Properties

Label 1150.4.a.d.1.1
Level $1150$
Weight $4$
Character 1150.1
Self dual yes
Analytic conductor $67.852$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(1,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 46)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1150.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +9.00000 q^{3} +4.00000 q^{4} -18.0000 q^{6} -2.00000 q^{7} -8.00000 q^{8} +54.0000 q^{9} -52.0000 q^{11} +36.0000 q^{12} -43.0000 q^{13} +4.00000 q^{14} +16.0000 q^{16} +50.0000 q^{17} -108.000 q^{18} -74.0000 q^{19} -18.0000 q^{21} +104.000 q^{22} +23.0000 q^{23} -72.0000 q^{24} +86.0000 q^{26} +243.000 q^{27} -8.00000 q^{28} -7.00000 q^{29} -273.000 q^{31} -32.0000 q^{32} -468.000 q^{33} -100.000 q^{34} +216.000 q^{36} +4.00000 q^{37} +148.000 q^{38} -387.000 q^{39} +123.000 q^{41} +36.0000 q^{42} +152.000 q^{43} -208.000 q^{44} -46.0000 q^{46} -75.0000 q^{47} +144.000 q^{48} -339.000 q^{49} +450.000 q^{51} -172.000 q^{52} -86.0000 q^{53} -486.000 q^{54} +16.0000 q^{56} -666.000 q^{57} +14.0000 q^{58} -444.000 q^{59} +262.000 q^{61} +546.000 q^{62} -108.000 q^{63} +64.0000 q^{64} +936.000 q^{66} -764.000 q^{67} +200.000 q^{68} +207.000 q^{69} -21.0000 q^{71} -432.000 q^{72} -681.000 q^{73} -8.00000 q^{74} -296.000 q^{76} +104.000 q^{77} +774.000 q^{78} +426.000 q^{79} +729.000 q^{81} -246.000 q^{82} -902.000 q^{83} -72.0000 q^{84} -304.000 q^{86} -63.0000 q^{87} +416.000 q^{88} -1272.00 q^{89} +86.0000 q^{91} +92.0000 q^{92} -2457.00 q^{93} +150.000 q^{94} -288.000 q^{96} +342.000 q^{97} +678.000 q^{98} -2808.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 9.00000 1.73205 0.866025 0.500000i \(-0.166667\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) −18.0000 −1.22474
\(7\) −2.00000 −0.107990 −0.0539949 0.998541i \(-0.517195\pi\)
−0.0539949 + 0.998541i \(0.517195\pi\)
\(8\) −8.00000 −0.353553
\(9\) 54.0000 2.00000
\(10\) 0 0
\(11\) −52.0000 −1.42533 −0.712663 0.701506i \(-0.752511\pi\)
−0.712663 + 0.701506i \(0.752511\pi\)
\(12\) 36.0000 0.866025
\(13\) −43.0000 −0.917389 −0.458694 0.888594i \(-0.651683\pi\)
−0.458694 + 0.888594i \(0.651683\pi\)
\(14\) 4.00000 0.0763604
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 50.0000 0.713340 0.356670 0.934230i \(-0.383912\pi\)
0.356670 + 0.934230i \(0.383912\pi\)
\(18\) −108.000 −1.41421
\(19\) −74.0000 −0.893514 −0.446757 0.894655i \(-0.647421\pi\)
−0.446757 + 0.894655i \(0.647421\pi\)
\(20\) 0 0
\(21\) −18.0000 −0.187044
\(22\) 104.000 1.00786
\(23\) 23.0000 0.208514
\(24\) −72.0000 −0.612372
\(25\) 0 0
\(26\) 86.0000 0.648692
\(27\) 243.000 1.73205
\(28\) −8.00000 −0.0539949
\(29\) −7.00000 −0.0448230 −0.0224115 0.999749i \(-0.507134\pi\)
−0.0224115 + 0.999749i \(0.507134\pi\)
\(30\) 0 0
\(31\) −273.000 −1.58169 −0.790843 0.612019i \(-0.790357\pi\)
−0.790843 + 0.612019i \(0.790357\pi\)
\(32\) −32.0000 −0.176777
\(33\) −468.000 −2.46874
\(34\) −100.000 −0.504408
\(35\) 0 0
\(36\) 216.000 1.00000
\(37\) 4.00000 0.0177729 0.00888643 0.999961i \(-0.497171\pi\)
0.00888643 + 0.999961i \(0.497171\pi\)
\(38\) 148.000 0.631810
\(39\) −387.000 −1.58896
\(40\) 0 0
\(41\) 123.000 0.468521 0.234261 0.972174i \(-0.424733\pi\)
0.234261 + 0.972174i \(0.424733\pi\)
\(42\) 36.0000 0.132260
\(43\) 152.000 0.539065 0.269532 0.962991i \(-0.413131\pi\)
0.269532 + 0.962991i \(0.413131\pi\)
\(44\) −208.000 −0.712663
\(45\) 0 0
\(46\) −46.0000 −0.147442
\(47\) −75.0000 −0.232763 −0.116382 0.993205i \(-0.537130\pi\)
−0.116382 + 0.993205i \(0.537130\pi\)
\(48\) 144.000 0.433013
\(49\) −339.000 −0.988338
\(50\) 0 0
\(51\) 450.000 1.23554
\(52\) −172.000 −0.458694
\(53\) −86.0000 −0.222887 −0.111443 0.993771i \(-0.535547\pi\)
−0.111443 + 0.993771i \(0.535547\pi\)
\(54\) −486.000 −1.22474
\(55\) 0 0
\(56\) 16.0000 0.0381802
\(57\) −666.000 −1.54761
\(58\) 14.0000 0.0316947
\(59\) −444.000 −0.979727 −0.489863 0.871799i \(-0.662953\pi\)
−0.489863 + 0.871799i \(0.662953\pi\)
\(60\) 0 0
\(61\) 262.000 0.549929 0.274964 0.961454i \(-0.411334\pi\)
0.274964 + 0.961454i \(0.411334\pi\)
\(62\) 546.000 1.11842
\(63\) −108.000 −0.215980
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 936.000 1.74566
\(67\) −764.000 −1.39310 −0.696548 0.717510i \(-0.745282\pi\)
−0.696548 + 0.717510i \(0.745282\pi\)
\(68\) 200.000 0.356670
\(69\) 207.000 0.361158
\(70\) 0 0
\(71\) −21.0000 −0.0351020 −0.0175510 0.999846i \(-0.505587\pi\)
−0.0175510 + 0.999846i \(0.505587\pi\)
\(72\) −432.000 −0.707107
\(73\) −681.000 −1.09185 −0.545925 0.837834i \(-0.683822\pi\)
−0.545925 + 0.837834i \(0.683822\pi\)
\(74\) −8.00000 −0.0125673
\(75\) 0 0
\(76\) −296.000 −0.446757
\(77\) 104.000 0.153921
\(78\) 774.000 1.12357
\(79\) 426.000 0.606693 0.303346 0.952880i \(-0.401896\pi\)
0.303346 + 0.952880i \(0.401896\pi\)
\(80\) 0 0
\(81\) 729.000 1.00000
\(82\) −246.000 −0.331295
\(83\) −902.000 −1.19286 −0.596430 0.802665i \(-0.703415\pi\)
−0.596430 + 0.802665i \(0.703415\pi\)
\(84\) −72.0000 −0.0935220
\(85\) 0 0
\(86\) −304.000 −0.381176
\(87\) −63.0000 −0.0776357
\(88\) 416.000 0.503929
\(89\) −1272.00 −1.51496 −0.757482 0.652856i \(-0.773570\pi\)
−0.757482 + 0.652856i \(0.773570\pi\)
\(90\) 0 0
\(91\) 86.0000 0.0990687
\(92\) 92.0000 0.104257
\(93\) −2457.00 −2.73956
\(94\) 150.000 0.164588
\(95\) 0 0
\(96\) −288.000 −0.306186
\(97\) 342.000 0.357988 0.178994 0.983850i \(-0.442716\pi\)
0.178994 + 0.983850i \(0.442716\pi\)
\(98\) 678.000 0.698861
\(99\) −2808.00 −2.85065
\(100\) 0 0
\(101\) −1426.00 −1.40487 −0.702437 0.711746i \(-0.747905\pi\)
−0.702437 + 0.711746i \(0.747905\pi\)
\(102\) −900.000 −0.873660
\(103\) 1190.00 1.13839 0.569195 0.822203i \(-0.307255\pi\)
0.569195 + 0.822203i \(0.307255\pi\)
\(104\) 344.000 0.324346
\(105\) 0 0
\(106\) 172.000 0.157605
\(107\) 1210.00 1.09323 0.546613 0.837386i \(-0.315917\pi\)
0.546613 + 0.837386i \(0.315917\pi\)
\(108\) 972.000 0.866025
\(109\) −1680.00 −1.47628 −0.738141 0.674646i \(-0.764296\pi\)
−0.738141 + 0.674646i \(0.764296\pi\)
\(110\) 0 0
\(111\) 36.0000 0.0307835
\(112\) −32.0000 −0.0269975
\(113\) −1030.00 −0.857471 −0.428736 0.903430i \(-0.641041\pi\)
−0.428736 + 0.903430i \(0.641041\pi\)
\(114\) 1332.00 1.09433
\(115\) 0 0
\(116\) −28.0000 −0.0224115
\(117\) −2322.00 −1.83478
\(118\) 888.000 0.692771
\(119\) −100.000 −0.0770335
\(120\) 0 0
\(121\) 1373.00 1.03156
\(122\) −524.000 −0.388858
\(123\) 1107.00 0.811503
\(124\) −1092.00 −0.790843
\(125\) 0 0
\(126\) 216.000 0.152721
\(127\) 2279.00 1.59235 0.796175 0.605066i \(-0.206853\pi\)
0.796175 + 0.605066i \(0.206853\pi\)
\(128\) −128.000 −0.0883883
\(129\) 1368.00 0.933687
\(130\) 0 0
\(131\) 987.000 0.658279 0.329140 0.944281i \(-0.393241\pi\)
0.329140 + 0.944281i \(0.393241\pi\)
\(132\) −1872.00 −1.23437
\(133\) 148.000 0.0964904
\(134\) 1528.00 0.985068
\(135\) 0 0
\(136\) −400.000 −0.252204
\(137\) 1644.00 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) −414.000 −0.255377
\(139\) 2189.00 1.33575 0.667873 0.744276i \(-0.267205\pi\)
0.667873 + 0.744276i \(0.267205\pi\)
\(140\) 0 0
\(141\) −675.000 −0.403158
\(142\) 42.0000 0.0248209
\(143\) 2236.00 1.30758
\(144\) 864.000 0.500000
\(145\) 0 0
\(146\) 1362.00 0.772054
\(147\) −3051.00 −1.71185
\(148\) 16.0000 0.00888643
\(149\) −946.000 −0.520130 −0.260065 0.965591i \(-0.583744\pi\)
−0.260065 + 0.965591i \(0.583744\pi\)
\(150\) 0 0
\(151\) −365.000 −0.196710 −0.0983552 0.995151i \(-0.531358\pi\)
−0.0983552 + 0.995151i \(0.531358\pi\)
\(152\) 592.000 0.315905
\(153\) 2700.00 1.42668
\(154\) −208.000 −0.108838
\(155\) 0 0
\(156\) −1548.00 −0.794482
\(157\) 108.000 0.0549002 0.0274501 0.999623i \(-0.491261\pi\)
0.0274501 + 0.999623i \(0.491261\pi\)
\(158\) −852.000 −0.428997
\(159\) −774.000 −0.386052
\(160\) 0 0
\(161\) −46.0000 −0.0225174
\(162\) −1458.00 −0.707107
\(163\) 1415.00 0.679947 0.339973 0.940435i \(-0.389582\pi\)
0.339973 + 0.940435i \(0.389582\pi\)
\(164\) 492.000 0.234261
\(165\) 0 0
\(166\) 1804.00 0.843479
\(167\) −1756.00 −0.813673 −0.406836 0.913501i \(-0.633368\pi\)
−0.406836 + 0.913501i \(0.633368\pi\)
\(168\) 144.000 0.0661300
\(169\) −348.000 −0.158398
\(170\) 0 0
\(171\) −3996.00 −1.78703
\(172\) 608.000 0.269532
\(173\) −2358.00 −1.03627 −0.518137 0.855298i \(-0.673374\pi\)
−0.518137 + 0.855298i \(0.673374\pi\)
\(174\) 126.000 0.0548968
\(175\) 0 0
\(176\) −832.000 −0.356332
\(177\) −3996.00 −1.69694
\(178\) 2544.00 1.07124
\(179\) 1073.00 0.448043 0.224022 0.974584i \(-0.428081\pi\)
0.224022 + 0.974584i \(0.428081\pi\)
\(180\) 0 0
\(181\) 2868.00 1.17777 0.588886 0.808216i \(-0.299567\pi\)
0.588886 + 0.808216i \(0.299567\pi\)
\(182\) −172.000 −0.0700521
\(183\) 2358.00 0.952505
\(184\) −184.000 −0.0737210
\(185\) 0 0
\(186\) 4914.00 1.93716
\(187\) −2600.00 −1.01674
\(188\) −300.000 −0.116382
\(189\) −486.000 −0.187044
\(190\) 0 0
\(191\) 332.000 0.125773 0.0628866 0.998021i \(-0.479969\pi\)
0.0628866 + 0.998021i \(0.479969\pi\)
\(192\) 576.000 0.216506
\(193\) 2143.00 0.799257 0.399628 0.916677i \(-0.369139\pi\)
0.399628 + 0.916677i \(0.369139\pi\)
\(194\) −684.000 −0.253136
\(195\) 0 0
\(196\) −1356.00 −0.494169
\(197\) 2739.00 0.990587 0.495294 0.868726i \(-0.335060\pi\)
0.495294 + 0.868726i \(0.335060\pi\)
\(198\) 5616.00 2.01572
\(199\) 752.000 0.267879 0.133939 0.990990i \(-0.457237\pi\)
0.133939 + 0.990990i \(0.457237\pi\)
\(200\) 0 0
\(201\) −6876.00 −2.41291
\(202\) 2852.00 0.993396
\(203\) 14.0000 0.00484043
\(204\) 1800.00 0.617771
\(205\) 0 0
\(206\) −2380.00 −0.804963
\(207\) 1242.00 0.417029
\(208\) −688.000 −0.229347
\(209\) 3848.00 1.27355
\(210\) 0 0
\(211\) −1016.00 −0.331490 −0.165745 0.986169i \(-0.553003\pi\)
−0.165745 + 0.986169i \(0.553003\pi\)
\(212\) −344.000 −0.111443
\(213\) −189.000 −0.0607984
\(214\) −2420.00 −0.773027
\(215\) 0 0
\(216\) −1944.00 −0.612372
\(217\) 546.000 0.170806
\(218\) 3360.00 1.04389
\(219\) −6129.00 −1.89114
\(220\) 0 0
\(221\) −2150.00 −0.654410
\(222\) −72.0000 −0.0217672
\(223\) 1120.00 0.336326 0.168163 0.985759i \(-0.446216\pi\)
0.168163 + 0.985759i \(0.446216\pi\)
\(224\) 64.0000 0.0190901
\(225\) 0 0
\(226\) 2060.00 0.606324
\(227\) −2706.00 −0.791205 −0.395602 0.918422i \(-0.629464\pi\)
−0.395602 + 0.918422i \(0.629464\pi\)
\(228\) −2664.00 −0.773806
\(229\) 6140.00 1.77180 0.885901 0.463875i \(-0.153541\pi\)
0.885901 + 0.463875i \(0.153541\pi\)
\(230\) 0 0
\(231\) 936.000 0.266599
\(232\) 56.0000 0.0158473
\(233\) −6567.00 −1.84643 −0.923216 0.384282i \(-0.874449\pi\)
−0.923216 + 0.384282i \(0.874449\pi\)
\(234\) 4644.00 1.29738
\(235\) 0 0
\(236\) −1776.00 −0.489863
\(237\) 3834.00 1.05082
\(238\) 200.000 0.0544709
\(239\) −729.000 −0.197302 −0.0986508 0.995122i \(-0.531453\pi\)
−0.0986508 + 0.995122i \(0.531453\pi\)
\(240\) 0 0
\(241\) −2912.00 −0.778334 −0.389167 0.921167i \(-0.627237\pi\)
−0.389167 + 0.921167i \(0.627237\pi\)
\(242\) −2746.00 −0.729420
\(243\) 0 0
\(244\) 1048.00 0.274964
\(245\) 0 0
\(246\) −2214.00 −0.573819
\(247\) 3182.00 0.819700
\(248\) 2184.00 0.559210
\(249\) −8118.00 −2.06609
\(250\) 0 0
\(251\) 398.000 0.100086 0.0500429 0.998747i \(-0.484064\pi\)
0.0500429 + 0.998747i \(0.484064\pi\)
\(252\) −432.000 −0.107990
\(253\) −1196.00 −0.297201
\(254\) −4558.00 −1.12596
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −8131.00 −1.97353 −0.986766 0.162149i \(-0.948157\pi\)
−0.986766 + 0.162149i \(0.948157\pi\)
\(258\) −2736.00 −0.660217
\(259\) −8.00000 −0.00191929
\(260\) 0 0
\(261\) −378.000 −0.0896460
\(262\) −1974.00 −0.465474
\(263\) 1978.00 0.463759 0.231880 0.972744i \(-0.425512\pi\)
0.231880 + 0.972744i \(0.425512\pi\)
\(264\) 3744.00 0.872831
\(265\) 0 0
\(266\) −296.000 −0.0682290
\(267\) −11448.0 −2.62399
\(268\) −3056.00 −0.696548
\(269\) −8459.00 −1.91730 −0.958651 0.284584i \(-0.908145\pi\)
−0.958651 + 0.284584i \(0.908145\pi\)
\(270\) 0 0
\(271\) −7240.00 −1.62287 −0.811437 0.584440i \(-0.801314\pi\)
−0.811437 + 0.584440i \(0.801314\pi\)
\(272\) 800.000 0.178335
\(273\) 774.000 0.171592
\(274\) −3288.00 −0.724947
\(275\) 0 0
\(276\) 828.000 0.180579
\(277\) 1319.00 0.286105 0.143052 0.989715i \(-0.454308\pi\)
0.143052 + 0.989715i \(0.454308\pi\)
\(278\) −4378.00 −0.944514
\(279\) −14742.0 −3.16337
\(280\) 0 0
\(281\) 1770.00 0.375763 0.187881 0.982192i \(-0.439838\pi\)
0.187881 + 0.982192i \(0.439838\pi\)
\(282\) 1350.00 0.285076
\(283\) −4144.00 −0.870443 −0.435221 0.900324i \(-0.643330\pi\)
−0.435221 + 0.900324i \(0.643330\pi\)
\(284\) −84.0000 −0.0175510
\(285\) 0 0
\(286\) −4472.00 −0.924598
\(287\) −246.000 −0.0505955
\(288\) −1728.00 −0.353553
\(289\) −2413.00 −0.491146
\(290\) 0 0
\(291\) 3078.00 0.620053
\(292\) −2724.00 −0.545925
\(293\) 6812.00 1.35823 0.679115 0.734032i \(-0.262364\pi\)
0.679115 + 0.734032i \(0.262364\pi\)
\(294\) 6102.00 1.21046
\(295\) 0 0
\(296\) −32.0000 −0.00628366
\(297\) −12636.0 −2.46874
\(298\) 1892.00 0.367787
\(299\) −989.000 −0.191289
\(300\) 0 0
\(301\) −304.000 −0.0582135
\(302\) 730.000 0.139095
\(303\) −12834.0 −2.43331
\(304\) −1184.00 −0.223378
\(305\) 0 0
\(306\) −5400.00 −1.00882
\(307\) 5692.00 1.05817 0.529087 0.848567i \(-0.322534\pi\)
0.529087 + 0.848567i \(0.322534\pi\)
\(308\) 416.000 0.0769604
\(309\) 10710.0 1.97175
\(310\) 0 0
\(311\) 5267.00 0.960335 0.480167 0.877177i \(-0.340576\pi\)
0.480167 + 0.877177i \(0.340576\pi\)
\(312\) 3096.00 0.561784
\(313\) −6340.00 −1.14491 −0.572457 0.819935i \(-0.694010\pi\)
−0.572457 + 0.819935i \(0.694010\pi\)
\(314\) −216.000 −0.0388203
\(315\) 0 0
\(316\) 1704.00 0.303346
\(317\) 8794.00 1.55811 0.779054 0.626957i \(-0.215700\pi\)
0.779054 + 0.626957i \(0.215700\pi\)
\(318\) 1548.00 0.272980
\(319\) 364.000 0.0638874
\(320\) 0 0
\(321\) 10890.0 1.89352
\(322\) 92.0000 0.0159222
\(323\) −3700.00 −0.637379
\(324\) 2916.00 0.500000
\(325\) 0 0
\(326\) −2830.00 −0.480795
\(327\) −15120.0 −2.55700
\(328\) −984.000 −0.165647
\(329\) 150.000 0.0251361
\(330\) 0 0
\(331\) 8225.00 1.36582 0.682911 0.730502i \(-0.260714\pi\)
0.682911 + 0.730502i \(0.260714\pi\)
\(332\) −3608.00 −0.596430
\(333\) 216.000 0.0355457
\(334\) 3512.00 0.575354
\(335\) 0 0
\(336\) −288.000 −0.0467610
\(337\) 2576.00 0.416391 0.208195 0.978087i \(-0.433241\pi\)
0.208195 + 0.978087i \(0.433241\pi\)
\(338\) 696.000 0.112004
\(339\) −9270.00 −1.48518
\(340\) 0 0
\(341\) 14196.0 2.25442
\(342\) 7992.00 1.26362
\(343\) 1364.00 0.214720
\(344\) −1216.00 −0.190588
\(345\) 0 0
\(346\) 4716.00 0.732756
\(347\) −596.000 −0.0922045 −0.0461022 0.998937i \(-0.514680\pi\)
−0.0461022 + 0.998937i \(0.514680\pi\)
\(348\) −252.000 −0.0388179
\(349\) −9271.00 −1.42196 −0.710982 0.703210i \(-0.751749\pi\)
−0.710982 + 0.703210i \(0.751749\pi\)
\(350\) 0 0
\(351\) −10449.0 −1.58896
\(352\) 1664.00 0.251964
\(353\) −8141.00 −1.22748 −0.613742 0.789507i \(-0.710336\pi\)
−0.613742 + 0.789507i \(0.710336\pi\)
\(354\) 7992.00 1.19992
\(355\) 0 0
\(356\) −5088.00 −0.757482
\(357\) −900.000 −0.133426
\(358\) −2146.00 −0.316815
\(359\) −2130.00 −0.313140 −0.156570 0.987667i \(-0.550044\pi\)
−0.156570 + 0.987667i \(0.550044\pi\)
\(360\) 0 0
\(361\) −1383.00 −0.201633
\(362\) −5736.00 −0.832811
\(363\) 12357.0 1.78671
\(364\) 344.000 0.0495343
\(365\) 0 0
\(366\) −4716.00 −0.673523
\(367\) 2574.00 0.366108 0.183054 0.983103i \(-0.441402\pi\)
0.183054 + 0.983103i \(0.441402\pi\)
\(368\) 368.000 0.0521286
\(369\) 6642.00 0.937043
\(370\) 0 0
\(371\) 172.000 0.0240695
\(372\) −9828.00 −1.36978
\(373\) 4504.00 0.625223 0.312612 0.949881i \(-0.398796\pi\)
0.312612 + 0.949881i \(0.398796\pi\)
\(374\) 5200.00 0.718945
\(375\) 0 0
\(376\) 600.000 0.0822942
\(377\) 301.000 0.0411201
\(378\) 972.000 0.132260
\(379\) 2740.00 0.371357 0.185679 0.982611i \(-0.440552\pi\)
0.185679 + 0.982611i \(0.440552\pi\)
\(380\) 0 0
\(381\) 20511.0 2.75803
\(382\) −664.000 −0.0889351
\(383\) −6948.00 −0.926961 −0.463481 0.886107i \(-0.653400\pi\)
−0.463481 + 0.886107i \(0.653400\pi\)
\(384\) −1152.00 −0.153093
\(385\) 0 0
\(386\) −4286.00 −0.565160
\(387\) 8208.00 1.07813
\(388\) 1368.00 0.178994
\(389\) −1404.00 −0.182996 −0.0914982 0.995805i \(-0.529166\pi\)
−0.0914982 + 0.995805i \(0.529166\pi\)
\(390\) 0 0
\(391\) 1150.00 0.148742
\(392\) 2712.00 0.349430
\(393\) 8883.00 1.14017
\(394\) −5478.00 −0.700451
\(395\) 0 0
\(396\) −11232.0 −1.42533
\(397\) 8641.00 1.09239 0.546196 0.837658i \(-0.316076\pi\)
0.546196 + 0.837658i \(0.316076\pi\)
\(398\) −1504.00 −0.189419
\(399\) 1332.00 0.167126
\(400\) 0 0
\(401\) −1140.00 −0.141967 −0.0709836 0.997477i \(-0.522614\pi\)
−0.0709836 + 0.997477i \(0.522614\pi\)
\(402\) 13752.0 1.70619
\(403\) 11739.0 1.45102
\(404\) −5704.00 −0.702437
\(405\) 0 0
\(406\) −28.0000 −0.00342270
\(407\) −208.000 −0.0253321
\(408\) −3600.00 −0.436830
\(409\) 12529.0 1.51472 0.757358 0.652999i \(-0.226490\pi\)
0.757358 + 0.652999i \(0.226490\pi\)
\(410\) 0 0
\(411\) 14796.0 1.77575
\(412\) 4760.00 0.569195
\(413\) 888.000 0.105801
\(414\) −2484.00 −0.294884
\(415\) 0 0
\(416\) 1376.00 0.162173
\(417\) 19701.0 2.31358
\(418\) −7696.00 −0.900535
\(419\) 3252.00 0.379166 0.189583 0.981865i \(-0.439286\pi\)
0.189583 + 0.981865i \(0.439286\pi\)
\(420\) 0 0
\(421\) 2206.00 0.255377 0.127689 0.991814i \(-0.459244\pi\)
0.127689 + 0.991814i \(0.459244\pi\)
\(422\) 2032.00 0.234399
\(423\) −4050.00 −0.465527
\(424\) 688.000 0.0788024
\(425\) 0 0
\(426\) 378.000 0.0429910
\(427\) −524.000 −0.0593867
\(428\) 4840.00 0.546613
\(429\) 20124.0 2.26479
\(430\) 0 0
\(431\) 14316.0 1.59995 0.799974 0.600035i \(-0.204847\pi\)
0.799974 + 0.600035i \(0.204847\pi\)
\(432\) 3888.00 0.433013
\(433\) −7828.00 −0.868798 −0.434399 0.900720i \(-0.643039\pi\)
−0.434399 + 0.900720i \(0.643039\pi\)
\(434\) −1092.00 −0.120778
\(435\) 0 0
\(436\) −6720.00 −0.738141
\(437\) −1702.00 −0.186311
\(438\) 12258.0 1.33724
\(439\) −16039.0 −1.74374 −0.871868 0.489742i \(-0.837091\pi\)
−0.871868 + 0.489742i \(0.837091\pi\)
\(440\) 0 0
\(441\) −18306.0 −1.97668
\(442\) 4300.00 0.462738
\(443\) −11747.0 −1.25986 −0.629929 0.776653i \(-0.716916\pi\)
−0.629929 + 0.776653i \(0.716916\pi\)
\(444\) 144.000 0.0153918
\(445\) 0 0
\(446\) −2240.00 −0.237819
\(447\) −8514.00 −0.900891
\(448\) −128.000 −0.0134987
\(449\) −2890.00 −0.303758 −0.151879 0.988399i \(-0.548532\pi\)
−0.151879 + 0.988399i \(0.548532\pi\)
\(450\) 0 0
\(451\) −6396.00 −0.667796
\(452\) −4120.00 −0.428736
\(453\) −3285.00 −0.340713
\(454\) 5412.00 0.559466
\(455\) 0 0
\(456\) 5328.00 0.547163
\(457\) 13126.0 1.34356 0.671782 0.740749i \(-0.265529\pi\)
0.671782 + 0.740749i \(0.265529\pi\)
\(458\) −12280.0 −1.25285
\(459\) 12150.0 1.23554
\(460\) 0 0
\(461\) 14481.0 1.46301 0.731505 0.681836i \(-0.238818\pi\)
0.731505 + 0.681836i \(0.238818\pi\)
\(462\) −1872.00 −0.188514
\(463\) −5272.00 −0.529181 −0.264590 0.964361i \(-0.585237\pi\)
−0.264590 + 0.964361i \(0.585237\pi\)
\(464\) −112.000 −0.0112058
\(465\) 0 0
\(466\) 13134.0 1.30562
\(467\) 13466.0 1.33433 0.667165 0.744910i \(-0.267508\pi\)
0.667165 + 0.744910i \(0.267508\pi\)
\(468\) −9288.00 −0.917389
\(469\) 1528.00 0.150440
\(470\) 0 0
\(471\) 972.000 0.0950900
\(472\) 3552.00 0.346386
\(473\) −7904.00 −0.768343
\(474\) −7668.00 −0.743044
\(475\) 0 0
\(476\) −400.000 −0.0385167
\(477\) −4644.00 −0.445774
\(478\) 1458.00 0.139513
\(479\) −4526.00 −0.431729 −0.215865 0.976423i \(-0.569257\pi\)
−0.215865 + 0.976423i \(0.569257\pi\)
\(480\) 0 0
\(481\) −172.000 −0.0163046
\(482\) 5824.00 0.550365
\(483\) −414.000 −0.0390014
\(484\) 5492.00 0.515778
\(485\) 0 0
\(486\) 0 0
\(487\) 8795.00 0.818356 0.409178 0.912455i \(-0.365815\pi\)
0.409178 + 0.912455i \(0.365815\pi\)
\(488\) −2096.00 −0.194429
\(489\) 12735.0 1.17770
\(490\) 0 0
\(491\) −1275.00 −0.117189 −0.0585946 0.998282i \(-0.518662\pi\)
−0.0585946 + 0.998282i \(0.518662\pi\)
\(492\) 4428.00 0.405751
\(493\) −350.000 −0.0319741
\(494\) −6364.00 −0.579615
\(495\) 0 0
\(496\) −4368.00 −0.395421
\(497\) 42.0000 0.00379066
\(498\) 16236.0 1.46095
\(499\) −9533.00 −0.855222 −0.427611 0.903963i \(-0.640645\pi\)
−0.427611 + 0.903963i \(0.640645\pi\)
\(500\) 0 0
\(501\) −15804.0 −1.40932
\(502\) −796.000 −0.0707714
\(503\) 13398.0 1.18765 0.593824 0.804595i \(-0.297617\pi\)
0.593824 + 0.804595i \(0.297617\pi\)
\(504\) 864.000 0.0763604
\(505\) 0 0
\(506\) 2392.00 0.210153
\(507\) −3132.00 −0.274353
\(508\) 9116.00 0.796175
\(509\) −8031.00 −0.699347 −0.349674 0.936872i \(-0.613708\pi\)
−0.349674 + 0.936872i \(0.613708\pi\)
\(510\) 0 0
\(511\) 1362.00 0.117909
\(512\) −512.000 −0.0441942
\(513\) −17982.0 −1.54761
\(514\) 16262.0 1.39550
\(515\) 0 0
\(516\) 5472.00 0.466844
\(517\) 3900.00 0.331764
\(518\) 16.0000 0.00135714
\(519\) −21222.0 −1.79488
\(520\) 0 0
\(521\) −21184.0 −1.78136 −0.890679 0.454632i \(-0.849771\pi\)
−0.890679 + 0.454632i \(0.849771\pi\)
\(522\) 756.000 0.0633893
\(523\) 21706.0 1.81479 0.907397 0.420275i \(-0.138066\pi\)
0.907397 + 0.420275i \(0.138066\pi\)
\(524\) 3948.00 0.329140
\(525\) 0 0
\(526\) −3956.00 −0.327927
\(527\) −13650.0 −1.12828
\(528\) −7488.00 −0.617184
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) −23976.0 −1.95945
\(532\) 592.000 0.0482452
\(533\) −5289.00 −0.429816
\(534\) 22896.0 1.85544
\(535\) 0 0
\(536\) 6112.00 0.492534
\(537\) 9657.00 0.776034
\(538\) 16918.0 1.35574
\(539\) 17628.0 1.40870
\(540\) 0 0
\(541\) 5781.00 0.459417 0.229709 0.973259i \(-0.426223\pi\)
0.229709 + 0.973259i \(0.426223\pi\)
\(542\) 14480.0 1.14754
\(543\) 25812.0 2.03996
\(544\) −1600.00 −0.126102
\(545\) 0 0
\(546\) −1548.00 −0.121334
\(547\) −7809.00 −0.610400 −0.305200 0.952288i \(-0.598723\pi\)
−0.305200 + 0.952288i \(0.598723\pi\)
\(548\) 6576.00 0.512615
\(549\) 14148.0 1.09986
\(550\) 0 0
\(551\) 518.000 0.0400500
\(552\) −1656.00 −0.127688
\(553\) −852.000 −0.0655167
\(554\) −2638.00 −0.202307
\(555\) 0 0
\(556\) 8756.00 0.667873
\(557\) 20240.0 1.53967 0.769835 0.638243i \(-0.220338\pi\)
0.769835 + 0.638243i \(0.220338\pi\)
\(558\) 29484.0 2.23684
\(559\) −6536.00 −0.494532
\(560\) 0 0
\(561\) −23400.0 −1.76105
\(562\) −3540.00 −0.265704
\(563\) −7612.00 −0.569818 −0.284909 0.958555i \(-0.591963\pi\)
−0.284909 + 0.958555i \(0.591963\pi\)
\(564\) −2700.00 −0.201579
\(565\) 0 0
\(566\) 8288.00 0.615496
\(567\) −1458.00 −0.107990
\(568\) 168.000 0.0124104
\(569\) 19484.0 1.43552 0.717761 0.696290i \(-0.245167\pi\)
0.717761 + 0.696290i \(0.245167\pi\)
\(570\) 0 0
\(571\) 6614.00 0.484741 0.242371 0.970184i \(-0.422075\pi\)
0.242371 + 0.970184i \(0.422075\pi\)
\(572\) 8944.00 0.653789
\(573\) 2988.00 0.217846
\(574\) 492.000 0.0357765
\(575\) 0 0
\(576\) 3456.00 0.250000
\(577\) 639.000 0.0461038 0.0230519 0.999734i \(-0.492662\pi\)
0.0230519 + 0.999734i \(0.492662\pi\)
\(578\) 4826.00 0.347293
\(579\) 19287.0 1.38435
\(580\) 0 0
\(581\) 1804.00 0.128817
\(582\) −6156.00 −0.438444
\(583\) 4472.00 0.317687
\(584\) 5448.00 0.386027
\(585\) 0 0
\(586\) −13624.0 −0.960413
\(587\) 829.000 0.0582904 0.0291452 0.999575i \(-0.490721\pi\)
0.0291452 + 0.999575i \(0.490721\pi\)
\(588\) −12204.0 −0.855926
\(589\) 20202.0 1.41326
\(590\) 0 0
\(591\) 24651.0 1.71575
\(592\) 64.0000 0.00444322
\(593\) 20610.0 1.42724 0.713618 0.700535i \(-0.247055\pi\)
0.713618 + 0.700535i \(0.247055\pi\)
\(594\) 25272.0 1.74566
\(595\) 0 0
\(596\) −3784.00 −0.260065
\(597\) 6768.00 0.463980
\(598\) 1978.00 0.135262
\(599\) −17240.0 −1.17597 −0.587986 0.808871i \(-0.700079\pi\)
−0.587986 + 0.808871i \(0.700079\pi\)
\(600\) 0 0
\(601\) −8459.00 −0.574126 −0.287063 0.957912i \(-0.592679\pi\)
−0.287063 + 0.957912i \(0.592679\pi\)
\(602\) 608.000 0.0411632
\(603\) −41256.0 −2.78619
\(604\) −1460.00 −0.0983552
\(605\) 0 0
\(606\) 25668.0 1.72061
\(607\) −17840.0 −1.19292 −0.596461 0.802642i \(-0.703427\pi\)
−0.596461 + 0.802642i \(0.703427\pi\)
\(608\) 2368.00 0.157952
\(609\) 126.000 0.00838387
\(610\) 0 0
\(611\) 3225.00 0.213534
\(612\) 10800.0 0.713340
\(613\) −2534.00 −0.166961 −0.0834807 0.996509i \(-0.526604\pi\)
−0.0834807 + 0.996509i \(0.526604\pi\)
\(614\) −11384.0 −0.748242
\(615\) 0 0
\(616\) −832.000 −0.0544192
\(617\) 5610.00 0.366046 0.183023 0.983109i \(-0.441412\pi\)
0.183023 + 0.983109i \(0.441412\pi\)
\(618\) −21420.0 −1.39424
\(619\) −11948.0 −0.775817 −0.387908 0.921698i \(-0.626802\pi\)
−0.387908 + 0.921698i \(0.626802\pi\)
\(620\) 0 0
\(621\) 5589.00 0.361158
\(622\) −10534.0 −0.679059
\(623\) 2544.00 0.163601
\(624\) −6192.00 −0.397241
\(625\) 0 0
\(626\) 12680.0 0.809576
\(627\) 34632.0 2.20585
\(628\) 432.000 0.0274501
\(629\) 200.000 0.0126781
\(630\) 0 0
\(631\) −7840.00 −0.494620 −0.247310 0.968936i \(-0.579547\pi\)
−0.247310 + 0.968936i \(0.579547\pi\)
\(632\) −3408.00 −0.214498
\(633\) −9144.00 −0.574157
\(634\) −17588.0 −1.10175
\(635\) 0 0
\(636\) −3096.00 −0.193026
\(637\) 14577.0 0.906690
\(638\) −728.000 −0.0451752
\(639\) −1134.00 −0.0702040
\(640\) 0 0
\(641\) −2320.00 −0.142956 −0.0714778 0.997442i \(-0.522771\pi\)
−0.0714778 + 0.997442i \(0.522771\pi\)
\(642\) −21780.0 −1.33892
\(643\) −1864.00 −0.114322 −0.0571610 0.998365i \(-0.518205\pi\)
−0.0571610 + 0.998365i \(0.518205\pi\)
\(644\) −184.000 −0.0112587
\(645\) 0 0
\(646\) 7400.00 0.450695
\(647\) −11939.0 −0.725457 −0.362728 0.931895i \(-0.618155\pi\)
−0.362728 + 0.931895i \(0.618155\pi\)
\(648\) −5832.00 −0.353553
\(649\) 23088.0 1.39643
\(650\) 0 0
\(651\) 4914.00 0.295845
\(652\) 5660.00 0.339973
\(653\) −10503.0 −0.629424 −0.314712 0.949187i \(-0.601908\pi\)
−0.314712 + 0.949187i \(0.601908\pi\)
\(654\) 30240.0 1.80807
\(655\) 0 0
\(656\) 1968.00 0.117130
\(657\) −36774.0 −2.18370
\(658\) −300.000 −0.0177739
\(659\) 10950.0 0.647271 0.323635 0.946182i \(-0.395095\pi\)
0.323635 + 0.946182i \(0.395095\pi\)
\(660\) 0 0
\(661\) −3210.00 −0.188887 −0.0944437 0.995530i \(-0.530107\pi\)
−0.0944437 + 0.995530i \(0.530107\pi\)
\(662\) −16450.0 −0.965782
\(663\) −19350.0 −1.13347
\(664\) 7216.00 0.421740
\(665\) 0 0
\(666\) −432.000 −0.0251346
\(667\) −161.000 −0.00934624
\(668\) −7024.00 −0.406836
\(669\) 10080.0 0.582534
\(670\) 0 0
\(671\) −13624.0 −0.783828
\(672\) 576.000 0.0330650
\(673\) 13517.0 0.774208 0.387104 0.922036i \(-0.373475\pi\)
0.387104 + 0.922036i \(0.373475\pi\)
\(674\) −5152.00 −0.294433
\(675\) 0 0
\(676\) −1392.00 −0.0791989
\(677\) 7494.00 0.425433 0.212716 0.977114i \(-0.431769\pi\)
0.212716 + 0.977114i \(0.431769\pi\)
\(678\) 18540.0 1.05018
\(679\) −684.000 −0.0386591
\(680\) 0 0
\(681\) −24354.0 −1.37041
\(682\) −28392.0 −1.59411
\(683\) −17865.0 −1.00086 −0.500428 0.865778i \(-0.666824\pi\)
−0.500428 + 0.865778i \(0.666824\pi\)
\(684\) −15984.0 −0.893514
\(685\) 0 0
\(686\) −2728.00 −0.151830
\(687\) 55260.0 3.06885
\(688\) 2432.00 0.134766
\(689\) 3698.00 0.204474
\(690\) 0 0
\(691\) 22364.0 1.23121 0.615605 0.788055i \(-0.288912\pi\)
0.615605 + 0.788055i \(0.288912\pi\)
\(692\) −9432.00 −0.518137
\(693\) 5616.00 0.307842
\(694\) 1192.00 0.0651984
\(695\) 0 0
\(696\) 504.000 0.0274484
\(697\) 6150.00 0.334215
\(698\) 18542.0 1.00548
\(699\) −59103.0 −3.19811
\(700\) 0 0
\(701\) 7842.00 0.422522 0.211261 0.977430i \(-0.432243\pi\)
0.211261 + 0.977430i \(0.432243\pi\)
\(702\) 20898.0 1.12357
\(703\) −296.000 −0.0158803
\(704\) −3328.00 −0.178166
\(705\) 0 0
\(706\) 16282.0 0.867962
\(707\) 2852.00 0.151712
\(708\) −15984.0 −0.848468
\(709\) 11234.0 0.595066 0.297533 0.954712i \(-0.403836\pi\)
0.297533 + 0.954712i \(0.403836\pi\)
\(710\) 0 0
\(711\) 23004.0 1.21339
\(712\) 10176.0 0.535620
\(713\) −6279.00 −0.329804
\(714\) 1800.00 0.0943464
\(715\) 0 0
\(716\) 4292.00 0.224022
\(717\) −6561.00 −0.341736
\(718\) 4260.00 0.221423
\(719\) −17568.0 −0.911232 −0.455616 0.890176i \(-0.650581\pi\)
−0.455616 + 0.890176i \(0.650581\pi\)
\(720\) 0 0
\(721\) −2380.00 −0.122935
\(722\) 2766.00 0.142576
\(723\) −26208.0 −1.34811
\(724\) 11472.0 0.588886
\(725\) 0 0
\(726\) −24714.0 −1.26339
\(727\) 35664.0 1.81940 0.909701 0.415265i \(-0.136311\pi\)
0.909701 + 0.415265i \(0.136311\pi\)
\(728\) −688.000 −0.0350261
\(729\) −19683.0 −1.00000
\(730\) 0 0
\(731\) 7600.00 0.384536
\(732\) 9432.00 0.476252
\(733\) 27914.0 1.40659 0.703293 0.710900i \(-0.251712\pi\)
0.703293 + 0.710900i \(0.251712\pi\)
\(734\) −5148.00 −0.258878
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) 39728.0 1.98562
\(738\) −13284.0 −0.662589
\(739\) 39529.0 1.96766 0.983828 0.179116i \(-0.0573237\pi\)
0.983828 + 0.179116i \(0.0573237\pi\)
\(740\) 0 0
\(741\) 28638.0 1.41976
\(742\) −344.000 −0.0170197
\(743\) −10062.0 −0.496822 −0.248411 0.968655i \(-0.579908\pi\)
−0.248411 + 0.968655i \(0.579908\pi\)
\(744\) 19656.0 0.968581
\(745\) 0 0
\(746\) −9008.00 −0.442100
\(747\) −48708.0 −2.38572
\(748\) −10400.0 −0.508371
\(749\) −2420.00 −0.118057
\(750\) 0 0
\(751\) 25644.0 1.24602 0.623011 0.782213i \(-0.285909\pi\)
0.623011 + 0.782213i \(0.285909\pi\)
\(752\) −1200.00 −0.0581908
\(753\) 3582.00 0.173354
\(754\) −602.000 −0.0290763
\(755\) 0 0
\(756\) −1944.00 −0.0935220
\(757\) −37368.0 −1.79414 −0.897069 0.441890i \(-0.854308\pi\)
−0.897069 + 0.441890i \(0.854308\pi\)
\(758\) −5480.00 −0.262589
\(759\) −10764.0 −0.514767
\(760\) 0 0
\(761\) 105.000 0.00500164 0.00250082 0.999997i \(-0.499204\pi\)
0.00250082 + 0.999997i \(0.499204\pi\)
\(762\) −41022.0 −1.95022
\(763\) 3360.00 0.159424
\(764\) 1328.00 0.0628866
\(765\) 0 0
\(766\) 13896.0 0.655461
\(767\) 19092.0 0.898790
\(768\) 2304.00 0.108253
\(769\) −15464.0 −0.725157 −0.362579 0.931953i \(-0.618104\pi\)
−0.362579 + 0.931953i \(0.618104\pi\)
\(770\) 0 0
\(771\) −73179.0 −3.41826
\(772\) 8572.00 0.399628
\(773\) −35168.0 −1.63636 −0.818179 0.574963i \(-0.805016\pi\)
−0.818179 + 0.574963i \(0.805016\pi\)
\(774\) −16416.0 −0.762353
\(775\) 0 0
\(776\) −2736.00 −0.126568
\(777\) −72.0000 −0.00332431
\(778\) 2808.00 0.129398
\(779\) −9102.00 −0.418630
\(780\) 0 0
\(781\) 1092.00 0.0500318
\(782\) −2300.00 −0.105176
\(783\) −1701.00 −0.0776357
\(784\) −5424.00 −0.247085
\(785\) 0 0
\(786\) −17766.0 −0.806224
\(787\) 21216.0 0.960951 0.480476 0.877008i \(-0.340464\pi\)
0.480476 + 0.877008i \(0.340464\pi\)
\(788\) 10956.0 0.495294
\(789\) 17802.0 0.803255
\(790\) 0 0
\(791\) 2060.00 0.0925982
\(792\) 22464.0 1.00786
\(793\) −11266.0 −0.504499
\(794\) −17282.0 −0.772437
\(795\) 0 0
\(796\) 3008.00 0.133939
\(797\) −9506.00 −0.422484 −0.211242 0.977434i \(-0.567751\pi\)
−0.211242 + 0.977434i \(0.567751\pi\)
\(798\) −2664.00 −0.118176
\(799\) −3750.00 −0.166039
\(800\) 0 0
\(801\) −68688.0 −3.02993
\(802\) 2280.00 0.100386
\(803\) 35412.0 1.55624
\(804\) −27504.0 −1.20646
\(805\) 0 0
\(806\) −23478.0 −1.02603
\(807\) −76131.0 −3.32087
\(808\) 11408.0 0.496698
\(809\) −20550.0 −0.893077 −0.446539 0.894764i \(-0.647343\pi\)
−0.446539 + 0.894764i \(0.647343\pi\)
\(810\) 0 0
\(811\) −5161.00 −0.223461 −0.111731 0.993739i \(-0.535639\pi\)
−0.111731 + 0.993739i \(0.535639\pi\)
\(812\) 56.0000 0.00242022
\(813\) −65160.0 −2.81090
\(814\) 416.000 0.0179125
\(815\) 0 0
\(816\) 7200.00 0.308885
\(817\) −11248.0 −0.481662
\(818\) −25058.0 −1.07107
\(819\) 4644.00 0.198137
\(820\) 0 0
\(821\) 7866.00 0.334379 0.167190 0.985925i \(-0.446531\pi\)
0.167190 + 0.985925i \(0.446531\pi\)
\(822\) −29592.0 −1.25564
\(823\) 22317.0 0.945227 0.472613 0.881270i \(-0.343311\pi\)
0.472613 + 0.881270i \(0.343311\pi\)
\(824\) −9520.00 −0.402482
\(825\) 0 0
\(826\) −1776.00 −0.0748123
\(827\) 26196.0 1.10148 0.550740 0.834677i \(-0.314346\pi\)
0.550740 + 0.834677i \(0.314346\pi\)
\(828\) 4968.00 0.208514
\(829\) 5886.00 0.246597 0.123299 0.992370i \(-0.460653\pi\)
0.123299 + 0.992370i \(0.460653\pi\)
\(830\) 0 0
\(831\) 11871.0 0.495548
\(832\) −2752.00 −0.114674
\(833\) −16950.0 −0.705021
\(834\) −39402.0 −1.63595
\(835\) 0 0
\(836\) 15392.0 0.636774
\(837\) −66339.0 −2.73956
\(838\) −6504.00 −0.268111
\(839\) 32394.0 1.33297 0.666487 0.745517i \(-0.267797\pi\)
0.666487 + 0.745517i \(0.267797\pi\)
\(840\) 0 0
\(841\) −24340.0 −0.997991
\(842\) −4412.00 −0.180579
\(843\) 15930.0 0.650840
\(844\) −4064.00 −0.165745
\(845\) 0 0
\(846\) 8100.00 0.329177
\(847\) −2746.00 −0.111397
\(848\) −1376.00 −0.0557217
\(849\) −37296.0 −1.50765
\(850\) 0 0
\(851\) 92.0000 0.00370590
\(852\) −756.000 −0.0303992
\(853\) 31286.0 1.25582 0.627909 0.778287i \(-0.283911\pi\)
0.627909 + 0.778287i \(0.283911\pi\)
\(854\) 1048.00 0.0419928
\(855\) 0 0
\(856\) −9680.00 −0.386514
\(857\) 2913.00 0.116110 0.0580550 0.998313i \(-0.481510\pi\)
0.0580550 + 0.998313i \(0.481510\pi\)
\(858\) −40248.0 −1.60145
\(859\) 15451.0 0.613715 0.306858 0.951755i \(-0.400722\pi\)
0.306858 + 0.951755i \(0.400722\pi\)
\(860\) 0 0
\(861\) −2214.00 −0.0876341
\(862\) −28632.0 −1.13133
\(863\) 20627.0 0.813617 0.406808 0.913514i \(-0.366642\pi\)
0.406808 + 0.913514i \(0.366642\pi\)
\(864\) −7776.00 −0.306186
\(865\) 0 0
\(866\) 15656.0 0.614333
\(867\) −21717.0 −0.850690
\(868\) 2184.00 0.0854030
\(869\) −22152.0 −0.864735
\(870\) 0 0
\(871\) 32852.0 1.27801
\(872\) 13440.0 0.521945
\(873\) 18468.0 0.715976
\(874\) 3404.00 0.131741
\(875\) 0 0
\(876\) −24516.0 −0.945569
\(877\) 6966.00 0.268216 0.134108 0.990967i \(-0.457183\pi\)
0.134108 + 0.990967i \(0.457183\pi\)
\(878\) 32078.0 1.23301
\(879\) 61308.0 2.35252
\(880\) 0 0
\(881\) −37590.0 −1.43750 −0.718751 0.695268i \(-0.755286\pi\)
−0.718751 + 0.695268i \(0.755286\pi\)
\(882\) 36612.0 1.39772
\(883\) −27876.0 −1.06240 −0.531202 0.847245i \(-0.678259\pi\)
−0.531202 + 0.847245i \(0.678259\pi\)
\(884\) −8600.00 −0.327205
\(885\) 0 0
\(886\) 23494.0 0.890854
\(887\) −9471.00 −0.358518 −0.179259 0.983802i \(-0.557370\pi\)
−0.179259 + 0.983802i \(0.557370\pi\)
\(888\) −288.000 −0.0108836
\(889\) −4558.00 −0.171958
\(890\) 0 0
\(891\) −37908.0 −1.42533
\(892\) 4480.00 0.168163
\(893\) 5550.00 0.207977
\(894\) 17028.0 0.637026
\(895\) 0 0
\(896\) 256.000 0.00954504
\(897\) −8901.00 −0.331322
\(898\) 5780.00 0.214790
\(899\) 1911.00 0.0708959
\(900\) 0 0
\(901\) −4300.00 −0.158994
\(902\) 12792.0 0.472203
\(903\) −2736.00 −0.100829
\(904\) 8240.00 0.303162
\(905\) 0 0
\(906\) 6570.00 0.240920
\(907\) −28366.0 −1.03845 −0.519227 0.854636i \(-0.673780\pi\)
−0.519227 + 0.854636i \(0.673780\pi\)
\(908\) −10824.0 −0.395602
\(909\) −77004.0 −2.80975
\(910\) 0 0
\(911\) −7210.00 −0.262215 −0.131108 0.991368i \(-0.541853\pi\)
−0.131108 + 0.991368i \(0.541853\pi\)
\(912\) −10656.0 −0.386903
\(913\) 46904.0 1.70021
\(914\) −26252.0 −0.950043
\(915\) 0 0
\(916\) 24560.0 0.885901
\(917\) −1974.00 −0.0710875
\(918\) −24300.0 −0.873660
\(919\) 17198.0 0.617312 0.308656 0.951174i \(-0.400121\pi\)
0.308656 + 0.951174i \(0.400121\pi\)
\(920\) 0 0
\(921\) 51228.0 1.83281
\(922\) −28962.0 −1.03450
\(923\) 903.000 0.0322022
\(924\) 3744.00 0.133299
\(925\) 0 0
\(926\) 10544.0 0.374187
\(927\) 64260.0 2.27678
\(928\) 224.000 0.00792366
\(929\) −51033.0 −1.80230 −0.901151 0.433505i \(-0.857276\pi\)
−0.901151 + 0.433505i \(0.857276\pi\)
\(930\) 0 0
\(931\) 25086.0 0.883094
\(932\) −26268.0 −0.923216
\(933\) 47403.0 1.66335
\(934\) −26932.0 −0.943514
\(935\) 0 0
\(936\) 18576.0 0.648692
\(937\) −33328.0 −1.16198 −0.580992 0.813910i \(-0.697335\pi\)
−0.580992 + 0.813910i \(0.697335\pi\)
\(938\) −3056.00 −0.106377
\(939\) −57060.0 −1.98305
\(940\) 0 0
\(941\) −20166.0 −0.698611 −0.349305 0.937009i \(-0.613582\pi\)
−0.349305 + 0.937009i \(0.613582\pi\)
\(942\) −1944.00 −0.0672388
\(943\) 2829.00 0.0976934
\(944\) −7104.00 −0.244932
\(945\) 0 0
\(946\) 15808.0 0.543301
\(947\) 28629.0 0.982384 0.491192 0.871051i \(-0.336561\pi\)
0.491192 + 0.871051i \(0.336561\pi\)
\(948\) 15336.0 0.525412
\(949\) 29283.0 1.00165
\(950\) 0 0
\(951\) 79146.0 2.69872
\(952\) 800.000 0.0272355
\(953\) −38146.0 −1.29661 −0.648305 0.761380i \(-0.724522\pi\)
−0.648305 + 0.761380i \(0.724522\pi\)
\(954\) 9288.00 0.315210
\(955\) 0 0
\(956\) −2916.00 −0.0986508
\(957\) 3276.00 0.110656
\(958\) 9052.00 0.305279
\(959\) −3288.00 −0.110714
\(960\) 0 0
\(961\) 44738.0 1.50173
\(962\) 344.000 0.0115291
\(963\) 65340.0 2.18645
\(964\) −11648.0 −0.389167
\(965\) 0 0
\(966\) 828.000 0.0275781
\(967\) −44621.0 −1.48388 −0.741941 0.670465i \(-0.766095\pi\)
−0.741941 + 0.670465i \(0.766095\pi\)
\(968\) −10984.0 −0.364710
\(969\) −33300.0 −1.10397
\(970\) 0 0
\(971\) 5950.00 0.196647 0.0983237 0.995154i \(-0.468652\pi\)
0.0983237 + 0.995154i \(0.468652\pi\)
\(972\) 0 0
\(973\) −4378.00 −0.144247
\(974\) −17590.0 −0.578665
\(975\) 0 0
\(976\) 4192.00 0.137482
\(977\) −40836.0 −1.33722 −0.668608 0.743615i \(-0.733109\pi\)
−0.668608 + 0.743615i \(0.733109\pi\)
\(978\) −25470.0 −0.832762
\(979\) 66144.0 2.15932
\(980\) 0 0
\(981\) −90720.0 −2.95257
\(982\) 2550.00 0.0828653
\(983\) −26874.0 −0.871971 −0.435985 0.899954i \(-0.643600\pi\)
−0.435985 + 0.899954i \(0.643600\pi\)
\(984\) −8856.00 −0.286910
\(985\) 0 0
\(986\) 700.000 0.0226091
\(987\) 1350.00 0.0435370
\(988\) 12728.0 0.409850
\(989\) 3496.00 0.112403
\(990\) 0 0
\(991\) 21472.0 0.688275 0.344138 0.938919i \(-0.388171\pi\)
0.344138 + 0.938919i \(0.388171\pi\)
\(992\) 8736.00 0.279605
\(993\) 74025.0 2.36567
\(994\) −84.0000 −0.00268040
\(995\) 0 0
\(996\) −32472.0 −1.03305
\(997\) −6286.00 −0.199679 −0.0998393 0.995004i \(-0.531833\pi\)
−0.0998393 + 0.995004i \(0.531833\pi\)
\(998\) 19066.0 0.604733
\(999\) 972.000 0.0307835
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.a.d.1.1 1
5.2 odd 4 1150.4.b.a.599.1 2
5.3 odd 4 1150.4.b.a.599.2 2
5.4 even 2 46.4.a.b.1.1 1
15.14 odd 2 414.4.a.b.1.1 1
20.19 odd 2 368.4.a.e.1.1 1
35.34 odd 2 2254.4.a.b.1.1 1
40.19 odd 2 1472.4.a.a.1.1 1
40.29 even 2 1472.4.a.j.1.1 1
115.114 odd 2 1058.4.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
46.4.a.b.1.1 1 5.4 even 2
368.4.a.e.1.1 1 20.19 odd 2
414.4.a.b.1.1 1 15.14 odd 2
1058.4.a.b.1.1 1 115.114 odd 2
1150.4.a.d.1.1 1 1.1 even 1 trivial
1150.4.b.a.599.1 2 5.2 odd 4
1150.4.b.a.599.2 2 5.3 odd 4
1472.4.a.a.1.1 1 40.19 odd 2
1472.4.a.j.1.1 1 40.29 even 2
2254.4.a.b.1.1 1 35.34 odd 2