Properties

Label 1150.4.a.h.1.1
Level $1150$
Weight $4$
Character 1150.1
Self dual yes
Analytic conductor $67.852$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(1,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1150.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +2.00000 q^{3} +4.00000 q^{4} +4.00000 q^{6} +21.0000 q^{7} +8.00000 q^{8} -23.0000 q^{9} +47.0000 q^{11} +8.00000 q^{12} +57.0000 q^{13} +42.0000 q^{14} +16.0000 q^{16} -84.0000 q^{17} -46.0000 q^{18} -5.00000 q^{19} +42.0000 q^{21} +94.0000 q^{22} +23.0000 q^{23} +16.0000 q^{24} +114.000 q^{26} -100.000 q^{27} +84.0000 q^{28} +285.000 q^{29} +82.0000 q^{31} +32.0000 q^{32} +94.0000 q^{33} -168.000 q^{34} -92.0000 q^{36} -54.0000 q^{37} -10.0000 q^{38} +114.000 q^{39} -53.0000 q^{41} +84.0000 q^{42} +197.000 q^{43} +188.000 q^{44} +46.0000 q^{46} -124.000 q^{47} +32.0000 q^{48} +98.0000 q^{49} -168.000 q^{51} +228.000 q^{52} -148.000 q^{53} -200.000 q^{54} +168.000 q^{56} -10.0000 q^{57} +570.000 q^{58} +30.0000 q^{59} -578.000 q^{61} +164.000 q^{62} -483.000 q^{63} +64.0000 q^{64} +188.000 q^{66} +296.000 q^{67} -336.000 q^{68} +46.0000 q^{69} +422.000 q^{71} -184.000 q^{72} +487.000 q^{73} -108.000 q^{74} -20.0000 q^{76} +987.000 q^{77} +228.000 q^{78} -405.000 q^{79} +421.000 q^{81} -106.000 q^{82} +397.000 q^{83} +168.000 q^{84} +394.000 q^{86} +570.000 q^{87} +376.000 q^{88} +730.000 q^{89} +1197.00 q^{91} +92.0000 q^{92} +164.000 q^{93} -248.000 q^{94} +64.0000 q^{96} -64.0000 q^{97} +196.000 q^{98} -1081.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 2.00000 0.384900 0.192450 0.981307i \(-0.438357\pi\)
0.192450 + 0.981307i \(0.438357\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 4.00000 0.272166
\(7\) 21.0000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) 8.00000 0.353553
\(9\) −23.0000 −0.851852
\(10\) 0 0
\(11\) 47.0000 1.28828 0.644138 0.764909i \(-0.277216\pi\)
0.644138 + 0.764909i \(0.277216\pi\)
\(12\) 8.00000 0.192450
\(13\) 57.0000 1.21607 0.608037 0.793909i \(-0.291957\pi\)
0.608037 + 0.793909i \(0.291957\pi\)
\(14\) 42.0000 0.801784
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −84.0000 −1.19841 −0.599206 0.800595i \(-0.704517\pi\)
−0.599206 + 0.800595i \(0.704517\pi\)
\(18\) −46.0000 −0.602350
\(19\) −5.00000 −0.0603726 −0.0301863 0.999544i \(-0.509610\pi\)
−0.0301863 + 0.999544i \(0.509610\pi\)
\(20\) 0 0
\(21\) 42.0000 0.436436
\(22\) 94.0000 0.910949
\(23\) 23.0000 0.208514
\(24\) 16.0000 0.136083
\(25\) 0 0
\(26\) 114.000 0.859894
\(27\) −100.000 −0.712778
\(28\) 84.0000 0.566947
\(29\) 285.000 1.82494 0.912468 0.409147i \(-0.134174\pi\)
0.912468 + 0.409147i \(0.134174\pi\)
\(30\) 0 0
\(31\) 82.0000 0.475085 0.237542 0.971377i \(-0.423658\pi\)
0.237542 + 0.971377i \(0.423658\pi\)
\(32\) 32.0000 0.176777
\(33\) 94.0000 0.495858
\(34\) −168.000 −0.847405
\(35\) 0 0
\(36\) −92.0000 −0.425926
\(37\) −54.0000 −0.239934 −0.119967 0.992778i \(-0.538279\pi\)
−0.119967 + 0.992778i \(0.538279\pi\)
\(38\) −10.0000 −0.0426898
\(39\) 114.000 0.468067
\(40\) 0 0
\(41\) −53.0000 −0.201883 −0.100942 0.994892i \(-0.532186\pi\)
−0.100942 + 0.994892i \(0.532186\pi\)
\(42\) 84.0000 0.308607
\(43\) 197.000 0.698656 0.349328 0.937000i \(-0.386410\pi\)
0.349328 + 0.937000i \(0.386410\pi\)
\(44\) 188.000 0.644138
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) −124.000 −0.384835 −0.192418 0.981313i \(-0.561633\pi\)
−0.192418 + 0.981313i \(0.561633\pi\)
\(48\) 32.0000 0.0962250
\(49\) 98.0000 0.285714
\(50\) 0 0
\(51\) −168.000 −0.461269
\(52\) 228.000 0.608037
\(53\) −148.000 −0.383573 −0.191786 0.981437i \(-0.561428\pi\)
−0.191786 + 0.981437i \(0.561428\pi\)
\(54\) −200.000 −0.504010
\(55\) 0 0
\(56\) 168.000 0.400892
\(57\) −10.0000 −0.0232374
\(58\) 570.000 1.29043
\(59\) 30.0000 0.0661978 0.0330989 0.999452i \(-0.489462\pi\)
0.0330989 + 0.999452i \(0.489462\pi\)
\(60\) 0 0
\(61\) −578.000 −1.21320 −0.606601 0.795006i \(-0.707467\pi\)
−0.606601 + 0.795006i \(0.707467\pi\)
\(62\) 164.000 0.335936
\(63\) −483.000 −0.965909
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 188.000 0.350624
\(67\) 296.000 0.539734 0.269867 0.962898i \(-0.413020\pi\)
0.269867 + 0.962898i \(0.413020\pi\)
\(68\) −336.000 −0.599206
\(69\) 46.0000 0.0802572
\(70\) 0 0
\(71\) 422.000 0.705383 0.352691 0.935740i \(-0.385267\pi\)
0.352691 + 0.935740i \(0.385267\pi\)
\(72\) −184.000 −0.301175
\(73\) 487.000 0.780809 0.390404 0.920643i \(-0.372335\pi\)
0.390404 + 0.920643i \(0.372335\pi\)
\(74\) −108.000 −0.169659
\(75\) 0 0
\(76\) −20.0000 −0.0301863
\(77\) 987.000 1.46077
\(78\) 228.000 0.330973
\(79\) −405.000 −0.576786 −0.288393 0.957512i \(-0.593121\pi\)
−0.288393 + 0.957512i \(0.593121\pi\)
\(80\) 0 0
\(81\) 421.000 0.577503
\(82\) −106.000 −0.142753
\(83\) 397.000 0.525017 0.262509 0.964930i \(-0.415450\pi\)
0.262509 + 0.964930i \(0.415450\pi\)
\(84\) 168.000 0.218218
\(85\) 0 0
\(86\) 394.000 0.494025
\(87\) 570.000 0.702419
\(88\) 376.000 0.455474
\(89\) 730.000 0.869436 0.434718 0.900567i \(-0.356848\pi\)
0.434718 + 0.900567i \(0.356848\pi\)
\(90\) 0 0
\(91\) 1197.00 1.37890
\(92\) 92.0000 0.104257
\(93\) 164.000 0.182860
\(94\) −248.000 −0.272120
\(95\) 0 0
\(96\) 64.0000 0.0680414
\(97\) −64.0000 −0.0669919 −0.0334960 0.999439i \(-0.510664\pi\)
−0.0334960 + 0.999439i \(0.510664\pi\)
\(98\) 196.000 0.202031
\(99\) −1081.00 −1.09742
\(100\) 0 0
\(101\) 1002.00 0.987156 0.493578 0.869702i \(-0.335689\pi\)
0.493578 + 0.869702i \(0.335689\pi\)
\(102\) −336.000 −0.326166
\(103\) 1807.00 1.72863 0.864316 0.502950i \(-0.167752\pi\)
0.864316 + 0.502950i \(0.167752\pi\)
\(104\) 456.000 0.429947
\(105\) 0 0
\(106\) −296.000 −0.271227
\(107\) −1664.00 −1.50341 −0.751705 0.659499i \(-0.770768\pi\)
−0.751705 + 0.659499i \(0.770768\pi\)
\(108\) −400.000 −0.356389
\(109\) 470.000 0.413008 0.206504 0.978446i \(-0.433791\pi\)
0.206504 + 0.978446i \(0.433791\pi\)
\(110\) 0 0
\(111\) −108.000 −0.0923505
\(112\) 336.000 0.283473
\(113\) 992.000 0.825836 0.412918 0.910768i \(-0.364510\pi\)
0.412918 + 0.910768i \(0.364510\pi\)
\(114\) −20.0000 −0.0164313
\(115\) 0 0
\(116\) 1140.00 0.912468
\(117\) −1311.00 −1.03591
\(118\) 60.0000 0.0468089
\(119\) −1764.00 −1.35887
\(120\) 0 0
\(121\) 878.000 0.659654
\(122\) −1156.00 −0.857863
\(123\) −106.000 −0.0777049
\(124\) 328.000 0.237542
\(125\) 0 0
\(126\) −966.000 −0.683001
\(127\) −2274.00 −1.58886 −0.794429 0.607358i \(-0.792230\pi\)
−0.794429 + 0.607358i \(0.792230\pi\)
\(128\) 128.000 0.0883883
\(129\) 394.000 0.268913
\(130\) 0 0
\(131\) 1802.00 1.20184 0.600922 0.799308i \(-0.294800\pi\)
0.600922 + 0.799308i \(0.294800\pi\)
\(132\) 376.000 0.247929
\(133\) −105.000 −0.0684561
\(134\) 592.000 0.381649
\(135\) 0 0
\(136\) −672.000 −0.423702
\(137\) 106.000 0.0661036 0.0330518 0.999454i \(-0.489477\pi\)
0.0330518 + 0.999454i \(0.489477\pi\)
\(138\) 92.0000 0.0567504
\(139\) −2700.00 −1.64756 −0.823781 0.566909i \(-0.808139\pi\)
−0.823781 + 0.566909i \(0.808139\pi\)
\(140\) 0 0
\(141\) −248.000 −0.148123
\(142\) 844.000 0.498781
\(143\) 2679.00 1.56664
\(144\) −368.000 −0.212963
\(145\) 0 0
\(146\) 974.000 0.552115
\(147\) 196.000 0.109971
\(148\) −216.000 −0.119967
\(149\) −890.000 −0.489340 −0.244670 0.969606i \(-0.578680\pi\)
−0.244670 + 0.969606i \(0.578680\pi\)
\(150\) 0 0
\(151\) −3398.00 −1.83129 −0.915647 0.401984i \(-0.868321\pi\)
−0.915647 + 0.401984i \(0.868321\pi\)
\(152\) −40.0000 −0.0213449
\(153\) 1932.00 1.02087
\(154\) 1974.00 1.03292
\(155\) 0 0
\(156\) 456.000 0.234033
\(157\) 2976.00 1.51281 0.756403 0.654105i \(-0.226955\pi\)
0.756403 + 0.654105i \(0.226955\pi\)
\(158\) −810.000 −0.407849
\(159\) −296.000 −0.147637
\(160\) 0 0
\(161\) 483.000 0.236433
\(162\) 842.000 0.408357
\(163\) 512.000 0.246030 0.123015 0.992405i \(-0.460744\pi\)
0.123015 + 0.992405i \(0.460744\pi\)
\(164\) −212.000 −0.100942
\(165\) 0 0
\(166\) 794.000 0.371243
\(167\) 1426.00 0.660762 0.330381 0.943848i \(-0.392823\pi\)
0.330381 + 0.943848i \(0.392823\pi\)
\(168\) 336.000 0.154303
\(169\) 1052.00 0.478835
\(170\) 0 0
\(171\) 115.000 0.0514285
\(172\) 788.000 0.349328
\(173\) 1047.00 0.460127 0.230063 0.973176i \(-0.426107\pi\)
0.230063 + 0.973176i \(0.426107\pi\)
\(174\) 1140.00 0.496685
\(175\) 0 0
\(176\) 752.000 0.322069
\(177\) 60.0000 0.0254795
\(178\) 1460.00 0.614784
\(179\) −1380.00 −0.576235 −0.288117 0.957595i \(-0.593029\pi\)
−0.288117 + 0.957595i \(0.593029\pi\)
\(180\) 0 0
\(181\) 1332.00 0.546999 0.273499 0.961872i \(-0.411819\pi\)
0.273499 + 0.961872i \(0.411819\pi\)
\(182\) 2394.00 0.975028
\(183\) −1156.00 −0.466962
\(184\) 184.000 0.0737210
\(185\) 0 0
\(186\) 328.000 0.129302
\(187\) −3948.00 −1.54388
\(188\) −496.000 −0.192418
\(189\) −2100.00 −0.808214
\(190\) 0 0
\(191\) 1297.00 0.491349 0.245674 0.969352i \(-0.420991\pi\)
0.245674 + 0.969352i \(0.420991\pi\)
\(192\) 128.000 0.0481125
\(193\) 3902.00 1.45530 0.727648 0.685951i \(-0.240613\pi\)
0.727648 + 0.685951i \(0.240613\pi\)
\(194\) −128.000 −0.0473704
\(195\) 0 0
\(196\) 392.000 0.142857
\(197\) −149.000 −0.0538874 −0.0269437 0.999637i \(-0.508577\pi\)
−0.0269437 + 0.999637i \(0.508577\pi\)
\(198\) −2162.00 −0.775993
\(199\) −525.000 −0.187016 −0.0935082 0.995619i \(-0.529808\pi\)
−0.0935082 + 0.995619i \(0.529808\pi\)
\(200\) 0 0
\(201\) 592.000 0.207744
\(202\) 2004.00 0.698024
\(203\) 5985.00 2.06928
\(204\) −672.000 −0.230634
\(205\) 0 0
\(206\) 3614.00 1.22233
\(207\) −529.000 −0.177623
\(208\) 912.000 0.304018
\(209\) −235.000 −0.0777765
\(210\) 0 0
\(211\) −3518.00 −1.14782 −0.573908 0.818920i \(-0.694573\pi\)
−0.573908 + 0.818920i \(0.694573\pi\)
\(212\) −592.000 −0.191786
\(213\) 844.000 0.271502
\(214\) −3328.00 −1.06307
\(215\) 0 0
\(216\) −800.000 −0.252005
\(217\) 1722.00 0.538696
\(218\) 940.000 0.292041
\(219\) 974.000 0.300533
\(220\) 0 0
\(221\) −4788.00 −1.45736
\(222\) −216.000 −0.0653017
\(223\) −2968.00 −0.891264 −0.445632 0.895216i \(-0.647021\pi\)
−0.445632 + 0.895216i \(0.647021\pi\)
\(224\) 672.000 0.200446
\(225\) 0 0
\(226\) 1984.00 0.583954
\(227\) 4036.00 1.18008 0.590041 0.807373i \(-0.299111\pi\)
0.590041 + 0.807373i \(0.299111\pi\)
\(228\) −40.0000 −0.0116187
\(229\) −4190.00 −1.20910 −0.604548 0.796569i \(-0.706646\pi\)
−0.604548 + 0.796569i \(0.706646\pi\)
\(230\) 0 0
\(231\) 1974.00 0.562250
\(232\) 2280.00 0.645213
\(233\) 977.000 0.274701 0.137351 0.990522i \(-0.456141\pi\)
0.137351 + 0.990522i \(0.456141\pi\)
\(234\) −2622.00 −0.732502
\(235\) 0 0
\(236\) 120.000 0.0330989
\(237\) −810.000 −0.222005
\(238\) −3528.00 −0.960867
\(239\) −3740.00 −1.01222 −0.506110 0.862469i \(-0.668917\pi\)
−0.506110 + 0.862469i \(0.668917\pi\)
\(240\) 0 0
\(241\) 3692.00 0.986816 0.493408 0.869798i \(-0.335751\pi\)
0.493408 + 0.869798i \(0.335751\pi\)
\(242\) 1756.00 0.466446
\(243\) 3542.00 0.935059
\(244\) −2312.00 −0.606601
\(245\) 0 0
\(246\) −212.000 −0.0549456
\(247\) −285.000 −0.0734175
\(248\) 656.000 0.167968
\(249\) 794.000 0.202079
\(250\) 0 0
\(251\) −6468.00 −1.62652 −0.813260 0.581900i \(-0.802309\pi\)
−0.813260 + 0.581900i \(0.802309\pi\)
\(252\) −1932.00 −0.482955
\(253\) 1081.00 0.268624
\(254\) −4548.00 −1.12349
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 5586.00 1.35582 0.677909 0.735146i \(-0.262886\pi\)
0.677909 + 0.735146i \(0.262886\pi\)
\(258\) 788.000 0.190150
\(259\) −1134.00 −0.272059
\(260\) 0 0
\(261\) −6555.00 −1.55458
\(262\) 3604.00 0.849832
\(263\) −6208.00 −1.45552 −0.727760 0.685832i \(-0.759438\pi\)
−0.727760 + 0.685832i \(0.759438\pi\)
\(264\) 752.000 0.175312
\(265\) 0 0
\(266\) −210.000 −0.0484057
\(267\) 1460.00 0.334646
\(268\) 1184.00 0.269867
\(269\) −7895.00 −1.78947 −0.894734 0.446600i \(-0.852635\pi\)
−0.894734 + 0.446600i \(0.852635\pi\)
\(270\) 0 0
\(271\) −68.0000 −0.0152425 −0.00762123 0.999971i \(-0.502426\pi\)
−0.00762123 + 0.999971i \(0.502426\pi\)
\(272\) −1344.00 −0.299603
\(273\) 2394.00 0.530738
\(274\) 212.000 0.0467423
\(275\) 0 0
\(276\) 184.000 0.0401286
\(277\) −5289.00 −1.14724 −0.573620 0.819122i \(-0.694461\pi\)
−0.573620 + 0.819122i \(0.694461\pi\)
\(278\) −5400.00 −1.16500
\(279\) −1886.00 −0.404702
\(280\) 0 0
\(281\) −3408.00 −0.723503 −0.361751 0.932275i \(-0.617821\pi\)
−0.361751 + 0.932275i \(0.617821\pi\)
\(282\) −496.000 −0.104739
\(283\) −1828.00 −0.383969 −0.191985 0.981398i \(-0.561492\pi\)
−0.191985 + 0.981398i \(0.561492\pi\)
\(284\) 1688.00 0.352691
\(285\) 0 0
\(286\) 5358.00 1.10778
\(287\) −1113.00 −0.228914
\(288\) −736.000 −0.150588
\(289\) 2143.00 0.436190
\(290\) 0 0
\(291\) −128.000 −0.0257852
\(292\) 1948.00 0.390404
\(293\) −6388.00 −1.27369 −0.636845 0.770992i \(-0.719761\pi\)
−0.636845 + 0.770992i \(0.719761\pi\)
\(294\) 392.000 0.0777616
\(295\) 0 0
\(296\) −432.000 −0.0848294
\(297\) −4700.00 −0.918255
\(298\) −1780.00 −0.346016
\(299\) 1311.00 0.253569
\(300\) 0 0
\(301\) 4137.00 0.792202
\(302\) −6796.00 −1.29492
\(303\) 2004.00 0.379956
\(304\) −80.0000 −0.0150931
\(305\) 0 0
\(306\) 3864.00 0.721863
\(307\) 5016.00 0.932502 0.466251 0.884652i \(-0.345604\pi\)
0.466251 + 0.884652i \(0.345604\pi\)
\(308\) 3948.00 0.730384
\(309\) 3614.00 0.665350
\(310\) 0 0
\(311\) 5542.00 1.01048 0.505238 0.862980i \(-0.331405\pi\)
0.505238 + 0.862980i \(0.331405\pi\)
\(312\) 912.000 0.165487
\(313\) −3838.00 −0.693088 −0.346544 0.938034i \(-0.612645\pi\)
−0.346544 + 0.938034i \(0.612645\pi\)
\(314\) 5952.00 1.06972
\(315\) 0 0
\(316\) −1620.00 −0.288393
\(317\) 9771.00 1.73121 0.865606 0.500726i \(-0.166934\pi\)
0.865606 + 0.500726i \(0.166934\pi\)
\(318\) −592.000 −0.104395
\(319\) 13395.0 2.35102
\(320\) 0 0
\(321\) −3328.00 −0.578663
\(322\) 966.000 0.167183
\(323\) 420.000 0.0723512
\(324\) 1684.00 0.288752
\(325\) 0 0
\(326\) 1024.00 0.173970
\(327\) 940.000 0.158967
\(328\) −424.000 −0.0713765
\(329\) −2604.00 −0.436362
\(330\) 0 0
\(331\) 3982.00 0.661240 0.330620 0.943764i \(-0.392742\pi\)
0.330620 + 0.943764i \(0.392742\pi\)
\(332\) 1588.00 0.262509
\(333\) 1242.00 0.204388
\(334\) 2852.00 0.467229
\(335\) 0 0
\(336\) 672.000 0.109109
\(337\) 536.000 0.0866403 0.0433201 0.999061i \(-0.486206\pi\)
0.0433201 + 0.999061i \(0.486206\pi\)
\(338\) 2104.00 0.338587
\(339\) 1984.00 0.317865
\(340\) 0 0
\(341\) 3854.00 0.612040
\(342\) 230.000 0.0363654
\(343\) −5145.00 −0.809924
\(344\) 1576.00 0.247012
\(345\) 0 0
\(346\) 2094.00 0.325359
\(347\) −8024.00 −1.24136 −0.620679 0.784065i \(-0.713143\pi\)
−0.620679 + 0.784065i \(0.713143\pi\)
\(348\) 2280.00 0.351209
\(349\) −4675.00 −0.717040 −0.358520 0.933522i \(-0.616719\pi\)
−0.358520 + 0.933522i \(0.616719\pi\)
\(350\) 0 0
\(351\) −5700.00 −0.866791
\(352\) 1504.00 0.227737
\(353\) 10347.0 1.56010 0.780050 0.625717i \(-0.215194\pi\)
0.780050 + 0.625717i \(0.215194\pi\)
\(354\) 120.000 0.0180167
\(355\) 0 0
\(356\) 2920.00 0.434718
\(357\) −3528.00 −0.523030
\(358\) −2760.00 −0.407460
\(359\) 12715.0 1.86928 0.934641 0.355593i \(-0.115721\pi\)
0.934641 + 0.355593i \(0.115721\pi\)
\(360\) 0 0
\(361\) −6834.00 −0.996355
\(362\) 2664.00 0.386787
\(363\) 1756.00 0.253901
\(364\) 4788.00 0.689449
\(365\) 0 0
\(366\) −2312.00 −0.330192
\(367\) −7999.00 −1.13772 −0.568862 0.822433i \(-0.692616\pi\)
−0.568862 + 0.822433i \(0.692616\pi\)
\(368\) 368.000 0.0521286
\(369\) 1219.00 0.171975
\(370\) 0 0
\(371\) −3108.00 −0.434931
\(372\) 656.000 0.0914301
\(373\) −3588.00 −0.498069 −0.249034 0.968495i \(-0.580113\pi\)
−0.249034 + 0.968495i \(0.580113\pi\)
\(374\) −7896.00 −1.09169
\(375\) 0 0
\(376\) −992.000 −0.136060
\(377\) 16245.0 2.21926
\(378\) −4200.00 −0.571494
\(379\) −2060.00 −0.279195 −0.139598 0.990208i \(-0.544581\pi\)
−0.139598 + 0.990208i \(0.544581\pi\)
\(380\) 0 0
\(381\) −4548.00 −0.611551
\(382\) 2594.00 0.347436
\(383\) −9943.00 −1.32654 −0.663268 0.748382i \(-0.730831\pi\)
−0.663268 + 0.748382i \(0.730831\pi\)
\(384\) 256.000 0.0340207
\(385\) 0 0
\(386\) 7804.00 1.02905
\(387\) −4531.00 −0.595152
\(388\) −256.000 −0.0334960
\(389\) −14580.0 −1.90035 −0.950174 0.311720i \(-0.899095\pi\)
−0.950174 + 0.311720i \(0.899095\pi\)
\(390\) 0 0
\(391\) −1932.00 −0.249886
\(392\) 784.000 0.101015
\(393\) 3604.00 0.462590
\(394\) −298.000 −0.0381041
\(395\) 0 0
\(396\) −4324.00 −0.548710
\(397\) −14594.0 −1.84497 −0.922483 0.386037i \(-0.873844\pi\)
−0.922483 + 0.386037i \(0.873844\pi\)
\(398\) −1050.00 −0.132241
\(399\) −210.000 −0.0263487
\(400\) 0 0
\(401\) 9702.00 1.20822 0.604108 0.796902i \(-0.293529\pi\)
0.604108 + 0.796902i \(0.293529\pi\)
\(402\) 1184.00 0.146897
\(403\) 4674.00 0.577738
\(404\) 4008.00 0.493578
\(405\) 0 0
\(406\) 11970.0 1.46320
\(407\) −2538.00 −0.309101
\(408\) −1344.00 −0.163083
\(409\) −14315.0 −1.73064 −0.865319 0.501221i \(-0.832884\pi\)
−0.865319 + 0.501221i \(0.832884\pi\)
\(410\) 0 0
\(411\) 212.000 0.0254433
\(412\) 7228.00 0.864316
\(413\) 630.000 0.0750612
\(414\) −1058.00 −0.125599
\(415\) 0 0
\(416\) 1824.00 0.214973
\(417\) −5400.00 −0.634147
\(418\) −470.000 −0.0549963
\(419\) −975.000 −0.113680 −0.0568399 0.998383i \(-0.518102\pi\)
−0.0568399 + 0.998383i \(0.518102\pi\)
\(420\) 0 0
\(421\) −11138.0 −1.28939 −0.644695 0.764440i \(-0.723015\pi\)
−0.644695 + 0.764440i \(0.723015\pi\)
\(422\) −7036.00 −0.811628
\(423\) 2852.00 0.327823
\(424\) −1184.00 −0.135613
\(425\) 0 0
\(426\) 1688.00 0.191981
\(427\) −12138.0 −1.37564
\(428\) −6656.00 −0.751705
\(429\) 5358.00 0.602999
\(430\) 0 0
\(431\) −9568.00 −1.06931 −0.534657 0.845069i \(-0.679559\pi\)
−0.534657 + 0.845069i \(0.679559\pi\)
\(432\) −1600.00 −0.178195
\(433\) 1762.00 0.195557 0.0977787 0.995208i \(-0.468826\pi\)
0.0977787 + 0.995208i \(0.468826\pi\)
\(434\) 3444.00 0.380915
\(435\) 0 0
\(436\) 1880.00 0.206504
\(437\) −115.000 −0.0125885
\(438\) 1948.00 0.212509
\(439\) 4080.00 0.443571 0.221786 0.975095i \(-0.428811\pi\)
0.221786 + 0.975095i \(0.428811\pi\)
\(440\) 0 0
\(441\) −2254.00 −0.243386
\(442\) −9576.00 −1.03051
\(443\) 9582.00 1.02766 0.513831 0.857891i \(-0.328226\pi\)
0.513831 + 0.857891i \(0.328226\pi\)
\(444\) −432.000 −0.0461753
\(445\) 0 0
\(446\) −5936.00 −0.630219
\(447\) −1780.00 −0.188347
\(448\) 1344.00 0.141737
\(449\) −3290.00 −0.345801 −0.172901 0.984939i \(-0.555314\pi\)
−0.172901 + 0.984939i \(0.555314\pi\)
\(450\) 0 0
\(451\) −2491.00 −0.260081
\(452\) 3968.00 0.412918
\(453\) −6796.00 −0.704865
\(454\) 8072.00 0.834444
\(455\) 0 0
\(456\) −80.0000 −0.00821567
\(457\) −484.000 −0.0495417 −0.0247709 0.999693i \(-0.507886\pi\)
−0.0247709 + 0.999693i \(0.507886\pi\)
\(458\) −8380.00 −0.854960
\(459\) 8400.00 0.854201
\(460\) 0 0
\(461\) −10243.0 −1.03485 −0.517423 0.855730i \(-0.673109\pi\)
−0.517423 + 0.855730i \(0.673109\pi\)
\(462\) 3948.00 0.397571
\(463\) −6208.00 −0.623132 −0.311566 0.950224i \(-0.600854\pi\)
−0.311566 + 0.950224i \(0.600854\pi\)
\(464\) 4560.00 0.456234
\(465\) 0 0
\(466\) 1954.00 0.194243
\(467\) −6089.00 −0.603352 −0.301676 0.953411i \(-0.597546\pi\)
−0.301676 + 0.953411i \(0.597546\pi\)
\(468\) −5244.00 −0.517957
\(469\) 6216.00 0.612000
\(470\) 0 0
\(471\) 5952.00 0.582280
\(472\) 240.000 0.0234044
\(473\) 9259.00 0.900062
\(474\) −1620.00 −0.156981
\(475\) 0 0
\(476\) −7056.00 −0.679435
\(477\) 3404.00 0.326747
\(478\) −7480.00 −0.715747
\(479\) 8145.00 0.776941 0.388470 0.921461i \(-0.373004\pi\)
0.388470 + 0.921461i \(0.373004\pi\)
\(480\) 0 0
\(481\) −3078.00 −0.291777
\(482\) 7384.00 0.697784
\(483\) 966.000 0.0910032
\(484\) 3512.00 0.329827
\(485\) 0 0
\(486\) 7084.00 0.661187
\(487\) 1096.00 0.101980 0.0509902 0.998699i \(-0.483762\pi\)
0.0509902 + 0.998699i \(0.483762\pi\)
\(488\) −4624.00 −0.428932
\(489\) 1024.00 0.0946971
\(490\) 0 0
\(491\) −15318.0 −1.40793 −0.703963 0.710237i \(-0.748588\pi\)
−0.703963 + 0.710237i \(0.748588\pi\)
\(492\) −424.000 −0.0388524
\(493\) −23940.0 −2.18703
\(494\) −570.000 −0.0519140
\(495\) 0 0
\(496\) 1312.00 0.118771
\(497\) 8862.00 0.799829
\(498\) 1588.00 0.142892
\(499\) −7440.00 −0.667455 −0.333728 0.942670i \(-0.608307\pi\)
−0.333728 + 0.942670i \(0.608307\pi\)
\(500\) 0 0
\(501\) 2852.00 0.254327
\(502\) −12936.0 −1.15012
\(503\) 6147.00 0.544893 0.272447 0.962171i \(-0.412167\pi\)
0.272447 + 0.962171i \(0.412167\pi\)
\(504\) −3864.00 −0.341500
\(505\) 0 0
\(506\) 2162.00 0.189946
\(507\) 2104.00 0.184304
\(508\) −9096.00 −0.794429
\(509\) 1590.00 0.138459 0.0692294 0.997601i \(-0.477946\pi\)
0.0692294 + 0.997601i \(0.477946\pi\)
\(510\) 0 0
\(511\) 10227.0 0.885354
\(512\) 512.000 0.0441942
\(513\) 500.000 0.0430322
\(514\) 11172.0 0.958708
\(515\) 0 0
\(516\) 1576.00 0.134456
\(517\) −5828.00 −0.495774
\(518\) −2268.00 −0.192375
\(519\) 2094.00 0.177103
\(520\) 0 0
\(521\) −16638.0 −1.39909 −0.699543 0.714590i \(-0.746613\pi\)
−0.699543 + 0.714590i \(0.746613\pi\)
\(522\) −13110.0 −1.09925
\(523\) −4453.00 −0.372306 −0.186153 0.982521i \(-0.559602\pi\)
−0.186153 + 0.982521i \(0.559602\pi\)
\(524\) 7208.00 0.600922
\(525\) 0 0
\(526\) −12416.0 −1.02921
\(527\) −6888.00 −0.569347
\(528\) 1504.00 0.123964
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −690.000 −0.0563907
\(532\) −420.000 −0.0342280
\(533\) −3021.00 −0.245505
\(534\) 2920.00 0.236631
\(535\) 0 0
\(536\) 2368.00 0.190825
\(537\) −2760.00 −0.221793
\(538\) −15790.0 −1.26534
\(539\) 4606.00 0.368079
\(540\) 0 0
\(541\) 18077.0 1.43658 0.718291 0.695743i \(-0.244925\pi\)
0.718291 + 0.695743i \(0.244925\pi\)
\(542\) −136.000 −0.0107780
\(543\) 2664.00 0.210540
\(544\) −2688.00 −0.211851
\(545\) 0 0
\(546\) 4788.00 0.375288
\(547\) −6644.00 −0.519336 −0.259668 0.965698i \(-0.583613\pi\)
−0.259668 + 0.965698i \(0.583613\pi\)
\(548\) 424.000 0.0330518
\(549\) 13294.0 1.03347
\(550\) 0 0
\(551\) −1425.00 −0.110176
\(552\) 368.000 0.0283752
\(553\) −8505.00 −0.654013
\(554\) −10578.0 −0.811220
\(555\) 0 0
\(556\) −10800.0 −0.823781
\(557\) −6954.00 −0.528995 −0.264498 0.964386i \(-0.585206\pi\)
−0.264498 + 0.964386i \(0.585206\pi\)
\(558\) −3772.00 −0.286168
\(559\) 11229.0 0.849617
\(560\) 0 0
\(561\) −7896.00 −0.594241
\(562\) −6816.00 −0.511594
\(563\) 77.0000 0.00576406 0.00288203 0.999996i \(-0.499083\pi\)
0.00288203 + 0.999996i \(0.499083\pi\)
\(564\) −992.000 −0.0740616
\(565\) 0 0
\(566\) −3656.00 −0.271507
\(567\) 8841.00 0.654827
\(568\) 3376.00 0.249391
\(569\) 14820.0 1.09189 0.545946 0.837820i \(-0.316170\pi\)
0.545946 + 0.837820i \(0.316170\pi\)
\(570\) 0 0
\(571\) 2492.00 0.182639 0.0913196 0.995822i \(-0.470892\pi\)
0.0913196 + 0.995822i \(0.470892\pi\)
\(572\) 10716.0 0.783319
\(573\) 2594.00 0.189120
\(574\) −2226.00 −0.161867
\(575\) 0 0
\(576\) −1472.00 −0.106481
\(577\) −5929.00 −0.427777 −0.213889 0.976858i \(-0.568613\pi\)
−0.213889 + 0.976858i \(0.568613\pi\)
\(578\) 4286.00 0.308433
\(579\) 7804.00 0.560144
\(580\) 0 0
\(581\) 8337.00 0.595313
\(582\) −256.000 −0.0182329
\(583\) −6956.00 −0.494148
\(584\) 3896.00 0.276058
\(585\) 0 0
\(586\) −12776.0 −0.900634
\(587\) −7274.00 −0.511465 −0.255733 0.966748i \(-0.582317\pi\)
−0.255733 + 0.966748i \(0.582317\pi\)
\(588\) 784.000 0.0549857
\(589\) −410.000 −0.0286821
\(590\) 0 0
\(591\) −298.000 −0.0207413
\(592\) −864.000 −0.0599834
\(593\) −5823.00 −0.403241 −0.201621 0.979464i \(-0.564621\pi\)
−0.201621 + 0.979464i \(0.564621\pi\)
\(594\) −9400.00 −0.649304
\(595\) 0 0
\(596\) −3560.00 −0.244670
\(597\) −1050.00 −0.0719826
\(598\) 2622.00 0.179300
\(599\) 10430.0 0.711449 0.355725 0.934591i \(-0.384234\pi\)
0.355725 + 0.934591i \(0.384234\pi\)
\(600\) 0 0
\(601\) −18998.0 −1.28943 −0.644713 0.764425i \(-0.723023\pi\)
−0.644713 + 0.764425i \(0.723023\pi\)
\(602\) 8274.00 0.560171
\(603\) −6808.00 −0.459773
\(604\) −13592.0 −0.915647
\(605\) 0 0
\(606\) 4008.00 0.268670
\(607\) 26416.0 1.76638 0.883190 0.469016i \(-0.155391\pi\)
0.883190 + 0.469016i \(0.155391\pi\)
\(608\) −160.000 −0.0106725
\(609\) 11970.0 0.796468
\(610\) 0 0
\(611\) −7068.00 −0.467988
\(612\) 7728.00 0.510434
\(613\) 27262.0 1.79625 0.898125 0.439739i \(-0.144929\pi\)
0.898125 + 0.439739i \(0.144929\pi\)
\(614\) 10032.0 0.659379
\(615\) 0 0
\(616\) 7896.00 0.516459
\(617\) −25584.0 −1.66932 −0.834662 0.550762i \(-0.814337\pi\)
−0.834662 + 0.550762i \(0.814337\pi\)
\(618\) 7228.00 0.470474
\(619\) −3640.00 −0.236355 −0.118178 0.992992i \(-0.537705\pi\)
−0.118178 + 0.992992i \(0.537705\pi\)
\(620\) 0 0
\(621\) −2300.00 −0.148625
\(622\) 11084.0 0.714514
\(623\) 15330.0 0.985848
\(624\) 1824.00 0.117017
\(625\) 0 0
\(626\) −7676.00 −0.490087
\(627\) −470.000 −0.0299362
\(628\) 11904.0 0.756403
\(629\) 4536.00 0.287539
\(630\) 0 0
\(631\) 19937.0 1.25781 0.628906 0.777481i \(-0.283503\pi\)
0.628906 + 0.777481i \(0.283503\pi\)
\(632\) −3240.00 −0.203924
\(633\) −7036.00 −0.441794
\(634\) 19542.0 1.22415
\(635\) 0 0
\(636\) −1184.00 −0.0738186
\(637\) 5586.00 0.347450
\(638\) 26790.0 1.66242
\(639\) −9706.00 −0.600882
\(640\) 0 0
\(641\) −14048.0 −0.865620 −0.432810 0.901485i \(-0.642478\pi\)
−0.432810 + 0.901485i \(0.642478\pi\)
\(642\) −6656.00 −0.409177
\(643\) −13423.0 −0.823253 −0.411626 0.911353i \(-0.635039\pi\)
−0.411626 + 0.911353i \(0.635039\pi\)
\(644\) 1932.00 0.118217
\(645\) 0 0
\(646\) 840.000 0.0511600
\(647\) −9024.00 −0.548331 −0.274165 0.961683i \(-0.588402\pi\)
−0.274165 + 0.961683i \(0.588402\pi\)
\(648\) 3368.00 0.204178
\(649\) 1410.00 0.0852810
\(650\) 0 0
\(651\) 3444.00 0.207344
\(652\) 2048.00 0.123015
\(653\) −11263.0 −0.674970 −0.337485 0.941331i \(-0.609576\pi\)
−0.337485 + 0.941331i \(0.609576\pi\)
\(654\) 1880.00 0.112406
\(655\) 0 0
\(656\) −848.000 −0.0504708
\(657\) −11201.0 −0.665133
\(658\) −5208.00 −0.308555
\(659\) 7425.00 0.438903 0.219451 0.975623i \(-0.429573\pi\)
0.219451 + 0.975623i \(0.429573\pi\)
\(660\) 0 0
\(661\) 2032.00 0.119570 0.0597849 0.998211i \(-0.480959\pi\)
0.0597849 + 0.998211i \(0.480959\pi\)
\(662\) 7964.00 0.467567
\(663\) −9576.00 −0.560937
\(664\) 3176.00 0.185622
\(665\) 0 0
\(666\) 2484.00 0.144524
\(667\) 6555.00 0.380526
\(668\) 5704.00 0.330381
\(669\) −5936.00 −0.343048
\(670\) 0 0
\(671\) −27166.0 −1.56294
\(672\) 1344.00 0.0771517
\(673\) −11903.0 −0.681764 −0.340882 0.940106i \(-0.610726\pi\)
−0.340882 + 0.940106i \(0.610726\pi\)
\(674\) 1072.00 0.0612639
\(675\) 0 0
\(676\) 4208.00 0.239417
\(677\) −18654.0 −1.05898 −0.529491 0.848315i \(-0.677617\pi\)
−0.529491 + 0.848315i \(0.677617\pi\)
\(678\) 3968.00 0.224764
\(679\) −1344.00 −0.0759617
\(680\) 0 0
\(681\) 8072.00 0.454214
\(682\) 7708.00 0.432778
\(683\) 23302.0 1.30546 0.652728 0.757592i \(-0.273625\pi\)
0.652728 + 0.757592i \(0.273625\pi\)
\(684\) 460.000 0.0257142
\(685\) 0 0
\(686\) −10290.0 −0.572703
\(687\) −8380.00 −0.465381
\(688\) 3152.00 0.174664
\(689\) −8436.00 −0.466453
\(690\) 0 0
\(691\) 16472.0 0.906837 0.453419 0.891298i \(-0.350204\pi\)
0.453419 + 0.891298i \(0.350204\pi\)
\(692\) 4188.00 0.230063
\(693\) −22701.0 −1.24436
\(694\) −16048.0 −0.877772
\(695\) 0 0
\(696\) 4560.00 0.248342
\(697\) 4452.00 0.241939
\(698\) −9350.00 −0.507024
\(699\) 1954.00 0.105733
\(700\) 0 0
\(701\) −19008.0 −1.02414 −0.512070 0.858944i \(-0.671121\pi\)
−0.512070 + 0.858944i \(0.671121\pi\)
\(702\) −11400.0 −0.612913
\(703\) 270.000 0.0144854
\(704\) 3008.00 0.161034
\(705\) 0 0
\(706\) 20694.0 1.10316
\(707\) 21042.0 1.11933
\(708\) 240.000 0.0127398
\(709\) −35870.0 −1.90004 −0.950018 0.312194i \(-0.898936\pi\)
−0.950018 + 0.312194i \(0.898936\pi\)
\(710\) 0 0
\(711\) 9315.00 0.491336
\(712\) 5840.00 0.307392
\(713\) 1886.00 0.0990621
\(714\) −7056.00 −0.369838
\(715\) 0 0
\(716\) −5520.00 −0.288117
\(717\) −7480.00 −0.389604
\(718\) 25430.0 1.32178
\(719\) 37610.0 1.95079 0.975394 0.220470i \(-0.0707590\pi\)
0.975394 + 0.220470i \(0.0707590\pi\)
\(720\) 0 0
\(721\) 37947.0 1.96008
\(722\) −13668.0 −0.704529
\(723\) 7384.00 0.379826
\(724\) 5328.00 0.273499
\(725\) 0 0
\(726\) 3512.00 0.179535
\(727\) 26176.0 1.33537 0.667685 0.744444i \(-0.267285\pi\)
0.667685 + 0.744444i \(0.267285\pi\)
\(728\) 9576.00 0.487514
\(729\) −4283.00 −0.217599
\(730\) 0 0
\(731\) −16548.0 −0.837278
\(732\) −4624.00 −0.233481
\(733\) −17238.0 −0.868622 −0.434311 0.900763i \(-0.643008\pi\)
−0.434311 + 0.900763i \(0.643008\pi\)
\(734\) −15998.0 −0.804492
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) 13912.0 0.695326
\(738\) 2438.00 0.121604
\(739\) −5910.00 −0.294185 −0.147093 0.989123i \(-0.546992\pi\)
−0.147093 + 0.989123i \(0.546992\pi\)
\(740\) 0 0
\(741\) −570.000 −0.0282584
\(742\) −6216.00 −0.307543
\(743\) −31203.0 −1.54068 −0.770341 0.637632i \(-0.779914\pi\)
−0.770341 + 0.637632i \(0.779914\pi\)
\(744\) 1312.00 0.0646509
\(745\) 0 0
\(746\) −7176.00 −0.352188
\(747\) −9131.00 −0.447237
\(748\) −15792.0 −0.771942
\(749\) −34944.0 −1.70471
\(750\) 0 0
\(751\) −36643.0 −1.78046 −0.890228 0.455516i \(-0.849455\pi\)
−0.890228 + 0.455516i \(0.849455\pi\)
\(752\) −1984.00 −0.0962088
\(753\) −12936.0 −0.626048
\(754\) 32490.0 1.56925
\(755\) 0 0
\(756\) −8400.00 −0.404107
\(757\) 846.000 0.0406187 0.0203094 0.999794i \(-0.493535\pi\)
0.0203094 + 0.999794i \(0.493535\pi\)
\(758\) −4120.00 −0.197421
\(759\) 2162.00 0.103393
\(760\) 0 0
\(761\) −11303.0 −0.538414 −0.269207 0.963082i \(-0.586762\pi\)
−0.269207 + 0.963082i \(0.586762\pi\)
\(762\) −9096.00 −0.432432
\(763\) 9870.00 0.468307
\(764\) 5188.00 0.245674
\(765\) 0 0
\(766\) −19886.0 −0.938003
\(767\) 1710.00 0.0805013
\(768\) 512.000 0.0240563
\(769\) −31830.0 −1.49261 −0.746306 0.665603i \(-0.768175\pi\)
−0.746306 + 0.665603i \(0.768175\pi\)
\(770\) 0 0
\(771\) 11172.0 0.521854
\(772\) 15608.0 0.727648
\(773\) 15562.0 0.724096 0.362048 0.932159i \(-0.382078\pi\)
0.362048 + 0.932159i \(0.382078\pi\)
\(774\) −9062.00 −0.420836
\(775\) 0 0
\(776\) −512.000 −0.0236852
\(777\) −2268.00 −0.104716
\(778\) −29160.0 −1.34375
\(779\) 265.000 0.0121882
\(780\) 0 0
\(781\) 19834.0 0.908728
\(782\) −3864.00 −0.176696
\(783\) −28500.0 −1.30078
\(784\) 1568.00 0.0714286
\(785\) 0 0
\(786\) 7208.00 0.327100
\(787\) 24771.0 1.12197 0.560985 0.827826i \(-0.310422\pi\)
0.560985 + 0.827826i \(0.310422\pi\)
\(788\) −596.000 −0.0269437
\(789\) −12416.0 −0.560230
\(790\) 0 0
\(791\) 20832.0 0.936410
\(792\) −8648.00 −0.387997
\(793\) −32946.0 −1.47534
\(794\) −29188.0 −1.30459
\(795\) 0 0
\(796\) −2100.00 −0.0935082
\(797\) 24486.0 1.08825 0.544127 0.839003i \(-0.316861\pi\)
0.544127 + 0.839003i \(0.316861\pi\)
\(798\) −420.000 −0.0186314
\(799\) 10416.0 0.461191
\(800\) 0 0
\(801\) −16790.0 −0.740631
\(802\) 19404.0 0.854338
\(803\) 22889.0 1.00590
\(804\) 2368.00 0.103872
\(805\) 0 0
\(806\) 9348.00 0.408523
\(807\) −15790.0 −0.688766
\(808\) 8016.00 0.349012
\(809\) 24705.0 1.07365 0.536824 0.843694i \(-0.319624\pi\)
0.536824 + 0.843694i \(0.319624\pi\)
\(810\) 0 0
\(811\) 6392.00 0.276761 0.138381 0.990379i \(-0.455810\pi\)
0.138381 + 0.990379i \(0.455810\pi\)
\(812\) 23940.0 1.03464
\(813\) −136.000 −0.00586682
\(814\) −5076.00 −0.218567
\(815\) 0 0
\(816\) −2688.00 −0.115317
\(817\) −985.000 −0.0421797
\(818\) −28630.0 −1.22375
\(819\) −27531.0 −1.17462
\(820\) 0 0
\(821\) 39047.0 1.65987 0.829933 0.557863i \(-0.188379\pi\)
0.829933 + 0.557863i \(0.188379\pi\)
\(822\) 424.000 0.0179911
\(823\) −14348.0 −0.607703 −0.303852 0.952719i \(-0.598273\pi\)
−0.303852 + 0.952719i \(0.598273\pi\)
\(824\) 14456.0 0.611163
\(825\) 0 0
\(826\) 1260.00 0.0530763
\(827\) −23749.0 −0.998590 −0.499295 0.866432i \(-0.666408\pi\)
−0.499295 + 0.866432i \(0.666408\pi\)
\(828\) −2116.00 −0.0888117
\(829\) 25125.0 1.05263 0.526313 0.850291i \(-0.323574\pi\)
0.526313 + 0.850291i \(0.323574\pi\)
\(830\) 0 0
\(831\) −10578.0 −0.441573
\(832\) 3648.00 0.152009
\(833\) −8232.00 −0.342403
\(834\) −10800.0 −0.448409
\(835\) 0 0
\(836\) −940.000 −0.0388883
\(837\) −8200.00 −0.338630
\(838\) −1950.00 −0.0803838
\(839\) −32295.0 −1.32890 −0.664450 0.747333i \(-0.731334\pi\)
−0.664450 + 0.747333i \(0.731334\pi\)
\(840\) 0 0
\(841\) 56836.0 2.33039
\(842\) −22276.0 −0.911736
\(843\) −6816.00 −0.278476
\(844\) −14072.0 −0.573908
\(845\) 0 0
\(846\) 5704.00 0.231806
\(847\) 18438.0 0.747978
\(848\) −2368.00 −0.0958932
\(849\) −3656.00 −0.147790
\(850\) 0 0
\(851\) −1242.00 −0.0500296
\(852\) 3376.00 0.135751
\(853\) 29257.0 1.17437 0.587187 0.809451i \(-0.300235\pi\)
0.587187 + 0.809451i \(0.300235\pi\)
\(854\) −24276.0 −0.972726
\(855\) 0 0
\(856\) −13312.0 −0.531536
\(857\) 11766.0 0.468984 0.234492 0.972118i \(-0.424657\pi\)
0.234492 + 0.972118i \(0.424657\pi\)
\(858\) 10716.0 0.426385
\(859\) −32390.0 −1.28653 −0.643267 0.765642i \(-0.722421\pi\)
−0.643267 + 0.765642i \(0.722421\pi\)
\(860\) 0 0
\(861\) −2226.00 −0.0881090
\(862\) −19136.0 −0.756119
\(863\) 16332.0 0.644204 0.322102 0.946705i \(-0.395611\pi\)
0.322102 + 0.946705i \(0.395611\pi\)
\(864\) −3200.00 −0.126003
\(865\) 0 0
\(866\) 3524.00 0.138280
\(867\) 4286.00 0.167889
\(868\) 6888.00 0.269348
\(869\) −19035.0 −0.743059
\(870\) 0 0
\(871\) 16872.0 0.656356
\(872\) 3760.00 0.146020
\(873\) 1472.00 0.0570672
\(874\) −230.000 −0.00890145
\(875\) 0 0
\(876\) 3896.00 0.150267
\(877\) 42226.0 1.62585 0.812925 0.582368i \(-0.197874\pi\)
0.812925 + 0.582368i \(0.197874\pi\)
\(878\) 8160.00 0.313652
\(879\) −12776.0 −0.490243
\(880\) 0 0
\(881\) −7158.00 −0.273733 −0.136867 0.990589i \(-0.543703\pi\)
−0.136867 + 0.990589i \(0.543703\pi\)
\(882\) −4508.00 −0.172100
\(883\) 28672.0 1.09274 0.546370 0.837544i \(-0.316009\pi\)
0.546370 + 0.837544i \(0.316009\pi\)
\(884\) −19152.0 −0.728678
\(885\) 0 0
\(886\) 19164.0 0.726667
\(887\) 5536.00 0.209561 0.104781 0.994495i \(-0.466586\pi\)
0.104781 + 0.994495i \(0.466586\pi\)
\(888\) −864.000 −0.0326508
\(889\) −47754.0 −1.80159
\(890\) 0 0
\(891\) 19787.0 0.743984
\(892\) −11872.0 −0.445632
\(893\) 620.000 0.0232335
\(894\) −3560.00 −0.133181
\(895\) 0 0
\(896\) 2688.00 0.100223
\(897\) 2622.00 0.0975987
\(898\) −6580.00 −0.244518
\(899\) 23370.0 0.867000
\(900\) 0 0
\(901\) 12432.0 0.459678
\(902\) −4982.00 −0.183905
\(903\) 8274.00 0.304919
\(904\) 7936.00 0.291977
\(905\) 0 0
\(906\) −13592.0 −0.498415
\(907\) 451.000 0.0165107 0.00825535 0.999966i \(-0.497372\pi\)
0.00825535 + 0.999966i \(0.497372\pi\)
\(908\) 16144.0 0.590041
\(909\) −23046.0 −0.840910
\(910\) 0 0
\(911\) −21013.0 −0.764206 −0.382103 0.924120i \(-0.624800\pi\)
−0.382103 + 0.924120i \(0.624800\pi\)
\(912\) −160.000 −0.00580935
\(913\) 18659.0 0.676367
\(914\) −968.000 −0.0350313
\(915\) 0 0
\(916\) −16760.0 −0.604548
\(917\) 37842.0 1.36276
\(918\) 16800.0 0.604012
\(919\) 28800.0 1.03376 0.516879 0.856058i \(-0.327094\pi\)
0.516879 + 0.856058i \(0.327094\pi\)
\(920\) 0 0
\(921\) 10032.0 0.358920
\(922\) −20486.0 −0.731747
\(923\) 24054.0 0.857797
\(924\) 7896.00 0.281125
\(925\) 0 0
\(926\) −12416.0 −0.440621
\(927\) −41561.0 −1.47254
\(928\) 9120.00 0.322606
\(929\) 39555.0 1.39694 0.698470 0.715639i \(-0.253865\pi\)
0.698470 + 0.715639i \(0.253865\pi\)
\(930\) 0 0
\(931\) −490.000 −0.0172493
\(932\) 3908.00 0.137351
\(933\) 11084.0 0.388932
\(934\) −12178.0 −0.426634
\(935\) 0 0
\(936\) −10488.0 −0.366251
\(937\) 38756.0 1.35123 0.675615 0.737254i \(-0.263878\pi\)
0.675615 + 0.737254i \(0.263878\pi\)
\(938\) 12432.0 0.432750
\(939\) −7676.00 −0.266770
\(940\) 0 0
\(941\) −3968.00 −0.137463 −0.0687317 0.997635i \(-0.521895\pi\)
−0.0687317 + 0.997635i \(0.521895\pi\)
\(942\) 11904.0 0.411734
\(943\) −1219.00 −0.0420955
\(944\) 480.000 0.0165494
\(945\) 0 0
\(946\) 18518.0 0.636440
\(947\) −32374.0 −1.11089 −0.555445 0.831553i \(-0.687452\pi\)
−0.555445 + 0.831553i \(0.687452\pi\)
\(948\) −3240.00 −0.111002
\(949\) 27759.0 0.949521
\(950\) 0 0
\(951\) 19542.0 0.666344
\(952\) −14112.0 −0.480433
\(953\) 23122.0 0.785934 0.392967 0.919553i \(-0.371449\pi\)
0.392967 + 0.919553i \(0.371449\pi\)
\(954\) 6808.00 0.231045
\(955\) 0 0
\(956\) −14960.0 −0.506110
\(957\) 26790.0 0.904909
\(958\) 16290.0 0.549380
\(959\) 2226.00 0.0749544
\(960\) 0 0
\(961\) −23067.0 −0.774294
\(962\) −6156.00 −0.206317
\(963\) 38272.0 1.28068
\(964\) 14768.0 0.493408
\(965\) 0 0
\(966\) 1932.00 0.0643489
\(967\) 16916.0 0.562546 0.281273 0.959628i \(-0.409243\pi\)
0.281273 + 0.959628i \(0.409243\pi\)
\(968\) 7024.00 0.233223
\(969\) 840.000 0.0278480
\(970\) 0 0
\(971\) 32277.0 1.06675 0.533377 0.845878i \(-0.320923\pi\)
0.533377 + 0.845878i \(0.320923\pi\)
\(972\) 14168.0 0.467530
\(973\) −56700.0 −1.86816
\(974\) 2192.00 0.0721111
\(975\) 0 0
\(976\) −9248.00 −0.303300
\(977\) 48076.0 1.57430 0.787148 0.616764i \(-0.211557\pi\)
0.787148 + 0.616764i \(0.211557\pi\)
\(978\) 2048.00 0.0669610
\(979\) 34310.0 1.12007
\(980\) 0 0
\(981\) −10810.0 −0.351821
\(982\) −30636.0 −0.995554
\(983\) 37287.0 1.20984 0.604919 0.796287i \(-0.293206\pi\)
0.604919 + 0.796287i \(0.293206\pi\)
\(984\) −848.000 −0.0274728
\(985\) 0 0
\(986\) −47880.0 −1.54646
\(987\) −5208.00 −0.167956
\(988\) −1140.00 −0.0367087
\(989\) 4531.00 0.145680
\(990\) 0 0
\(991\) 4872.00 0.156170 0.0780849 0.996947i \(-0.475119\pi\)
0.0780849 + 0.996947i \(0.475119\pi\)
\(992\) 2624.00 0.0839840
\(993\) 7964.00 0.254511
\(994\) 17724.0 0.565565
\(995\) 0 0
\(996\) 3176.00 0.101040
\(997\) 24751.0 0.786231 0.393115 0.919489i \(-0.371397\pi\)
0.393115 + 0.919489i \(0.371397\pi\)
\(998\) −14880.0 −0.471962
\(999\) 5400.00 0.171019
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.a.h.1.1 yes 1
5.2 odd 4 1150.4.b.g.599.2 2
5.3 odd 4 1150.4.b.g.599.1 2
5.4 even 2 1150.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1150.4.a.a.1.1 1 5.4 even 2
1150.4.a.h.1.1 yes 1 1.1 even 1 trivial
1150.4.b.g.599.1 2 5.3 odd 4
1150.4.b.g.599.2 2 5.2 odd 4