Properties

Label 1150.4.a.e.1.1
Level $1150$
Weight $4$
Character 1150.1
Self dual yes
Analytic conductor $67.852$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(1,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1150.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -7.00000 q^{3} +4.00000 q^{4} -14.0000 q^{6} -20.0000 q^{7} +8.00000 q^{8} +22.0000 q^{9} +6.00000 q^{11} -28.0000 q^{12} -47.0000 q^{13} -40.0000 q^{14} +16.0000 q^{16} +132.000 q^{17} +44.0000 q^{18} +146.000 q^{19} +140.000 q^{21} +12.0000 q^{22} -23.0000 q^{23} -56.0000 q^{24} -94.0000 q^{26} +35.0000 q^{27} -80.0000 q^{28} -99.0000 q^{29} -253.000 q^{31} +32.0000 q^{32} -42.0000 q^{33} +264.000 q^{34} +88.0000 q^{36} +118.000 q^{37} +292.000 q^{38} +329.000 q^{39} +495.000 q^{41} +280.000 q^{42} -272.000 q^{43} +24.0000 q^{44} -46.0000 q^{46} -639.000 q^{47} -112.000 q^{48} +57.0000 q^{49} -924.000 q^{51} -188.000 q^{52} +342.000 q^{53} +70.0000 q^{54} -160.000 q^{56} -1022.00 q^{57} -198.000 q^{58} +240.000 q^{59} -370.000 q^{61} -506.000 q^{62} -440.000 q^{63} +64.0000 q^{64} -84.0000 q^{66} -698.000 q^{67} +528.000 q^{68} +161.000 q^{69} -357.000 q^{71} +176.000 q^{72} +259.000 q^{73} +236.000 q^{74} +584.000 q^{76} -120.000 q^{77} +658.000 q^{78} +542.000 q^{79} -839.000 q^{81} +990.000 q^{82} +1248.00 q^{83} +560.000 q^{84} -544.000 q^{86} +693.000 q^{87} +48.0000 q^{88} -828.000 q^{89} +940.000 q^{91} -92.0000 q^{92} +1771.00 q^{93} -1278.00 q^{94} -224.000 q^{96} -992.000 q^{97} +114.000 q^{98} +132.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −7.00000 −1.34715 −0.673575 0.739119i \(-0.735242\pi\)
−0.673575 + 0.739119i \(0.735242\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) −14.0000 −0.952579
\(7\) −20.0000 −1.07990 −0.539949 0.841698i \(-0.681557\pi\)
−0.539949 + 0.841698i \(0.681557\pi\)
\(8\) 8.00000 0.353553
\(9\) 22.0000 0.814815
\(10\) 0 0
\(11\) 6.00000 0.164461 0.0822304 0.996613i \(-0.473796\pi\)
0.0822304 + 0.996613i \(0.473796\pi\)
\(12\) −28.0000 −0.673575
\(13\) −47.0000 −1.00273 −0.501364 0.865237i \(-0.667168\pi\)
−0.501364 + 0.865237i \(0.667168\pi\)
\(14\) −40.0000 −0.763604
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 132.000 1.88322 0.941609 0.336709i \(-0.109314\pi\)
0.941609 + 0.336709i \(0.109314\pi\)
\(18\) 44.0000 0.576161
\(19\) 146.000 1.76288 0.881439 0.472297i \(-0.156575\pi\)
0.881439 + 0.472297i \(0.156575\pi\)
\(20\) 0 0
\(21\) 140.000 1.45479
\(22\) 12.0000 0.116291
\(23\) −23.0000 −0.208514
\(24\) −56.0000 −0.476290
\(25\) 0 0
\(26\) −94.0000 −0.709035
\(27\) 35.0000 0.249472
\(28\) −80.0000 −0.539949
\(29\) −99.0000 −0.633925 −0.316963 0.948438i \(-0.602663\pi\)
−0.316963 + 0.948438i \(0.602663\pi\)
\(30\) 0 0
\(31\) −253.000 −1.46581 −0.732906 0.680330i \(-0.761836\pi\)
−0.732906 + 0.680330i \(0.761836\pi\)
\(32\) 32.0000 0.176777
\(33\) −42.0000 −0.221553
\(34\) 264.000 1.33164
\(35\) 0 0
\(36\) 88.0000 0.407407
\(37\) 118.000 0.524299 0.262150 0.965027i \(-0.415569\pi\)
0.262150 + 0.965027i \(0.415569\pi\)
\(38\) 292.000 1.24654
\(39\) 329.000 1.35082
\(40\) 0 0
\(41\) 495.000 1.88551 0.942756 0.333483i \(-0.108224\pi\)
0.942756 + 0.333483i \(0.108224\pi\)
\(42\) 280.000 1.02869
\(43\) −272.000 −0.964642 −0.482321 0.875995i \(-0.660206\pi\)
−0.482321 + 0.875995i \(0.660206\pi\)
\(44\) 24.0000 0.0822304
\(45\) 0 0
\(46\) −46.0000 −0.147442
\(47\) −639.000 −1.98314 −0.991572 0.129560i \(-0.958644\pi\)
−0.991572 + 0.129560i \(0.958644\pi\)
\(48\) −112.000 −0.336788
\(49\) 57.0000 0.166181
\(50\) 0 0
\(51\) −924.000 −2.53698
\(52\) −188.000 −0.501364
\(53\) 342.000 0.886364 0.443182 0.896432i \(-0.353849\pi\)
0.443182 + 0.896432i \(0.353849\pi\)
\(54\) 70.0000 0.176404
\(55\) 0 0
\(56\) −160.000 −0.381802
\(57\) −1022.00 −2.37486
\(58\) −198.000 −0.448253
\(59\) 240.000 0.529582 0.264791 0.964306i \(-0.414697\pi\)
0.264791 + 0.964306i \(0.414697\pi\)
\(60\) 0 0
\(61\) −370.000 −0.776617 −0.388309 0.921529i \(-0.626941\pi\)
−0.388309 + 0.921529i \(0.626941\pi\)
\(62\) −506.000 −1.03648
\(63\) −440.000 −0.879917
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −84.0000 −0.156662
\(67\) −698.000 −1.27275 −0.636375 0.771380i \(-0.719567\pi\)
−0.636375 + 0.771380i \(0.719567\pi\)
\(68\) 528.000 0.941609
\(69\) 161.000 0.280900
\(70\) 0 0
\(71\) −357.000 −0.596734 −0.298367 0.954451i \(-0.596442\pi\)
−0.298367 + 0.954451i \(0.596442\pi\)
\(72\) 176.000 0.288081
\(73\) 259.000 0.415256 0.207628 0.978208i \(-0.433426\pi\)
0.207628 + 0.978208i \(0.433426\pi\)
\(74\) 236.000 0.370736
\(75\) 0 0
\(76\) 584.000 0.881439
\(77\) −120.000 −0.177601
\(78\) 658.000 0.955177
\(79\) 542.000 0.771896 0.385948 0.922521i \(-0.373874\pi\)
0.385948 + 0.922521i \(0.373874\pi\)
\(80\) 0 0
\(81\) −839.000 −1.15089
\(82\) 990.000 1.33326
\(83\) 1248.00 1.65043 0.825216 0.564818i \(-0.191054\pi\)
0.825216 + 0.564818i \(0.191054\pi\)
\(84\) 560.000 0.727393
\(85\) 0 0
\(86\) −544.000 −0.682105
\(87\) 693.000 0.853993
\(88\) 48.0000 0.0581456
\(89\) −828.000 −0.986155 −0.493078 0.869985i \(-0.664128\pi\)
−0.493078 + 0.869985i \(0.664128\pi\)
\(90\) 0 0
\(91\) 940.000 1.08284
\(92\) −92.0000 −0.104257
\(93\) 1771.00 1.97467
\(94\) −1278.00 −1.40229
\(95\) 0 0
\(96\) −224.000 −0.238145
\(97\) −992.000 −1.03837 −0.519187 0.854660i \(-0.673765\pi\)
−0.519187 + 0.854660i \(0.673765\pi\)
\(98\) 114.000 0.117508
\(99\) 132.000 0.134005
\(100\) 0 0
\(101\) −1542.00 −1.51916 −0.759578 0.650416i \(-0.774594\pi\)
−0.759578 + 0.650416i \(0.774594\pi\)
\(102\) −1848.00 −1.79391
\(103\) −32.0000 −0.0306122 −0.0153061 0.999883i \(-0.504872\pi\)
−0.0153061 + 0.999883i \(0.504872\pi\)
\(104\) −376.000 −0.354518
\(105\) 0 0
\(106\) 684.000 0.626754
\(107\) 834.000 0.753512 0.376756 0.926312i \(-0.377039\pi\)
0.376756 + 0.926312i \(0.377039\pi\)
\(108\) 140.000 0.124736
\(109\) −1192.00 −1.04746 −0.523729 0.851885i \(-0.675460\pi\)
−0.523729 + 0.851885i \(0.675460\pi\)
\(110\) 0 0
\(111\) −826.000 −0.706310
\(112\) −320.000 −0.269975
\(113\) 132.000 0.109890 0.0549448 0.998489i \(-0.482502\pi\)
0.0549448 + 0.998489i \(0.482502\pi\)
\(114\) −2044.00 −1.67928
\(115\) 0 0
\(116\) −396.000 −0.316963
\(117\) −1034.00 −0.817037
\(118\) 480.000 0.374471
\(119\) −2640.00 −2.03368
\(120\) 0 0
\(121\) −1295.00 −0.972953
\(122\) −740.000 −0.549151
\(123\) −3465.00 −2.54007
\(124\) −1012.00 −0.732906
\(125\) 0 0
\(126\) −880.000 −0.622195
\(127\) −89.0000 −0.0621848 −0.0310924 0.999517i \(-0.509899\pi\)
−0.0310924 + 0.999517i \(0.509899\pi\)
\(128\) 128.000 0.0883883
\(129\) 1904.00 1.29952
\(130\) 0 0
\(131\) −1797.00 −1.19851 −0.599254 0.800559i \(-0.704536\pi\)
−0.599254 + 0.800559i \(0.704536\pi\)
\(132\) −168.000 −0.110777
\(133\) −2920.00 −1.90373
\(134\) −1396.00 −0.899970
\(135\) 0 0
\(136\) 1056.00 0.665818
\(137\) 1836.00 1.14496 0.572482 0.819917i \(-0.305981\pi\)
0.572482 + 0.819917i \(0.305981\pi\)
\(138\) 322.000 0.198627
\(139\) −1027.00 −0.626683 −0.313342 0.949640i \(-0.601449\pi\)
−0.313342 + 0.949640i \(0.601449\pi\)
\(140\) 0 0
\(141\) 4473.00 2.67159
\(142\) −714.000 −0.421955
\(143\) −282.000 −0.164909
\(144\) 352.000 0.203704
\(145\) 0 0
\(146\) 518.000 0.293630
\(147\) −399.000 −0.223871
\(148\) 472.000 0.262150
\(149\) 2310.00 1.27008 0.635042 0.772477i \(-0.280983\pi\)
0.635042 + 0.772477i \(0.280983\pi\)
\(150\) 0 0
\(151\) −2149.00 −1.15817 −0.579083 0.815268i \(-0.696589\pi\)
−0.579083 + 0.815268i \(0.696589\pi\)
\(152\) 1168.00 0.623272
\(153\) 2904.00 1.53447
\(154\) −240.000 −0.125583
\(155\) 0 0
\(156\) 1316.00 0.675412
\(157\) −1832.00 −0.931271 −0.465635 0.884977i \(-0.654174\pi\)
−0.465635 + 0.884977i \(0.654174\pi\)
\(158\) 1084.00 0.545813
\(159\) −2394.00 −1.19407
\(160\) 0 0
\(161\) 460.000 0.225174
\(162\) −1678.00 −0.813803
\(163\) −1217.00 −0.584802 −0.292401 0.956296i \(-0.594454\pi\)
−0.292401 + 0.956296i \(0.594454\pi\)
\(164\) 1980.00 0.942756
\(165\) 0 0
\(166\) 2496.00 1.16703
\(167\) −3048.00 −1.41234 −0.706172 0.708041i \(-0.749579\pi\)
−0.706172 + 0.708041i \(0.749579\pi\)
\(168\) 1120.00 0.514344
\(169\) 12.0000 0.00546199
\(170\) 0 0
\(171\) 3212.00 1.43642
\(172\) −1088.00 −0.482321
\(173\) −774.000 −0.340151 −0.170076 0.985431i \(-0.554401\pi\)
−0.170076 + 0.985431i \(0.554401\pi\)
\(174\) 1386.00 0.603864
\(175\) 0 0
\(176\) 96.0000 0.0411152
\(177\) −1680.00 −0.713427
\(178\) −1656.00 −0.697317
\(179\) −1875.00 −0.782928 −0.391464 0.920193i \(-0.628031\pi\)
−0.391464 + 0.920193i \(0.628031\pi\)
\(180\) 0 0
\(181\) −1606.00 −0.659520 −0.329760 0.944065i \(-0.606968\pi\)
−0.329760 + 0.944065i \(0.606968\pi\)
\(182\) 1880.00 0.765686
\(183\) 2590.00 1.04622
\(184\) −184.000 −0.0737210
\(185\) 0 0
\(186\) 3542.00 1.39630
\(187\) 792.000 0.309715
\(188\) −2556.00 −0.991572
\(189\) −700.000 −0.269405
\(190\) 0 0
\(191\) 2982.00 1.12969 0.564843 0.825199i \(-0.308937\pi\)
0.564843 + 0.825199i \(0.308937\pi\)
\(192\) −448.000 −0.168394
\(193\) −1385.00 −0.516552 −0.258276 0.966071i \(-0.583154\pi\)
−0.258276 + 0.966071i \(0.583154\pi\)
\(194\) −1984.00 −0.734242
\(195\) 0 0
\(196\) 228.000 0.0830904
\(197\) −957.000 −0.346109 −0.173054 0.984912i \(-0.555364\pi\)
−0.173054 + 0.984912i \(0.555364\pi\)
\(198\) 264.000 0.0947559
\(199\) −358.000 −0.127527 −0.0637637 0.997965i \(-0.520310\pi\)
−0.0637637 + 0.997965i \(0.520310\pi\)
\(200\) 0 0
\(201\) 4886.00 1.71459
\(202\) −3084.00 −1.07421
\(203\) 1980.00 0.684575
\(204\) −3696.00 −1.26849
\(205\) 0 0
\(206\) −64.0000 −0.0216461
\(207\) −506.000 −0.169901
\(208\) −752.000 −0.250682
\(209\) 876.000 0.289924
\(210\) 0 0
\(211\) −5380.00 −1.75533 −0.877665 0.479275i \(-0.840900\pi\)
−0.877665 + 0.479275i \(0.840900\pi\)
\(212\) 1368.00 0.443182
\(213\) 2499.00 0.803890
\(214\) 1668.00 0.532814
\(215\) 0 0
\(216\) 280.000 0.0882018
\(217\) 5060.00 1.58293
\(218\) −2384.00 −0.740664
\(219\) −1813.00 −0.559412
\(220\) 0 0
\(221\) −6204.00 −1.88835
\(222\) −1652.00 −0.499437
\(223\) −1040.00 −0.312303 −0.156151 0.987733i \(-0.549909\pi\)
−0.156151 + 0.987733i \(0.549909\pi\)
\(224\) −640.000 −0.190901
\(225\) 0 0
\(226\) 264.000 0.0777036
\(227\) 3744.00 1.09470 0.547352 0.836902i \(-0.315636\pi\)
0.547352 + 0.836902i \(0.315636\pi\)
\(228\) −4088.00 −1.18743
\(229\) 2804.00 0.809142 0.404571 0.914507i \(-0.367421\pi\)
0.404571 + 0.914507i \(0.367421\pi\)
\(230\) 0 0
\(231\) 840.000 0.239255
\(232\) −792.000 −0.224126
\(233\) 4869.00 1.36901 0.684504 0.729009i \(-0.260019\pi\)
0.684504 + 0.729009i \(0.260019\pi\)
\(234\) −2068.00 −0.577732
\(235\) 0 0
\(236\) 960.000 0.264791
\(237\) −3794.00 −1.03986
\(238\) −5280.00 −1.43803
\(239\) −2877.00 −0.778651 −0.389326 0.921100i \(-0.627292\pi\)
−0.389326 + 0.921100i \(0.627292\pi\)
\(240\) 0 0
\(241\) 1622.00 0.433536 0.216768 0.976223i \(-0.430448\pi\)
0.216768 + 0.976223i \(0.430448\pi\)
\(242\) −2590.00 −0.687981
\(243\) 4928.00 1.30095
\(244\) −1480.00 −0.388309
\(245\) 0 0
\(246\) −6930.00 −1.79610
\(247\) −6862.00 −1.76769
\(248\) −2024.00 −0.518242
\(249\) −8736.00 −2.22338
\(250\) 0 0
\(251\) −4752.00 −1.19499 −0.597497 0.801871i \(-0.703838\pi\)
−0.597497 + 0.801871i \(0.703838\pi\)
\(252\) −1760.00 −0.439959
\(253\) −138.000 −0.0342924
\(254\) −178.000 −0.0439713
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 5073.00 1.23130 0.615652 0.788018i \(-0.288893\pi\)
0.615652 + 0.788018i \(0.288893\pi\)
\(258\) 3808.00 0.918898
\(259\) −2360.00 −0.566190
\(260\) 0 0
\(261\) −2178.00 −0.516532
\(262\) −3594.00 −0.847474
\(263\) −1314.00 −0.308079 −0.154039 0.988065i \(-0.549228\pi\)
−0.154039 + 0.988065i \(0.549228\pi\)
\(264\) −336.000 −0.0783309
\(265\) 0 0
\(266\) −5840.00 −1.34614
\(267\) 5796.00 1.32850
\(268\) −2792.00 −0.636375
\(269\) 5265.00 1.19336 0.596678 0.802481i \(-0.296487\pi\)
0.596678 + 0.802481i \(0.296487\pi\)
\(270\) 0 0
\(271\) −2488.00 −0.557695 −0.278847 0.960335i \(-0.589952\pi\)
−0.278847 + 0.960335i \(0.589952\pi\)
\(272\) 2112.00 0.470804
\(273\) −6580.00 −1.45875
\(274\) 3672.00 0.809612
\(275\) 0 0
\(276\) 644.000 0.140450
\(277\) −5465.00 −1.18542 −0.592708 0.805418i \(-0.701941\pi\)
−0.592708 + 0.805418i \(0.701941\pi\)
\(278\) −2054.00 −0.443132
\(279\) −5566.00 −1.19436
\(280\) 0 0
\(281\) 8940.00 1.89792 0.948960 0.315396i \(-0.102137\pi\)
0.948960 + 0.315396i \(0.102137\pi\)
\(282\) 8946.00 1.88910
\(283\) −842.000 −0.176861 −0.0884306 0.996082i \(-0.528185\pi\)
−0.0884306 + 0.996082i \(0.528185\pi\)
\(284\) −1428.00 −0.298367
\(285\) 0 0
\(286\) −564.000 −0.116608
\(287\) −9900.00 −2.03616
\(288\) 704.000 0.144040
\(289\) 12511.0 2.54651
\(290\) 0 0
\(291\) 6944.00 1.39885
\(292\) 1036.00 0.207628
\(293\) 4032.00 0.803932 0.401966 0.915655i \(-0.368327\pi\)
0.401966 + 0.915655i \(0.368327\pi\)
\(294\) −798.000 −0.158300
\(295\) 0 0
\(296\) 944.000 0.185368
\(297\) 210.000 0.0410284
\(298\) 4620.00 0.898085
\(299\) 1081.00 0.209083
\(300\) 0 0
\(301\) 5440.00 1.04172
\(302\) −4298.00 −0.818947
\(303\) 10794.0 2.04653
\(304\) 2336.00 0.440720
\(305\) 0 0
\(306\) 5808.00 1.08504
\(307\) 1096.00 0.203753 0.101876 0.994797i \(-0.467515\pi\)
0.101876 + 0.994797i \(0.467515\pi\)
\(308\) −480.000 −0.0888004
\(309\) 224.000 0.0412392
\(310\) 0 0
\(311\) −4653.00 −0.848384 −0.424192 0.905572i \(-0.639442\pi\)
−0.424192 + 0.905572i \(0.639442\pi\)
\(312\) 2632.00 0.477589
\(313\) −3440.00 −0.621215 −0.310608 0.950538i \(-0.600532\pi\)
−0.310608 + 0.950538i \(0.600532\pi\)
\(314\) −3664.00 −0.658508
\(315\) 0 0
\(316\) 2168.00 0.385948
\(317\) −3066.00 −0.543229 −0.271615 0.962406i \(-0.587558\pi\)
−0.271615 + 0.962406i \(0.587558\pi\)
\(318\) −4788.00 −0.844332
\(319\) −594.000 −0.104256
\(320\) 0 0
\(321\) −5838.00 −1.01509
\(322\) 920.000 0.159222
\(323\) 19272.0 3.31988
\(324\) −3356.00 −0.575446
\(325\) 0 0
\(326\) −2434.00 −0.413518
\(327\) 8344.00 1.41108
\(328\) 3960.00 0.666629
\(329\) 12780.0 2.14159
\(330\) 0 0
\(331\) 1505.00 0.249916 0.124958 0.992162i \(-0.460120\pi\)
0.124958 + 0.992162i \(0.460120\pi\)
\(332\) 4992.00 0.825216
\(333\) 2596.00 0.427207
\(334\) −6096.00 −0.998677
\(335\) 0 0
\(336\) 2240.00 0.363696
\(337\) 3268.00 0.528247 0.264124 0.964489i \(-0.414917\pi\)
0.264124 + 0.964489i \(0.414917\pi\)
\(338\) 24.0000 0.00386221
\(339\) −924.000 −0.148038
\(340\) 0 0
\(341\) −1518.00 −0.241068
\(342\) 6424.00 1.01570
\(343\) 5720.00 0.900440
\(344\) −2176.00 −0.341052
\(345\) 0 0
\(346\) −1548.00 −0.240523
\(347\) −4164.00 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 2772.00 0.426997
\(349\) −2911.00 −0.446482 −0.223241 0.974763i \(-0.571664\pi\)
−0.223241 + 0.974763i \(0.571664\pi\)
\(350\) 0 0
\(351\) −1645.00 −0.250153
\(352\) 192.000 0.0290728
\(353\) −9753.00 −1.47054 −0.735269 0.677776i \(-0.762944\pi\)
−0.735269 + 0.677776i \(0.762944\pi\)
\(354\) −3360.00 −0.504469
\(355\) 0 0
\(356\) −3312.00 −0.493078
\(357\) 18480.0 2.73968
\(358\) −3750.00 −0.553614
\(359\) 3858.00 0.567180 0.283590 0.958946i \(-0.408475\pi\)
0.283590 + 0.958946i \(0.408475\pi\)
\(360\) 0 0
\(361\) 14457.0 2.10774
\(362\) −3212.00 −0.466351
\(363\) 9065.00 1.31071
\(364\) 3760.00 0.541422
\(365\) 0 0
\(366\) 5180.00 0.739789
\(367\) −7856.00 −1.11738 −0.558692 0.829375i \(-0.688697\pi\)
−0.558692 + 0.829375i \(0.688697\pi\)
\(368\) −368.000 −0.0521286
\(369\) 10890.0 1.53634
\(370\) 0 0
\(371\) −6840.00 −0.957184
\(372\) 7084.00 0.987334
\(373\) 34.0000 0.00471971 0.00235986 0.999997i \(-0.499249\pi\)
0.00235986 + 0.999997i \(0.499249\pi\)
\(374\) 1584.00 0.219002
\(375\) 0 0
\(376\) −5112.00 −0.701147
\(377\) 4653.00 0.635654
\(378\) −1400.00 −0.190498
\(379\) −6064.00 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) 623.000 0.0837723
\(382\) 5964.00 0.798808
\(383\) −11868.0 −1.58336 −0.791679 0.610937i \(-0.790793\pi\)
−0.791679 + 0.610937i \(0.790793\pi\)
\(384\) −896.000 −0.119072
\(385\) 0 0
\(386\) −2770.00 −0.365257
\(387\) −5984.00 −0.786005
\(388\) −3968.00 −0.519187
\(389\) 8616.00 1.12300 0.561502 0.827475i \(-0.310224\pi\)
0.561502 + 0.827475i \(0.310224\pi\)
\(390\) 0 0
\(391\) −3036.00 −0.392678
\(392\) 456.000 0.0587538
\(393\) 12579.0 1.61457
\(394\) −1914.00 −0.244736
\(395\) 0 0
\(396\) 528.000 0.0670025
\(397\) −3119.00 −0.394303 −0.197151 0.980373i \(-0.563169\pi\)
−0.197151 + 0.980373i \(0.563169\pi\)
\(398\) −716.000 −0.0901755
\(399\) 20440.0 2.56461
\(400\) 0 0
\(401\) 7986.00 0.994518 0.497259 0.867602i \(-0.334340\pi\)
0.497259 + 0.867602i \(0.334340\pi\)
\(402\) 9772.00 1.21240
\(403\) 11891.0 1.46981
\(404\) −6168.00 −0.759578
\(405\) 0 0
\(406\) 3960.00 0.484068
\(407\) 708.000 0.0862267
\(408\) −7392.00 −0.896957
\(409\) −3475.00 −0.420117 −0.210058 0.977689i \(-0.567365\pi\)
−0.210058 + 0.977689i \(0.567365\pi\)
\(410\) 0 0
\(411\) −12852.0 −1.54244
\(412\) −128.000 −0.0153061
\(413\) −4800.00 −0.571895
\(414\) −1012.00 −0.120138
\(415\) 0 0
\(416\) −1504.00 −0.177259
\(417\) 7189.00 0.844237
\(418\) 1752.00 0.205007
\(419\) 10992.0 1.28161 0.640805 0.767704i \(-0.278601\pi\)
0.640805 + 0.767704i \(0.278601\pi\)
\(420\) 0 0
\(421\) 2012.00 0.232919 0.116459 0.993195i \(-0.462845\pi\)
0.116459 + 0.993195i \(0.462845\pi\)
\(422\) −10760.0 −1.24121
\(423\) −14058.0 −1.61589
\(424\) 2736.00 0.313377
\(425\) 0 0
\(426\) 4998.00 0.568436
\(427\) 7400.00 0.838668
\(428\) 3336.00 0.376756
\(429\) 1974.00 0.222158
\(430\) 0 0
\(431\) −9792.00 −1.09435 −0.547174 0.837019i \(-0.684296\pi\)
−0.547174 + 0.837019i \(0.684296\pi\)
\(432\) 560.000 0.0623681
\(433\) −5786.00 −0.642165 −0.321082 0.947051i \(-0.604047\pi\)
−0.321082 + 0.947051i \(0.604047\pi\)
\(434\) 10120.0 1.11930
\(435\) 0 0
\(436\) −4768.00 −0.523729
\(437\) −3358.00 −0.367586
\(438\) −3626.00 −0.395564
\(439\) 2549.00 0.277123 0.138562 0.990354i \(-0.455752\pi\)
0.138562 + 0.990354i \(0.455752\pi\)
\(440\) 0 0
\(441\) 1254.00 0.135407
\(442\) −12408.0 −1.33527
\(443\) −1311.00 −0.140604 −0.0703019 0.997526i \(-0.522396\pi\)
−0.0703019 + 0.997526i \(0.522396\pi\)
\(444\) −3304.00 −0.353155
\(445\) 0 0
\(446\) −2080.00 −0.220832
\(447\) −16170.0 −1.71099
\(448\) −1280.00 −0.134987
\(449\) −14610.0 −1.53561 −0.767805 0.640684i \(-0.778651\pi\)
−0.767805 + 0.640684i \(0.778651\pi\)
\(450\) 0 0
\(451\) 2970.00 0.310093
\(452\) 528.000 0.0549448
\(453\) 15043.0 1.56022
\(454\) 7488.00 0.774073
\(455\) 0 0
\(456\) −8176.00 −0.839641
\(457\) −80.0000 −0.00818871 −0.00409436 0.999992i \(-0.501303\pi\)
−0.00409436 + 0.999992i \(0.501303\pi\)
\(458\) 5608.00 0.572150
\(459\) 4620.00 0.469811
\(460\) 0 0
\(461\) −2343.00 −0.236712 −0.118356 0.992971i \(-0.537762\pi\)
−0.118356 + 0.992971i \(0.537762\pi\)
\(462\) 1680.00 0.169179
\(463\) 3400.00 0.341277 0.170639 0.985334i \(-0.445417\pi\)
0.170639 + 0.985334i \(0.445417\pi\)
\(464\) −1584.00 −0.158481
\(465\) 0 0
\(466\) 9738.00 0.968035
\(467\) 1374.00 0.136148 0.0680740 0.997680i \(-0.478315\pi\)
0.0680740 + 0.997680i \(0.478315\pi\)
\(468\) −4136.00 −0.408519
\(469\) 13960.0 1.37444
\(470\) 0 0
\(471\) 12824.0 1.25456
\(472\) 1920.00 0.187236
\(473\) −1632.00 −0.158646
\(474\) −7588.00 −0.735292
\(475\) 0 0
\(476\) −10560.0 −1.01684
\(477\) 7524.00 0.722223
\(478\) −5754.00 −0.550590
\(479\) 4536.00 0.432683 0.216341 0.976318i \(-0.430588\pi\)
0.216341 + 0.976318i \(0.430588\pi\)
\(480\) 0 0
\(481\) −5546.00 −0.525729
\(482\) 3244.00 0.306556
\(483\) −3220.00 −0.303344
\(484\) −5180.00 −0.486476
\(485\) 0 0
\(486\) 9856.00 0.919912
\(487\) 11455.0 1.06586 0.532932 0.846158i \(-0.321090\pi\)
0.532932 + 0.846158i \(0.321090\pi\)
\(488\) −2960.00 −0.274576
\(489\) 8519.00 0.787817
\(490\) 0 0
\(491\) −10395.0 −0.955437 −0.477719 0.878513i \(-0.658536\pi\)
−0.477719 + 0.878513i \(0.658536\pi\)
\(492\) −13860.0 −1.27003
\(493\) −13068.0 −1.19382
\(494\) −13724.0 −1.24994
\(495\) 0 0
\(496\) −4048.00 −0.366453
\(497\) 7140.00 0.644412
\(498\) −17472.0 −1.57217
\(499\) −5497.00 −0.493145 −0.246573 0.969124i \(-0.579304\pi\)
−0.246573 + 0.969124i \(0.579304\pi\)
\(500\) 0 0
\(501\) 21336.0 1.90264
\(502\) −9504.00 −0.844989
\(503\) −7158.00 −0.634512 −0.317256 0.948340i \(-0.602761\pi\)
−0.317256 + 0.948340i \(0.602761\pi\)
\(504\) −3520.00 −0.311098
\(505\) 0 0
\(506\) −276.000 −0.0242484
\(507\) −84.0000 −0.00735813
\(508\) −356.000 −0.0310924
\(509\) 12801.0 1.11472 0.557362 0.830270i \(-0.311814\pi\)
0.557362 + 0.830270i \(0.311814\pi\)
\(510\) 0 0
\(511\) −5180.00 −0.448434
\(512\) 512.000 0.0441942
\(513\) 5110.00 0.439789
\(514\) 10146.0 0.870663
\(515\) 0 0
\(516\) 7616.00 0.649759
\(517\) −3834.00 −0.326149
\(518\) −4720.00 −0.400357
\(519\) 5418.00 0.458235
\(520\) 0 0
\(521\) 16788.0 1.41170 0.705850 0.708361i \(-0.250565\pi\)
0.705850 + 0.708361i \(0.250565\pi\)
\(522\) −4356.00 −0.365243
\(523\) −19040.0 −1.59189 −0.795947 0.605366i \(-0.793027\pi\)
−0.795947 + 0.605366i \(0.793027\pi\)
\(524\) −7188.00 −0.599254
\(525\) 0 0
\(526\) −2628.00 −0.217845
\(527\) −33396.0 −2.76044
\(528\) −672.000 −0.0553883
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 5280.00 0.431511
\(532\) −11680.0 −0.951865
\(533\) −23265.0 −1.89065
\(534\) 11592.0 0.939391
\(535\) 0 0
\(536\) −5584.00 −0.449985
\(537\) 13125.0 1.05472
\(538\) 10530.0 0.843830
\(539\) 342.000 0.0273302
\(540\) 0 0
\(541\) −13339.0 −1.06005 −0.530026 0.847981i \(-0.677818\pi\)
−0.530026 + 0.847981i \(0.677818\pi\)
\(542\) −4976.00 −0.394350
\(543\) 11242.0 0.888472
\(544\) 4224.00 0.332909
\(545\) 0 0
\(546\) −13160.0 −1.03149
\(547\) 22975.0 1.79587 0.897934 0.440130i \(-0.145068\pi\)
0.897934 + 0.440130i \(0.145068\pi\)
\(548\) 7344.00 0.572482
\(549\) −8140.00 −0.632799
\(550\) 0 0
\(551\) −14454.0 −1.11753
\(552\) 1288.00 0.0993133
\(553\) −10840.0 −0.833569
\(554\) −10930.0 −0.838215
\(555\) 0 0
\(556\) −4108.00 −0.313342
\(557\) 17964.0 1.36653 0.683267 0.730169i \(-0.260559\pi\)
0.683267 + 0.730169i \(0.260559\pi\)
\(558\) −11132.0 −0.844543
\(559\) 12784.0 0.967273
\(560\) 0 0
\(561\) −5544.00 −0.417233
\(562\) 17880.0 1.34203
\(563\) −12636.0 −0.945904 −0.472952 0.881088i \(-0.656812\pi\)
−0.472952 + 0.881088i \(0.656812\pi\)
\(564\) 17892.0 1.33580
\(565\) 0 0
\(566\) −1684.00 −0.125060
\(567\) 16780.0 1.24285
\(568\) −2856.00 −0.210977
\(569\) −10302.0 −0.759020 −0.379510 0.925188i \(-0.623907\pi\)
−0.379510 + 0.925188i \(0.623907\pi\)
\(570\) 0 0
\(571\) 12380.0 0.907333 0.453666 0.891172i \(-0.350116\pi\)
0.453666 + 0.891172i \(0.350116\pi\)
\(572\) −1128.00 −0.0824546
\(573\) −20874.0 −1.52186
\(574\) −19800.0 −1.43978
\(575\) 0 0
\(576\) 1408.00 0.101852
\(577\) −1913.00 −0.138023 −0.0690115 0.997616i \(-0.521985\pi\)
−0.0690115 + 0.997616i \(0.521985\pi\)
\(578\) 25022.0 1.80065
\(579\) 9695.00 0.695873
\(580\) 0 0
\(581\) −24960.0 −1.78230
\(582\) 13888.0 0.989134
\(583\) 2052.00 0.145772
\(584\) 2072.00 0.146815
\(585\) 0 0
\(586\) 8064.00 0.568465
\(587\) −16767.0 −1.17896 −0.589479 0.807784i \(-0.700667\pi\)
−0.589479 + 0.807784i \(0.700667\pi\)
\(588\) −1596.00 −0.111935
\(589\) −36938.0 −2.58405
\(590\) 0 0
\(591\) 6699.00 0.466261
\(592\) 1888.00 0.131075
\(593\) 16722.0 1.15799 0.578997 0.815330i \(-0.303444\pi\)
0.578997 + 0.815330i \(0.303444\pi\)
\(594\) 420.000 0.0290115
\(595\) 0 0
\(596\) 9240.00 0.635042
\(597\) 2506.00 0.171799
\(598\) 2162.00 0.147844
\(599\) −4200.00 −0.286490 −0.143245 0.989687i \(-0.545754\pi\)
−0.143245 + 0.989687i \(0.545754\pi\)
\(600\) 0 0
\(601\) −19915.0 −1.35166 −0.675832 0.737056i \(-0.736215\pi\)
−0.675832 + 0.737056i \(0.736215\pi\)
\(602\) 10880.0 0.736604
\(603\) −15356.0 −1.03706
\(604\) −8596.00 −0.579083
\(605\) 0 0
\(606\) 21588.0 1.44712
\(607\) −24044.0 −1.60777 −0.803885 0.594785i \(-0.797237\pi\)
−0.803885 + 0.594785i \(0.797237\pi\)
\(608\) 4672.00 0.311636
\(609\) −13860.0 −0.922226
\(610\) 0 0
\(611\) 30033.0 1.98855
\(612\) 11616.0 0.767237
\(613\) −3452.00 −0.227447 −0.113723 0.993512i \(-0.536278\pi\)
−0.113723 + 0.993512i \(0.536278\pi\)
\(614\) 2192.00 0.144075
\(615\) 0 0
\(616\) −960.000 −0.0627914
\(617\) 16374.0 1.06838 0.534192 0.845363i \(-0.320616\pi\)
0.534192 + 0.845363i \(0.320616\pi\)
\(618\) 448.000 0.0291605
\(619\) −12760.0 −0.828542 −0.414271 0.910154i \(-0.635963\pi\)
−0.414271 + 0.910154i \(0.635963\pi\)
\(620\) 0 0
\(621\) −805.000 −0.0520186
\(622\) −9306.00 −0.599898
\(623\) 16560.0 1.06495
\(624\) 5264.00 0.337706
\(625\) 0 0
\(626\) −6880.00 −0.439265
\(627\) −6132.00 −0.390572
\(628\) −7328.00 −0.465635
\(629\) 15576.0 0.987370
\(630\) 0 0
\(631\) 29420.0 1.85609 0.928044 0.372470i \(-0.121489\pi\)
0.928044 + 0.372470i \(0.121489\pi\)
\(632\) 4336.00 0.272906
\(633\) 37660.0 2.36469
\(634\) −6132.00 −0.384121
\(635\) 0 0
\(636\) −9576.00 −0.597033
\(637\) −2679.00 −0.166634
\(638\) −1188.00 −0.0737200
\(639\) −7854.00 −0.486228
\(640\) 0 0
\(641\) −13692.0 −0.843684 −0.421842 0.906669i \(-0.638616\pi\)
−0.421842 + 0.906669i \(0.638616\pi\)
\(642\) −11676.0 −0.717780
\(643\) −27398.0 −1.68036 −0.840180 0.542307i \(-0.817551\pi\)
−0.840180 + 0.542307i \(0.817551\pi\)
\(644\) 1840.00 0.112587
\(645\) 0 0
\(646\) 38544.0 2.34751
\(647\) 6417.00 0.389920 0.194960 0.980811i \(-0.437542\pi\)
0.194960 + 0.980811i \(0.437542\pi\)
\(648\) −6712.00 −0.406902
\(649\) 1440.00 0.0870954
\(650\) 0 0
\(651\) −35420.0 −2.13244
\(652\) −4868.00 −0.292401
\(653\) −14583.0 −0.873931 −0.436965 0.899478i \(-0.643947\pi\)
−0.436965 + 0.899478i \(0.643947\pi\)
\(654\) 16688.0 0.997787
\(655\) 0 0
\(656\) 7920.00 0.471378
\(657\) 5698.00 0.338356
\(658\) 25560.0 1.51434
\(659\) −9624.00 −0.568889 −0.284444 0.958693i \(-0.591809\pi\)
−0.284444 + 0.958693i \(0.591809\pi\)
\(660\) 0 0
\(661\) −24586.0 −1.44672 −0.723362 0.690469i \(-0.757404\pi\)
−0.723362 + 0.690469i \(0.757404\pi\)
\(662\) 3010.00 0.176717
\(663\) 43428.0 2.54390
\(664\) 9984.00 0.583516
\(665\) 0 0
\(666\) 5192.00 0.302081
\(667\) 2277.00 0.132183
\(668\) −12192.0 −0.706172
\(669\) 7280.00 0.420719
\(670\) 0 0
\(671\) −2220.00 −0.127723
\(672\) 4480.00 0.257172
\(673\) −14339.0 −0.821289 −0.410645 0.911795i \(-0.634696\pi\)
−0.410645 + 0.911795i \(0.634696\pi\)
\(674\) 6536.00 0.373527
\(675\) 0 0
\(676\) 48.0000 0.00273100
\(677\) −14658.0 −0.832131 −0.416066 0.909335i \(-0.636591\pi\)
−0.416066 + 0.909335i \(0.636591\pi\)
\(678\) −1848.00 −0.104678
\(679\) 19840.0 1.12134
\(680\) 0 0
\(681\) −26208.0 −1.47473
\(682\) −3036.00 −0.170461
\(683\) −16797.0 −0.941024 −0.470512 0.882394i \(-0.655931\pi\)
−0.470512 + 0.882394i \(0.655931\pi\)
\(684\) 12848.0 0.718210
\(685\) 0 0
\(686\) 11440.0 0.636707
\(687\) −19628.0 −1.09004
\(688\) −4352.00 −0.241161
\(689\) −16074.0 −0.888782
\(690\) 0 0
\(691\) 8132.00 0.447693 0.223846 0.974624i \(-0.428139\pi\)
0.223846 + 0.974624i \(0.428139\pi\)
\(692\) −3096.00 −0.170076
\(693\) −2640.00 −0.144712
\(694\) −8328.00 −0.455514
\(695\) 0 0
\(696\) 5544.00 0.301932
\(697\) 65340.0 3.55083
\(698\) −5822.00 −0.315711
\(699\) −34083.0 −1.84426
\(700\) 0 0
\(701\) 19668.0 1.05970 0.529850 0.848091i \(-0.322248\pi\)
0.529850 + 0.848091i \(0.322248\pi\)
\(702\) −3290.00 −0.176885
\(703\) 17228.0 0.924276
\(704\) 384.000 0.0205576
\(705\) 0 0
\(706\) −19506.0 −1.03983
\(707\) 30840.0 1.64053
\(708\) −6720.00 −0.356713
\(709\) 18200.0 0.964055 0.482028 0.876156i \(-0.339900\pi\)
0.482028 + 0.876156i \(0.339900\pi\)
\(710\) 0 0
\(711\) 11924.0 0.628952
\(712\) −6624.00 −0.348659
\(713\) 5819.00 0.305643
\(714\) 36960.0 1.93725
\(715\) 0 0
\(716\) −7500.00 −0.391464
\(717\) 20139.0 1.04896
\(718\) 7716.00 0.401056
\(719\) −11880.0 −0.616202 −0.308101 0.951354i \(-0.599693\pi\)
−0.308101 + 0.951354i \(0.599693\pi\)
\(720\) 0 0
\(721\) 640.000 0.0330580
\(722\) 28914.0 1.49040
\(723\) −11354.0 −0.584038
\(724\) −6424.00 −0.329760
\(725\) 0 0
\(726\) 18130.0 0.926815
\(727\) 2554.00 0.130292 0.0651462 0.997876i \(-0.479249\pi\)
0.0651462 + 0.997876i \(0.479249\pi\)
\(728\) 7520.00 0.382843
\(729\) −11843.0 −0.601687
\(730\) 0 0
\(731\) −35904.0 −1.81663
\(732\) 10360.0 0.523110
\(733\) −6308.00 −0.317860 −0.158930 0.987290i \(-0.550804\pi\)
−0.158930 + 0.987290i \(0.550804\pi\)
\(734\) −15712.0 −0.790110
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) −4188.00 −0.209317
\(738\) 21780.0 1.08636
\(739\) 9557.00 0.475724 0.237862 0.971299i \(-0.423553\pi\)
0.237862 + 0.971299i \(0.423553\pi\)
\(740\) 0 0
\(741\) 48034.0 2.38134
\(742\) −13680.0 −0.676831
\(743\) −19128.0 −0.944466 −0.472233 0.881474i \(-0.656552\pi\)
−0.472233 + 0.881474i \(0.656552\pi\)
\(744\) 14168.0 0.698151
\(745\) 0 0
\(746\) 68.0000 0.00333734
\(747\) 27456.0 1.34480
\(748\) 3168.00 0.154858
\(749\) −16680.0 −0.813717
\(750\) 0 0
\(751\) −18448.0 −0.896374 −0.448187 0.893940i \(-0.647930\pi\)
−0.448187 + 0.893940i \(0.647930\pi\)
\(752\) −10224.0 −0.495786
\(753\) 33264.0 1.60984
\(754\) 9306.00 0.449476
\(755\) 0 0
\(756\) −2800.00 −0.134702
\(757\) 5602.00 0.268967 0.134484 0.990916i \(-0.457062\pi\)
0.134484 + 0.990916i \(0.457062\pi\)
\(758\) −12128.0 −0.581146
\(759\) 966.000 0.0461971
\(760\) 0 0
\(761\) 4005.00 0.190777 0.0953884 0.995440i \(-0.469591\pi\)
0.0953884 + 0.995440i \(0.469591\pi\)
\(762\) 1246.00 0.0592360
\(763\) 23840.0 1.13115
\(764\) 11928.0 0.564843
\(765\) 0 0
\(766\) −23736.0 −1.11960
\(767\) −11280.0 −0.531026
\(768\) −1792.00 −0.0841969
\(769\) 41726.0 1.95667 0.978334 0.207032i \(-0.0663803\pi\)
0.978334 + 0.207032i \(0.0663803\pi\)
\(770\) 0 0
\(771\) −35511.0 −1.65875
\(772\) −5540.00 −0.258276
\(773\) −34116.0 −1.58741 −0.793705 0.608303i \(-0.791850\pi\)
−0.793705 + 0.608303i \(0.791850\pi\)
\(774\) −11968.0 −0.555789
\(775\) 0 0
\(776\) −7936.00 −0.367121
\(777\) 16520.0 0.762743
\(778\) 17232.0 0.794084
\(779\) 72270.0 3.32393
\(780\) 0 0
\(781\) −2142.00 −0.0981393
\(782\) −6072.00 −0.277665
\(783\) −3465.00 −0.158147
\(784\) 912.000 0.0415452
\(785\) 0 0
\(786\) 25158.0 1.14167
\(787\) −1652.00 −0.0748252 −0.0374126 0.999300i \(-0.511912\pi\)
−0.0374126 + 0.999300i \(0.511912\pi\)
\(788\) −3828.00 −0.173054
\(789\) 9198.00 0.415028
\(790\) 0 0
\(791\) −2640.00 −0.118670
\(792\) 1056.00 0.0473779
\(793\) 17390.0 0.778735
\(794\) −6238.00 −0.278814
\(795\) 0 0
\(796\) −1432.00 −0.0637637
\(797\) −12486.0 −0.554927 −0.277463 0.960736i \(-0.589494\pi\)
−0.277463 + 0.960736i \(0.589494\pi\)
\(798\) 40880.0 1.81345
\(799\) −84348.0 −3.73469
\(800\) 0 0
\(801\) −18216.0 −0.803534
\(802\) 15972.0 0.703231
\(803\) 1554.00 0.0682932
\(804\) 19544.0 0.857293
\(805\) 0 0
\(806\) 23782.0 1.03931
\(807\) −36855.0 −1.60763
\(808\) −12336.0 −0.537103
\(809\) 5490.00 0.238589 0.119294 0.992859i \(-0.461937\pi\)
0.119294 + 0.992859i \(0.461937\pi\)
\(810\) 0 0
\(811\) −14785.0 −0.640162 −0.320081 0.947390i \(-0.603710\pi\)
−0.320081 + 0.947390i \(0.603710\pi\)
\(812\) 7920.00 0.342288
\(813\) 17416.0 0.751299
\(814\) 1416.00 0.0609715
\(815\) 0 0
\(816\) −14784.0 −0.634245
\(817\) −39712.0 −1.70055
\(818\) −6950.00 −0.297067
\(819\) 20680.0 0.882317
\(820\) 0 0
\(821\) −12486.0 −0.530773 −0.265386 0.964142i \(-0.585500\pi\)
−0.265386 + 0.964142i \(0.585500\pi\)
\(822\) −25704.0 −1.09067
\(823\) 39805.0 1.68592 0.842962 0.537973i \(-0.180810\pi\)
0.842962 + 0.537973i \(0.180810\pi\)
\(824\) −256.000 −0.0108230
\(825\) 0 0
\(826\) −9600.00 −0.404391
\(827\) −15024.0 −0.631724 −0.315862 0.948805i \(-0.602294\pi\)
−0.315862 + 0.948805i \(0.602294\pi\)
\(828\) −2024.00 −0.0849503
\(829\) 14618.0 0.612430 0.306215 0.951962i \(-0.400937\pi\)
0.306215 + 0.951962i \(0.400937\pi\)
\(830\) 0 0
\(831\) 38255.0 1.59693
\(832\) −3008.00 −0.125341
\(833\) 7524.00 0.312955
\(834\) 14378.0 0.596966
\(835\) 0 0
\(836\) 3504.00 0.144962
\(837\) −8855.00 −0.365679
\(838\) 21984.0 0.906235
\(839\) −10152.0 −0.417743 −0.208871 0.977943i \(-0.566979\pi\)
−0.208871 + 0.977943i \(0.566979\pi\)
\(840\) 0 0
\(841\) −14588.0 −0.598139
\(842\) 4024.00 0.164699
\(843\) −62580.0 −2.55678
\(844\) −21520.0 −0.877665
\(845\) 0 0
\(846\) −28116.0 −1.14261
\(847\) 25900.0 1.05069
\(848\) 5472.00 0.221591
\(849\) 5894.00 0.238259
\(850\) 0 0
\(851\) −2714.00 −0.109324
\(852\) 9996.00 0.401945
\(853\) 22306.0 0.895361 0.447680 0.894194i \(-0.352250\pi\)
0.447680 + 0.894194i \(0.352250\pi\)
\(854\) 14800.0 0.593028
\(855\) 0 0
\(856\) 6672.00 0.266407
\(857\) −1731.00 −0.0689963 −0.0344982 0.999405i \(-0.510983\pi\)
−0.0344982 + 0.999405i \(0.510983\pi\)
\(858\) 3948.00 0.157089
\(859\) −12649.0 −0.502419 −0.251210 0.967933i \(-0.580828\pi\)
−0.251210 + 0.967933i \(0.580828\pi\)
\(860\) 0 0
\(861\) 69300.0 2.74302
\(862\) −19584.0 −0.773821
\(863\) 16143.0 0.636749 0.318374 0.947965i \(-0.396863\pi\)
0.318374 + 0.947965i \(0.396863\pi\)
\(864\) 1120.00 0.0441009
\(865\) 0 0
\(866\) −11572.0 −0.454079
\(867\) −87577.0 −3.43053
\(868\) 20240.0 0.791464
\(869\) 3252.00 0.126947
\(870\) 0 0
\(871\) 32806.0 1.27622
\(872\) −9536.00 −0.370332
\(873\) −21824.0 −0.846083
\(874\) −6716.00 −0.259922
\(875\) 0 0
\(876\) −7252.00 −0.279706
\(877\) −4094.00 −0.157633 −0.0788167 0.996889i \(-0.525114\pi\)
−0.0788167 + 0.996889i \(0.525114\pi\)
\(878\) 5098.00 0.195956
\(879\) −28224.0 −1.08302
\(880\) 0 0
\(881\) 30396.0 1.16239 0.581196 0.813764i \(-0.302585\pi\)
0.581196 + 0.813764i \(0.302585\pi\)
\(882\) 2508.00 0.0957469
\(883\) 21148.0 0.805987 0.402994 0.915203i \(-0.367970\pi\)
0.402994 + 0.915203i \(0.367970\pi\)
\(884\) −24816.0 −0.944177
\(885\) 0 0
\(886\) −2622.00 −0.0994219
\(887\) −5031.00 −0.190445 −0.0952223 0.995456i \(-0.530356\pi\)
−0.0952223 + 0.995456i \(0.530356\pi\)
\(888\) −6608.00 −0.249718
\(889\) 1780.00 0.0671533
\(890\) 0 0
\(891\) −5034.00 −0.189276
\(892\) −4160.00 −0.156151
\(893\) −93294.0 −3.49604
\(894\) −32340.0 −1.20986
\(895\) 0 0
\(896\) −2560.00 −0.0954504
\(897\) −7567.00 −0.281666
\(898\) −29220.0 −1.08584
\(899\) 25047.0 0.929215
\(900\) 0 0
\(901\) 45144.0 1.66922
\(902\) 5940.00 0.219269
\(903\) −38080.0 −1.40335
\(904\) 1056.00 0.0388518
\(905\) 0 0
\(906\) 30086.0 1.10325
\(907\) 538.000 0.0196957 0.00984785 0.999952i \(-0.496865\pi\)
0.00984785 + 0.999952i \(0.496865\pi\)
\(908\) 14976.0 0.547352
\(909\) −33924.0 −1.23783
\(910\) 0 0
\(911\) 3078.00 0.111941 0.0559707 0.998432i \(-0.482175\pi\)
0.0559707 + 0.998432i \(0.482175\pi\)
\(912\) −16352.0 −0.593716
\(913\) 7488.00 0.271431
\(914\) −160.000 −0.00579029
\(915\) 0 0
\(916\) 11216.0 0.404571
\(917\) 35940.0 1.29427
\(918\) 9240.00 0.332206
\(919\) 20288.0 0.728226 0.364113 0.931355i \(-0.381372\pi\)
0.364113 + 0.931355i \(0.381372\pi\)
\(920\) 0 0
\(921\) −7672.00 −0.274485
\(922\) −4686.00 −0.167381
\(923\) 16779.0 0.598361
\(924\) 3360.00 0.119628
\(925\) 0 0
\(926\) 6800.00 0.241320
\(927\) −704.000 −0.0249433
\(928\) −3168.00 −0.112063
\(929\) 28911.0 1.02103 0.510516 0.859868i \(-0.329454\pi\)
0.510516 + 0.859868i \(0.329454\pi\)
\(930\) 0 0
\(931\) 8322.00 0.292957
\(932\) 19476.0 0.684504
\(933\) 32571.0 1.14290
\(934\) 2748.00 0.0962712
\(935\) 0 0
\(936\) −8272.00 −0.288866
\(937\) −14810.0 −0.516352 −0.258176 0.966098i \(-0.583121\pi\)
−0.258176 + 0.966098i \(0.583121\pi\)
\(938\) 27920.0 0.971877
\(939\) 24080.0 0.836870
\(940\) 0 0
\(941\) −2544.00 −0.0881318 −0.0440659 0.999029i \(-0.514031\pi\)
−0.0440659 + 0.999029i \(0.514031\pi\)
\(942\) 25648.0 0.887109
\(943\) −11385.0 −0.393157
\(944\) 3840.00 0.132396
\(945\) 0 0
\(946\) −3264.00 −0.112179
\(947\) 11145.0 0.382433 0.191216 0.981548i \(-0.438757\pi\)
0.191216 + 0.981548i \(0.438757\pi\)
\(948\) −15176.0 −0.519930
\(949\) −12173.0 −0.416388
\(950\) 0 0
\(951\) 21462.0 0.731812
\(952\) −21120.0 −0.719016
\(953\) 4386.00 0.149083 0.0745417 0.997218i \(-0.476251\pi\)
0.0745417 + 0.997218i \(0.476251\pi\)
\(954\) 15048.0 0.510689
\(955\) 0 0
\(956\) −11508.0 −0.389326
\(957\) 4158.00 0.140448
\(958\) 9072.00 0.305953
\(959\) −36720.0 −1.23644
\(960\) 0 0
\(961\) 34218.0 1.14860
\(962\) −11092.0 −0.371747
\(963\) 18348.0 0.613973
\(964\) 6488.00 0.216768
\(965\) 0 0
\(966\) −6440.00 −0.214496
\(967\) −56381.0 −1.87496 −0.937482 0.348033i \(-0.886850\pi\)
−0.937482 + 0.348033i \(0.886850\pi\)
\(968\) −10360.0 −0.343991
\(969\) −134904. −4.47238
\(970\) 0 0
\(971\) 43782.0 1.44699 0.723497 0.690327i \(-0.242534\pi\)
0.723497 + 0.690327i \(0.242534\pi\)
\(972\) 19712.0 0.650476
\(973\) 20540.0 0.676755
\(974\) 22910.0 0.753679
\(975\) 0 0
\(976\) −5920.00 −0.194154
\(977\) −3714.00 −0.121619 −0.0608093 0.998149i \(-0.519368\pi\)
−0.0608093 + 0.998149i \(0.519368\pi\)
\(978\) 17038.0 0.557071
\(979\) −4968.00 −0.162184
\(980\) 0 0
\(981\) −26224.0 −0.853484
\(982\) −20790.0 −0.675596
\(983\) 4662.00 0.151266 0.0756331 0.997136i \(-0.475902\pi\)
0.0756331 + 0.997136i \(0.475902\pi\)
\(984\) −27720.0 −0.898050
\(985\) 0 0
\(986\) −26136.0 −0.844158
\(987\) −89460.0 −2.88505
\(988\) −27448.0 −0.883843
\(989\) 6256.00 0.201142
\(990\) 0 0
\(991\) 51440.0 1.64889 0.824443 0.565945i \(-0.191489\pi\)
0.824443 + 0.565945i \(0.191489\pi\)
\(992\) −8096.00 −0.259121
\(993\) −10535.0 −0.336675
\(994\) 14280.0 0.455668
\(995\) 0 0
\(996\) −34944.0 −1.11169
\(997\) −686.000 −0.0217912 −0.0108956 0.999941i \(-0.503468\pi\)
−0.0108956 + 0.999941i \(0.503468\pi\)
\(998\) −10994.0 −0.348706
\(999\) 4130.00 0.130798
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.a.e.1.1 1
5.2 odd 4 1150.4.b.b.599.2 2
5.3 odd 4 1150.4.b.b.599.1 2
5.4 even 2 230.4.a.c.1.1 1
15.14 odd 2 2070.4.a.j.1.1 1
20.19 odd 2 1840.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.c.1.1 1 5.4 even 2
1150.4.a.e.1.1 1 1.1 even 1 trivial
1150.4.b.b.599.1 2 5.3 odd 4
1150.4.b.b.599.2 2 5.2 odd 4
1840.4.a.a.1.1 1 20.19 odd 2
2070.4.a.j.1.1 1 15.14 odd 2