Properties

Label 1150.4.a.n.1.1
Level $1150$
Weight $4$
Character 1150.1
Self dual yes
Analytic conductor $67.852$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(1,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 60x^{2} - 45x + 108 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-6.12571\) of defining polynomial
Character \(\chi\) \(=\) 1150.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -10.1257 q^{3} +4.00000 q^{4} +20.2514 q^{6} +24.6431 q^{7} -8.00000 q^{8} +75.5301 q^{9} -17.3867 q^{11} -40.5029 q^{12} -4.00699 q^{13} -49.2862 q^{14} +16.0000 q^{16} -48.2740 q^{17} -151.060 q^{18} +79.3172 q^{19} -249.529 q^{21} +34.7734 q^{22} +23.0000 q^{23} +81.0057 q^{24} +8.01398 q^{26} -491.402 q^{27} +98.5723 q^{28} -254.267 q^{29} -220.696 q^{31} -32.0000 q^{32} +176.053 q^{33} +96.5480 q^{34} +302.120 q^{36} +422.904 q^{37} -158.634 q^{38} +40.5736 q^{39} -170.251 q^{41} +499.058 q^{42} +228.920 q^{43} -69.5468 q^{44} -46.0000 q^{46} -580.087 q^{47} -162.011 q^{48} +264.282 q^{49} +488.809 q^{51} -16.0280 q^{52} +260.354 q^{53} +982.803 q^{54} -197.145 q^{56} -803.144 q^{57} +508.535 q^{58} +353.130 q^{59} -80.6108 q^{61} +441.392 q^{62} +1861.29 q^{63} +64.0000 q^{64} -352.106 q^{66} +820.011 q^{67} -193.096 q^{68} -232.891 q^{69} +614.845 q^{71} -604.241 q^{72} -511.586 q^{73} -845.808 q^{74} +317.269 q^{76} -428.462 q^{77} -81.1472 q^{78} +160.464 q^{79} +2936.48 q^{81} +340.502 q^{82} +32.5646 q^{83} -998.115 q^{84} -457.840 q^{86} +2574.64 q^{87} +139.094 q^{88} -25.0375 q^{89} -98.7445 q^{91} +92.0000 q^{92} +2234.70 q^{93} +1160.17 q^{94} +324.023 q^{96} +249.798 q^{97} -528.563 q^{98} -1313.22 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} - 14 q^{3} + 16 q^{4} + 28 q^{6} - 8 q^{7} - 32 q^{8} + 64 q^{9} + 21 q^{11} - 56 q^{12} - 70 q^{13} + 16 q^{14} + 64 q^{16} - 56 q^{17} - 128 q^{18} + 173 q^{19} - 120 q^{21} - 42 q^{22}+ \cdots - 2745 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −10.1257 −1.94869 −0.974347 0.225050i \(-0.927745\pi\)
−0.974347 + 0.225050i \(0.927745\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 20.2514 1.37794
\(7\) 24.6431 1.33060 0.665301 0.746575i \(-0.268303\pi\)
0.665301 + 0.746575i \(0.268303\pi\)
\(8\) −8.00000 −0.353553
\(9\) 75.5301 2.79741
\(10\) 0 0
\(11\) −17.3867 −0.476572 −0.238286 0.971195i \(-0.576586\pi\)
−0.238286 + 0.971195i \(0.576586\pi\)
\(12\) −40.5029 −0.974347
\(13\) −4.00699 −0.0854876 −0.0427438 0.999086i \(-0.513610\pi\)
−0.0427438 + 0.999086i \(0.513610\pi\)
\(14\) −49.2862 −0.940877
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −48.2740 −0.688716 −0.344358 0.938838i \(-0.611903\pi\)
−0.344358 + 0.938838i \(0.611903\pi\)
\(18\) −151.060 −1.97807
\(19\) 79.3172 0.957717 0.478859 0.877892i \(-0.341051\pi\)
0.478859 + 0.877892i \(0.341051\pi\)
\(20\) 0 0
\(21\) −249.529 −2.59294
\(22\) 34.7734 0.336987
\(23\) 23.0000 0.208514
\(24\) 81.0057 0.688968
\(25\) 0 0
\(26\) 8.01398 0.0604488
\(27\) −491.402 −3.50260
\(28\) 98.5723 0.665301
\(29\) −254.267 −1.62815 −0.814074 0.580761i \(-0.802755\pi\)
−0.814074 + 0.580761i \(0.802755\pi\)
\(30\) 0 0
\(31\) −220.696 −1.27865 −0.639325 0.768937i \(-0.720786\pi\)
−0.639325 + 0.768937i \(0.720786\pi\)
\(32\) −32.0000 −0.176777
\(33\) 176.053 0.928693
\(34\) 96.5480 0.486996
\(35\) 0 0
\(36\) 302.120 1.39870
\(37\) 422.904 1.87905 0.939527 0.342476i \(-0.111265\pi\)
0.939527 + 0.342476i \(0.111265\pi\)
\(38\) −158.634 −0.677208
\(39\) 40.5736 0.166589
\(40\) 0 0
\(41\) −170.251 −0.648505 −0.324252 0.945971i \(-0.605113\pi\)
−0.324252 + 0.945971i \(0.605113\pi\)
\(42\) 499.058 1.83348
\(43\) 228.920 0.811860 0.405930 0.913904i \(-0.366948\pi\)
0.405930 + 0.913904i \(0.366948\pi\)
\(44\) −69.5468 −0.238286
\(45\) 0 0
\(46\) −46.0000 −0.147442
\(47\) −580.087 −1.80031 −0.900154 0.435572i \(-0.856546\pi\)
−0.900154 + 0.435572i \(0.856546\pi\)
\(48\) −162.011 −0.487174
\(49\) 264.282 0.770500
\(50\) 0 0
\(51\) 488.809 1.34210
\(52\) −16.0280 −0.0427438
\(53\) 260.354 0.674762 0.337381 0.941368i \(-0.390459\pi\)
0.337381 + 0.941368i \(0.390459\pi\)
\(54\) 982.803 2.47671
\(55\) 0 0
\(56\) −197.145 −0.470439
\(57\) −803.144 −1.86630
\(58\) 508.535 1.15127
\(59\) 353.130 0.779215 0.389607 0.920981i \(-0.372611\pi\)
0.389607 + 0.920981i \(0.372611\pi\)
\(60\) 0 0
\(61\) −80.6108 −0.169199 −0.0845996 0.996415i \(-0.526961\pi\)
−0.0845996 + 0.996415i \(0.526961\pi\)
\(62\) 441.392 0.904142
\(63\) 1861.29 3.72224
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −352.106 −0.656685
\(67\) 820.011 1.49523 0.747614 0.664133i \(-0.231199\pi\)
0.747614 + 0.664133i \(0.231199\pi\)
\(68\) −193.096 −0.344358
\(69\) −232.891 −0.406331
\(70\) 0 0
\(71\) 614.845 1.02773 0.513864 0.857872i \(-0.328214\pi\)
0.513864 + 0.857872i \(0.328214\pi\)
\(72\) −604.241 −0.989034
\(73\) −511.586 −0.820228 −0.410114 0.912034i \(-0.634511\pi\)
−0.410114 + 0.912034i \(0.634511\pi\)
\(74\) −845.808 −1.32869
\(75\) 0 0
\(76\) 317.269 0.478859
\(77\) −428.462 −0.634127
\(78\) −81.1472 −0.117796
\(79\) 160.464 0.228526 0.114263 0.993451i \(-0.463549\pi\)
0.114263 + 0.993451i \(0.463549\pi\)
\(80\) 0 0
\(81\) 2936.48 4.02809
\(82\) 340.502 0.458562
\(83\) 32.5646 0.0430654 0.0215327 0.999768i \(-0.493145\pi\)
0.0215327 + 0.999768i \(0.493145\pi\)
\(84\) −998.115 −1.29647
\(85\) 0 0
\(86\) −457.840 −0.574072
\(87\) 2574.64 3.17276
\(88\) 139.094 0.168494
\(89\) −25.0375 −0.0298199 −0.0149100 0.999889i \(-0.504746\pi\)
−0.0149100 + 0.999889i \(0.504746\pi\)
\(90\) 0 0
\(91\) −98.7445 −0.113750
\(92\) 92.0000 0.104257
\(93\) 2234.70 2.49170
\(94\) 1160.17 1.27301
\(95\) 0 0
\(96\) 324.023 0.344484
\(97\) 249.798 0.261476 0.130738 0.991417i \(-0.458265\pi\)
0.130738 + 0.991417i \(0.458265\pi\)
\(98\) −528.563 −0.544826
\(99\) −1313.22 −1.33317
\(100\) 0 0
\(101\) 620.493 0.611300 0.305650 0.952144i \(-0.401126\pi\)
0.305650 + 0.952144i \(0.401126\pi\)
\(102\) −977.618 −0.949006
\(103\) −1473.24 −1.40935 −0.704673 0.709532i \(-0.748906\pi\)
−0.704673 + 0.709532i \(0.748906\pi\)
\(104\) 32.0559 0.0302244
\(105\) 0 0
\(106\) −520.708 −0.477129
\(107\) 940.141 0.849410 0.424705 0.905332i \(-0.360378\pi\)
0.424705 + 0.905332i \(0.360378\pi\)
\(108\) −1965.61 −1.75130
\(109\) −636.264 −0.559111 −0.279555 0.960130i \(-0.590187\pi\)
−0.279555 + 0.960130i \(0.590187\pi\)
\(110\) 0 0
\(111\) −4282.20 −3.66170
\(112\) 394.289 0.332650
\(113\) −832.451 −0.693013 −0.346506 0.938048i \(-0.612632\pi\)
−0.346506 + 0.938048i \(0.612632\pi\)
\(114\) 1606.29 1.31967
\(115\) 0 0
\(116\) −1017.07 −0.814074
\(117\) −302.648 −0.239144
\(118\) −706.261 −0.550988
\(119\) −1189.62 −0.916406
\(120\) 0 0
\(121\) −1028.70 −0.772879
\(122\) 161.222 0.119642
\(123\) 1723.91 1.26374
\(124\) −882.783 −0.639325
\(125\) 0 0
\(126\) −3722.59 −2.63202
\(127\) −1614.60 −1.12813 −0.564067 0.825729i \(-0.690764\pi\)
−0.564067 + 0.825729i \(0.690764\pi\)
\(128\) −128.000 −0.0883883
\(129\) −2317.98 −1.58207
\(130\) 0 0
\(131\) −1974.56 −1.31693 −0.658464 0.752612i \(-0.728794\pi\)
−0.658464 + 0.752612i \(0.728794\pi\)
\(132\) 704.211 0.464346
\(133\) 1954.62 1.27434
\(134\) −1640.02 −1.05729
\(135\) 0 0
\(136\) 386.192 0.243498
\(137\) −753.805 −0.470087 −0.235044 0.971985i \(-0.575523\pi\)
−0.235044 + 0.971985i \(0.575523\pi\)
\(138\) 465.783 0.287319
\(139\) 1014.10 0.618810 0.309405 0.950930i \(-0.399870\pi\)
0.309405 + 0.950930i \(0.399870\pi\)
\(140\) 0 0
\(141\) 5873.80 3.50825
\(142\) −1229.69 −0.726714
\(143\) 69.6683 0.0407410
\(144\) 1208.48 0.699352
\(145\) 0 0
\(146\) 1023.17 0.579989
\(147\) −2676.04 −1.50147
\(148\) 1691.62 0.939527
\(149\) −2771.80 −1.52399 −0.761995 0.647583i \(-0.775780\pi\)
−0.761995 + 0.647583i \(0.775780\pi\)
\(150\) 0 0
\(151\) 3108.62 1.67534 0.837668 0.546180i \(-0.183918\pi\)
0.837668 + 0.546180i \(0.183918\pi\)
\(152\) −634.538 −0.338604
\(153\) −3646.14 −1.92662
\(154\) 856.924 0.448396
\(155\) 0 0
\(156\) 162.294 0.0832946
\(157\) −3712.87 −1.88739 −0.943693 0.330822i \(-0.892674\pi\)
−0.943693 + 0.330822i \(0.892674\pi\)
\(158\) −320.928 −0.161593
\(159\) −2636.27 −1.31490
\(160\) 0 0
\(161\) 566.791 0.277450
\(162\) −5872.96 −2.84829
\(163\) −915.791 −0.440063 −0.220032 0.975493i \(-0.570616\pi\)
−0.220032 + 0.975493i \(0.570616\pi\)
\(164\) −681.003 −0.324252
\(165\) 0 0
\(166\) −65.1292 −0.0304518
\(167\) −1432.32 −0.663688 −0.331844 0.943334i \(-0.607671\pi\)
−0.331844 + 0.943334i \(0.607671\pi\)
\(168\) 1996.23 0.916741
\(169\) −2180.94 −0.992692
\(170\) 0 0
\(171\) 5990.84 2.67913
\(172\) 915.680 0.405930
\(173\) 3479.54 1.52916 0.764580 0.644529i \(-0.222946\pi\)
0.764580 + 0.644529i \(0.222946\pi\)
\(174\) −5149.28 −2.24348
\(175\) 0 0
\(176\) −278.187 −0.119143
\(177\) −3575.70 −1.51845
\(178\) 50.0751 0.0210859
\(179\) 3642.71 1.52105 0.760527 0.649307i \(-0.224941\pi\)
0.760527 + 0.649307i \(0.224941\pi\)
\(180\) 0 0
\(181\) 2409.15 0.989342 0.494671 0.869080i \(-0.335289\pi\)
0.494671 + 0.869080i \(0.335289\pi\)
\(182\) 197.489 0.0804333
\(183\) 816.241 0.329717
\(184\) −184.000 −0.0737210
\(185\) 0 0
\(186\) −4469.41 −1.76190
\(187\) 839.326 0.328223
\(188\) −2320.35 −0.900154
\(189\) −12109.6 −4.66057
\(190\) 0 0
\(191\) −189.608 −0.0718299 −0.0359150 0.999355i \(-0.511435\pi\)
−0.0359150 + 0.999355i \(0.511435\pi\)
\(192\) −648.046 −0.243587
\(193\) 1855.45 0.692012 0.346006 0.938232i \(-0.387538\pi\)
0.346006 + 0.938232i \(0.387538\pi\)
\(194\) −499.597 −0.184891
\(195\) 0 0
\(196\) 1057.13 0.385250
\(197\) −2429.85 −0.878779 −0.439390 0.898297i \(-0.644805\pi\)
−0.439390 + 0.898297i \(0.644805\pi\)
\(198\) 2626.44 0.942691
\(199\) 4333.49 1.54368 0.771842 0.635815i \(-0.219336\pi\)
0.771842 + 0.635815i \(0.219336\pi\)
\(200\) 0 0
\(201\) −8303.20 −2.91374
\(202\) −1240.99 −0.432255
\(203\) −6265.94 −2.16642
\(204\) 1955.24 0.671048
\(205\) 0 0
\(206\) 2946.48 0.996558
\(207\) 1737.19 0.583300
\(208\) −64.1118 −0.0213719
\(209\) −1379.07 −0.456421
\(210\) 0 0
\(211\) −816.788 −0.266493 −0.133247 0.991083i \(-0.542540\pi\)
−0.133247 + 0.991083i \(0.542540\pi\)
\(212\) 1041.42 0.337381
\(213\) −6225.75 −2.00273
\(214\) −1880.28 −0.600624
\(215\) 0 0
\(216\) 3931.21 1.23836
\(217\) −5438.63 −1.70137
\(218\) 1272.53 0.395351
\(219\) 5180.18 1.59837
\(220\) 0 0
\(221\) 193.433 0.0588767
\(222\) 8564.41 2.58921
\(223\) 4513.80 1.35546 0.677728 0.735313i \(-0.262965\pi\)
0.677728 + 0.735313i \(0.262965\pi\)
\(224\) −788.579 −0.235219
\(225\) 0 0
\(226\) 1664.90 0.490034
\(227\) −2792.85 −0.816599 −0.408300 0.912848i \(-0.633878\pi\)
−0.408300 + 0.912848i \(0.633878\pi\)
\(228\) −3212.57 −0.933149
\(229\) 1404.50 0.405292 0.202646 0.979252i \(-0.435046\pi\)
0.202646 + 0.979252i \(0.435046\pi\)
\(230\) 0 0
\(231\) 4338.48 1.23572
\(232\) 2034.14 0.575637
\(233\) −1073.79 −0.301916 −0.150958 0.988540i \(-0.548236\pi\)
−0.150958 + 0.988540i \(0.548236\pi\)
\(234\) 605.296 0.169100
\(235\) 0 0
\(236\) 1412.52 0.389607
\(237\) −1624.81 −0.445328
\(238\) 2379.24 0.647997
\(239\) −2573.18 −0.696423 −0.348212 0.937416i \(-0.613211\pi\)
−0.348212 + 0.937416i \(0.613211\pi\)
\(240\) 0 0
\(241\) −696.127 −0.186064 −0.0930321 0.995663i \(-0.529656\pi\)
−0.0930321 + 0.995663i \(0.529656\pi\)
\(242\) 2057.40 0.546508
\(243\) −16466.1 −4.34692
\(244\) −322.443 −0.0845996
\(245\) 0 0
\(246\) −3447.82 −0.893598
\(247\) −317.823 −0.0818729
\(248\) 1765.57 0.452071
\(249\) −329.740 −0.0839213
\(250\) 0 0
\(251\) 6467.81 1.62647 0.813236 0.581934i \(-0.197704\pi\)
0.813236 + 0.581934i \(0.197704\pi\)
\(252\) 7445.18 1.86112
\(253\) −399.894 −0.0993721
\(254\) 3229.21 0.797711
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −5332.72 −1.29434 −0.647172 0.762344i \(-0.724048\pi\)
−0.647172 + 0.762344i \(0.724048\pi\)
\(258\) 4635.96 1.11869
\(259\) 10421.7 2.50027
\(260\) 0 0
\(261\) −19204.8 −4.55460
\(262\) 3949.11 0.931209
\(263\) 6872.85 1.61140 0.805699 0.592325i \(-0.201790\pi\)
0.805699 + 0.592325i \(0.201790\pi\)
\(264\) −1408.42 −0.328342
\(265\) 0 0
\(266\) −3909.24 −0.901094
\(267\) 253.523 0.0581099
\(268\) 3280.04 0.747614
\(269\) −1926.13 −0.436572 −0.218286 0.975885i \(-0.570047\pi\)
−0.218286 + 0.975885i \(0.570047\pi\)
\(270\) 0 0
\(271\) −3653.06 −0.818847 −0.409423 0.912344i \(-0.634270\pi\)
−0.409423 + 0.912344i \(0.634270\pi\)
\(272\) −772.384 −0.172179
\(273\) 999.859 0.221664
\(274\) 1507.61 0.332402
\(275\) 0 0
\(276\) −931.566 −0.203165
\(277\) 1047.37 0.227185 0.113592 0.993527i \(-0.463764\pi\)
0.113592 + 0.993527i \(0.463764\pi\)
\(278\) −2028.19 −0.437565
\(279\) −16669.2 −3.57691
\(280\) 0 0
\(281\) −2758.90 −0.585701 −0.292851 0.956158i \(-0.594604\pi\)
−0.292851 + 0.956158i \(0.594604\pi\)
\(282\) −11747.6 −2.48071
\(283\) −3355.58 −0.704837 −0.352418 0.935843i \(-0.614641\pi\)
−0.352418 + 0.935843i \(0.614641\pi\)
\(284\) 2459.38 0.513864
\(285\) 0 0
\(286\) −139.337 −0.0288082
\(287\) −4195.50 −0.862902
\(288\) −2416.96 −0.494517
\(289\) −2582.62 −0.525670
\(290\) 0 0
\(291\) −2529.39 −0.509537
\(292\) −2046.35 −0.410114
\(293\) −419.625 −0.0836681 −0.0418341 0.999125i \(-0.513320\pi\)
−0.0418341 + 0.999125i \(0.513320\pi\)
\(294\) 5352.08 1.06170
\(295\) 0 0
\(296\) −3383.23 −0.664346
\(297\) 8543.85 1.66924
\(298\) 5543.59 1.07762
\(299\) −92.1607 −0.0178254
\(300\) 0 0
\(301\) 5641.30 1.08026
\(302\) −6217.24 −1.18464
\(303\) −6282.93 −1.19124
\(304\) 1269.08 0.239429
\(305\) 0 0
\(306\) 7292.28 1.36233
\(307\) 4133.41 0.768425 0.384212 0.923245i \(-0.374473\pi\)
0.384212 + 0.923245i \(0.374473\pi\)
\(308\) −1713.85 −0.317064
\(309\) 14917.6 2.74639
\(310\) 0 0
\(311\) −6991.03 −1.27468 −0.637339 0.770584i \(-0.719965\pi\)
−0.637339 + 0.770584i \(0.719965\pi\)
\(312\) −324.589 −0.0588982
\(313\) −9380.53 −1.69399 −0.846996 0.531600i \(-0.821591\pi\)
−0.846996 + 0.531600i \(0.821591\pi\)
\(314\) 7425.75 1.33458
\(315\) 0 0
\(316\) 641.855 0.114263
\(317\) 7995.35 1.41660 0.708302 0.705910i \(-0.249462\pi\)
0.708302 + 0.705910i \(0.249462\pi\)
\(318\) 5272.54 0.929778
\(319\) 4420.87 0.775929
\(320\) 0 0
\(321\) −9519.60 −1.65524
\(322\) −1133.58 −0.196186
\(323\) −3828.96 −0.659595
\(324\) 11745.9 2.01405
\(325\) 0 0
\(326\) 1831.58 0.311172
\(327\) 6442.63 1.08954
\(328\) 1362.01 0.229281
\(329\) −14295.1 −2.39549
\(330\) 0 0
\(331\) −4798.86 −0.796886 −0.398443 0.917193i \(-0.630449\pi\)
−0.398443 + 0.917193i \(0.630449\pi\)
\(332\) 130.258 0.0215327
\(333\) 31942.0 5.25648
\(334\) 2864.63 0.469298
\(335\) 0 0
\(336\) −3992.46 −0.648234
\(337\) −6895.51 −1.11461 −0.557303 0.830309i \(-0.688164\pi\)
−0.557303 + 0.830309i \(0.688164\pi\)
\(338\) 4361.89 0.701939
\(339\) 8429.16 1.35047
\(340\) 0 0
\(341\) 3837.17 0.609368
\(342\) −11981.7 −1.89443
\(343\) −1939.86 −0.305372
\(344\) −1831.36 −0.287036
\(345\) 0 0
\(346\) −6959.08 −1.08128
\(347\) 8744.17 1.35277 0.676386 0.736548i \(-0.263545\pi\)
0.676386 + 0.736548i \(0.263545\pi\)
\(348\) 10298.6 1.58638
\(349\) −6387.08 −0.979635 −0.489818 0.871825i \(-0.662937\pi\)
−0.489818 + 0.871825i \(0.662937\pi\)
\(350\) 0 0
\(351\) 1969.04 0.299429
\(352\) 556.375 0.0842468
\(353\) 589.384 0.0888661 0.0444331 0.999012i \(-0.485852\pi\)
0.0444331 + 0.999012i \(0.485852\pi\)
\(354\) 7151.39 1.07371
\(355\) 0 0
\(356\) −100.150 −0.0149100
\(357\) 12045.8 1.78580
\(358\) −7285.41 −1.07555
\(359\) 7214.13 1.06058 0.530289 0.847817i \(-0.322083\pi\)
0.530289 + 0.847817i \(0.322083\pi\)
\(360\) 0 0
\(361\) −567.774 −0.0827780
\(362\) −4818.30 −0.699570
\(363\) 10416.3 1.50611
\(364\) −394.978 −0.0568749
\(365\) 0 0
\(366\) −1632.48 −0.233145
\(367\) −12356.4 −1.75750 −0.878748 0.477286i \(-0.841621\pi\)
−0.878748 + 0.477286i \(0.841621\pi\)
\(368\) 368.000 0.0521286
\(369\) −12859.1 −1.81413
\(370\) 0 0
\(371\) 6415.92 0.897839
\(372\) 8938.81 1.24585
\(373\) −7145.98 −0.991969 −0.495985 0.868331i \(-0.665193\pi\)
−0.495985 + 0.868331i \(0.665193\pi\)
\(374\) −1678.65 −0.232088
\(375\) 0 0
\(376\) 4640.70 0.636505
\(377\) 1018.85 0.139186
\(378\) 24219.3 3.29552
\(379\) 2170.69 0.294197 0.147099 0.989122i \(-0.453007\pi\)
0.147099 + 0.989122i \(0.453007\pi\)
\(380\) 0 0
\(381\) 16349.0 2.19839
\(382\) 379.215 0.0507914
\(383\) 7967.21 1.06294 0.531469 0.847078i \(-0.321640\pi\)
0.531469 + 0.847078i \(0.321640\pi\)
\(384\) 1296.09 0.172242
\(385\) 0 0
\(386\) −3710.90 −0.489326
\(387\) 17290.3 2.27111
\(388\) 999.193 0.130738
\(389\) −568.951 −0.0741567 −0.0370783 0.999312i \(-0.511805\pi\)
−0.0370783 + 0.999312i \(0.511805\pi\)
\(390\) 0 0
\(391\) −1110.30 −0.143607
\(392\) −2114.25 −0.272413
\(393\) 19993.8 2.56629
\(394\) 4859.70 0.621391
\(395\) 0 0
\(396\) −5252.88 −0.666583
\(397\) −8564.88 −1.08277 −0.541384 0.840775i \(-0.682100\pi\)
−0.541384 + 0.840775i \(0.682100\pi\)
\(398\) −8666.98 −1.09155
\(399\) −19791.9 −2.48330
\(400\) 0 0
\(401\) −12455.6 −1.55113 −0.775563 0.631270i \(-0.782534\pi\)
−0.775563 + 0.631270i \(0.782534\pi\)
\(402\) 16606.4 2.06033
\(403\) 884.325 0.109309
\(404\) 2481.97 0.305650
\(405\) 0 0
\(406\) 12531.9 1.53189
\(407\) −7352.91 −0.895504
\(408\) −3910.47 −0.474503
\(409\) 11838.9 1.43129 0.715645 0.698465i \(-0.246133\pi\)
0.715645 + 0.698465i \(0.246133\pi\)
\(410\) 0 0
\(411\) 7632.82 0.916056
\(412\) −5892.96 −0.704673
\(413\) 8702.22 1.03682
\(414\) −3474.38 −0.412456
\(415\) 0 0
\(416\) 128.224 0.0151122
\(417\) −10268.5 −1.20587
\(418\) 2758.13 0.322738
\(419\) −1531.77 −0.178596 −0.0892981 0.996005i \(-0.528462\pi\)
−0.0892981 + 0.996005i \(0.528462\pi\)
\(420\) 0 0
\(421\) −9985.06 −1.15592 −0.577959 0.816066i \(-0.696151\pi\)
−0.577959 + 0.816066i \(0.696151\pi\)
\(422\) 1633.58 0.188439
\(423\) −43814.0 −5.03620
\(424\) −2082.83 −0.238564
\(425\) 0 0
\(426\) 12451.5 1.41614
\(427\) −1986.50 −0.225137
\(428\) 3760.56 0.424705
\(429\) −705.441 −0.0793917
\(430\) 0 0
\(431\) −13786.7 −1.54079 −0.770396 0.637566i \(-0.779941\pi\)
−0.770396 + 0.637566i \(0.779941\pi\)
\(432\) −7862.42 −0.875651
\(433\) 2621.92 0.290996 0.145498 0.989359i \(-0.453522\pi\)
0.145498 + 0.989359i \(0.453522\pi\)
\(434\) 10877.3 1.20305
\(435\) 0 0
\(436\) −2545.06 −0.279555
\(437\) 1824.30 0.199698
\(438\) −10360.4 −1.13022
\(439\) 12062.7 1.31143 0.655717 0.755007i \(-0.272367\pi\)
0.655717 + 0.755007i \(0.272367\pi\)
\(440\) 0 0
\(441\) 19961.2 2.15541
\(442\) −386.867 −0.0416321
\(443\) −3659.26 −0.392453 −0.196227 0.980559i \(-0.562869\pi\)
−0.196227 + 0.980559i \(0.562869\pi\)
\(444\) −17128.8 −1.83085
\(445\) 0 0
\(446\) −9027.60 −0.958452
\(447\) 28066.4 2.96979
\(448\) 1577.16 0.166325
\(449\) −10529.6 −1.10674 −0.553368 0.832937i \(-0.686658\pi\)
−0.553368 + 0.832937i \(0.686658\pi\)
\(450\) 0 0
\(451\) 2960.10 0.309059
\(452\) −3329.81 −0.346506
\(453\) −31477.0 −3.26472
\(454\) 5585.70 0.577423
\(455\) 0 0
\(456\) 6425.15 0.659836
\(457\) −6443.23 −0.659522 −0.329761 0.944064i \(-0.606968\pi\)
−0.329761 + 0.944064i \(0.606968\pi\)
\(458\) −2809.00 −0.286585
\(459\) 23721.9 2.41230
\(460\) 0 0
\(461\) −3263.86 −0.329747 −0.164873 0.986315i \(-0.552722\pi\)
−0.164873 + 0.986315i \(0.552722\pi\)
\(462\) −8676.97 −0.873786
\(463\) −9518.12 −0.955388 −0.477694 0.878526i \(-0.658527\pi\)
−0.477694 + 0.878526i \(0.658527\pi\)
\(464\) −4068.28 −0.407037
\(465\) 0 0
\(466\) 2147.59 0.213487
\(467\) −19092.6 −1.89187 −0.945934 0.324360i \(-0.894851\pi\)
−0.945934 + 0.324360i \(0.894851\pi\)
\(468\) −1210.59 −0.119572
\(469\) 20207.6 1.98955
\(470\) 0 0
\(471\) 37595.5 3.67794
\(472\) −2825.04 −0.275494
\(473\) −3980.17 −0.386910
\(474\) 3249.62 0.314895
\(475\) 0 0
\(476\) −4758.48 −0.458203
\(477\) 19664.6 1.88758
\(478\) 5146.36 0.492446
\(479\) −6324.81 −0.603315 −0.301658 0.953416i \(-0.597540\pi\)
−0.301658 + 0.953416i \(0.597540\pi\)
\(480\) 0 0
\(481\) −1694.57 −0.160636
\(482\) 1392.25 0.131567
\(483\) −5739.16 −0.540664
\(484\) −4114.81 −0.386440
\(485\) 0 0
\(486\) 32932.2 3.07373
\(487\) 7873.07 0.732573 0.366286 0.930502i \(-0.380629\pi\)
0.366286 + 0.930502i \(0.380629\pi\)
\(488\) 644.886 0.0598209
\(489\) 9273.04 0.857549
\(490\) 0 0
\(491\) −3556.82 −0.326918 −0.163459 0.986550i \(-0.552265\pi\)
−0.163459 + 0.986550i \(0.552265\pi\)
\(492\) 6895.64 0.631869
\(493\) 12274.5 1.12133
\(494\) 635.646 0.0578929
\(495\) 0 0
\(496\) −3531.13 −0.319662
\(497\) 15151.7 1.36750
\(498\) 659.479 0.0593413
\(499\) −1933.37 −0.173446 −0.0867231 0.996232i \(-0.527640\pi\)
−0.0867231 + 0.996232i \(0.527640\pi\)
\(500\) 0 0
\(501\) 14503.2 1.29332
\(502\) −12935.6 −1.15009
\(503\) −2114.36 −0.187425 −0.0937123 0.995599i \(-0.529873\pi\)
−0.0937123 + 0.995599i \(0.529873\pi\)
\(504\) −14890.4 −1.31601
\(505\) 0 0
\(506\) 799.789 0.0702667
\(507\) 22083.6 1.93445
\(508\) −6458.42 −0.564067
\(509\) −316.452 −0.0275570 −0.0137785 0.999905i \(-0.504386\pi\)
−0.0137785 + 0.999905i \(0.504386\pi\)
\(510\) 0 0
\(511\) −12607.1 −1.09140
\(512\) −512.000 −0.0441942
\(513\) −38976.6 −3.35450
\(514\) 10665.4 0.915239
\(515\) 0 0
\(516\) −9271.92 −0.791034
\(517\) 10085.8 0.857976
\(518\) −20843.3 −1.76796
\(519\) −35232.8 −2.97987
\(520\) 0 0
\(521\) −309.041 −0.0259872 −0.0129936 0.999916i \(-0.504136\pi\)
−0.0129936 + 0.999916i \(0.504136\pi\)
\(522\) 38409.7 3.22059
\(523\) 5892.46 0.492656 0.246328 0.969186i \(-0.420776\pi\)
0.246328 + 0.969186i \(0.420776\pi\)
\(524\) −7898.22 −0.658464
\(525\) 0 0
\(526\) −13745.7 −1.13943
\(527\) 10653.9 0.880626
\(528\) 2816.84 0.232173
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 26672.0 2.17978
\(532\) 7818.49 0.637170
\(533\) 682.193 0.0554391
\(534\) −507.046 −0.0410899
\(535\) 0 0
\(536\) −6560.09 −0.528643
\(537\) −36885.0 −2.96407
\(538\) 3852.25 0.308703
\(539\) −4594.99 −0.367199
\(540\) 0 0
\(541\) 1560.55 0.124017 0.0620085 0.998076i \(-0.480249\pi\)
0.0620085 + 0.998076i \(0.480249\pi\)
\(542\) 7306.12 0.579012
\(543\) −24394.4 −1.92792
\(544\) 1544.77 0.121749
\(545\) 0 0
\(546\) −1999.72 −0.156740
\(547\) −17756.3 −1.38795 −0.693973 0.720001i \(-0.744141\pi\)
−0.693973 + 0.720001i \(0.744141\pi\)
\(548\) −3015.22 −0.235044
\(549\) −6088.54 −0.473319
\(550\) 0 0
\(551\) −20167.8 −1.55930
\(552\) 1863.13 0.143660
\(553\) 3954.32 0.304078
\(554\) −2094.73 −0.160644
\(555\) 0 0
\(556\) 4056.39 0.309405
\(557\) −1212.77 −0.0922559 −0.0461280 0.998936i \(-0.514688\pi\)
−0.0461280 + 0.998936i \(0.514688\pi\)
\(558\) 33338.3 2.52926
\(559\) −917.280 −0.0694040
\(560\) 0 0
\(561\) −8498.78 −0.639605
\(562\) 5517.80 0.414153
\(563\) −12558.2 −0.940078 −0.470039 0.882646i \(-0.655760\pi\)
−0.470039 + 0.882646i \(0.655760\pi\)
\(564\) 23495.2 1.75412
\(565\) 0 0
\(566\) 6711.17 0.498395
\(567\) 72363.9 5.35978
\(568\) −4918.76 −0.363357
\(569\) 9776.72 0.720319 0.360159 0.932891i \(-0.382722\pi\)
0.360159 + 0.932891i \(0.382722\pi\)
\(570\) 0 0
\(571\) −18733.9 −1.37301 −0.686505 0.727125i \(-0.740856\pi\)
−0.686505 + 0.727125i \(0.740856\pi\)
\(572\) 278.673 0.0203705
\(573\) 1919.91 0.139975
\(574\) 8391.01 0.610164
\(575\) 0 0
\(576\) 4833.92 0.349676
\(577\) −5113.58 −0.368944 −0.184472 0.982838i \(-0.559058\pi\)
−0.184472 + 0.982838i \(0.559058\pi\)
\(578\) 5165.24 0.371705
\(579\) −18787.8 −1.34852
\(580\) 0 0
\(581\) 802.492 0.0573029
\(582\) 5058.77 0.360297
\(583\) −4526.70 −0.321572
\(584\) 4092.69 0.289995
\(585\) 0 0
\(586\) 839.250 0.0591623
\(587\) 5379.95 0.378287 0.189143 0.981949i \(-0.439429\pi\)
0.189143 + 0.981949i \(0.439429\pi\)
\(588\) −10704.2 −0.750735
\(589\) −17505.0 −1.22458
\(590\) 0 0
\(591\) 24603.9 1.71247
\(592\) 6766.46 0.469763
\(593\) 15060.3 1.04292 0.521461 0.853275i \(-0.325387\pi\)
0.521461 + 0.853275i \(0.325387\pi\)
\(594\) −17087.7 −1.18033
\(595\) 0 0
\(596\) −11087.2 −0.761995
\(597\) −43879.7 −3.00817
\(598\) 184.321 0.0126045
\(599\) −3772.04 −0.257298 −0.128649 0.991690i \(-0.541064\pi\)
−0.128649 + 0.991690i \(0.541064\pi\)
\(600\) 0 0
\(601\) −14663.9 −0.995261 −0.497631 0.867389i \(-0.665796\pi\)
−0.497631 + 0.867389i \(0.665796\pi\)
\(602\) −11282.6 −0.763861
\(603\) 61935.5 4.18277
\(604\) 12434.5 0.837668
\(605\) 0 0
\(606\) 12565.9 0.842332
\(607\) 24514.5 1.63923 0.819614 0.572915i \(-0.194188\pi\)
0.819614 + 0.572915i \(0.194188\pi\)
\(608\) −2538.15 −0.169302
\(609\) 63447.1 4.22168
\(610\) 0 0
\(611\) 2324.40 0.153904
\(612\) −14584.6 −0.963310
\(613\) −14451.2 −0.952167 −0.476084 0.879400i \(-0.657944\pi\)
−0.476084 + 0.879400i \(0.657944\pi\)
\(614\) −8266.83 −0.543358
\(615\) 0 0
\(616\) 3427.70 0.224198
\(617\) −3292.19 −0.214811 −0.107406 0.994215i \(-0.534254\pi\)
−0.107406 + 0.994215i \(0.534254\pi\)
\(618\) −29835.2 −1.94199
\(619\) −12595.5 −0.817858 −0.408929 0.912566i \(-0.634098\pi\)
−0.408929 + 0.912566i \(0.634098\pi\)
\(620\) 0 0
\(621\) −11302.2 −0.730343
\(622\) 13982.1 0.901333
\(623\) −617.002 −0.0396785
\(624\) 649.178 0.0416473
\(625\) 0 0
\(626\) 18761.1 1.19783
\(627\) 13964.0 0.889425
\(628\) −14851.5 −0.943693
\(629\) −20415.3 −1.29413
\(630\) 0 0
\(631\) 19889.3 1.25480 0.627401 0.778697i \(-0.284119\pi\)
0.627401 + 0.778697i \(0.284119\pi\)
\(632\) −1283.71 −0.0807963
\(633\) 8270.56 0.519313
\(634\) −15990.7 −1.00169
\(635\) 0 0
\(636\) −10545.1 −0.657452
\(637\) −1058.97 −0.0658682
\(638\) −8841.75 −0.548665
\(639\) 46439.3 2.87498
\(640\) 0 0
\(641\) −19276.0 −1.18776 −0.593880 0.804553i \(-0.702405\pi\)
−0.593880 + 0.804553i \(0.702405\pi\)
\(642\) 19039.2 1.17043
\(643\) 10219.2 0.626758 0.313379 0.949628i \(-0.398539\pi\)
0.313379 + 0.949628i \(0.398539\pi\)
\(644\) 2267.16 0.138725
\(645\) 0 0
\(646\) 7657.93 0.466404
\(647\) −20818.4 −1.26500 −0.632500 0.774560i \(-0.717971\pi\)
−0.632500 + 0.774560i \(0.717971\pi\)
\(648\) −23491.8 −1.42415
\(649\) −6139.77 −0.371352
\(650\) 0 0
\(651\) 55070.0 3.31546
\(652\) −3663.17 −0.220032
\(653\) 15135.3 0.907031 0.453516 0.891248i \(-0.350170\pi\)
0.453516 + 0.891248i \(0.350170\pi\)
\(654\) −12885.3 −0.770418
\(655\) 0 0
\(656\) −2724.01 −0.162126
\(657\) −38640.2 −2.29451
\(658\) 28590.3 1.69387
\(659\) −13207.9 −0.780737 −0.390369 0.920659i \(-0.627652\pi\)
−0.390369 + 0.920659i \(0.627652\pi\)
\(660\) 0 0
\(661\) 6671.34 0.392564 0.196282 0.980547i \(-0.437113\pi\)
0.196282 + 0.980547i \(0.437113\pi\)
\(662\) 9597.72 0.563484
\(663\) −1958.65 −0.114733
\(664\) −260.517 −0.0152259
\(665\) 0 0
\(666\) −63883.9 −3.71689
\(667\) −5848.15 −0.339492
\(668\) −5729.26 −0.331844
\(669\) −45705.5 −2.64137
\(670\) 0 0
\(671\) 1401.56 0.0806355
\(672\) 7984.92 0.458371
\(673\) 9534.41 0.546099 0.273049 0.962000i \(-0.411968\pi\)
0.273049 + 0.962000i \(0.411968\pi\)
\(674\) 13791.0 0.788146
\(675\) 0 0
\(676\) −8723.78 −0.496346
\(677\) −17748.4 −1.00757 −0.503787 0.863828i \(-0.668060\pi\)
−0.503787 + 0.863828i \(0.668060\pi\)
\(678\) −16858.3 −0.954927
\(679\) 6155.80 0.347920
\(680\) 0 0
\(681\) 28279.6 1.59130
\(682\) −7674.35 −0.430888
\(683\) −9583.57 −0.536904 −0.268452 0.963293i \(-0.586512\pi\)
−0.268452 + 0.963293i \(0.586512\pi\)
\(684\) 23963.3 1.33956
\(685\) 0 0
\(686\) 3879.73 0.215931
\(687\) −14221.5 −0.789790
\(688\) 3662.72 0.202965
\(689\) −1043.24 −0.0576837
\(690\) 0 0
\(691\) 9410.74 0.518092 0.259046 0.965865i \(-0.416592\pi\)
0.259046 + 0.965865i \(0.416592\pi\)
\(692\) 13918.2 0.764580
\(693\) −32361.8 −1.77391
\(694\) −17488.3 −0.956554
\(695\) 0 0
\(696\) −20597.1 −1.12174
\(697\) 8218.69 0.446636
\(698\) 12774.2 0.692707
\(699\) 10872.9 0.588343
\(700\) 0 0
\(701\) −19517.9 −1.05161 −0.525806 0.850605i \(-0.676236\pi\)
−0.525806 + 0.850605i \(0.676236\pi\)
\(702\) −3938.08 −0.211728
\(703\) 33543.6 1.79960
\(704\) −1112.75 −0.0595715
\(705\) 0 0
\(706\) −1178.77 −0.0628378
\(707\) 15290.9 0.813397
\(708\) −14302.8 −0.759225
\(709\) −28430.7 −1.50598 −0.752990 0.658033i \(-0.771389\pi\)
−0.752990 + 0.658033i \(0.771389\pi\)
\(710\) 0 0
\(711\) 12119.8 0.639282
\(712\) 200.300 0.0105429
\(713\) −5076.00 −0.266617
\(714\) −24091.5 −1.26275
\(715\) 0 0
\(716\) 14570.8 0.760527
\(717\) 26055.3 1.35712
\(718\) −14428.3 −0.749942
\(719\) 18716.0 0.970779 0.485390 0.874298i \(-0.338678\pi\)
0.485390 + 0.874298i \(0.338678\pi\)
\(720\) 0 0
\(721\) −36305.2 −1.87528
\(722\) 1135.55 0.0585329
\(723\) 7048.78 0.362582
\(724\) 9636.61 0.494671
\(725\) 0 0
\(726\) −20832.7 −1.06498
\(727\) −18419.5 −0.939670 −0.469835 0.882754i \(-0.655687\pi\)
−0.469835 + 0.882754i \(0.655687\pi\)
\(728\) 789.956 0.0402167
\(729\) 87446.1 4.44272
\(730\) 0 0
\(731\) −11050.9 −0.559141
\(732\) 3264.97 0.164859
\(733\) 21548.4 1.08582 0.542912 0.839790i \(-0.317322\pi\)
0.542912 + 0.839790i \(0.317322\pi\)
\(734\) 24712.9 1.24274
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) −14257.3 −0.712584
\(738\) 25718.1 1.28279
\(739\) 12066.4 0.600636 0.300318 0.953839i \(-0.402907\pi\)
0.300318 + 0.953839i \(0.402907\pi\)
\(740\) 0 0
\(741\) 3218.19 0.159545
\(742\) −12831.8 −0.634868
\(743\) 21951.0 1.08385 0.541926 0.840426i \(-0.317695\pi\)
0.541926 + 0.840426i \(0.317695\pi\)
\(744\) −17877.6 −0.880948
\(745\) 0 0
\(746\) 14292.0 0.701428
\(747\) 2459.61 0.120472
\(748\) 3357.31 0.164111
\(749\) 23168.0 1.13023
\(750\) 0 0
\(751\) −3112.43 −0.151230 −0.0756152 0.997137i \(-0.524092\pi\)
−0.0756152 + 0.997137i \(0.524092\pi\)
\(752\) −9281.40 −0.450077
\(753\) −65491.2 −3.16950
\(754\) −2037.69 −0.0984197
\(755\) 0 0
\(756\) −48438.6 −2.33028
\(757\) 7684.64 0.368960 0.184480 0.982836i \(-0.440940\pi\)
0.184480 + 0.982836i \(0.440940\pi\)
\(758\) −4341.38 −0.208029
\(759\) 4049.21 0.193646
\(760\) 0 0
\(761\) −36484.6 −1.73793 −0.868965 0.494874i \(-0.835214\pi\)
−0.868965 + 0.494874i \(0.835214\pi\)
\(762\) −32698.0 −1.55450
\(763\) −15679.5 −0.743954
\(764\) −758.430 −0.0359150
\(765\) 0 0
\(766\) −15934.4 −0.751611
\(767\) −1414.99 −0.0666132
\(768\) −2592.18 −0.121793
\(769\) 2004.39 0.0939925 0.0469962 0.998895i \(-0.485035\pi\)
0.0469962 + 0.998895i \(0.485035\pi\)
\(770\) 0 0
\(771\) 53997.6 2.52228
\(772\) 7421.81 0.346006
\(773\) −7716.17 −0.359031 −0.179516 0.983755i \(-0.557453\pi\)
−0.179516 + 0.983755i \(0.557453\pi\)
\(774\) −34580.7 −1.60591
\(775\) 0 0
\(776\) −1998.39 −0.0924457
\(777\) −105527. −4.87226
\(778\) 1137.90 0.0524367
\(779\) −13503.8 −0.621084
\(780\) 0 0
\(781\) −10690.1 −0.489786
\(782\) 2220.61 0.101546
\(783\) 124947. 5.70275
\(784\) 4228.51 0.192625
\(785\) 0 0
\(786\) −39987.6 −1.81464
\(787\) 57.0149 0.00258241 0.00129121 0.999999i \(-0.499589\pi\)
0.00129121 + 0.999999i \(0.499589\pi\)
\(788\) −9719.39 −0.439390
\(789\) −69592.5 −3.14012
\(790\) 0 0
\(791\) −20514.2 −0.922124
\(792\) 10505.8 0.471346
\(793\) 323.006 0.0144644
\(794\) 17129.8 0.765633
\(795\) 0 0
\(796\) 17334.0 0.771842
\(797\) 15184.7 0.674870 0.337435 0.941349i \(-0.390441\pi\)
0.337435 + 0.941349i \(0.390441\pi\)
\(798\) 39583.9 1.75596
\(799\) 28003.2 1.23990
\(800\) 0 0
\(801\) −1891.09 −0.0834186
\(802\) 24911.1 1.09681
\(803\) 8894.80 0.390898
\(804\) −33212.8 −1.45687
\(805\) 0 0
\(806\) −1768.65 −0.0772929
\(807\) 19503.4 0.850746
\(808\) −4963.94 −0.216127
\(809\) −30286.4 −1.31621 −0.658105 0.752926i \(-0.728642\pi\)
−0.658105 + 0.752926i \(0.728642\pi\)
\(810\) 0 0
\(811\) −43936.2 −1.90235 −0.951176 0.308650i \(-0.900123\pi\)
−0.951176 + 0.308650i \(0.900123\pi\)
\(812\) −25063.7 −1.08321
\(813\) 36989.8 1.59568
\(814\) 14705.8 0.633217
\(815\) 0 0
\(816\) 7820.94 0.335524
\(817\) 18157.3 0.777532
\(818\) −23677.9 −1.01207
\(819\) −7458.18 −0.318205
\(820\) 0 0
\(821\) −5245.69 −0.222991 −0.111496 0.993765i \(-0.535564\pi\)
−0.111496 + 0.993765i \(0.535564\pi\)
\(822\) −15265.6 −0.647750
\(823\) −10678.0 −0.452260 −0.226130 0.974097i \(-0.572607\pi\)
−0.226130 + 0.974097i \(0.572607\pi\)
\(824\) 11785.9 0.498279
\(825\) 0 0
\(826\) −17404.4 −0.733145
\(827\) −3393.69 −0.142697 −0.0713484 0.997451i \(-0.522730\pi\)
−0.0713484 + 0.997451i \(0.522730\pi\)
\(828\) 6948.77 0.291650
\(829\) 9601.74 0.402270 0.201135 0.979564i \(-0.435537\pi\)
0.201135 + 0.979564i \(0.435537\pi\)
\(830\) 0 0
\(831\) −10605.3 −0.442713
\(832\) −256.447 −0.0106859
\(833\) −12757.9 −0.530656
\(834\) 20536.9 0.852680
\(835\) 0 0
\(836\) −5516.26 −0.228210
\(837\) 108450. 4.47860
\(838\) 3063.54 0.126287
\(839\) 11992.8 0.493489 0.246744 0.969081i \(-0.420639\pi\)
0.246744 + 0.969081i \(0.420639\pi\)
\(840\) 0 0
\(841\) 40263.0 1.65087
\(842\) 19970.1 0.817358
\(843\) 27935.8 1.14135
\(844\) −3267.15 −0.133247
\(845\) 0 0
\(846\) 87628.1 3.56113
\(847\) −25350.4 −1.02839
\(848\) 4165.66 0.168690
\(849\) 33977.7 1.37351
\(850\) 0 0
\(851\) 9726.79 0.391810
\(852\) −24903.0 −1.00136
\(853\) 15441.5 0.619821 0.309911 0.950766i \(-0.399701\pi\)
0.309911 + 0.950766i \(0.399701\pi\)
\(854\) 3973.00 0.159196
\(855\) 0 0
\(856\) −7521.13 −0.300312
\(857\) 44572.4 1.77662 0.888310 0.459244i \(-0.151880\pi\)
0.888310 + 0.459244i \(0.151880\pi\)
\(858\) 1410.88 0.0561384
\(859\) 2519.56 0.100077 0.0500386 0.998747i \(-0.484066\pi\)
0.0500386 + 0.998747i \(0.484066\pi\)
\(860\) 0 0
\(861\) 42482.5 1.68153
\(862\) 27573.4 1.08950
\(863\) −28980.1 −1.14310 −0.571548 0.820568i \(-0.693657\pi\)
−0.571548 + 0.820568i \(0.693657\pi\)
\(864\) 15724.8 0.619178
\(865\) 0 0
\(866\) −5243.83 −0.205765
\(867\) 26150.9 1.02437
\(868\) −21754.5 −0.850687
\(869\) −2789.94 −0.108909
\(870\) 0 0
\(871\) −3285.77 −0.127823
\(872\) 5090.11 0.197675
\(873\) 18867.3 0.731455
\(874\) −3648.59 −0.141208
\(875\) 0 0
\(876\) 20720.7 0.799187
\(877\) 7955.28 0.306307 0.153153 0.988202i \(-0.451057\pi\)
0.153153 + 0.988202i \(0.451057\pi\)
\(878\) −24125.3 −0.927323
\(879\) 4249.00 0.163044
\(880\) 0 0
\(881\) 29722.0 1.13662 0.568309 0.822815i \(-0.307598\pi\)
0.568309 + 0.822815i \(0.307598\pi\)
\(882\) −39922.4 −1.52410
\(883\) 19379.7 0.738596 0.369298 0.929311i \(-0.379598\pi\)
0.369298 + 0.929311i \(0.379598\pi\)
\(884\) 773.734 0.0294383
\(885\) 0 0
\(886\) 7318.53 0.277507
\(887\) −22901.7 −0.866925 −0.433463 0.901172i \(-0.642708\pi\)
−0.433463 + 0.901172i \(0.642708\pi\)
\(888\) 34257.6 1.29461
\(889\) −39788.8 −1.50110
\(890\) 0 0
\(891\) −51055.7 −1.91967
\(892\) 18055.2 0.677728
\(893\) −46010.9 −1.72419
\(894\) −56132.9 −2.09996
\(895\) 0 0
\(896\) −3154.31 −0.117610
\(897\) 933.193 0.0347362
\(898\) 21059.3 0.782581
\(899\) 56115.8 2.08183
\(900\) 0 0
\(901\) −12568.3 −0.464719
\(902\) −5920.20 −0.218538
\(903\) −57122.2 −2.10510
\(904\) 6659.61 0.245017
\(905\) 0 0
\(906\) 62953.9 2.30850
\(907\) −42542.2 −1.55743 −0.778716 0.627376i \(-0.784129\pi\)
−0.778716 + 0.627376i \(0.784129\pi\)
\(908\) −11171.4 −0.408300
\(909\) 46865.9 1.71006
\(910\) 0 0
\(911\) 220.864 0.00803243 0.00401622 0.999992i \(-0.498722\pi\)
0.00401622 + 0.999992i \(0.498722\pi\)
\(912\) −12850.3 −0.466574
\(913\) −566.191 −0.0205237
\(914\) 12886.5 0.466352
\(915\) 0 0
\(916\) 5617.99 0.202646
\(917\) −48659.1 −1.75231
\(918\) −47443.9 −1.70575
\(919\) 27835.4 0.999135 0.499567 0.866275i \(-0.333492\pi\)
0.499567 + 0.866275i \(0.333492\pi\)
\(920\) 0 0
\(921\) −41853.8 −1.49743
\(922\) 6527.72 0.233166
\(923\) −2463.68 −0.0878580
\(924\) 17353.9 0.617860
\(925\) 0 0
\(926\) 19036.2 0.675562
\(927\) −111274. −3.94252
\(928\) 8136.56 0.287819
\(929\) −2172.71 −0.0767323 −0.0383661 0.999264i \(-0.512215\pi\)
−0.0383661 + 0.999264i \(0.512215\pi\)
\(930\) 0 0
\(931\) 20962.1 0.737921
\(932\) −4295.17 −0.150958
\(933\) 70789.1 2.48396
\(934\) 38185.3 1.33775
\(935\) 0 0
\(936\) 2421.18 0.0845501
\(937\) −54906.5 −1.91432 −0.957160 0.289560i \(-0.906491\pi\)
−0.957160 + 0.289560i \(0.906491\pi\)
\(938\) −40415.2 −1.40683
\(939\) 94984.6 3.30107
\(940\) 0 0
\(941\) 5980.06 0.207167 0.103584 0.994621i \(-0.466969\pi\)
0.103584 + 0.994621i \(0.466969\pi\)
\(942\) −75191.0 −2.60070
\(943\) −3915.77 −0.135223
\(944\) 5650.09 0.194804
\(945\) 0 0
\(946\) 7960.33 0.273586
\(947\) 20268.6 0.695504 0.347752 0.937587i \(-0.386945\pi\)
0.347752 + 0.937587i \(0.386945\pi\)
\(948\) −6499.24 −0.222664
\(949\) 2049.92 0.0701193
\(950\) 0 0
\(951\) −80958.6 −2.76053
\(952\) 9516.97 0.323999
\(953\) 21797.9 0.740925 0.370463 0.928847i \(-0.379199\pi\)
0.370463 + 0.928847i \(0.379199\pi\)
\(954\) −39329.1 −1.33472
\(955\) 0 0
\(956\) −10292.7 −0.348212
\(957\) −44764.5 −1.51205
\(958\) 12649.6 0.426608
\(959\) −18576.1 −0.625499
\(960\) 0 0
\(961\) 18915.6 0.634945
\(962\) 3389.14 0.113587
\(963\) 71008.9 2.37615
\(964\) −2784.51 −0.0930321
\(965\) 0 0
\(966\) 11478.3 0.382308
\(967\) −48950.6 −1.62786 −0.813932 0.580960i \(-0.802677\pi\)
−0.813932 + 0.580960i \(0.802677\pi\)
\(968\) 8229.62 0.273254
\(969\) 38771.0 1.28535
\(970\) 0 0
\(971\) −26426.2 −0.873386 −0.436693 0.899611i \(-0.643850\pi\)
−0.436693 + 0.899611i \(0.643850\pi\)
\(972\) −65864.4 −2.17346
\(973\) 24990.5 0.823389
\(974\) −15746.1 −0.518007
\(975\) 0 0
\(976\) −1289.77 −0.0422998
\(977\) −5770.09 −0.188947 −0.0944736 0.995527i \(-0.530117\pi\)
−0.0944736 + 0.995527i \(0.530117\pi\)
\(978\) −18546.1 −0.606379
\(979\) 435.320 0.0142113
\(980\) 0 0
\(981\) −48057.1 −1.56406
\(982\) 7113.64 0.231166
\(983\) 484.532 0.0157214 0.00786071 0.999969i \(-0.497498\pi\)
0.00786071 + 0.999969i \(0.497498\pi\)
\(984\) −13791.3 −0.446799
\(985\) 0 0
\(986\) −24549.0 −0.792901
\(987\) 144749. 4.66808
\(988\) −1271.29 −0.0409365
\(989\) 5265.16 0.169285
\(990\) 0 0
\(991\) −26511.5 −0.849813 −0.424907 0.905237i \(-0.639693\pi\)
−0.424907 + 0.905237i \(0.639693\pi\)
\(992\) 7062.27 0.226035
\(993\) 48591.9 1.55289
\(994\) −30303.4 −0.966966
\(995\) 0 0
\(996\) −1318.96 −0.0419606
\(997\) 4628.20 0.147018 0.0735088 0.997295i \(-0.476580\pi\)
0.0735088 + 0.997295i \(0.476580\pi\)
\(998\) 3866.74 0.122645
\(999\) −207816. −6.58158
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.a.n.1.1 4
5.2 odd 4 1150.4.b.o.599.4 8
5.3 odd 4 1150.4.b.o.599.5 8
5.4 even 2 230.4.a.j.1.4 4
15.14 odd 2 2070.4.a.bg.1.1 4
20.19 odd 2 1840.4.a.k.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.j.1.4 4 5.4 even 2
1150.4.a.n.1.1 4 1.1 even 1 trivial
1150.4.b.o.599.4 8 5.2 odd 4
1150.4.b.o.599.5 8 5.3 odd 4
1840.4.a.k.1.1 4 20.19 odd 2
2070.4.a.bg.1.1 4 15.14 odd 2