Properties

Label 1150.4.a.n.1.4
Level $1150$
Weight $4$
Character 1150.1
Self dual yes
Analytic conductor $67.852$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(1,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 60x^{2} - 45x + 108 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(9.04090\) of defining polynomial
Character \(\chi\) \(=\) 1150.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +5.04090 q^{3} +4.00000 q^{4} -10.0818 q^{6} -5.03071 q^{7} -8.00000 q^{8} -1.58932 q^{9} -5.58219 q^{11} +20.1636 q^{12} -62.7277 q^{13} +10.0614 q^{14} +16.0000 q^{16} +19.7435 q^{17} +3.17864 q^{18} +158.545 q^{19} -25.3593 q^{21} +11.1644 q^{22} +23.0000 q^{23} -40.3272 q^{24} +125.455 q^{26} -144.116 q^{27} -20.1228 q^{28} -35.5033 q^{29} +282.041 q^{31} -32.0000 q^{32} -28.1393 q^{33} -39.4870 q^{34} -6.35728 q^{36} +139.981 q^{37} -317.090 q^{38} -316.204 q^{39} +227.680 q^{41} +50.7186 q^{42} -436.962 q^{43} -22.3288 q^{44} -46.0000 q^{46} -90.2701 q^{47} +80.6544 q^{48} -317.692 q^{49} +99.5250 q^{51} -250.911 q^{52} -330.183 q^{53} +288.232 q^{54} +40.2457 q^{56} +799.209 q^{57} +71.0066 q^{58} -796.203 q^{59} -568.580 q^{61} -564.081 q^{62} +7.99541 q^{63} +64.0000 q^{64} +56.2785 q^{66} -85.1419 q^{67} +78.9740 q^{68} +115.941 q^{69} -369.578 q^{71} +12.7146 q^{72} +310.188 q^{73} -279.963 q^{74} +634.180 q^{76} +28.0824 q^{77} +632.408 q^{78} -1325.46 q^{79} -683.562 q^{81} -455.360 q^{82} +158.806 q^{83} -101.437 q^{84} +873.924 q^{86} -178.969 q^{87} +44.6575 q^{88} -1233.89 q^{89} +315.565 q^{91} +92.0000 q^{92} +1421.74 q^{93} +180.540 q^{94} -161.309 q^{96} +106.389 q^{97} +635.384 q^{98} +8.87189 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} - 14 q^{3} + 16 q^{4} + 28 q^{6} - 8 q^{7} - 32 q^{8} + 64 q^{9} + 21 q^{11} - 56 q^{12} - 70 q^{13} + 16 q^{14} + 64 q^{16} - 56 q^{17} - 128 q^{18} + 173 q^{19} - 120 q^{21} - 42 q^{22}+ \cdots - 2745 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 5.04090 0.970122 0.485061 0.874480i \(-0.338797\pi\)
0.485061 + 0.874480i \(0.338797\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) −10.0818 −0.685980
\(7\) −5.03071 −0.271633 −0.135816 0.990734i \(-0.543366\pi\)
−0.135816 + 0.990734i \(0.543366\pi\)
\(8\) −8.00000 −0.353553
\(9\) −1.58932 −0.0588637
\(10\) 0 0
\(11\) −5.58219 −0.153008 −0.0765042 0.997069i \(-0.524376\pi\)
−0.0765042 + 0.997069i \(0.524376\pi\)
\(12\) 20.1636 0.485061
\(13\) −62.7277 −1.33827 −0.669136 0.743140i \(-0.733336\pi\)
−0.669136 + 0.743140i \(0.733336\pi\)
\(14\) 10.0614 0.192073
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 19.7435 0.281677 0.140838 0.990033i \(-0.455020\pi\)
0.140838 + 0.990033i \(0.455020\pi\)
\(18\) 3.17864 0.0416229
\(19\) 158.545 1.91435 0.957177 0.289505i \(-0.0934907\pi\)
0.957177 + 0.289505i \(0.0934907\pi\)
\(20\) 0 0
\(21\) −25.3593 −0.263517
\(22\) 11.1644 0.108193
\(23\) 23.0000 0.208514
\(24\) −40.3272 −0.342990
\(25\) 0 0
\(26\) 125.455 0.946301
\(27\) −144.116 −1.02723
\(28\) −20.1228 −0.135816
\(29\) −35.5033 −0.227338 −0.113669 0.993519i \(-0.536260\pi\)
−0.113669 + 0.993519i \(0.536260\pi\)
\(30\) 0 0
\(31\) 282.041 1.63406 0.817032 0.576592i \(-0.195618\pi\)
0.817032 + 0.576592i \(0.195618\pi\)
\(32\) −32.0000 −0.176777
\(33\) −28.1393 −0.148437
\(34\) −39.4870 −0.199175
\(35\) 0 0
\(36\) −6.35728 −0.0294319
\(37\) 139.981 0.621967 0.310984 0.950415i \(-0.399342\pi\)
0.310984 + 0.950415i \(0.399342\pi\)
\(38\) −317.090 −1.35365
\(39\) −316.204 −1.29829
\(40\) 0 0
\(41\) 227.680 0.867260 0.433630 0.901091i \(-0.357232\pi\)
0.433630 + 0.901091i \(0.357232\pi\)
\(42\) 50.7186 0.186335
\(43\) −436.962 −1.54968 −0.774838 0.632159i \(-0.782169\pi\)
−0.774838 + 0.632159i \(0.782169\pi\)
\(44\) −22.3288 −0.0765042
\(45\) 0 0
\(46\) −46.0000 −0.147442
\(47\) −90.2701 −0.280154 −0.140077 0.990141i \(-0.544735\pi\)
−0.140077 + 0.990141i \(0.544735\pi\)
\(48\) 80.6544 0.242530
\(49\) −317.692 −0.926216
\(50\) 0 0
\(51\) 99.5250 0.273261
\(52\) −250.911 −0.669136
\(53\) −330.183 −0.855737 −0.427869 0.903841i \(-0.640735\pi\)
−0.427869 + 0.903841i \(0.640735\pi\)
\(54\) 288.232 0.726359
\(55\) 0 0
\(56\) 40.2457 0.0960367
\(57\) 799.209 1.85716
\(58\) 71.0066 0.160752
\(59\) −796.203 −1.75689 −0.878447 0.477839i \(-0.841420\pi\)
−0.878447 + 0.477839i \(0.841420\pi\)
\(60\) 0 0
\(61\) −568.580 −1.19343 −0.596715 0.802453i \(-0.703528\pi\)
−0.596715 + 0.802453i \(0.703528\pi\)
\(62\) −564.081 −1.15546
\(63\) 7.99541 0.0159893
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 56.2785 0.104961
\(67\) −85.1419 −0.155250 −0.0776250 0.996983i \(-0.524734\pi\)
−0.0776250 + 0.996983i \(0.524734\pi\)
\(68\) 78.9740 0.140838
\(69\) 115.941 0.202284
\(70\) 0 0
\(71\) −369.578 −0.617758 −0.308879 0.951101i \(-0.599954\pi\)
−0.308879 + 0.951101i \(0.599954\pi\)
\(72\) 12.7146 0.0208115
\(73\) 310.188 0.497325 0.248662 0.968590i \(-0.420009\pi\)
0.248662 + 0.968590i \(0.420009\pi\)
\(74\) −279.963 −0.439797
\(75\) 0 0
\(76\) 634.180 0.957177
\(77\) 28.0824 0.0415621
\(78\) 632.408 0.918027
\(79\) −1325.46 −1.88766 −0.943832 0.330427i \(-0.892807\pi\)
−0.943832 + 0.330427i \(0.892807\pi\)
\(80\) 0 0
\(81\) −683.562 −0.937671
\(82\) −455.360 −0.613246
\(83\) 158.806 0.210014 0.105007 0.994471i \(-0.466513\pi\)
0.105007 + 0.994471i \(0.466513\pi\)
\(84\) −101.437 −0.131758
\(85\) 0 0
\(86\) 873.924 1.09579
\(87\) −178.969 −0.220545
\(88\) 44.6575 0.0540967
\(89\) −1233.89 −1.46957 −0.734787 0.678298i \(-0.762718\pi\)
−0.734787 + 0.678298i \(0.762718\pi\)
\(90\) 0 0
\(91\) 315.565 0.363519
\(92\) 92.0000 0.104257
\(93\) 1421.74 1.58524
\(94\) 180.540 0.198099
\(95\) 0 0
\(96\) −161.309 −0.171495
\(97\) 106.389 0.111363 0.0556814 0.998449i \(-0.482267\pi\)
0.0556814 + 0.998449i \(0.482267\pi\)
\(98\) 635.384 0.654933
\(99\) 8.87189 0.00900665
\(100\) 0 0
\(101\) 642.676 0.633155 0.316578 0.948567i \(-0.397466\pi\)
0.316578 + 0.948567i \(0.397466\pi\)
\(102\) −199.050 −0.193224
\(103\) −1621.99 −1.55165 −0.775823 0.630951i \(-0.782665\pi\)
−0.775823 + 0.630951i \(0.782665\pi\)
\(104\) 501.822 0.473150
\(105\) 0 0
\(106\) 660.365 0.605098
\(107\) −1490.86 −1.34698 −0.673490 0.739196i \(-0.735205\pi\)
−0.673490 + 0.739196i \(0.735205\pi\)
\(108\) −576.464 −0.513613
\(109\) 1204.00 1.05800 0.529001 0.848621i \(-0.322567\pi\)
0.529001 + 0.848621i \(0.322567\pi\)
\(110\) 0 0
\(111\) 705.632 0.603384
\(112\) −80.4914 −0.0679082
\(113\) −276.771 −0.230411 −0.115206 0.993342i \(-0.536753\pi\)
−0.115206 + 0.993342i \(0.536753\pi\)
\(114\) −1598.42 −1.31321
\(115\) 0 0
\(116\) −142.013 −0.113669
\(117\) 99.6944 0.0787757
\(118\) 1592.41 1.24231
\(119\) −99.3239 −0.0765126
\(120\) 0 0
\(121\) −1299.84 −0.976588
\(122\) 1137.16 0.843883
\(123\) 1147.71 0.841348
\(124\) 1128.16 0.817032
\(125\) 0 0
\(126\) −15.9908 −0.0113062
\(127\) −1552.79 −1.08494 −0.542471 0.840075i \(-0.682511\pi\)
−0.542471 + 0.840075i \(0.682511\pi\)
\(128\) −128.000 −0.0883883
\(129\) −2202.68 −1.50338
\(130\) 0 0
\(131\) −313.873 −0.209337 −0.104669 0.994507i \(-0.533378\pi\)
−0.104669 + 0.994507i \(0.533378\pi\)
\(132\) −112.557 −0.0742184
\(133\) −797.594 −0.520001
\(134\) 170.284 0.109778
\(135\) 0 0
\(136\) −157.948 −0.0995877
\(137\) 1066.09 0.664835 0.332417 0.943132i \(-0.392136\pi\)
0.332417 + 0.943132i \(0.392136\pi\)
\(138\) −231.881 −0.143037
\(139\) −1594.79 −0.973152 −0.486576 0.873638i \(-0.661754\pi\)
−0.486576 + 0.873638i \(0.661754\pi\)
\(140\) 0 0
\(141\) −455.043 −0.271784
\(142\) 739.155 0.436821
\(143\) 350.158 0.204767
\(144\) −25.4291 −0.0147159
\(145\) 0 0
\(146\) −620.375 −0.351662
\(147\) −1601.45 −0.898542
\(148\) 559.925 0.310984
\(149\) −1096.91 −0.603102 −0.301551 0.953450i \(-0.597504\pi\)
−0.301551 + 0.953450i \(0.597504\pi\)
\(150\) 0 0
\(151\) 2734.41 1.47366 0.736832 0.676076i \(-0.236321\pi\)
0.736832 + 0.676076i \(0.236321\pi\)
\(152\) −1268.36 −0.676826
\(153\) −31.3788 −0.0165805
\(154\) −56.1647 −0.0293889
\(155\) 0 0
\(156\) −1264.82 −0.649143
\(157\) 1439.63 0.731813 0.365907 0.930652i \(-0.380759\pi\)
0.365907 + 0.930652i \(0.380759\pi\)
\(158\) 2650.91 1.33478
\(159\) −1664.42 −0.830169
\(160\) 0 0
\(161\) −115.706 −0.0566394
\(162\) 1367.12 0.663034
\(163\) 2995.82 1.43957 0.719787 0.694195i \(-0.244240\pi\)
0.719787 + 0.694195i \(0.244240\pi\)
\(164\) 910.721 0.433630
\(165\) 0 0
\(166\) −317.611 −0.148503
\(167\) 351.532 0.162888 0.0814442 0.996678i \(-0.474047\pi\)
0.0814442 + 0.996678i \(0.474047\pi\)
\(168\) 202.874 0.0931673
\(169\) 1737.76 0.790971
\(170\) 0 0
\(171\) −251.979 −0.112686
\(172\) −1747.85 −0.774838
\(173\) 3701.77 1.62682 0.813411 0.581690i \(-0.197608\pi\)
0.813411 + 0.581690i \(0.197608\pi\)
\(174\) 357.937 0.155949
\(175\) 0 0
\(176\) −89.3150 −0.0382521
\(177\) −4013.58 −1.70440
\(178\) 2467.78 1.03915
\(179\) 3584.09 1.49658 0.748290 0.663372i \(-0.230875\pi\)
0.748290 + 0.663372i \(0.230875\pi\)
\(180\) 0 0
\(181\) 783.672 0.321822 0.160911 0.986969i \(-0.448557\pi\)
0.160911 + 0.986969i \(0.448557\pi\)
\(182\) −631.130 −0.257046
\(183\) −2866.16 −1.15777
\(184\) −184.000 −0.0737210
\(185\) 0 0
\(186\) −2843.48 −1.12093
\(187\) −110.212 −0.0430989
\(188\) −361.080 −0.140077
\(189\) 725.005 0.279029
\(190\) 0 0
\(191\) 1491.95 0.565201 0.282601 0.959238i \(-0.408803\pi\)
0.282601 + 0.959238i \(0.408803\pi\)
\(192\) 322.618 0.121265
\(193\) −3091.09 −1.15286 −0.576430 0.817147i \(-0.695554\pi\)
−0.576430 + 0.817147i \(0.695554\pi\)
\(194\) −212.778 −0.0787454
\(195\) 0 0
\(196\) −1270.77 −0.463108
\(197\) −2820.30 −1.01999 −0.509995 0.860178i \(-0.670353\pi\)
−0.509995 + 0.860178i \(0.670353\pi\)
\(198\) −17.7438 −0.00636866
\(199\) 1316.11 0.468825 0.234413 0.972137i \(-0.424683\pi\)
0.234413 + 0.972137i \(0.424683\pi\)
\(200\) 0 0
\(201\) −429.192 −0.150611
\(202\) −1285.35 −0.447708
\(203\) 178.607 0.0617524
\(204\) 398.100 0.136630
\(205\) 0 0
\(206\) 3243.98 1.09718
\(207\) −36.5544 −0.0122739
\(208\) −1003.64 −0.334568
\(209\) −885.028 −0.292912
\(210\) 0 0
\(211\) −3399.19 −1.10905 −0.554525 0.832167i \(-0.687100\pi\)
−0.554525 + 0.832167i \(0.687100\pi\)
\(212\) −1320.73 −0.427869
\(213\) −1863.00 −0.599300
\(214\) 2981.72 0.952458
\(215\) 0 0
\(216\) 1152.93 0.363180
\(217\) −1418.86 −0.443865
\(218\) −2408.00 −0.748121
\(219\) 1563.62 0.482466
\(220\) 0 0
\(221\) −1238.46 −0.376960
\(222\) −1411.26 −0.426657
\(223\) −864.660 −0.259650 −0.129825 0.991537i \(-0.541442\pi\)
−0.129825 + 0.991537i \(0.541442\pi\)
\(224\) 160.983 0.0480184
\(225\) 0 0
\(226\) 553.543 0.162925
\(227\) 1979.40 0.578754 0.289377 0.957215i \(-0.406552\pi\)
0.289377 + 0.957215i \(0.406552\pi\)
\(228\) 3196.84 0.928578
\(229\) −3113.53 −0.898462 −0.449231 0.893416i \(-0.648302\pi\)
−0.449231 + 0.893416i \(0.648302\pi\)
\(230\) 0 0
\(231\) 141.560 0.0403203
\(232\) 284.026 0.0803761
\(233\) −6018.65 −1.69225 −0.846126 0.532983i \(-0.821071\pi\)
−0.846126 + 0.532983i \(0.821071\pi\)
\(234\) −199.389 −0.0557028
\(235\) 0 0
\(236\) −3184.81 −0.878447
\(237\) −6681.49 −1.83126
\(238\) 198.648 0.0541026
\(239\) −4224.88 −1.14345 −0.571725 0.820445i \(-0.693726\pi\)
−0.571725 + 0.820445i \(0.693726\pi\)
\(240\) 0 0
\(241\) 1394.24 0.372658 0.186329 0.982487i \(-0.440341\pi\)
0.186329 + 0.982487i \(0.440341\pi\)
\(242\) 2599.68 0.690552
\(243\) 445.360 0.117571
\(244\) −2274.32 −0.596715
\(245\) 0 0
\(246\) −2295.43 −0.594923
\(247\) −9945.16 −2.56192
\(248\) −2256.32 −0.577729
\(249\) 800.523 0.203739
\(250\) 0 0
\(251\) −5968.83 −1.50099 −0.750497 0.660874i \(-0.770186\pi\)
−0.750497 + 0.660874i \(0.770186\pi\)
\(252\) 31.9816 0.00799466
\(253\) −128.390 −0.0319045
\(254\) 3105.57 0.767169
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 1636.06 0.397100 0.198550 0.980091i \(-0.436377\pi\)
0.198550 + 0.980091i \(0.436377\pi\)
\(258\) 4405.37 1.06305
\(259\) −704.206 −0.168947
\(260\) 0 0
\(261\) 56.4261 0.0133820
\(262\) 627.745 0.148024
\(263\) −2995.55 −0.702333 −0.351166 0.936313i \(-0.614215\pi\)
−0.351166 + 0.936313i \(0.614215\pi\)
\(264\) 225.114 0.0524803
\(265\) 0 0
\(266\) 1595.19 0.367696
\(267\) −6219.92 −1.42567
\(268\) −340.568 −0.0776250
\(269\) −5190.17 −1.17640 −0.588198 0.808717i \(-0.700162\pi\)
−0.588198 + 0.808717i \(0.700162\pi\)
\(270\) 0 0
\(271\) 6720.43 1.50641 0.753205 0.657786i \(-0.228507\pi\)
0.753205 + 0.657786i \(0.228507\pi\)
\(272\) 315.896 0.0704192
\(273\) 1590.73 0.352657
\(274\) −2132.18 −0.470109
\(275\) 0 0
\(276\) 463.763 0.101142
\(277\) 6114.74 1.32635 0.663176 0.748464i \(-0.269208\pi\)
0.663176 + 0.748464i \(0.269208\pi\)
\(278\) 3189.58 0.688123
\(279\) −448.253 −0.0961871
\(280\) 0 0
\(281\) −3549.07 −0.753450 −0.376725 0.926325i \(-0.622950\pi\)
−0.376725 + 0.926325i \(0.622950\pi\)
\(282\) 910.085 0.192180
\(283\) −3103.11 −0.651806 −0.325903 0.945403i \(-0.605668\pi\)
−0.325903 + 0.945403i \(0.605668\pi\)
\(284\) −1478.31 −0.308879
\(285\) 0 0
\(286\) −700.316 −0.144792
\(287\) −1145.39 −0.235576
\(288\) 50.8583 0.0104057
\(289\) −4523.19 −0.920658
\(290\) 0 0
\(291\) 536.297 0.108035
\(292\) 1240.75 0.248662
\(293\) −1218.51 −0.242957 −0.121478 0.992594i \(-0.538763\pi\)
−0.121478 + 0.992594i \(0.538763\pi\)
\(294\) 3202.91 0.635365
\(295\) 0 0
\(296\) −1119.85 −0.219899
\(297\) 804.482 0.157174
\(298\) 2193.82 0.426458
\(299\) −1442.74 −0.279049
\(300\) 0 0
\(301\) 2198.23 0.420943
\(302\) −5468.82 −1.04204
\(303\) 3239.67 0.614238
\(304\) 2536.72 0.478588
\(305\) 0 0
\(306\) 62.7575 0.0117242
\(307\) −2564.45 −0.476745 −0.238373 0.971174i \(-0.576614\pi\)
−0.238373 + 0.971174i \(0.576614\pi\)
\(308\) 112.329 0.0207811
\(309\) −8176.30 −1.50529
\(310\) 0 0
\(311\) −92.6253 −0.0168884 −0.00844421 0.999964i \(-0.502688\pi\)
−0.00844421 + 0.999964i \(0.502688\pi\)
\(312\) 2529.63 0.459014
\(313\) 4276.44 0.772263 0.386132 0.922444i \(-0.373811\pi\)
0.386132 + 0.922444i \(0.373811\pi\)
\(314\) −2879.25 −0.517470
\(315\) 0 0
\(316\) −5301.82 −0.943832
\(317\) 2964.24 0.525199 0.262600 0.964905i \(-0.415420\pi\)
0.262600 + 0.964905i \(0.415420\pi\)
\(318\) 3328.84 0.587018
\(319\) 198.186 0.0347846
\(320\) 0 0
\(321\) −7515.27 −1.30673
\(322\) 231.413 0.0400501
\(323\) 3130.23 0.539229
\(324\) −2734.25 −0.468836
\(325\) 0 0
\(326\) −5991.63 −1.01793
\(327\) 6069.24 1.02639
\(328\) −1821.44 −0.306623
\(329\) 454.123 0.0760991
\(330\) 0 0
\(331\) −1348.81 −0.223979 −0.111989 0.993709i \(-0.535722\pi\)
−0.111989 + 0.993709i \(0.535722\pi\)
\(332\) 635.223 0.105007
\(333\) −222.475 −0.0366113
\(334\) −703.064 −0.115180
\(335\) 0 0
\(336\) −405.749 −0.0658792
\(337\) 5764.30 0.931755 0.465878 0.884849i \(-0.345739\pi\)
0.465878 + 0.884849i \(0.345739\pi\)
\(338\) −3475.53 −0.559301
\(339\) −1395.18 −0.223527
\(340\) 0 0
\(341\) −1574.40 −0.250026
\(342\) 503.958 0.0796810
\(343\) 3323.75 0.523223
\(344\) 3495.70 0.547894
\(345\) 0 0
\(346\) −7403.53 −1.15034
\(347\) −4066.16 −0.629057 −0.314528 0.949248i \(-0.601846\pi\)
−0.314528 + 0.949248i \(0.601846\pi\)
\(348\) −715.875 −0.110273
\(349\) 8407.82 1.28957 0.644786 0.764363i \(-0.276947\pi\)
0.644786 + 0.764363i \(0.276947\pi\)
\(350\) 0 0
\(351\) 9040.06 1.37471
\(352\) 178.630 0.0270483
\(353\) −256.068 −0.0386095 −0.0193047 0.999814i \(-0.506145\pi\)
−0.0193047 + 0.999814i \(0.506145\pi\)
\(354\) 8027.16 1.20519
\(355\) 0 0
\(356\) −4935.56 −0.734787
\(357\) −500.682 −0.0742266
\(358\) −7168.19 −1.05824
\(359\) −12052.5 −1.77189 −0.885943 0.463794i \(-0.846488\pi\)
−0.885943 + 0.463794i \(0.846488\pi\)
\(360\) 0 0
\(361\) 18277.5 2.66475
\(362\) −1567.34 −0.227563
\(363\) −6552.36 −0.947410
\(364\) 1262.26 0.181759
\(365\) 0 0
\(366\) 5732.31 0.818669
\(367\) 9245.40 1.31500 0.657502 0.753453i \(-0.271613\pi\)
0.657502 + 0.753453i \(0.271613\pi\)
\(368\) 368.000 0.0521286
\(369\) −361.857 −0.0510502
\(370\) 0 0
\(371\) 1661.05 0.232446
\(372\) 5686.96 0.792621
\(373\) 869.265 0.120667 0.0603335 0.998178i \(-0.480784\pi\)
0.0603335 + 0.998178i \(0.480784\pi\)
\(374\) 220.424 0.0304755
\(375\) 0 0
\(376\) 722.161 0.0990495
\(377\) 2227.04 0.304240
\(378\) −1450.01 −0.197303
\(379\) 1278.76 0.173313 0.0866566 0.996238i \(-0.472382\pi\)
0.0866566 + 0.996238i \(0.472382\pi\)
\(380\) 0 0
\(381\) −7827.44 −1.05252
\(382\) −2983.89 −0.399658
\(383\) 5343.75 0.712932 0.356466 0.934308i \(-0.383982\pi\)
0.356466 + 0.934308i \(0.383982\pi\)
\(384\) −645.235 −0.0857475
\(385\) 0 0
\(386\) 6182.19 0.815194
\(387\) 694.473 0.0912198
\(388\) 425.557 0.0556814
\(389\) −708.346 −0.0923254 −0.0461627 0.998934i \(-0.514699\pi\)
−0.0461627 + 0.998934i \(0.514699\pi\)
\(390\) 0 0
\(391\) 454.101 0.0587336
\(392\) 2541.54 0.327467
\(393\) −1582.20 −0.203083
\(394\) 5640.60 0.721241
\(395\) 0 0
\(396\) 35.4875 0.00450332
\(397\) 5924.01 0.748911 0.374455 0.927245i \(-0.377830\pi\)
0.374455 + 0.927245i \(0.377830\pi\)
\(398\) −2632.21 −0.331510
\(399\) −4020.59 −0.504464
\(400\) 0 0
\(401\) −11393.6 −1.41888 −0.709441 0.704765i \(-0.751052\pi\)
−0.709441 + 0.704765i \(0.751052\pi\)
\(402\) 858.384 0.106498
\(403\) −17691.8 −2.18682
\(404\) 2570.71 0.316578
\(405\) 0 0
\(406\) −357.214 −0.0436656
\(407\) −781.402 −0.0951663
\(408\) −796.200 −0.0966122
\(409\) 13804.4 1.66891 0.834457 0.551073i \(-0.185782\pi\)
0.834457 + 0.551073i \(0.185782\pi\)
\(410\) 0 0
\(411\) 5374.06 0.644971
\(412\) −6487.96 −0.775823
\(413\) 4005.47 0.477230
\(414\) 73.1087 0.00867898
\(415\) 0 0
\(416\) 2007.29 0.236575
\(417\) −8039.17 −0.944076
\(418\) 1770.06 0.207120
\(419\) −14795.8 −1.72512 −0.862558 0.505958i \(-0.831139\pi\)
−0.862558 + 0.505958i \(0.831139\pi\)
\(420\) 0 0
\(421\) 5804.66 0.671976 0.335988 0.941866i \(-0.390930\pi\)
0.335988 + 0.941866i \(0.390930\pi\)
\(422\) 6798.37 0.784217
\(423\) 143.468 0.0164909
\(424\) 2641.46 0.302549
\(425\) 0 0
\(426\) 3726.01 0.423769
\(427\) 2860.36 0.324175
\(428\) −5963.44 −0.673490
\(429\) 1765.11 0.198649
\(430\) 0 0
\(431\) 15268.2 1.70636 0.853181 0.521615i \(-0.174670\pi\)
0.853181 + 0.521615i \(0.174670\pi\)
\(432\) −2305.85 −0.256807
\(433\) −2250.62 −0.249788 −0.124894 0.992170i \(-0.539859\pi\)
−0.124894 + 0.992170i \(0.539859\pi\)
\(434\) 2837.73 0.313860
\(435\) 0 0
\(436\) 4816.00 0.529001
\(437\) 3646.53 0.399170
\(438\) −3127.25 −0.341155
\(439\) 10366.2 1.12700 0.563499 0.826117i \(-0.309455\pi\)
0.563499 + 0.826117i \(0.309455\pi\)
\(440\) 0 0
\(441\) 504.914 0.0545205
\(442\) 2476.93 0.266551
\(443\) 3881.11 0.416246 0.208123 0.978103i \(-0.433264\pi\)
0.208123 + 0.978103i \(0.433264\pi\)
\(444\) 2822.53 0.301692
\(445\) 0 0
\(446\) 1729.32 0.183600
\(447\) −5529.41 −0.585083
\(448\) −321.965 −0.0339541
\(449\) −10146.5 −1.06647 −0.533233 0.845968i \(-0.679023\pi\)
−0.533233 + 0.845968i \(0.679023\pi\)
\(450\) 0 0
\(451\) −1270.95 −0.132698
\(452\) −1107.09 −0.115206
\(453\) 13783.9 1.42963
\(454\) −3958.79 −0.409241
\(455\) 0 0
\(456\) −6393.68 −0.656604
\(457\) 4728.87 0.484042 0.242021 0.970271i \(-0.422190\pi\)
0.242021 + 0.970271i \(0.422190\pi\)
\(458\) 6227.06 0.635308
\(459\) −2845.35 −0.289346
\(460\) 0 0
\(461\) 8380.69 0.846698 0.423349 0.905967i \(-0.360854\pi\)
0.423349 + 0.905967i \(0.360854\pi\)
\(462\) −283.121 −0.0285108
\(463\) −6845.17 −0.687089 −0.343545 0.939136i \(-0.611628\pi\)
−0.343545 + 0.939136i \(0.611628\pi\)
\(464\) −568.053 −0.0568345
\(465\) 0 0
\(466\) 12037.3 1.19660
\(467\) 14884.0 1.47484 0.737418 0.675436i \(-0.236045\pi\)
0.737418 + 0.675436i \(0.236045\pi\)
\(468\) 398.778 0.0393878
\(469\) 428.324 0.0421710
\(470\) 0 0
\(471\) 7257.01 0.709948
\(472\) 6369.62 0.621156
\(473\) 2439.20 0.237114
\(474\) 13363.0 1.29490
\(475\) 0 0
\(476\) −397.295 −0.0382563
\(477\) 524.766 0.0503719
\(478\) 8449.76 0.808542
\(479\) 6048.69 0.576976 0.288488 0.957483i \(-0.406847\pi\)
0.288488 + 0.957483i \(0.406847\pi\)
\(480\) 0 0
\(481\) −8780.71 −0.832361
\(482\) −2788.47 −0.263509
\(483\) −583.264 −0.0549471
\(484\) −5199.36 −0.488294
\(485\) 0 0
\(486\) −890.720 −0.0831355
\(487\) −3199.35 −0.297693 −0.148846 0.988860i \(-0.547556\pi\)
−0.148846 + 0.988860i \(0.547556\pi\)
\(488\) 4548.64 0.421941
\(489\) 15101.6 1.39656
\(490\) 0 0
\(491\) −1614.41 −0.148385 −0.0741926 0.997244i \(-0.523638\pi\)
−0.0741926 + 0.997244i \(0.523638\pi\)
\(492\) 4590.85 0.420674
\(493\) −700.960 −0.0640358
\(494\) 19890.3 1.81155
\(495\) 0 0
\(496\) 4512.65 0.408516
\(497\) 1859.24 0.167803
\(498\) −1601.05 −0.144066
\(499\) −5392.04 −0.483729 −0.241864 0.970310i \(-0.577759\pi\)
−0.241864 + 0.970310i \(0.577759\pi\)
\(500\) 0 0
\(501\) 1772.04 0.158022
\(502\) 11937.7 1.06136
\(503\) −12625.4 −1.11917 −0.559583 0.828775i \(-0.689039\pi\)
−0.559583 + 0.828775i \(0.689039\pi\)
\(504\) −63.9633 −0.00565308
\(505\) 0 0
\(506\) 256.781 0.0225599
\(507\) 8759.89 0.767338
\(508\) −6211.15 −0.542471
\(509\) 7065.76 0.615294 0.307647 0.951501i \(-0.400459\pi\)
0.307647 + 0.951501i \(0.400459\pi\)
\(510\) 0 0
\(511\) −1560.46 −0.135090
\(512\) −512.000 −0.0441942
\(513\) −22848.9 −1.96647
\(514\) −3272.12 −0.280792
\(515\) 0 0
\(516\) −8810.73 −0.751688
\(517\) 503.905 0.0428660
\(518\) 1408.41 0.119463
\(519\) 18660.2 1.57822
\(520\) 0 0
\(521\) −8399.20 −0.706287 −0.353144 0.935569i \(-0.614887\pi\)
−0.353144 + 0.935569i \(0.614887\pi\)
\(522\) −112.852 −0.00946247
\(523\) 7002.06 0.585428 0.292714 0.956200i \(-0.405442\pi\)
0.292714 + 0.956200i \(0.405442\pi\)
\(524\) −1255.49 −0.104669
\(525\) 0 0
\(526\) 5991.10 0.496624
\(527\) 5568.47 0.460278
\(528\) −450.228 −0.0371092
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 1265.42 0.103417
\(532\) −3190.37 −0.260001
\(533\) −14281.9 −1.16063
\(534\) 12439.8 1.00810
\(535\) 0 0
\(536\) 681.136 0.0548891
\(537\) 18067.1 1.45186
\(538\) 10380.3 0.831838
\(539\) 1773.42 0.141719
\(540\) 0 0
\(541\) 3338.13 0.265282 0.132641 0.991164i \(-0.457654\pi\)
0.132641 + 0.991164i \(0.457654\pi\)
\(542\) −13440.9 −1.06519
\(543\) 3950.41 0.312207
\(544\) −631.792 −0.0497939
\(545\) 0 0
\(546\) −3181.46 −0.249366
\(547\) −9609.09 −0.751106 −0.375553 0.926801i \(-0.622547\pi\)
−0.375553 + 0.926801i \(0.622547\pi\)
\(548\) 4264.37 0.332417
\(549\) 903.656 0.0702497
\(550\) 0 0
\(551\) −5628.87 −0.435205
\(552\) −927.526 −0.0715183
\(553\) 6667.98 0.512751
\(554\) −12229.5 −0.937872
\(555\) 0 0
\(556\) −6379.15 −0.486576
\(557\) 11931.1 0.907608 0.453804 0.891102i \(-0.350067\pi\)
0.453804 + 0.891102i \(0.350067\pi\)
\(558\) 896.506 0.0680146
\(559\) 27409.6 2.07389
\(560\) 0 0
\(561\) −555.567 −0.0418112
\(562\) 7098.13 0.532770
\(563\) 10082.4 0.754746 0.377373 0.926061i \(-0.376827\pi\)
0.377373 + 0.926061i \(0.376827\pi\)
\(564\) −1820.17 −0.135892
\(565\) 0 0
\(566\) 6206.23 0.460896
\(567\) 3438.80 0.254702
\(568\) 2956.62 0.218410
\(569\) −18710.5 −1.37853 −0.689267 0.724507i \(-0.742067\pi\)
−0.689267 + 0.724507i \(0.742067\pi\)
\(570\) 0 0
\(571\) 13510.1 0.990159 0.495079 0.868848i \(-0.335139\pi\)
0.495079 + 0.868848i \(0.335139\pi\)
\(572\) 1400.63 0.102383
\(573\) 7520.75 0.548314
\(574\) 2290.79 0.166578
\(575\) 0 0
\(576\) −101.717 −0.00735797
\(577\) −11582.3 −0.835662 −0.417831 0.908525i \(-0.637210\pi\)
−0.417831 + 0.908525i \(0.637210\pi\)
\(578\) 9046.39 0.651004
\(579\) −15581.9 −1.11841
\(580\) 0 0
\(581\) −798.905 −0.0570468
\(582\) −1072.59 −0.0763926
\(583\) 1843.14 0.130935
\(584\) −2481.50 −0.175831
\(585\) 0 0
\(586\) 2437.03 0.171796
\(587\) 6019.34 0.423245 0.211623 0.977351i \(-0.432125\pi\)
0.211623 + 0.977351i \(0.432125\pi\)
\(588\) −6405.81 −0.449271
\(589\) 44716.1 3.12818
\(590\) 0 0
\(591\) −14216.8 −0.989514
\(592\) 2239.70 0.155492
\(593\) −26299.3 −1.82122 −0.910608 0.413270i \(-0.864387\pi\)
−0.910608 + 0.413270i \(0.864387\pi\)
\(594\) −1608.96 −0.111139
\(595\) 0 0
\(596\) −4387.63 −0.301551
\(597\) 6634.36 0.454818
\(598\) 2885.47 0.197317
\(599\) −27368.0 −1.86682 −0.933409 0.358813i \(-0.883181\pi\)
−0.933409 + 0.358813i \(0.883181\pi\)
\(600\) 0 0
\(601\) −3472.33 −0.235673 −0.117836 0.993033i \(-0.537596\pi\)
−0.117836 + 0.993033i \(0.537596\pi\)
\(602\) −4396.46 −0.297652
\(603\) 135.318 0.00913859
\(604\) 10937.6 0.736832
\(605\) 0 0
\(606\) −6479.33 −0.434332
\(607\) −5061.10 −0.338425 −0.169212 0.985580i \(-0.554122\pi\)
−0.169212 + 0.985580i \(0.554122\pi\)
\(608\) −5073.44 −0.338413
\(609\) 900.339 0.0599074
\(610\) 0 0
\(611\) 5662.44 0.374922
\(612\) −125.515 −0.00829027
\(613\) 28272.6 1.86283 0.931417 0.363953i \(-0.118573\pi\)
0.931417 + 0.363953i \(0.118573\pi\)
\(614\) 5128.90 0.337110
\(615\) 0 0
\(616\) −224.659 −0.0146944
\(617\) 2222.47 0.145013 0.0725066 0.997368i \(-0.476900\pi\)
0.0725066 + 0.997368i \(0.476900\pi\)
\(618\) 16352.6 1.06440
\(619\) −10498.2 −0.681679 −0.340840 0.940121i \(-0.610711\pi\)
−0.340840 + 0.940121i \(0.610711\pi\)
\(620\) 0 0
\(621\) −3314.67 −0.214192
\(622\) 185.251 0.0119419
\(623\) 6207.34 0.399185
\(624\) −5059.27 −0.324572
\(625\) 0 0
\(626\) −8552.87 −0.546073
\(627\) −4461.34 −0.284160
\(628\) 5758.51 0.365907
\(629\) 2763.72 0.175194
\(630\) 0 0
\(631\) −11402.2 −0.719355 −0.359678 0.933077i \(-0.617113\pi\)
−0.359678 + 0.933077i \(0.617113\pi\)
\(632\) 10603.6 0.667390
\(633\) −17135.0 −1.07591
\(634\) −5928.47 −0.371372
\(635\) 0 0
\(636\) −6657.67 −0.415085
\(637\) 19928.1 1.23953
\(638\) −396.372 −0.0245964
\(639\) 587.377 0.0363635
\(640\) 0 0
\(641\) 26128.3 1.60999 0.804996 0.593280i \(-0.202167\pi\)
0.804996 + 0.593280i \(0.202167\pi\)
\(642\) 15030.5 0.924001
\(643\) −863.502 −0.0529599 −0.0264799 0.999649i \(-0.508430\pi\)
−0.0264799 + 0.999649i \(0.508430\pi\)
\(644\) −462.825 −0.0283197
\(645\) 0 0
\(646\) −6260.47 −0.381292
\(647\) 5477.43 0.332828 0.166414 0.986056i \(-0.446781\pi\)
0.166414 + 0.986056i \(0.446781\pi\)
\(648\) 5468.50 0.331517
\(649\) 4444.55 0.268820
\(650\) 0 0
\(651\) −7152.36 −0.430604
\(652\) 11983.3 0.719787
\(653\) −19233.2 −1.15261 −0.576305 0.817235i \(-0.695506\pi\)
−0.576305 + 0.817235i \(0.695506\pi\)
\(654\) −12138.5 −0.725768
\(655\) 0 0
\(656\) 3642.88 0.216815
\(657\) −492.987 −0.0292744
\(658\) −908.245 −0.0538102
\(659\) 9952.51 0.588307 0.294154 0.955758i \(-0.404962\pi\)
0.294154 + 0.955758i \(0.404962\pi\)
\(660\) 0 0
\(661\) 3047.96 0.179352 0.0896762 0.995971i \(-0.471417\pi\)
0.0896762 + 0.995971i \(0.471417\pi\)
\(662\) 2697.61 0.158377
\(663\) −6242.98 −0.365697
\(664\) −1270.45 −0.0742513
\(665\) 0 0
\(666\) 444.950 0.0258881
\(667\) −816.576 −0.0474032
\(668\) 1406.13 0.0814442
\(669\) −4358.67 −0.251892
\(670\) 0 0
\(671\) 3173.92 0.182605
\(672\) 811.498 0.0465836
\(673\) −16245.9 −0.930508 −0.465254 0.885177i \(-0.654037\pi\)
−0.465254 + 0.885177i \(0.654037\pi\)
\(674\) −11528.6 −0.658850
\(675\) 0 0
\(676\) 6951.05 0.395486
\(677\) 30056.6 1.70631 0.853154 0.521659i \(-0.174687\pi\)
0.853154 + 0.521659i \(0.174687\pi\)
\(678\) 2790.35 0.158057
\(679\) −535.213 −0.0302498
\(680\) 0 0
\(681\) 9977.94 0.561462
\(682\) 3148.81 0.176795
\(683\) −10064.8 −0.563866 −0.281933 0.959434i \(-0.590976\pi\)
−0.281933 + 0.959434i \(0.590976\pi\)
\(684\) −1007.92 −0.0563430
\(685\) 0 0
\(686\) −6647.50 −0.369975
\(687\) −15695.0 −0.871617
\(688\) −6991.39 −0.387419
\(689\) 20711.6 1.14521
\(690\) 0 0
\(691\) 10260.7 0.564886 0.282443 0.959284i \(-0.408855\pi\)
0.282443 + 0.959284i \(0.408855\pi\)
\(692\) 14807.1 0.813411
\(693\) −44.6319 −0.00244650
\(694\) 8132.31 0.444810
\(695\) 0 0
\(696\) 1431.75 0.0779746
\(697\) 4495.21 0.244287
\(698\) −16815.6 −0.911865
\(699\) −30339.4 −1.64169
\(700\) 0 0
\(701\) −19815.6 −1.06766 −0.533828 0.845593i \(-0.679247\pi\)
−0.533828 + 0.845593i \(0.679247\pi\)
\(702\) −18080.1 −0.972066
\(703\) 22193.3 1.19067
\(704\) −357.260 −0.0191261
\(705\) 0 0
\(706\) 512.136 0.0273010
\(707\) −3233.12 −0.171986
\(708\) −16054.3 −0.852201
\(709\) −30533.5 −1.61736 −0.808681 0.588247i \(-0.799818\pi\)
−0.808681 + 0.588247i \(0.799818\pi\)
\(710\) 0 0
\(711\) 2106.57 0.111115
\(712\) 9871.12 0.519573
\(713\) 6486.93 0.340726
\(714\) 1001.36 0.0524861
\(715\) 0 0
\(716\) 14336.4 0.748290
\(717\) −21297.2 −1.10929
\(718\) 24105.0 1.25291
\(719\) 9125.45 0.473327 0.236663 0.971592i \(-0.423946\pi\)
0.236663 + 0.971592i \(0.423946\pi\)
\(720\) 0 0
\(721\) 8159.77 0.421478
\(722\) −36555.0 −1.88426
\(723\) 7028.21 0.361524
\(724\) 3134.69 0.160911
\(725\) 0 0
\(726\) 13104.7 0.669920
\(727\) −2635.53 −0.134452 −0.0672259 0.997738i \(-0.521415\pi\)
−0.0672259 + 0.997738i \(0.521415\pi\)
\(728\) −2524.52 −0.128523
\(729\) 20701.2 1.05173
\(730\) 0 0
\(731\) −8627.17 −0.436508
\(732\) −11464.6 −0.578886
\(733\) −10778.0 −0.543102 −0.271551 0.962424i \(-0.587537\pi\)
−0.271551 + 0.962424i \(0.587537\pi\)
\(734\) −18490.8 −0.929848
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) 475.278 0.0237545
\(738\) 723.714 0.0360979
\(739\) −1758.72 −0.0875449 −0.0437725 0.999042i \(-0.513938\pi\)
−0.0437725 + 0.999042i \(0.513938\pi\)
\(740\) 0 0
\(741\) −50132.6 −2.48538
\(742\) −3322.11 −0.164364
\(743\) −9737.97 −0.480823 −0.240412 0.970671i \(-0.577282\pi\)
−0.240412 + 0.970671i \(0.577282\pi\)
\(744\) −11373.9 −0.560467
\(745\) 0 0
\(746\) −1738.53 −0.0853245
\(747\) −252.393 −0.0123622
\(748\) −440.848 −0.0215495
\(749\) 7500.08 0.365884
\(750\) 0 0
\(751\) −23795.7 −1.15621 −0.578107 0.815961i \(-0.696208\pi\)
−0.578107 + 0.815961i \(0.696208\pi\)
\(752\) −1444.32 −0.0700385
\(753\) −30088.3 −1.45615
\(754\) −4454.08 −0.215130
\(755\) 0 0
\(756\) 2900.02 0.139514
\(757\) −23647.6 −1.13538 −0.567692 0.823241i \(-0.692163\pi\)
−0.567692 + 0.823241i \(0.692163\pi\)
\(758\) −2557.53 −0.122551
\(759\) −647.203 −0.0309512
\(760\) 0 0
\(761\) −4606.09 −0.219410 −0.109705 0.993964i \(-0.534991\pi\)
−0.109705 + 0.993964i \(0.534991\pi\)
\(762\) 15654.9 0.744248
\(763\) −6056.98 −0.287388
\(764\) 5967.79 0.282601
\(765\) 0 0
\(766\) −10687.5 −0.504119
\(767\) 49944.0 2.35120
\(768\) 1290.47 0.0606326
\(769\) 17760.9 0.832867 0.416433 0.909166i \(-0.363280\pi\)
0.416433 + 0.909166i \(0.363280\pi\)
\(770\) 0 0
\(771\) 8247.22 0.385235
\(772\) −12364.4 −0.576430
\(773\) −7147.47 −0.332570 −0.166285 0.986078i \(-0.553177\pi\)
−0.166285 + 0.986078i \(0.553177\pi\)
\(774\) −1388.95 −0.0645021
\(775\) 0 0
\(776\) −851.114 −0.0393727
\(777\) −3549.83 −0.163899
\(778\) 1416.69 0.0652839
\(779\) 36097.6 1.66024
\(780\) 0 0
\(781\) 2063.05 0.0945222
\(782\) −908.201 −0.0415310
\(783\) 5116.59 0.233528
\(784\) −5083.07 −0.231554
\(785\) 0 0
\(786\) 3164.40 0.143601
\(787\) 31719.1 1.43668 0.718338 0.695694i \(-0.244903\pi\)
0.718338 + 0.695694i \(0.244903\pi\)
\(788\) −11281.2 −0.509995
\(789\) −15100.3 −0.681348
\(790\) 0 0
\(791\) 1392.36 0.0625872
\(792\) −70.9751 −0.00318433
\(793\) 35665.7 1.59713
\(794\) −11848.0 −0.529560
\(795\) 0 0
\(796\) 5264.42 0.234413
\(797\) −30828.3 −1.37013 −0.685066 0.728481i \(-0.740227\pi\)
−0.685066 + 0.728481i \(0.740227\pi\)
\(798\) 8041.18 0.356710
\(799\) −1782.25 −0.0789129
\(800\) 0 0
\(801\) 1961.05 0.0865046
\(802\) 22787.3 1.00330
\(803\) −1731.53 −0.0760949
\(804\) −1716.77 −0.0753057
\(805\) 0 0
\(806\) 35383.5 1.54632
\(807\) −26163.2 −1.14125
\(808\) −5141.41 −0.223854
\(809\) 36679.2 1.59403 0.797015 0.603959i \(-0.206411\pi\)
0.797015 + 0.603959i \(0.206411\pi\)
\(810\) 0 0
\(811\) −12210.0 −0.528672 −0.264336 0.964431i \(-0.585153\pi\)
−0.264336 + 0.964431i \(0.585153\pi\)
\(812\) 714.427 0.0308762
\(813\) 33877.0 1.46140
\(814\) 1562.80 0.0672927
\(815\) 0 0
\(816\) 1592.40 0.0683152
\(817\) −69278.2 −2.96663
\(818\) −27608.9 −1.18010
\(819\) −501.534 −0.0213981
\(820\) 0 0
\(821\) −9996.47 −0.424944 −0.212472 0.977167i \(-0.568151\pi\)
−0.212472 + 0.977167i \(0.568151\pi\)
\(822\) −10748.1 −0.456063
\(823\) 42868.8 1.81569 0.907845 0.419306i \(-0.137727\pi\)
0.907845 + 0.419306i \(0.137727\pi\)
\(824\) 12975.9 0.548590
\(825\) 0 0
\(826\) −8010.93 −0.337453
\(827\) 15833.4 0.665759 0.332880 0.942969i \(-0.391980\pi\)
0.332880 + 0.942969i \(0.391980\pi\)
\(828\) −146.217 −0.00613697
\(829\) −17722.3 −0.742484 −0.371242 0.928536i \(-0.621068\pi\)
−0.371242 + 0.928536i \(0.621068\pi\)
\(830\) 0 0
\(831\) 30823.8 1.28672
\(832\) −4014.57 −0.167284
\(833\) −6272.35 −0.260893
\(834\) 16078.3 0.667563
\(835\) 0 0
\(836\) −3540.11 −0.146456
\(837\) −40646.5 −1.67855
\(838\) 29591.7 1.21984
\(839\) −40528.4 −1.66769 −0.833847 0.551996i \(-0.813866\pi\)
−0.833847 + 0.551996i \(0.813866\pi\)
\(840\) 0 0
\(841\) −23128.5 −0.948317
\(842\) −11609.3 −0.475159
\(843\) −17890.5 −0.730938
\(844\) −13596.7 −0.554525
\(845\) 0 0
\(846\) −286.936 −0.0116608
\(847\) 6539.11 0.265273
\(848\) −5282.92 −0.213934
\(849\) −15642.5 −0.632331
\(850\) 0 0
\(851\) 3219.57 0.129689
\(852\) −7452.02 −0.299650
\(853\) −8116.97 −0.325814 −0.162907 0.986641i \(-0.552087\pi\)
−0.162907 + 0.986641i \(0.552087\pi\)
\(854\) −5720.73 −0.229226
\(855\) 0 0
\(856\) 11926.9 0.476229
\(857\) −16285.5 −0.649126 −0.324563 0.945864i \(-0.605217\pi\)
−0.324563 + 0.945864i \(0.605217\pi\)
\(858\) −3530.22 −0.140466
\(859\) −26487.5 −1.05209 −0.526043 0.850458i \(-0.676325\pi\)
−0.526043 + 0.850458i \(0.676325\pi\)
\(860\) 0 0
\(861\) −5773.81 −0.228538
\(862\) −30536.3 −1.20658
\(863\) −40396.2 −1.59340 −0.796699 0.604376i \(-0.793422\pi\)
−0.796699 + 0.604376i \(0.793422\pi\)
\(864\) 4611.71 0.181590
\(865\) 0 0
\(866\) 4501.25 0.176627
\(867\) −22801.0 −0.893151
\(868\) −5675.46 −0.221933
\(869\) 7398.94 0.288828
\(870\) 0 0
\(871\) 5340.76 0.207767
\(872\) −9632.00 −0.374060
\(873\) −169.087 −0.00655523
\(874\) −7293.07 −0.282256
\(875\) 0 0
\(876\) 6254.50 0.241233
\(877\) −10962.9 −0.422109 −0.211054 0.977474i \(-0.567690\pi\)
−0.211054 + 0.977474i \(0.567690\pi\)
\(878\) −20732.4 −0.796908
\(879\) −6142.40 −0.235698
\(880\) 0 0
\(881\) 23906.5 0.914222 0.457111 0.889410i \(-0.348884\pi\)
0.457111 + 0.889410i \(0.348884\pi\)
\(882\) −1009.83 −0.0385518
\(883\) 30509.1 1.16275 0.581377 0.813634i \(-0.302514\pi\)
0.581377 + 0.813634i \(0.302514\pi\)
\(884\) −4953.86 −0.188480
\(885\) 0 0
\(886\) −7762.22 −0.294331
\(887\) 40034.3 1.51547 0.757733 0.652565i \(-0.226307\pi\)
0.757733 + 0.652565i \(0.226307\pi\)
\(888\) −5645.06 −0.213328
\(889\) 7811.62 0.294706
\(890\) 0 0
\(891\) 3815.77 0.143472
\(892\) −3458.64 −0.129825
\(893\) −14311.9 −0.536314
\(894\) 11058.8 0.413716
\(895\) 0 0
\(896\) 643.931 0.0240092
\(897\) −7272.69 −0.270711
\(898\) 20293.0 0.754106
\(899\) −10013.4 −0.371485
\(900\) 0 0
\(901\) −6518.96 −0.241041
\(902\) 2541.91 0.0938318
\(903\) 11081.1 0.408366
\(904\) 2214.17 0.0814626
\(905\) 0 0
\(906\) −27567.8 −1.01090
\(907\) 2843.48 0.104097 0.0520486 0.998645i \(-0.483425\pi\)
0.0520486 + 0.998645i \(0.483425\pi\)
\(908\) 7917.58 0.289377
\(909\) −1021.42 −0.0372699
\(910\) 0 0
\(911\) 42268.6 1.53723 0.768617 0.639710i \(-0.220945\pi\)
0.768617 + 0.639710i \(0.220945\pi\)
\(912\) 12787.4 0.464289
\(913\) −886.483 −0.0321340
\(914\) −9457.74 −0.342269
\(915\) 0 0
\(916\) −12454.1 −0.449231
\(917\) 1579.00 0.0568629
\(918\) 5690.71 0.204598
\(919\) −12699.6 −0.455844 −0.227922 0.973679i \(-0.573193\pi\)
−0.227922 + 0.973679i \(0.573193\pi\)
\(920\) 0 0
\(921\) −12927.1 −0.462501
\(922\) −16761.4 −0.598706
\(923\) 23182.8 0.826728
\(924\) 566.242 0.0201602
\(925\) 0 0
\(926\) 13690.3 0.485845
\(927\) 2577.86 0.0913357
\(928\) 1136.11 0.0401880
\(929\) −24889.6 −0.879011 −0.439505 0.898240i \(-0.644846\pi\)
−0.439505 + 0.898240i \(0.644846\pi\)
\(930\) 0 0
\(931\) −50368.5 −1.77310
\(932\) −24074.6 −0.846126
\(933\) −466.915 −0.0163838
\(934\) −29768.0 −1.04287
\(935\) 0 0
\(936\) −797.555 −0.0278514
\(937\) −9585.48 −0.334199 −0.167099 0.985940i \(-0.553440\pi\)
−0.167099 + 0.985940i \(0.553440\pi\)
\(938\) −856.649 −0.0298194
\(939\) 21557.1 0.749189
\(940\) 0 0
\(941\) −21146.9 −0.732592 −0.366296 0.930498i \(-0.619374\pi\)
−0.366296 + 0.930498i \(0.619374\pi\)
\(942\) −14514.0 −0.502009
\(943\) 5236.65 0.180836
\(944\) −12739.2 −0.439224
\(945\) 0 0
\(946\) −4878.41 −0.167665
\(947\) −48747.2 −1.67272 −0.836362 0.548177i \(-0.815322\pi\)
−0.836362 + 0.548177i \(0.815322\pi\)
\(948\) −26726.0 −0.915632
\(949\) −19457.3 −0.665556
\(950\) 0 0
\(951\) 14942.4 0.509507
\(952\) 794.591 0.0270513
\(953\) −24925.9 −0.847249 −0.423625 0.905838i \(-0.639242\pi\)
−0.423625 + 0.905838i \(0.639242\pi\)
\(954\) −1049.53 −0.0356183
\(955\) 0 0
\(956\) −16899.5 −0.571725
\(957\) 999.036 0.0337453
\(958\) −12097.4 −0.407984
\(959\) −5363.20 −0.180591
\(960\) 0 0
\(961\) 49755.9 1.67017
\(962\) 17561.4 0.588568
\(963\) 2369.45 0.0792882
\(964\) 5576.95 0.186329
\(965\) 0 0
\(966\) 1166.53 0.0388534
\(967\) 1881.92 0.0625838 0.0312919 0.999510i \(-0.490038\pi\)
0.0312919 + 0.999510i \(0.490038\pi\)
\(968\) 10398.7 0.345276
\(969\) 15779.2 0.523117
\(970\) 0 0
\(971\) −14637.3 −0.483763 −0.241881 0.970306i \(-0.577764\pi\)
−0.241881 + 0.970306i \(0.577764\pi\)
\(972\) 1781.44 0.0587857
\(973\) 8022.92 0.264340
\(974\) 6398.70 0.210501
\(975\) 0 0
\(976\) −9097.28 −0.298358
\(977\) −42591.4 −1.39470 −0.697348 0.716733i \(-0.745637\pi\)
−0.697348 + 0.716733i \(0.745637\pi\)
\(978\) −30203.2 −0.987518
\(979\) 6887.81 0.224857
\(980\) 0 0
\(981\) −1913.54 −0.0622780
\(982\) 3228.81 0.104924
\(983\) 48858.3 1.58529 0.792644 0.609684i \(-0.208704\pi\)
0.792644 + 0.609684i \(0.208704\pi\)
\(984\) −9181.71 −0.297462
\(985\) 0 0
\(986\) 1401.92 0.0452801
\(987\) 2289.19 0.0738254
\(988\) −39780.6 −1.28096
\(989\) −10050.1 −0.323130
\(990\) 0 0
\(991\) −56522.1 −1.81179 −0.905895 0.423502i \(-0.860801\pi\)
−0.905895 + 0.423502i \(0.860801\pi\)
\(992\) −9025.30 −0.288864
\(993\) −6799.19 −0.217287
\(994\) −3718.48 −0.118655
\(995\) 0 0
\(996\) 3202.09 0.101870
\(997\) 20767.9 0.659706 0.329853 0.944032i \(-0.393001\pi\)
0.329853 + 0.944032i \(0.393001\pi\)
\(998\) 10784.1 0.342048
\(999\) −20173.5 −0.638902
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.a.n.1.4 4
5.2 odd 4 1150.4.b.o.599.1 8
5.3 odd 4 1150.4.b.o.599.8 8
5.4 even 2 230.4.a.j.1.1 4
15.14 odd 2 2070.4.a.bg.1.3 4
20.19 odd 2 1840.4.a.k.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.j.1.1 4 5.4 even 2
1150.4.a.n.1.4 4 1.1 even 1 trivial
1150.4.b.o.599.1 8 5.2 odd 4
1150.4.b.o.599.8 8 5.3 odd 4
1840.4.a.k.1.4 4 20.19 odd 2
2070.4.a.bg.1.3 4 15.14 odd 2