\(179\) 1663.48 0.694606 0.347303 0.937753i \(-0.387098\pi\)
0.347303 + 0.937753i \(0.387098\pi\)
\(180\) 0 0
\(181\) −3747.35 −1.53889 −0.769443 0.638716i \(-0.779466\pi\)
−0.769443 + 0.638716i \(0.779466\pi\)
\(182\) 4176.30 1.70092
\(183\) −1592.43 −0.643256
\(184\) 184.000 0.0737210
\(185\) 0 0
\(186\) −2793.65 −1.10129
\(187\) 11.9617 0.00467767
\(188\) 1575.88 0.611346
\(189\) 5405.61 2.08042
\(190\) 0 0
\(191\) 2262.97 0.857291 0.428645 0.903473i \(-0.358991\pi\)
0.428645 + 0.903473i \(0.358991\pi\)
\(192\) −571.386 −0.214772
\(193\) 2001.25 0.746390 0.373195 0.927753i \(-0.378262\pi\)
0.373195 + 0.927753i \(0.378262\pi\)
\(194\) 767.665 0.284099
\(195\) 0 0
\(196\) 846.860 0.308622
\(197\) 4804.08 1.73744 0.868722 0.495300i \(-0.164942\pi\)
0.868722 + 0.495300i \(0.164942\pi\)
\(198\) −172.393 −0.0618758
\(199\) 3885.03 1.38393 0.691967 0.721929i \(-0.256744\pi\)
0.691967 + 0.721929i \(0.256744\pi\)
\(200\) 0 0
\(201\) 2204.34 0.773542
\(202\) 1349.16 0.469933
\(203\) −2808.39 −0.970989
\(204\) −261.207 −0.0896479
\(205\) 0 0
\(206\) 338.594 0.114519
\(207\) −1212.27 −0.407047
\(208\) 1418.56 0.472881
\(209\) −10.6910 −0.00353835
\(210\) 0 0
\(211\) 4568.39 1.49052 0.745262 0.666772i \(-0.232324\pi\)
0.745262 + 0.666772i \(0.232324\pi\)
\(212\) −932.683 −0.302155
\(213\) 5809.20 1.86873
\(214\) −3066.61 −0.979576
\(215\) 0 0
\(216\) 1836.11 0.578387
\(217\) 3684.91 1.15276
\(218\) −2479.49 −0.770332
\(219\) 6208.86 1.91578
\(220\) 0 0
\(221\) 648.489 0.197385
\(222\) 5234.84 1.58261
\(223\) −3081.07 −0.925218 −0.462609 0.886563i \(-0.653087\pi\)
−0.462609 + 0.886563i \(0.653087\pi\)
\(224\) 753.676 0.224809
\(225\) 0 0
\(226\) 4598.98 1.35363
\(227\) −678.971 −0.198524 −0.0992618 0.995061i \(-0.531648\pi\)
−0.0992618 + 0.995061i \(0.531648\pi\)
\(228\) 233.460 0.0678127
\(229\) 6399.27 1.84662 0.923310 0.384056i \(-0.125473\pi\)
0.923310 + 0.384056i \(0.125473\pi\)
\(230\) 0 0
\(231\) 343.875 0.0979451
\(232\) −953.923 −0.269949
\(233\) −6083.30 −1.71043 −0.855215 0.518274i \(-0.826575\pi\)
−0.855215 + 0.518274i \(0.826575\pi\)
\(234\) −9346.08 −2.61099
\(235\) 0 0
\(236\) −3066.59 −0.845840
\(237\) −5898.82 −1.61675
\(238\) 344.541 0.0938372
\(239\) 438.313 0.118628 0.0593140 0.998239i \(-0.481109\pi\)
0.0593140 + 0.998239i \(0.481109\pi\)
\(240\) 0 0
\(241\) 2854.41 0.762941 0.381471 0.924381i \(-0.375418\pi\)
0.381471 + 0.924381i \(0.375418\pi\)
\(242\) 2656.65 0.705686
\(243\) 608.207 0.160562
\(244\) 713.462 0.187191
\(245\) 0 0
\(246\) 1327.41 0.344034
\(247\) −579.603 −0.149309
\(248\) 1251.65 0.320483
\(249\) −11859.7 −3.01840
\(250\) 0 0
\(251\) −2292.93 −0.576607 −0.288303 0.957539i \(-0.593091\pi\)
−0.288303 + 0.957539i \(0.593091\pi\)
\(252\) −4965.55 −1.24127
\(253\) −37.6135 −0.00934681
\(254\) −2355.63 −0.581912
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −3547.59 −0.861060 −0.430530 0.902576i \(-0.641673\pi\)
−0.430530 + 0.902576i \(0.641673\pi\)
\(258\) −8357.97 −2.01684
\(259\) −6904.92 −1.65657
\(260\) 0 0
\(261\) 6284.86 1.49051
\(262\) −4771.12 −1.12504
\(263\) 2278.35 0.534178 0.267089 0.963672i \(-0.413938\pi\)
0.267089 + 0.963672i \(0.413938\pi\)
\(264\) 116.803 0.0272301
\(265\) 0 0
\(266\) −307.942 −0.0709817
\(267\) 7362.86 1.68764
\(268\) −987.616 −0.225105
\(269\) 3915.36 0.887450 0.443725 0.896163i \(-0.353657\pi\)
0.443725 + 0.896163i \(0.353657\pi\)
\(270\) 0 0
\(271\) 6252.71 1.40157 0.700784 0.713374i \(-0.252834\pi\)
0.700784 + 0.713374i \(0.252834\pi\)
\(272\) 117.030 0.0260881
\(273\) 18642.8 4.13302
\(274\) 2246.44 0.495300
\(275\) 0 0
\(276\) 821.367 0.179132
\(277\) 4700.53 1.01959 0.509797 0.860295i \(-0.329721\pi\)
0.509797 + 0.860295i \(0.329721\pi\)
\(278\) 3603.50 0.777423
\(279\) −8246.40 −1.76953
\(280\) 0 0
\(281\) 5508.07 1.16934 0.584669 0.811272i \(-0.301224\pi\)
0.584669 + 0.811272i \(0.301224\pi\)
\(282\) 7034.67 1.48549
\(283\) −6639.20 −1.39456 −0.697278 0.716801i \(-0.745606\pi\)
−0.697278 + 0.716801i \(0.745606\pi\)
\(284\) −2602.71 −0.543812
\(285\) 0 0
\(286\) −289.983 −0.0599548
\(287\) −1750.89 −0.360111
\(288\) −1686.64 −0.345091
\(289\) −4859.50 −0.989111
\(290\) 0 0
\(291\) 3426.82 0.690323
\(292\) −2781.78 −0.557504
\(293\) 2120.85 0.422872 0.211436 0.977392i \(-0.432186\pi\)
0.211436 + 0.977392i \(0.432186\pi\)
\(294\) 3780.34 0.749912
\(295\) 0 0
\(296\) −2345.38 −0.460550
\(297\) −375.341 −0.0733316
\(298\) −1326.28 −0.257816
\(299\) −2039.18 −0.394410
\(300\) 0 0
\(301\) 11024.4 2.11109
\(302\) −3235.31 −0.616461
\(303\) 6022.58 1.14188
\(304\) −104.598 −0.0197339
\(305\) 0 0
\(306\) −771.042 −0.144044
\(307\) −7422.87 −1.37995 −0.689977 0.723832i \(-0.742379\pi\)
−0.689977 + 0.723832i \(0.742379\pi\)
\(308\) −154.068 −0.0285026
\(309\) 1511.47 0.278266
\(310\) 0 0
\(311\) −2563.97 −0.467490 −0.233745 0.972298i \(-0.575098\pi\)
−0.233745 + 0.972298i \(0.575098\pi\)
\(312\) 6332.37 1.14904
\(313\) −9403.53 −1.69814 −0.849072 0.528277i \(-0.822838\pi\)
−0.849072 + 0.528277i \(0.822838\pi\)
\(314\) 1750.16 0.314545
\(315\) 0 0
\(316\) 2642.87 0.470484
\(317\) −407.110 −0.0721312 −0.0360656 0.999349i \(-0.511483\pi\)
−0.0360656 + 0.999349i \(0.511483\pi\)
\(318\) −4163.45 −0.734198
\(319\) 195.002 0.0342258
\(320\) 0 0
\(321\) −13689.2 −2.38024
\(322\) −1083.41 −0.187503
\(323\) −47.8167 −0.00823713
\(324\) 2503.91 0.429340
\(325\) 0 0
\(326\) 5064.79 0.860469
\(327\) −11068.3 −1.87180
\(328\) −594.723 −0.100116
\(329\) −9278.95 −1.55491
\(330\) 0 0
\(331\) −7122.33 −1.18272 −0.591358 0.806409i \(-0.701408\pi\)
−0.591358 + 0.806409i \(0.701408\pi\)
\(332\) 5313.56 0.878372
\(333\) 15452.4 2.54290
\(334\) −2263.31 −0.370786
\(335\) 0 0
\(336\) 3364.38 0.546255
\(337\) 8267.78 1.33642 0.668212 0.743971i \(-0.267060\pi\)
0.668212 + 0.743971i \(0.267060\pi\)
\(338\) −11327.1 −1.82283
\(339\) 20529.7 3.28914
\(340\) 0 0
\(341\) −255.864 −0.0406328
\(342\) 689.138 0.108960
\(343\) 3092.08 0.486753
\(344\) 3744.65 0.586913
\(345\) 0 0
\(346\) −6372.45 −0.990130
\(347\) −1048.83 −0.162260 −0.0811302 0.996704i \(-0.525853\pi\)
−0.0811302 + 0.996704i \(0.525853\pi\)
\(348\) −4258.27 −0.655940
\(349\) −9135.87 −1.40124 −0.700619 0.713535i \(-0.747093\pi\)
−0.700619 + 0.713535i \(0.747093\pi\)
\(350\) 0 0
\(351\) −20348.7 −3.09440
\(352\) −52.3319 −0.00792414
\(353\) −5253.06 −0.792046 −0.396023 0.918240i \(-0.629610\pi\)
−0.396023 + 0.918240i \(0.629610\pi\)
\(354\) −13689.1 −2.05528
\(355\) 0 0
\(356\) −3298.81 −0.491113
\(357\) 1538.01 0.228012
\(358\) −3326.96 −0.491160
\(359\) −11269.7 −1.65680 −0.828400 0.560137i \(-0.810748\pi\)
−0.828400 + 0.560137i \(0.810748\pi\)
\(360\) 0 0
\(361\) −6816.26 −0.993769
\(362\) 7494.70 1.08816
\(363\) 11859.2 1.71472
\(364\) −8352.60 −1.20273
\(365\) 0 0
\(366\) 3184.86 0.454850
\(367\) 5675.46 0.807238 0.403619 0.914927i \(-0.367752\pi\)
0.403619 + 0.914927i \(0.367752\pi\)
\(368\) −368.000 −0.0521286
\(369\) 3918.29 0.552787
\(370\) 0 0
\(371\) 5491.73 0.768508
\(372\) 5587.30 0.778731
\(373\) −3662.20 −0.508369 −0.254185 0.967156i \(-0.581807\pi\)
−0.254185 + 0.967156i \(0.581807\pi\)
\(374\) −23.9233 −0.00330761
\(375\) 0 0
\(376\) −3151.77 −0.432287
\(377\) 10571.8 1.44424
\(378\) −10811.2 −1.47108
\(379\) 5520.89 0.748256 0.374128 0.927377i \(-0.377942\pi\)
0.374128 + 0.927377i \(0.377942\pi\)
\(380\) 0 0
\(381\) −10515.4 −1.41397
\(382\) −4525.93 −0.606196
\(383\) 2309.13 0.308071 0.154036 0.988065i \(-0.450773\pi\)
0.154036 + 0.988065i \(0.450773\pi\)
\(384\) 1142.77 0.151867
\(385\) 0 0
\(386\) −4002.50 −0.527777
\(387\) −24671.4 −3.24061
\(388\) −1535.33 −0.200888
\(389\) −8194.51 −1.06807 −0.534034 0.845463i \(-0.679324\pi\)
−0.534034 + 0.845463i \(0.679324\pi\)
\(390\) 0 0
\(391\) −168.230 −0.0217590
\(392\) −1693.72 −0.218229
\(393\) −21298.1 −2.73370
\(394\) −9608.16 −1.22856
\(395\) 0 0
\(396\) 344.785 0.0437528
\(397\) −7273.90 −0.919564 −0.459782 0.888032i \(-0.652072\pi\)
−0.459782 + 0.888032i \(0.652072\pi\)
\(398\) −7770.07 −0.978589
\(399\) −1374.64 −0.172476
\(400\) 0 0
\(401\) −1835.81 −0.228618 −0.114309 0.993445i \(-0.536465\pi\)
−0.114309 + 0.993445i \(0.536465\pi\)
\(402\) −4408.67 −0.546977
\(403\) −13871.4 −1.71460
\(404\) −2698.32 −0.332293
\(405\) 0 0
\(406\) 5616.79 0.686593
\(407\) 479.446 0.0583914
\(408\) 522.415 0.0633906
\(409\) −2865.80 −0.346466 −0.173233 0.984881i \(-0.555421\pi\)
−0.173233 + 0.984881i \(0.555421\pi\)
\(410\) 0 0
\(411\) 10028.0 1.20351
\(412\) −677.187 −0.0809773
\(413\) 18056.4 2.15132
\(414\) 2424.55 0.287826
\(415\) 0 0
\(416\) −2837.12 −0.334377
\(417\) 16085.9 1.88904
\(418\) 21.3821 0.00250199
\(419\) 11044.0 1.28767 0.643836 0.765164i \(-0.277342\pi\)
0.643836 + 0.765164i \(0.277342\pi\)
\(420\) 0 0
\(421\) 6343.24 0.734324 0.367162 0.930157i \(-0.380329\pi\)
0.367162 + 0.930157i \(0.380329\pi\)
\(422\) −9136.77 −1.05396
\(423\) 20765.2 2.38685
\(424\) 1865.37 0.213656
\(425\) 0 0
\(426\) −11618.4 −1.32139
\(427\) −4200.93 −0.476106
\(428\) 6133.23 0.692665
\(429\) −1294.47 −0.145682
\(430\) 0 0
\(431\) −4117.01 −0.460115 −0.230058 0.973177i \(-0.573891\pi\)
−0.230058 + 0.973177i \(0.573891\pi\)
\(432\) −3672.23 −0.408982
\(433\) 758.791 0.0842151 0.0421076 0.999113i \(-0.486593\pi\)
0.0421076 + 0.999113i \(0.486593\pi\)
\(434\) −7369.82 −0.815122
\(435\) 0 0
\(436\) 4958.98 0.544707
\(437\) 150.360 0.0164592
\(438\) −12417.7 −1.35466
\(439\) 4150.10 0.451193 0.225596 0.974221i \(-0.427567\pi\)
0.225596 + 0.974221i \(0.427567\pi\)
\(440\) 0 0
\(441\) 11159.0 1.20494
\(442\) −1296.98 −0.139572
\(443\) 4597.24 0.493051 0.246525 0.969136i \(-0.420711\pi\)
0.246525 + 0.969136i \(0.420711\pi\)
\(444\) −10469.7 −1.11907
\(445\) 0 0
\(446\) 6162.13 0.654228
\(447\) −5920.43 −0.626458
\(448\) −1507.35 −0.158964
\(449\) 6402.58 0.672954 0.336477 0.941692i \(-0.390765\pi\)
0.336477 + 0.941692i \(0.390765\pi\)
\(450\) 0 0
\(451\) 121.574 0.0126933
\(452\) −9197.97 −0.957159
\(453\) −14442.3 −1.49792
\(454\) 1357.94 0.140377
\(455\) 0 0
\(456\) −466.921 −0.0479508
\(457\) −551.499 −0.0564508 −0.0282254 0.999602i \(-0.508986\pi\)
−0.0282254 + 0.999602i \(0.508986\pi\)
\(458\) −12798.5 −1.30576
\(459\) −1678.75 −0.170713
\(460\) 0 0
\(461\) −3901.96 −0.394213 −0.197107 0.980382i \(-0.563154\pi\)
−0.197107 + 0.980382i \(0.563154\pi\)
\(462\) −687.750 −0.0692577
\(463\) −4828.15 −0.484628 −0.242314 0.970198i \(-0.577906\pi\)
−0.242314 + 0.970198i \(0.577906\pi\)
\(464\) 1907.85 0.190883
\(465\) 0 0
\(466\) 12166.6 1.20946
\(467\) 14136.3 1.40075 0.700375 0.713775i \(-0.253016\pi\)
0.700375 + 0.713775i \(0.253016\pi\)
\(468\) 18692.2 1.84625
\(469\) 5815.18 0.572538
\(470\) 0 0
\(471\) 7812.63 0.764303
\(472\) 6133.19 0.598099
\(473\) −765.487 −0.0744125
\(474\) 11797.6 1.14321
\(475\) 0 0
\(476\) −689.082 −0.0663530
\(477\) −12289.8 −1.17969
\(478\) −876.626 −0.0838827
\(479\) 15246.1 1.45430 0.727152 0.686476i \(-0.240843\pi\)
0.727152 + 0.686476i \(0.240843\pi\)
\(480\) 0 0
\(481\) 25992.7 2.46396
\(482\) −5708.83 −0.539481
\(483\) −4836.29 −0.455608
\(484\) −5313.30 −0.498995
\(485\) 0 0
\(486\) −1216.41 −0.113534
\(487\) −3876.39 −0.360690 −0.180345 0.983603i \(-0.557721\pi\)
−0.180345 + 0.983603i \(0.557721\pi\)
\(488\) −1426.92 −0.132364
\(489\) 22609.0 2.09083
\(490\) 0 0
\(491\) −5027.14 −0.462061 −0.231030 0.972947i \(-0.574210\pi\)
−0.231030 + 0.972947i \(0.574210\pi\)
\(492\) −2654.82 −0.243269
\(493\) 872.166 0.0796762
\(494\) 1159.21 0.105577
\(495\) 0 0
\(496\) −2503.30 −0.226616
\(497\) 15325.0 1.38314
\(498\) 23719.5 2.13433
\(499\) 7178.10 0.643960 0.321980 0.946747i \(-0.395652\pi\)
0.321980 + 0.946747i \(0.395652\pi\)
\(500\) 0 0
\(501\) −10103.3 −0.900962
\(502\) 4585.86 0.407723
\(503\) 18169.6 1.61063 0.805313 0.592850i \(-0.201997\pi\)
0.805313 + 0.592850i \(0.201997\pi\)
\(504\) 9931.10 0.877711
\(505\) 0 0
\(506\) 75.2271 0.00660919
\(507\) −50563.8 −4.42923
\(508\) 4711.27 0.411474
\(509\) 2296.14 0.199950 0.0999750 0.994990i \(-0.468124\pi\)
0.0999750 + 0.994990i \(0.468124\pi\)
\(510\) 0 0
\(511\) 16379.4 1.41797
\(512\) −512.000 −0.0441942
\(513\) 1500.42 0.129133
\(514\) 7095.18 0.608862
\(515\) 0 0
\(516\) 16715.9 1.42612
\(517\) 644.288 0.0548081
\(518\) 13809.8 1.17137
\(519\) −28446.3 −2.40589
\(520\) 0 0
\(521\) 12945.5 1.08859 0.544293 0.838895i \(-0.316798\pi\)
0.544293 + 0.838895i \(0.316798\pi\)
\(522\) −12569.7 −1.05395
\(523\) 16093.6 1.34555 0.672775 0.739847i \(-0.265102\pi\)
0.672775 + 0.739847i \(0.265102\pi\)
\(524\) 9542.25 0.795525
\(525\) 0 0
\(526\) −4556.69 −0.377721
\(527\) −1144.37 −0.0945915
\(528\) −233.607 −0.0192546
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −40408.1 −3.30238
\(532\) 615.884 0.0501916
\(533\) 6591.01 0.535625
\(534\) −14725.7 −1.19334
\(535\) 0 0
\(536\) 1975.23 0.159174
\(537\) −14851.4 −1.19346
\(538\) −7830.73 −0.627522
\(539\) 346.232 0.0276684
\(540\) 0 0
\(541\) −15424.7 −1.22580 −0.612900 0.790161i \(-0.709997\pi\)
−0.612900 + 0.790161i \(0.709997\pi\)
\(542\) −12505.4 −0.991058
\(543\) 33456.0 2.64408
\(544\) −234.059 −0.0184471
\(545\) 0 0
\(546\) −37285.6 −2.92249
\(547\) −5307.37 −0.414857 −0.207428 0.978250i \(-0.566509\pi\)
−0.207428 + 0.978250i \(0.566509\pi\)
\(548\) −4492.87 −0.350230
\(549\) 9401.20 0.730844
\(550\) 0 0
\(551\) −779.519 −0.0602698
\(552\) −1642.73 −0.126666
\(553\) −15561.5 −1.19664
\(554\) −9401.06 −0.720961
\(555\) 0 0
\(556\) −7207.00 −0.549721
\(557\) 13530.9 1.02930 0.514651 0.857400i \(-0.327921\pi\)
0.514651 + 0.857400i \(0.327921\pi\)
\(558\) 16492.8 1.25125
\(559\) −41500.0 −3.14001
\(560\) 0 0
\(561\) −106.793 −0.00803706
\(562\) −11016.1 −0.826847
\(563\) 18109.0 1.35560 0.677799 0.735248i \(-0.262934\pi\)
0.677799 + 0.735248i \(0.262934\pi\)
\(564\) −14069.3 −1.05040
\(565\) 0 0
\(566\) 13278.4 0.986100
\(567\) −14743.3 −1.09199
\(568\) 5205.43 0.384533
\(569\) −908.991 −0.0669717 −0.0334858 0.999439i \(-0.510661\pi\)
−0.0334858 + 0.999439i \(0.510661\pi\)
\(570\) 0 0
\(571\) −8894.71 −0.651895 −0.325948 0.945388i \(-0.605683\pi\)
−0.325948 + 0.945388i \(0.605683\pi\)
\(572\) 579.967 0.0423945
\(573\) −20203.6 −1.47298
\(574\) 3501.79 0.254637
\(575\) 0 0
\(576\) 3373.28 0.244016
\(577\) 12947.3 0.934148 0.467074 0.884218i \(-0.345308\pi\)
0.467074 + 0.884218i \(0.345308\pi\)
\(578\) 9719.00 0.699407
\(579\) −17867.0 −1.28243
\(580\) 0 0
\(581\) −31286.8 −2.23407
\(582\) −6853.65 −0.488132
\(583\) −381.321 −0.0270887
\(584\) 5563.55 0.394215
\(585\) 0 0
\(586\) −4241.71 −0.299016
\(587\) 19404.1 1.36438 0.682190 0.731175i \(-0.261028\pi\)
0.682190 + 0.731175i \(0.261028\pi\)
\(588\) −7560.69 −0.530268
\(589\) 1022.81 0.0715522
\(590\) 0 0
\(591\) −42890.4 −2.98524
\(592\) 4690.77 0.325658
\(593\) 13633.9 0.944141 0.472070 0.881561i \(-0.343507\pi\)
0.472070 + 0.881561i \(0.343507\pi\)
\(594\) 750.682 0.0518533
\(595\) 0 0
\(596\) 2652.55 0.182303
\(597\) −34685.2 −2.37784
\(598\) 4078.35 0.278890
\(599\) 11276.5 0.769191 0.384595 0.923085i \(-0.374341\pi\)
0.384595 + 0.923085i \(0.374341\pi\)
\(600\) 0 0
\(601\) −380.766 −0.0258432 −0.0129216 0.999917i \(-0.504113\pi\)
−0.0129216 + 0.999917i \(0.504113\pi\)
\(602\) −22048.9 −1.49277
\(603\) −13013.7 −0.878870
\(604\) 6470.63 0.435904
\(605\) 0 0
\(606\) −12045.2 −0.807428
\(607\) 21669.2 1.44897 0.724485 0.689290i \(-0.242077\pi\)
0.724485 + 0.689290i \(0.242077\pi\)
\(608\) 209.196 0.0139540
\(609\) 25073.1 1.66833
\(610\) 0 0
\(611\) 34929.4 2.31275
\(612\) 1542.08 0.101855
\(613\) 936.980 0.0617362 0.0308681 0.999523i \(-0.490173\pi\)
0.0308681 + 0.999523i \(0.490173\pi\)
\(614\) 14845.7 0.975774
\(615\) 0 0
\(616\) 308.135 0.0201544
\(617\) 17539.2 1.14441 0.572205 0.820111i \(-0.306088\pi\)
0.572205 + 0.820111i \(0.306088\pi\)
\(618\) −3022.93 −0.196764
\(619\) −4740.20 −0.307794 −0.153897 0.988087i \(-0.549182\pi\)
−0.153897 + 0.988087i \(0.549182\pi\)
\(620\) 0 0
\(621\) 5278.83 0.341114
\(622\) 5127.94 0.330565
\(623\) 19423.7 1.24911
\(624\) −12664.7 −0.812493
\(625\) 0 0
\(626\) 18807.1 1.20077
\(627\) 95.4486 0.00607950
\(628\) −3500.32 −0.222417
\(629\) 2144.37 0.135933
\(630\) 0 0
\(631\) −18505.6 −1.16751 −0.583754 0.811930i \(-0.698417\pi\)
−0.583754 + 0.811930i \(0.698417\pi\)
\(632\) −5285.73 −0.332682
\(633\) −40786.1 −2.56098
\(634\) 814.221 0.0510045
\(635\) 0 0
\(636\) 8326.91 0.519156
\(637\) 18770.6 1.16753
\(638\) −390.004 −0.0242013
\(639\) −34295.6 −2.12318
\(640\) 0 0
\(641\) 10163.6 0.626266 0.313133 0.949709i \(-0.398621\pi\)
0.313133 + 0.949709i \(0.398621\pi\)
\(642\) 27378.4 1.68308
\(643\) −7132.33 −0.437436 −0.218718 0.975788i \(-0.570188\pi\)
−0.218718 + 0.975788i \(0.570188\pi\)
\(644\) 2166.82 0.132585
\(645\) 0 0
\(646\) 95.6334 0.00582453
\(647\) −14536.9 −0.883315 −0.441657 0.897184i \(-0.645609\pi\)
−0.441657 + 0.897184i \(0.645609\pi\)
\(648\) −5007.83 −0.303590
\(649\) −1253.75 −0.0758307
\(650\) 0 0
\(651\) −32898.5 −1.98064
\(652\) −10129.6 −0.608443
\(653\) −3318.33 −0.198861 −0.0994305 0.995045i \(-0.531702\pi\)
−0.0994305 + 0.995045i \(0.531702\pi\)
\(654\) 22136.7 1.32357
\(655\) 0 0
\(656\) 1189.45 0.0707928
\(657\) −36655.1 −2.17664
\(658\) 18557.9 1.09949
\(659\) 3088.17 0.182546 0.0912730 0.995826i \(-0.470906\pi\)
0.0912730 + 0.995826i \(0.470906\pi\)
\(660\) 0 0
\(661\) 27602.0 1.62420 0.812098 0.583521i \(-0.198325\pi\)
0.812098 + 0.583521i \(0.198325\pi\)
\(662\) 14244.7 0.836306
\(663\) −5789.65 −0.339142
\(664\) −10627.1 −0.621103
\(665\) 0 0
\(666\) −30904.8 −1.79810
\(667\) −2742.53 −0.159207
\(668\) 4526.61 0.262186
\(669\) 27507.5 1.58969
\(670\) 0 0
\(671\) 291.694 0.0167820
\(672\) −6728.75 −0.386261
\(673\) −8091.33 −0.463444 −0.231722 0.972782i \(-0.574436\pi\)
−0.231722 + 0.972782i \(0.574436\pi\)
\(674\) −16535.6 −0.944994
\(675\) 0 0
\(676\) 22654.3 1.28893
\(677\) 9515.37 0.540185 0.270093 0.962834i \(-0.412946\pi\)
0.270093 + 0.962834i \(0.412946\pi\)
\(678\) −41059.3 −2.32577
\(679\) 9040.18 0.510943
\(680\) 0 0
\(681\) 6061.79 0.341099
\(682\) 511.727 0.0287317
\(683\) 630.346 0.0353141 0.0176570 0.999844i \(-0.494379\pi\)
0.0176570 + 0.999844i \(0.494379\pi\)
\(684\) −1378.28 −0.0770463
\(685\) 0 0
\(686\) −6184.15 −0.344187
\(687\) −57132.1 −3.17282
\(688\) −7489.30 −0.415010
\(689\) −20672.9 −1.14307
\(690\) 0 0
\(691\) −6515.92 −0.358723 −0.179361 0.983783i \(-0.557403\pi\)
−0.179361 + 0.983783i \(0.557403\pi\)
\(692\) 12744.9 0.700128
\(693\) −2030.13 −0.111282
\(694\) 2097.67 0.114735
\(695\) 0 0
\(696\) 8516.53 0.463819
\(697\) 543.751 0.0295496
\(698\) 18271.7 0.990825
\(699\) 54311.1 2.93882
\(700\) 0 0
\(701\) −32850.2 −1.76995 −0.884975 0.465638i \(-0.845825\pi\)
−0.884975 + 0.465638i \(0.845825\pi\)
\(702\) 40697.4 2.18807
\(703\) −1916.58 −0.102824
\(704\) 104.664 0.00560321
\(705\) 0 0
\(706\) 10506.1 0.560061
\(707\) 15888.0 0.845160
\(708\) 27378.3 1.45330
\(709\) −21841.2 −1.15693 −0.578466 0.815707i \(-0.696348\pi\)
−0.578466 + 0.815707i \(0.696348\pi\)
\(710\) 0 0
\(711\) 34824.7 1.83689
\(712\) 6597.61 0.347270
\(713\) 3598.49 0.189010
\(714\) −3076.03 −0.161229
\(715\) 0 0
\(716\) 6653.93 0.347303
\(717\) −3913.22 −0.203824
\(718\) 22539.4 1.17153
\(719\) 25807.3 1.33859 0.669296 0.742996i \(-0.266596\pi\)
0.669296 + 0.742996i \(0.266596\pi\)
\(720\) 0 0
\(721\) 3987.34 0.205959
\(722\) 13632.5 0.702701
\(723\) −25483.9 −1.31087
\(724\) −14989.4 −0.769443
\(725\) 0 0
\(726\) −23718.3 −1.21249
\(727\) −14264.0 −0.727679 −0.363839 0.931462i \(-0.618534\pi\)
−0.363839 + 0.931462i \(0.618534\pi\)
\(728\) 16705.2 0.850462
\(729\) −22331.4 −1.13455
\(730\) 0 0
\(731\) −3423.71 −0.173229
\(732\) −6369.72 −0.321628
\(733\) −811.706 −0.0409018 −0.0204509 0.999791i \(-0.506510\pi\)
−0.0204509 + 0.999791i \(0.506510\pi\)
\(734\) −11350.9 −0.570804
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) −403.780 −0.0201810
\(738\) −7836.59 −0.390879
\(739\) −30696.9 −1.52802 −0.764008 0.645207i \(-0.776771\pi\)
−0.764008 + 0.645207i \(0.776771\pi\)
\(740\) 0 0
\(741\) 5174.64 0.256539
\(742\) −10983.5 −0.543417
\(743\) 26935.6 1.32998 0.664988 0.746854i \(-0.268437\pi\)
0.664988 + 0.746854i \(0.268437\pi\)
\(744\) −11174.6 −0.550646
\(745\) 0 0
\(746\) 7324.40 0.359471
\(747\) 70016.2 3.42939
\(748\) 47.8467 0.00233883
\(749\) −36113.0 −1.76174
\(750\) 0 0
\(751\) 22371.2 1.08700 0.543501 0.839409i \(-0.317098\pi\)
0.543501 + 0.839409i \(0.317098\pi\)
\(752\) 6303.53 0.305673
\(753\) 20471.0 0.990712
\(754\) −21143.7 −1.02123
\(755\) 0 0
\(756\) 21622.4 1.04021
\(757\) −697.182 −0.0334736 −0.0167368 0.999860i \(-0.505328\pi\)
−0.0167368 + 0.999860i \(0.505328\pi\)
\(758\) −11041.8 −0.529097
\(759\) 335.810 0.0160595
\(760\) 0 0
\(761\) 39756.9 1.89380 0.946902 0.321522i \(-0.104194\pi\)
0.946902 + 0.321522i \(0.104194\pi\)
\(762\) 21030.9 0.999827
\(763\) −29199.0 −1.38542
\(764\) 9051.87 0.428645
\(765\) 0 0
\(766\) −4618.27 −0.217839
\(767\) −67970.9 −3.19985
\(768\) −2285.54 −0.107386
\(769\) −12574.8 −0.589673 −0.294836 0.955548i \(-0.595265\pi\)
−0.294836 + 0.955548i \(0.595265\pi\)
\(770\) 0 0
\(771\) 31672.5 1.47945
\(772\) 8005.00 0.373195
\(773\) −2478.65 −0.115331 −0.0576654 0.998336i \(-0.518366\pi\)
−0.0576654 + 0.998336i \(0.518366\pi\)
\(774\) 49342.8 2.29146
\(775\) 0 0
\(776\) 3070.66 0.142049
\(777\) 61646.5 2.84628
\(778\) 16389.0 0.755238
\(779\) −485.991 −0.0223523
\(780\) 0 0
\(781\) −1064.10 −0.0487535
\(782\) 336.460 0.0153859
\(783\) −27367.3 −1.24908
\(784\) 3387.44 0.154311
\(785\) 0 0
\(786\) 42596.1 1.93302
\(787\) 7716.40 0.349504 0.174752 0.984612i \(-0.444088\pi\)
0.174752 + 0.984612i \(0.444088\pi\)
\(788\) 19216.3 0.868722
\(789\) −20340.9 −0.917812
\(790\) 0 0
\(791\) 54158.5 2.43446
\(792\) −689.570 −0.0309379
\(793\) 15813.9 0.708154
\(794\) 14547.8 0.650230
\(795\) 0 0
\(796\) 15540.1 0.691967
\(797\) 26798.1 1.19101 0.595507 0.803350i \(-0.296951\pi\)
0.595507 + 0.803350i \(0.296951\pi\)
\(798\) 2749.28 0.121959
\(799\) 2881.64 0.127591
\(800\) 0 0
\(801\) −43468.0 −1.91743
\(802\) 3671.61 0.161657
\(803\) −1137.31 −0.0499810
\(804\) 8817.35 0.386771
\(805\) 0 0
\(806\) 27742.7 1.21240
\(807\) −34956.0 −1.52479
\(808\) 5396.63 0.234967
\(809\) 45278.0 1.96772 0.983862 0.178927i \(-0.0572625\pi\)
0.983862 + 0.178927i \(0.0572625\pi\)
\(810\) 0 0
\(811\) −24889.6 −1.07767 −0.538836 0.842411i \(-0.681136\pi\)
−0.538836 + 0.842411i \(0.681136\pi\)
\(812\) −11233.6 −0.485494
\(813\) −55823.6 −2.40814
\(814\) −958.893 −0.0412889
\(815\) 0 0
\(816\) −1044.83 −0.0448239
\(817\) 3060.03 0.131036
\(818\) 5731.60 0.244989
\(819\) −110061. −4.69579
\(820\) 0 0
\(821\) 19274.0 0.819326 0.409663 0.912237i \(-0.365646\pi\)
0.409663 + 0.912237i \(0.365646\pi\)
\(822\) −20056.0 −0.851013
\(823\) 21620.8 0.915740 0.457870 0.889019i \(-0.348613\pi\)
0.457870 + 0.889019i \(0.348613\pi\)
\(824\) 1354.37 0.0572596
\(825\) 0 0
\(826\) −36112.8 −1.52122
\(827\) 9012.81 0.378967 0.189484 0.981884i \(-0.439319\pi\)
0.189484 + 0.981884i \(0.439319\pi\)
\(828\) −4849.09 −0.203524
\(829\) 26574.7 1.11336 0.556682 0.830726i \(-0.312074\pi\)
0.556682 + 0.830726i \(0.312074\pi\)
\(830\) 0 0
\(831\) −41965.9 −1.75184
\(832\) 5674.23 0.236441
\(833\) 1548.56 0.0644110
\(834\) −32171.7 −1.33575
\(835\) 0 0
\(836\) −42.7642 −0.00176917
\(837\) 35908.9 1.48291
\(838\) −22088.0 −0.910521
\(839\) −1261.30 −0.0519009 −0.0259504 0.999663i \(-0.508261\pi\)
−0.0259504 + 0.999663i \(0.508261\pi\)
\(840\) 0 0
\(841\) −10170.7 −0.417022
\(842\) −12686.5 −0.519245
\(843\) −49175.6 −2.00913
\(844\) 18273.5 0.745262
\(845\) 0 0
\(846\) −41530.4 −1.68776
\(847\) 31285.2 1.26915
\(848\) −3730.73 −0.151078
\(849\) 59274.1 2.39609
\(850\) 0 0
\(851\) −6742.98 −0.271617
\(852\) 23236.8 0.934365
\(853\) −32765.1 −1.31519 −0.657594 0.753373i \(-0.728426\pi\)
−0.657594 + 0.753373i \(0.728426\pi\)
\(854\) 8401.86 0.336658
\(855\) 0 0
\(856\) −12266.5 −0.489788
\(857\) −722.029 −0.0287795 −0.0143898 0.999896i \(-0.504581\pi\)
−0.0143898 + 0.999896i \(0.504581\pi\)
\(858\) 2588.94 0.103013
\(859\) −36626.9 −1.45482 −0.727411 0.686202i \(-0.759277\pi\)
−0.727411 + 0.686202i \(0.759277\pi\)
\(860\) 0 0
\(861\) 15631.8 0.618735
\(862\) 8234.03 0.325351
\(863\) 33207.9 1.30986 0.654931 0.755688i \(-0.272698\pi\)
0.654931 + 0.755688i \(0.272698\pi\)
\(864\) 7344.45 0.289194
\(865\) 0 0
\(866\) −1517.58 −0.0595491
\(867\) 43385.2 1.69947
\(868\) 14739.6 0.576378
\(869\) 1080.52 0.0421795
\(870\) 0 0
\(871\) −21890.5 −0.851585
\(872\) −9917.97 −0.385166
\(873\) −20230.9 −0.784320
\(874\) −300.719 −0.0116384
\(875\) 0 0
\(876\) 24835.4 0.957890
\(877\) 39507.6 1.52118 0.760592 0.649230i \(-0.224909\pi\)
0.760592 + 0.649230i \(0.224909\pi\)
\(878\) −8300.21 −0.319041
\(879\) −18934.8 −0.726569
\(880\) 0 0
\(881\) 47928.6 1.83287 0.916434 0.400187i \(-0.131055\pi\)
0.916434 + 0.400187i \(0.131055\pi\)
\(882\) −22317.9 −0.852023
\(883\) −48176.2 −1.83608 −0.918040 0.396488i \(-0.870229\pi\)
−0.918040 + 0.396488i \(0.870229\pi\)
\(884\) 2593.96 0.0986925
\(885\) 0 0
\(886\) −9194.48 −0.348640
\(887\) −31421.7 −1.18944 −0.594722 0.803932i \(-0.702738\pi\)
−0.594722 + 0.803932i \(0.702738\pi\)
\(888\) 20939.4 0.791305
\(889\) −27740.4 −1.04655
\(890\) 0 0
\(891\) 1023.71 0.0384910
\(892\) −12324.3 −0.462609
\(893\) −2575.54 −0.0965141
\(894\) 11840.9 0.442973
\(895\) 0 0
\(896\) 3014.71 0.112404
\(897\) 18205.6 0.677666
\(898\) −12805.2 −0.475851
\(899\) −18655.9 −0.692111
\(900\) 0 0
\(901\) −1705.49 −0.0630613
\(902\) −243.148 −0.00897555
\(903\) −98425.1 −3.62722
\(904\) 18395.9 0.676814
\(905\) 0 0
\(906\) 28884.6 1.05919
\(907\) −27694.1 −1.01385 −0.506927 0.861989i \(-0.669219\pi\)
−0.506927 + 0.861989i \(0.669219\pi\)
\(908\) −2715.88 −0.0992618
\(909\) −35555.4 −1.29736
\(910\) 0 0
\(911\) −27325.1 −0.993764 −0.496882 0.867818i \(-0.665522\pi\)
−0.496882 + 0.867818i \(0.665522\pi\)
\(912\) 933.842 0.0339063
\(913\) 2172.41 0.0787473
\(914\) 1103.00 0.0399168
\(915\) 0 0
\(916\) 25597.1 0.923310
\(917\) −56185.7 −2.02335
\(918\) 3357.49 0.120712
\(919\) 28135.6 1.00991 0.504956 0.863145i \(-0.331509\pi\)
0.504956 + 0.863145i \(0.331509\pi\)
\(920\) 0 0
\(921\) 66270.7 2.37100
\(922\) 7803.91 0.278751
\(923\) −57689.1 −2.05727
\(924\) 1375.50 0.0489726
\(925\) 0 0
\(926\) 9656.29 0.342684
\(927\) −8923.21 −0.316156
\(928\) −3815.69 −0.134974
\(929\) 32497.6 1.14770 0.573850 0.818961i \(-0.305449\pi\)
0.573850 + 0.818961i \(0.305449\pi\)
\(930\) 0 0
\(931\) −1384.06 −0.0487226
\(932\) −24333.2 −0.855215
\(933\) 22890.9 0.803230
\(934\) −28272.6 −0.990479
\(935\) 0 0
\(936\) −37384.3 −1.30550
\(937\) 12209.3 0.425678 0.212839 0.977087i \(-0.431729\pi\)
0.212839 + 0.977087i \(0.431729\pi\)
\(938\) −11630.4 −0.404845
\(939\) 83953.8 2.91771
\(940\) 0 0
\(941\) −1317.78 −0.0456518 −0.0228259 0.999739i \(-0.507266\pi\)
−0.0228259 + 0.999739i \(0.507266\pi\)
\(942\) −15625.3 −0.540444
\(943\) −1709.83 −0.0590453
\(944\) −12266.4 −0.422920
\(945\) 0 0
\(946\) 1530.97 0.0526176
\(947\) 11954.8 0.410219 0.205110 0.978739i \(-0.434245\pi\)
0.205110 + 0.978739i \(0.434245\pi\)
\(948\) −23595.3 −0.808374
\(949\) −61657.9 −2.10906
\(950\) 0 0
\(951\) 3634.64 0.123934
\(952\) 1378.16 0.0469186
\(953\) 19658.8 0.668216 0.334108 0.942535i \(-0.391565\pi\)
0.334108 + 0.942535i \(0.391565\pi\)
\(954\) 24579.7 0.834169
\(955\) 0 0
\(956\) 1753.25 0.0593140
\(957\) −1740.96 −0.0588059
\(958\) −30492.2 −1.02835
\(959\) 26454.5 0.890782
\(960\) 0 0
\(961\) −5312.52 −0.178326
\(962\) −51985.3 −1.74228
\(963\) 80816.8 2.70434
\(964\) 11417.7 0.381471
\(965\) 0 0
\(966\) 9672.58 0.322164
\(967\) 7604.58 0.252892 0.126446 0.991973i \(-0.459643\pi\)
0.126446 + 0.991973i \(0.459643\pi\)
\(968\) 10626.6 0.352843
\(969\) 426.903 0.0141528
\(970\) 0 0
\(971\) −14731.2 −0.486866 −0.243433 0.969918i \(-0.578274\pi\)
−0.243433 + 0.969918i \(0.578274\pi\)
\(972\) 2432.83 0.0802809
\(973\) 42435.5 1.39817
\(974\) 7752.77 0.255046
\(975\) 0 0
\(976\) 2853.85 0.0935957
\(977\) 50584.6 1.65644 0.828222 0.560400i \(-0.189353\pi\)
0.828222 + 0.560400i \(0.189353\pi\)
\(978\) −45218.0 −1.47844
\(979\) −1348.69 −0.0440290
\(980\) 0 0
\(981\) 65343.9 2.12668
\(982\) 10054.3 0.326726
\(983\) −15625.9 −0.507007 −0.253503 0.967334i \(-0.581583\pi\)
−0.253503 + 0.967334i \(0.581583\pi\)
\(984\) 5309.63 0.172017
\(985\) 0 0
\(986\) −1744.33 −0.0563396
\(987\) 82841.6 2.67161
\(988\) −2318.41 −0.0746544
\(989\) 10765.9 0.346142
\(990\) 0 0
\(991\) 18267.8 0.585567 0.292783 0.956179i \(-0.405419\pi\)
0.292783 + 0.956179i \(0.405419\pi\)
\(992\) 5006.59 0.160241
\(993\) 63587.5 2.03211
\(994\) −30650.1 −0.978029
\(995\) 0 0
\(996\) −47439.0 −1.50920
\(997\) −21580.5 −0.685519 −0.342760 0.939423i \(-0.611362\pi\)
−0.342760 + 0.939423i \(0.611362\pi\)
\(998\) −14356.2 −0.455348
\(999\) −67287.3 −2.13101
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.a.o.1.1 4
5.2 odd 4 1150.4.b.m.599.4 8
5.3 odd 4 1150.4.b.m.599.5 8
5.4 even 2 230.4.a.i.1.4 4
15.14 odd 2 2070.4.a.bi.1.3 4
20.19 odd 2 1840.4.a.l.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.i.1.4 4 5.4 even 2
1150.4.a.o.1.1 4 1.1 even 1 trivial
1150.4.b.m.599.4 8 5.2 odd 4
1150.4.b.m.599.5 8 5.3 odd 4
1840.4.a.l.1.1 4 20.19 odd 2
2070.4.a.bi.1.3 4 15.14 odd 2