Properties

Label 1150.4.a.bb.1.2
Level $1150$
Weight $4$
Character 1150.1
Self dual yes
Analytic conductor $67.852$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1150,4,Mod(1,1150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1150.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,18,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 3x^{8} - 179x^{7} + 380x^{6} + 10197x^{5} - 8259x^{4} - 205207x^{3} - 105750x^{2} + 525560x + 178000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 5 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-5.67028\) of defining polynomial
Character \(\chi\) \(=\) 1150.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -5.67028 q^{3} +4.00000 q^{4} -11.3406 q^{6} +11.4356 q^{7} +8.00000 q^{8} +5.15209 q^{9} -64.3703 q^{11} -22.6811 q^{12} -51.4739 q^{13} +22.8712 q^{14} +16.0000 q^{16} +43.4885 q^{17} +10.3042 q^{18} +35.4680 q^{19} -64.8429 q^{21} -128.741 q^{22} -23.0000 q^{23} -45.3623 q^{24} -102.948 q^{26} +123.884 q^{27} +45.7423 q^{28} +186.801 q^{29} -87.1933 q^{31} +32.0000 q^{32} +364.998 q^{33} +86.9770 q^{34} +20.6084 q^{36} -163.974 q^{37} +70.9360 q^{38} +291.871 q^{39} +243.206 q^{41} -129.686 q^{42} +224.521 q^{43} -257.481 q^{44} -46.0000 q^{46} -403.083 q^{47} -90.7245 q^{48} -212.228 q^{49} -246.592 q^{51} -205.896 q^{52} -562.288 q^{53} +247.768 q^{54} +91.4846 q^{56} -201.114 q^{57} +373.602 q^{58} +605.661 q^{59} +574.329 q^{61} -174.387 q^{62} +58.9172 q^{63} +64.0000 q^{64} +729.995 q^{66} +998.199 q^{67} +173.954 q^{68} +130.416 q^{69} +729.542 q^{71} +41.2167 q^{72} -708.601 q^{73} -327.948 q^{74} +141.872 q^{76} -736.111 q^{77} +583.743 q^{78} +397.078 q^{79} -841.562 q^{81} +486.413 q^{82} -639.409 q^{83} -259.372 q^{84} +449.042 q^{86} -1059.21 q^{87} -514.962 q^{88} -199.463 q^{89} -588.633 q^{91} -92.0000 q^{92} +494.411 q^{93} -806.166 q^{94} -181.449 q^{96} +525.976 q^{97} -424.455 q^{98} -331.642 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 18 q^{2} + 3 q^{3} + 36 q^{4} + 6 q^{6} + 44 q^{7} + 72 q^{8} + 124 q^{9} + 81 q^{11} + 12 q^{12} + 59 q^{13} + 88 q^{14} + 144 q^{16} + 110 q^{17} + 248 q^{18} + 221 q^{19} + 142 q^{21} + 162 q^{22}+ \cdots - 1753 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −5.67028 −1.09125 −0.545623 0.838031i \(-0.683707\pi\)
−0.545623 + 0.838031i \(0.683707\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) −11.3406 −0.771628
\(7\) 11.4356 0.617463 0.308732 0.951149i \(-0.400096\pi\)
0.308732 + 0.951149i \(0.400096\pi\)
\(8\) 8.00000 0.353553
\(9\) 5.15209 0.190818
\(10\) 0 0
\(11\) −64.3703 −1.76440 −0.882199 0.470877i \(-0.843937\pi\)
−0.882199 + 0.470877i \(0.843937\pi\)
\(12\) −22.6811 −0.545623
\(13\) −51.4739 −1.09818 −0.549088 0.835765i \(-0.685025\pi\)
−0.549088 + 0.835765i \(0.685025\pi\)
\(14\) 22.8712 0.436612
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 43.4885 0.620442 0.310221 0.950664i \(-0.399597\pi\)
0.310221 + 0.950664i \(0.399597\pi\)
\(18\) 10.3042 0.134929
\(19\) 35.4680 0.428259 0.214129 0.976805i \(-0.431309\pi\)
0.214129 + 0.976805i \(0.431309\pi\)
\(20\) 0 0
\(21\) −64.8429 −0.673804
\(22\) −128.741 −1.24762
\(23\) −23.0000 −0.208514
\(24\) −45.3623 −0.385814
\(25\) 0 0
\(26\) −102.948 −0.776528
\(27\) 123.884 0.883016
\(28\) 45.7423 0.308732
\(29\) 186.801 1.19614 0.598070 0.801444i \(-0.295934\pi\)
0.598070 + 0.801444i \(0.295934\pi\)
\(30\) 0 0
\(31\) −87.1933 −0.505174 −0.252587 0.967574i \(-0.581281\pi\)
−0.252587 + 0.967574i \(0.581281\pi\)
\(32\) 32.0000 0.176777
\(33\) 364.998 1.92539
\(34\) 86.9770 0.438719
\(35\) 0 0
\(36\) 20.6084 0.0954091
\(37\) −163.974 −0.728572 −0.364286 0.931287i \(-0.618687\pi\)
−0.364286 + 0.931287i \(0.618687\pi\)
\(38\) 70.9360 0.302825
\(39\) 291.871 1.19838
\(40\) 0 0
\(41\) 243.206 0.926401 0.463200 0.886254i \(-0.346701\pi\)
0.463200 + 0.886254i \(0.346701\pi\)
\(42\) −129.686 −0.476452
\(43\) 224.521 0.796258 0.398129 0.917329i \(-0.369660\pi\)
0.398129 + 0.917329i \(0.369660\pi\)
\(44\) −257.481 −0.882199
\(45\) 0 0
\(46\) −46.0000 −0.147442
\(47\) −403.083 −1.25097 −0.625486 0.780235i \(-0.715099\pi\)
−0.625486 + 0.780235i \(0.715099\pi\)
\(48\) −90.7245 −0.272812
\(49\) −212.228 −0.618739
\(50\) 0 0
\(51\) −246.592 −0.677055
\(52\) −205.896 −0.549088
\(53\) −562.288 −1.45729 −0.728644 0.684893i \(-0.759849\pi\)
−0.728644 + 0.684893i \(0.759849\pi\)
\(54\) 247.768 0.624387
\(55\) 0 0
\(56\) 91.4846 0.218306
\(57\) −201.114 −0.467336
\(58\) 373.602 0.845799
\(59\) 605.661 1.33645 0.668224 0.743960i \(-0.267055\pi\)
0.668224 + 0.743960i \(0.267055\pi\)
\(60\) 0 0
\(61\) 574.329 1.20550 0.602748 0.797932i \(-0.294072\pi\)
0.602748 + 0.797932i \(0.294072\pi\)
\(62\) −174.387 −0.357212
\(63\) 58.9172 0.117823
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 729.995 1.36146
\(67\) 998.199 1.82014 0.910071 0.414453i \(-0.136027\pi\)
0.910071 + 0.414453i \(0.136027\pi\)
\(68\) 173.954 0.310221
\(69\) 130.416 0.227541
\(70\) 0 0
\(71\) 729.542 1.21945 0.609724 0.792614i \(-0.291280\pi\)
0.609724 + 0.792614i \(0.291280\pi\)
\(72\) 41.2167 0.0674644
\(73\) −708.601 −1.13610 −0.568051 0.822993i \(-0.692302\pi\)
−0.568051 + 0.822993i \(0.692302\pi\)
\(74\) −327.948 −0.515178
\(75\) 0 0
\(76\) 141.872 0.214129
\(77\) −736.111 −1.08945
\(78\) 583.743 0.847383
\(79\) 397.078 0.565503 0.282752 0.959193i \(-0.408753\pi\)
0.282752 + 0.959193i \(0.408753\pi\)
\(80\) 0 0
\(81\) −841.562 −1.15441
\(82\) 486.413 0.655064
\(83\) −639.409 −0.845594 −0.422797 0.906224i \(-0.638952\pi\)
−0.422797 + 0.906224i \(0.638952\pi\)
\(84\) −259.372 −0.336902
\(85\) 0 0
\(86\) 449.042 0.563040
\(87\) −1059.21 −1.30528
\(88\) −514.962 −0.623809
\(89\) −199.463 −0.237562 −0.118781 0.992920i \(-0.537899\pi\)
−0.118781 + 0.992920i \(0.537899\pi\)
\(90\) 0 0
\(91\) −588.633 −0.678083
\(92\) −92.0000 −0.104257
\(93\) 494.411 0.551269
\(94\) −806.166 −0.884571
\(95\) 0 0
\(96\) −181.449 −0.192907
\(97\) 525.976 0.550565 0.275282 0.961363i \(-0.411229\pi\)
0.275282 + 0.961363i \(0.411229\pi\)
\(98\) −424.455 −0.437515
\(99\) −331.642 −0.336679
\(100\) 0 0
\(101\) 1919.39 1.89096 0.945479 0.325682i \(-0.105594\pi\)
0.945479 + 0.325682i \(0.105594\pi\)
\(102\) −493.184 −0.478750
\(103\) 527.068 0.504209 0.252104 0.967700i \(-0.418877\pi\)
0.252104 + 0.967700i \(0.418877\pi\)
\(104\) −411.791 −0.388264
\(105\) 0 0
\(106\) −1124.58 −1.03046
\(107\) 438.630 0.396298 0.198149 0.980172i \(-0.436507\pi\)
0.198149 + 0.980172i \(0.436507\pi\)
\(108\) 495.535 0.441508
\(109\) 676.923 0.594839 0.297419 0.954747i \(-0.403874\pi\)
0.297419 + 0.954747i \(0.403874\pi\)
\(110\) 0 0
\(111\) 929.779 0.795051
\(112\) 182.969 0.154366
\(113\) 136.776 0.113866 0.0569328 0.998378i \(-0.481868\pi\)
0.0569328 + 0.998378i \(0.481868\pi\)
\(114\) −402.227 −0.330456
\(115\) 0 0
\(116\) 747.204 0.598070
\(117\) −265.198 −0.209552
\(118\) 1211.32 0.945011
\(119\) 497.316 0.383100
\(120\) 0 0
\(121\) 2812.53 2.11310
\(122\) 1148.66 0.852415
\(123\) −1379.05 −1.01093
\(124\) −348.773 −0.252587
\(125\) 0 0
\(126\) 117.834 0.0833136
\(127\) 1229.91 0.859343 0.429671 0.902985i \(-0.358629\pi\)
0.429671 + 0.902985i \(0.358629\pi\)
\(128\) 128.000 0.0883883
\(129\) −1273.10 −0.868914
\(130\) 0 0
\(131\) −161.656 −0.107816 −0.0539082 0.998546i \(-0.517168\pi\)
−0.0539082 + 0.998546i \(0.517168\pi\)
\(132\) 1459.99 0.962696
\(133\) 405.597 0.264434
\(134\) 1996.40 1.28703
\(135\) 0 0
\(136\) 347.908 0.219359
\(137\) 629.526 0.392584 0.196292 0.980545i \(-0.437110\pi\)
0.196292 + 0.980545i \(0.437110\pi\)
\(138\) 260.833 0.160895
\(139\) −3178.39 −1.93948 −0.969738 0.244147i \(-0.921492\pi\)
−0.969738 + 0.244147i \(0.921492\pi\)
\(140\) 0 0
\(141\) 2285.60 1.36512
\(142\) 1459.08 0.862279
\(143\) 3313.39 1.93762
\(144\) 82.4335 0.0477046
\(145\) 0 0
\(146\) −1417.20 −0.803345
\(147\) 1203.39 0.675197
\(148\) −655.896 −0.364286
\(149\) 2746.92 1.51031 0.755157 0.655544i \(-0.227561\pi\)
0.755157 + 0.655544i \(0.227561\pi\)
\(150\) 0 0
\(151\) 2177.95 1.17377 0.586883 0.809671i \(-0.300355\pi\)
0.586883 + 0.809671i \(0.300355\pi\)
\(152\) 283.744 0.151412
\(153\) 224.057 0.118392
\(154\) −1472.22 −0.770358
\(155\) 0 0
\(156\) 1167.49 0.599190
\(157\) 85.0989 0.0432588 0.0216294 0.999766i \(-0.493115\pi\)
0.0216294 + 0.999766i \(0.493115\pi\)
\(158\) 794.156 0.399871
\(159\) 3188.33 1.59026
\(160\) 0 0
\(161\) −263.018 −0.128750
\(162\) −1683.12 −0.816289
\(163\) 2912.82 1.39969 0.699845 0.714295i \(-0.253253\pi\)
0.699845 + 0.714295i \(0.253253\pi\)
\(164\) 972.825 0.463200
\(165\) 0 0
\(166\) −1278.82 −0.597925
\(167\) 1434.03 0.664482 0.332241 0.943194i \(-0.392195\pi\)
0.332241 + 0.943194i \(0.392195\pi\)
\(168\) −518.743 −0.238226
\(169\) 452.560 0.205990
\(170\) 0 0
\(171\) 182.734 0.0817196
\(172\) 898.083 0.398129
\(173\) 1523.69 0.669617 0.334808 0.942286i \(-0.391328\pi\)
0.334808 + 0.942286i \(0.391328\pi\)
\(174\) −2118.43 −0.922975
\(175\) 0 0
\(176\) −1029.92 −0.441099
\(177\) −3434.27 −1.45839
\(178\) −398.926 −0.167982
\(179\) 4283.26 1.78853 0.894263 0.447541i \(-0.147700\pi\)
0.894263 + 0.447541i \(0.147700\pi\)
\(180\) 0 0
\(181\) 1132.16 0.464933 0.232466 0.972604i \(-0.425320\pi\)
0.232466 + 0.972604i \(0.425320\pi\)
\(182\) −1177.27 −0.479477
\(183\) −3256.61 −1.31549
\(184\) −184.000 −0.0737210
\(185\) 0 0
\(186\) 988.821 0.389806
\(187\) −2799.37 −1.09471
\(188\) −1612.33 −0.625486
\(189\) 1416.68 0.545230
\(190\) 0 0
\(191\) −1260.02 −0.477341 −0.238671 0.971101i \(-0.576712\pi\)
−0.238671 + 0.971101i \(0.576712\pi\)
\(192\) −362.898 −0.136406
\(193\) −2966.93 −1.10655 −0.553276 0.832998i \(-0.686622\pi\)
−0.553276 + 0.832998i \(0.686622\pi\)
\(194\) 1051.95 0.389308
\(195\) 0 0
\(196\) −848.910 −0.309370
\(197\) −796.234 −0.287966 −0.143983 0.989580i \(-0.545991\pi\)
−0.143983 + 0.989580i \(0.545991\pi\)
\(198\) −663.283 −0.238068
\(199\) −1873.80 −0.667489 −0.333745 0.942663i \(-0.608312\pi\)
−0.333745 + 0.942663i \(0.608312\pi\)
\(200\) 0 0
\(201\) −5660.07 −1.98622
\(202\) 3838.79 1.33711
\(203\) 2136.18 0.738573
\(204\) −986.368 −0.338527
\(205\) 0 0
\(206\) 1054.14 0.356530
\(207\) −118.498 −0.0397884
\(208\) −823.582 −0.274544
\(209\) −2283.09 −0.755619
\(210\) 0 0
\(211\) 381.450 0.124456 0.0622278 0.998062i \(-0.480179\pi\)
0.0622278 + 0.998062i \(0.480179\pi\)
\(212\) −2249.15 −0.728644
\(213\) −4136.71 −1.33072
\(214\) 877.259 0.280225
\(215\) 0 0
\(216\) 991.070 0.312193
\(217\) −997.106 −0.311926
\(218\) 1353.85 0.420615
\(219\) 4017.97 1.23977
\(220\) 0 0
\(221\) −2238.52 −0.681354
\(222\) 1859.56 0.562186
\(223\) −2299.47 −0.690512 −0.345256 0.938509i \(-0.612208\pi\)
−0.345256 + 0.938509i \(0.612208\pi\)
\(224\) 365.938 0.109153
\(225\) 0 0
\(226\) 273.552 0.0805151
\(227\) 629.815 0.184151 0.0920755 0.995752i \(-0.470650\pi\)
0.0920755 + 0.995752i \(0.470650\pi\)
\(228\) −804.454 −0.233668
\(229\) 745.954 0.215258 0.107629 0.994191i \(-0.465674\pi\)
0.107629 + 0.994191i \(0.465674\pi\)
\(230\) 0 0
\(231\) 4173.96 1.18886
\(232\) 1494.41 0.422900
\(233\) 2819.94 0.792877 0.396439 0.918061i \(-0.370246\pi\)
0.396439 + 0.918061i \(0.370246\pi\)
\(234\) −530.396 −0.148176
\(235\) 0 0
\(236\) 2422.65 0.668224
\(237\) −2251.54 −0.617103
\(238\) 994.632 0.270893
\(239\) −4234.05 −1.14593 −0.572967 0.819579i \(-0.694208\pi\)
−0.572967 + 0.819579i \(0.694208\pi\)
\(240\) 0 0
\(241\) 2813.96 0.752130 0.376065 0.926593i \(-0.377277\pi\)
0.376065 + 0.926593i \(0.377277\pi\)
\(242\) 5625.07 1.49419
\(243\) 1427.03 0.376725
\(244\) 2297.32 0.602748
\(245\) 0 0
\(246\) −2758.10 −0.714837
\(247\) −1825.68 −0.470303
\(248\) −697.546 −0.178606
\(249\) 3625.63 0.922751
\(250\) 0 0
\(251\) 6095.66 1.53289 0.766444 0.642311i \(-0.222024\pi\)
0.766444 + 0.642311i \(0.222024\pi\)
\(252\) 235.669 0.0589116
\(253\) 1480.52 0.367902
\(254\) 2459.81 0.607647
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −5536.23 −1.34374 −0.671869 0.740670i \(-0.734508\pi\)
−0.671869 + 0.740670i \(0.734508\pi\)
\(258\) −2546.19 −0.614415
\(259\) −1875.14 −0.449866
\(260\) 0 0
\(261\) 962.416 0.228245
\(262\) −323.312 −0.0762377
\(263\) −4002.39 −0.938395 −0.469197 0.883093i \(-0.655457\pi\)
−0.469197 + 0.883093i \(0.655457\pi\)
\(264\) 2919.98 0.680729
\(265\) 0 0
\(266\) 811.194 0.186983
\(267\) 1131.01 0.259239
\(268\) 3992.80 0.910071
\(269\) 3599.40 0.815833 0.407917 0.913019i \(-0.366255\pi\)
0.407917 + 0.913019i \(0.366255\pi\)
\(270\) 0 0
\(271\) −346.478 −0.0776644 −0.0388322 0.999246i \(-0.512364\pi\)
−0.0388322 + 0.999246i \(0.512364\pi\)
\(272\) 695.816 0.155110
\(273\) 3337.72 0.739955
\(274\) 1259.05 0.277599
\(275\) 0 0
\(276\) 521.666 0.113770
\(277\) 652.428 0.141518 0.0707592 0.997493i \(-0.477458\pi\)
0.0707592 + 0.997493i \(0.477458\pi\)
\(278\) −6356.77 −1.37142
\(279\) −449.228 −0.0963963
\(280\) 0 0
\(281\) −4987.95 −1.05892 −0.529460 0.848335i \(-0.677605\pi\)
−0.529460 + 0.848335i \(0.677605\pi\)
\(282\) 4571.19 0.965285
\(283\) −4830.24 −1.01459 −0.507293 0.861773i \(-0.669354\pi\)
−0.507293 + 0.861773i \(0.669354\pi\)
\(284\) 2918.17 0.609724
\(285\) 0 0
\(286\) 6626.78 1.37010
\(287\) 2781.20 0.572018
\(288\) 164.867 0.0337322
\(289\) −3021.75 −0.615052
\(290\) 0 0
\(291\) −2982.43 −0.600801
\(292\) −2834.40 −0.568051
\(293\) 1785.52 0.356011 0.178005 0.984030i \(-0.443036\pi\)
0.178005 + 0.984030i \(0.443036\pi\)
\(294\) 2406.78 0.477436
\(295\) 0 0
\(296\) −1311.79 −0.257589
\(297\) −7974.43 −1.55799
\(298\) 5493.85 1.06795
\(299\) 1183.90 0.228985
\(300\) 0 0
\(301\) 2567.52 0.491660
\(302\) 4355.89 0.829979
\(303\) −10883.5 −2.06350
\(304\) 567.488 0.107065
\(305\) 0 0
\(306\) 448.114 0.0837155
\(307\) 1187.14 0.220697 0.110348 0.993893i \(-0.464803\pi\)
0.110348 + 0.993893i \(0.464803\pi\)
\(308\) −2944.44 −0.544725
\(309\) −2988.62 −0.550216
\(310\) 0 0
\(311\) 9523.04 1.73634 0.868171 0.496266i \(-0.165296\pi\)
0.868171 + 0.496266i \(0.165296\pi\)
\(312\) 2334.97 0.423691
\(313\) −9041.46 −1.63276 −0.816379 0.577516i \(-0.804022\pi\)
−0.816379 + 0.577516i \(0.804022\pi\)
\(314\) 170.198 0.0305886
\(315\) 0 0
\(316\) 1588.31 0.282752
\(317\) −7514.37 −1.33139 −0.665693 0.746226i \(-0.731864\pi\)
−0.665693 + 0.746226i \(0.731864\pi\)
\(318\) 6376.67 1.12448
\(319\) −12024.4 −2.11047
\(320\) 0 0
\(321\) −2487.15 −0.432459
\(322\) −526.036 −0.0910400
\(323\) 1542.45 0.265710
\(324\) −3366.25 −0.577203
\(325\) 0 0
\(326\) 5825.63 0.989730
\(327\) −3838.34 −0.649116
\(328\) 1945.65 0.327532
\(329\) −4609.49 −0.772429
\(330\) 0 0
\(331\) 10913.5 1.81227 0.906134 0.422992i \(-0.139020\pi\)
0.906134 + 0.422992i \(0.139020\pi\)
\(332\) −2557.64 −0.422797
\(333\) −844.809 −0.139025
\(334\) 2868.06 0.469860
\(335\) 0 0
\(336\) −1037.49 −0.168451
\(337\) −4471.84 −0.722839 −0.361420 0.932403i \(-0.617708\pi\)
−0.361420 + 0.932403i \(0.617708\pi\)
\(338\) 905.120 0.145657
\(339\) −775.559 −0.124255
\(340\) 0 0
\(341\) 5612.66 0.891327
\(342\) 365.469 0.0577845
\(343\) −6349.35 −0.999512
\(344\) 1796.17 0.281520
\(345\) 0 0
\(346\) 3047.37 0.473491
\(347\) −3009.43 −0.465575 −0.232788 0.972528i \(-0.574785\pi\)
−0.232788 + 0.972528i \(0.574785\pi\)
\(348\) −4236.86 −0.652642
\(349\) −447.884 −0.0686953 −0.0343477 0.999410i \(-0.510935\pi\)
−0.0343477 + 0.999410i \(0.510935\pi\)
\(350\) 0 0
\(351\) −6376.78 −0.969707
\(352\) −2059.85 −0.311904
\(353\) 11267.8 1.69894 0.849471 0.527636i \(-0.176921\pi\)
0.849471 + 0.527636i \(0.176921\pi\)
\(354\) −6868.54 −1.03124
\(355\) 0 0
\(356\) −797.853 −0.118781
\(357\) −2819.92 −0.418056
\(358\) 8566.53 1.26468
\(359\) 3765.74 0.553615 0.276808 0.960925i \(-0.410723\pi\)
0.276808 + 0.960925i \(0.410723\pi\)
\(360\) 0 0
\(361\) −5601.02 −0.816594
\(362\) 2264.32 0.328757
\(363\) −15947.9 −2.30591
\(364\) −2354.53 −0.339041
\(365\) 0 0
\(366\) −6513.21 −0.930194
\(367\) −2447.74 −0.348149 −0.174075 0.984732i \(-0.555693\pi\)
−0.174075 + 0.984732i \(0.555693\pi\)
\(368\) −368.000 −0.0521286
\(369\) 1253.02 0.176774
\(370\) 0 0
\(371\) −6430.09 −0.899821
\(372\) 1977.64 0.275634
\(373\) 3162.93 0.439062 0.219531 0.975605i \(-0.429547\pi\)
0.219531 + 0.975605i \(0.429547\pi\)
\(374\) −5598.73 −0.774074
\(375\) 0 0
\(376\) −3224.67 −0.442286
\(377\) −9615.37 −1.31357
\(378\) 2833.36 0.385536
\(379\) 4542.42 0.615643 0.307821 0.951444i \(-0.400400\pi\)
0.307821 + 0.951444i \(0.400400\pi\)
\(380\) 0 0
\(381\) −6973.92 −0.937755
\(382\) −2520.05 −0.337531
\(383\) 9696.63 1.29367 0.646834 0.762631i \(-0.276093\pi\)
0.646834 + 0.762631i \(0.276093\pi\)
\(384\) −725.796 −0.0964534
\(385\) 0 0
\(386\) −5933.87 −0.782450
\(387\) 1156.75 0.151941
\(388\) 2103.90 0.275282
\(389\) −12507.2 −1.63019 −0.815093 0.579330i \(-0.803314\pi\)
−0.815093 + 0.579330i \(0.803314\pi\)
\(390\) 0 0
\(391\) −1000.24 −0.129371
\(392\) −1697.82 −0.218757
\(393\) 916.635 0.117654
\(394\) −1592.47 −0.203623
\(395\) 0 0
\(396\) −1326.57 −0.168340
\(397\) 5105.79 0.645471 0.322736 0.946489i \(-0.395397\pi\)
0.322736 + 0.946489i \(0.395397\pi\)
\(398\) −3747.61 −0.471986
\(399\) −2299.85 −0.288563
\(400\) 0 0
\(401\) −9655.85 −1.20247 −0.601235 0.799072i \(-0.705324\pi\)
−0.601235 + 0.799072i \(0.705324\pi\)
\(402\) −11320.1 −1.40447
\(403\) 4488.18 0.554769
\(404\) 7677.57 0.945479
\(405\) 0 0
\(406\) 4272.35 0.522250
\(407\) 10555.1 1.28549
\(408\) −1972.74 −0.239375
\(409\) −5956.20 −0.720086 −0.360043 0.932936i \(-0.617238\pi\)
−0.360043 + 0.932936i \(0.617238\pi\)
\(410\) 0 0
\(411\) −3569.59 −0.428406
\(412\) 2108.27 0.252104
\(413\) 6926.09 0.825207
\(414\) −236.996 −0.0281346
\(415\) 0 0
\(416\) −1647.16 −0.194132
\(417\) 18022.3 2.11645
\(418\) −4566.17 −0.534303
\(419\) 5950.46 0.693793 0.346896 0.937903i \(-0.387236\pi\)
0.346896 + 0.937903i \(0.387236\pi\)
\(420\) 0 0
\(421\) −14734.2 −1.70570 −0.852851 0.522155i \(-0.825128\pi\)
−0.852851 + 0.522155i \(0.825128\pi\)
\(422\) 762.900 0.0880034
\(423\) −2076.72 −0.238708
\(424\) −4498.31 −0.515229
\(425\) 0 0
\(426\) −8273.42 −0.940959
\(427\) 6567.78 0.744349
\(428\) 1754.52 0.198149
\(429\) −18787.8 −2.11442
\(430\) 0 0
\(431\) −2231.59 −0.249402 −0.124701 0.992194i \(-0.539797\pi\)
−0.124701 + 0.992194i \(0.539797\pi\)
\(432\) 1982.14 0.220754
\(433\) 8218.01 0.912084 0.456042 0.889958i \(-0.349267\pi\)
0.456042 + 0.889958i \(0.349267\pi\)
\(434\) −1994.21 −0.220565
\(435\) 0 0
\(436\) 2707.69 0.297419
\(437\) −815.764 −0.0892981
\(438\) 8035.93 0.876648
\(439\) 5912.38 0.642784 0.321392 0.946946i \(-0.395849\pi\)
0.321392 + 0.946946i \(0.395849\pi\)
\(440\) 0 0
\(441\) −1093.42 −0.118067
\(442\) −4477.04 −0.481790
\(443\) −4530.67 −0.485912 −0.242956 0.970037i \(-0.578117\pi\)
−0.242956 + 0.970037i \(0.578117\pi\)
\(444\) 3719.11 0.397526
\(445\) 0 0
\(446\) −4598.95 −0.488265
\(447\) −15575.8 −1.64812
\(448\) 731.877 0.0771829
\(449\) 8136.30 0.855180 0.427590 0.903973i \(-0.359363\pi\)
0.427590 + 0.903973i \(0.359363\pi\)
\(450\) 0 0
\(451\) −15655.3 −1.63454
\(452\) 547.104 0.0569328
\(453\) −12349.6 −1.28087
\(454\) 1259.63 0.130214
\(455\) 0 0
\(456\) −1608.91 −0.165228
\(457\) 15790.1 1.61626 0.808128 0.589008i \(-0.200481\pi\)
0.808128 + 0.589008i \(0.200481\pi\)
\(458\) 1491.91 0.152210
\(459\) 5387.52 0.547860
\(460\) 0 0
\(461\) −5958.29 −0.601964 −0.300982 0.953630i \(-0.597314\pi\)
−0.300982 + 0.953630i \(0.597314\pi\)
\(462\) 8347.92 0.840650
\(463\) −11861.8 −1.19064 −0.595319 0.803489i \(-0.702974\pi\)
−0.595319 + 0.803489i \(0.702974\pi\)
\(464\) 2988.82 0.299035
\(465\) 0 0
\(466\) 5639.88 0.560649
\(467\) −1738.19 −0.172235 −0.0861175 0.996285i \(-0.527446\pi\)
−0.0861175 + 0.996285i \(0.527446\pi\)
\(468\) −1060.79 −0.104776
\(469\) 11415.0 1.12387
\(470\) 0 0
\(471\) −482.535 −0.0472060
\(472\) 4845.29 0.472506
\(473\) −14452.5 −1.40492
\(474\) −4503.09 −0.436358
\(475\) 0 0
\(476\) 1989.26 0.191550
\(477\) −2896.96 −0.278077
\(478\) −8468.10 −0.810297
\(479\) 4015.75 0.383057 0.191528 0.981487i \(-0.438656\pi\)
0.191528 + 0.981487i \(0.438656\pi\)
\(480\) 0 0
\(481\) 8440.38 0.800100
\(482\) 5627.93 0.531836
\(483\) 1491.39 0.140498
\(484\) 11250.1 1.05655
\(485\) 0 0
\(486\) 2854.07 0.266385
\(487\) −18618.9 −1.73245 −0.866223 0.499658i \(-0.833459\pi\)
−0.866223 + 0.499658i \(0.833459\pi\)
\(488\) 4594.63 0.426207
\(489\) −16516.5 −1.52741
\(490\) 0 0
\(491\) 7671.89 0.705148 0.352574 0.935784i \(-0.385307\pi\)
0.352574 + 0.935784i \(0.385307\pi\)
\(492\) −5516.19 −0.505466
\(493\) 8123.70 0.742136
\(494\) −3651.35 −0.332555
\(495\) 0 0
\(496\) −1395.09 −0.126293
\(497\) 8342.74 0.752963
\(498\) 7251.26 0.652483
\(499\) 3591.49 0.322198 0.161099 0.986938i \(-0.448496\pi\)
0.161099 + 0.986938i \(0.448496\pi\)
\(500\) 0 0
\(501\) −8131.35 −0.725114
\(502\) 12191.3 1.08392
\(503\) 17954.4 1.59155 0.795773 0.605595i \(-0.207065\pi\)
0.795773 + 0.605595i \(0.207065\pi\)
\(504\) 471.337 0.0416568
\(505\) 0 0
\(506\) 2961.03 0.260146
\(507\) −2566.14 −0.224786
\(508\) 4919.63 0.429671
\(509\) 19404.4 1.68975 0.844875 0.534963i \(-0.179675\pi\)
0.844875 + 0.534963i \(0.179675\pi\)
\(510\) 0 0
\(511\) −8103.26 −0.701501
\(512\) 512.000 0.0441942
\(513\) 4393.91 0.378160
\(514\) −11072.5 −0.950166
\(515\) 0 0
\(516\) −5092.38 −0.434457
\(517\) 25946.6 2.20721
\(518\) −3750.27 −0.318103
\(519\) −8639.73 −0.730717
\(520\) 0 0
\(521\) −3083.93 −0.259327 −0.129664 0.991558i \(-0.541390\pi\)
−0.129664 + 0.991558i \(0.541390\pi\)
\(522\) 1924.83 0.161394
\(523\) 17638.2 1.47469 0.737346 0.675515i \(-0.236079\pi\)
0.737346 + 0.675515i \(0.236079\pi\)
\(524\) −646.624 −0.0539082
\(525\) 0 0
\(526\) −8004.78 −0.663545
\(527\) −3791.91 −0.313431
\(528\) 5839.96 0.481348
\(529\) 529.000 0.0434783
\(530\) 0 0
\(531\) 3120.42 0.255019
\(532\) 1622.39 0.132217
\(533\) −12518.8 −1.01735
\(534\) 2262.03 0.183310
\(535\) 0 0
\(536\) 7985.59 0.643517
\(537\) −24287.3 −1.95172
\(538\) 7198.80 0.576881
\(539\) 13661.2 1.09170
\(540\) 0 0
\(541\) −12203.4 −0.969806 −0.484903 0.874568i \(-0.661145\pi\)
−0.484903 + 0.874568i \(0.661145\pi\)
\(542\) −692.957 −0.0549170
\(543\) −6419.67 −0.507356
\(544\) 1391.63 0.109680
\(545\) 0 0
\(546\) 6675.43 0.523227
\(547\) 24347.9 1.90319 0.951593 0.307361i \(-0.0994459\pi\)
0.951593 + 0.307361i \(0.0994459\pi\)
\(548\) 2518.11 0.196292
\(549\) 2959.00 0.230031
\(550\) 0 0
\(551\) 6625.46 0.512258
\(552\) 1043.33 0.0804477
\(553\) 4540.82 0.349177
\(554\) 1304.86 0.100069
\(555\) 0 0
\(556\) −12713.5 −0.969738
\(557\) −5181.49 −0.394159 −0.197080 0.980387i \(-0.563146\pi\)
−0.197080 + 0.980387i \(0.563146\pi\)
\(558\) −898.456 −0.0681625
\(559\) −11557.0 −0.874431
\(560\) 0 0
\(561\) 15873.2 1.19459
\(562\) −9975.91 −0.748769
\(563\) 22634.6 1.69438 0.847189 0.531291i \(-0.178293\pi\)
0.847189 + 0.531291i \(0.178293\pi\)
\(564\) 9142.38 0.682560
\(565\) 0 0
\(566\) −9660.48 −0.717421
\(567\) −9623.75 −0.712803
\(568\) 5836.34 0.431140
\(569\) −10824.0 −0.797476 −0.398738 0.917065i \(-0.630552\pi\)
−0.398738 + 0.917065i \(0.630552\pi\)
\(570\) 0 0
\(571\) −11248.6 −0.824414 −0.412207 0.911090i \(-0.635242\pi\)
−0.412207 + 0.911090i \(0.635242\pi\)
\(572\) 13253.6 0.968809
\(573\) 7144.69 0.520897
\(574\) 5562.41 0.404478
\(575\) 0 0
\(576\) 329.734 0.0238523
\(577\) −23424.7 −1.69009 −0.845046 0.534694i \(-0.820427\pi\)
−0.845046 + 0.534694i \(0.820427\pi\)
\(578\) −6043.50 −0.434907
\(579\) 16823.3 1.20752
\(580\) 0 0
\(581\) −7312.01 −0.522123
\(582\) −5964.86 −0.424831
\(583\) 36194.7 2.57123
\(584\) −5668.81 −0.401673
\(585\) 0 0
\(586\) 3571.04 0.251738
\(587\) 1541.57 0.108394 0.0541972 0.998530i \(-0.482740\pi\)
0.0541972 + 0.998530i \(0.482740\pi\)
\(588\) 4813.56 0.337599
\(589\) −3092.57 −0.216345
\(590\) 0 0
\(591\) 4514.87 0.314242
\(592\) −2623.58 −0.182143
\(593\) −13814.3 −0.956636 −0.478318 0.878187i \(-0.658753\pi\)
−0.478318 + 0.878187i \(0.658753\pi\)
\(594\) −15948.9 −1.10167
\(595\) 0 0
\(596\) 10987.7 0.755157
\(597\) 10625.0 0.728395
\(598\) 2367.80 0.161917
\(599\) −20947.4 −1.42886 −0.714432 0.699705i \(-0.753315\pi\)
−0.714432 + 0.699705i \(0.753315\pi\)
\(600\) 0 0
\(601\) 5703.62 0.387114 0.193557 0.981089i \(-0.437998\pi\)
0.193557 + 0.981089i \(0.437998\pi\)
\(602\) 5135.05 0.347656
\(603\) 5142.82 0.347316
\(604\) 8711.79 0.586883
\(605\) 0 0
\(606\) −21767.0 −1.45912
\(607\) 14936.3 0.998759 0.499379 0.866383i \(-0.333561\pi\)
0.499379 + 0.866383i \(0.333561\pi\)
\(608\) 1134.98 0.0757062
\(609\) −12112.7 −0.805965
\(610\) 0 0
\(611\) 20748.3 1.37379
\(612\) 896.227 0.0591958
\(613\) −21142.2 −1.39302 −0.696512 0.717545i \(-0.745266\pi\)
−0.696512 + 0.717545i \(0.745266\pi\)
\(614\) 2374.29 0.156056
\(615\) 0 0
\(616\) −5888.89 −0.385179
\(617\) −12531.9 −0.817693 −0.408846 0.912603i \(-0.634069\pi\)
−0.408846 + 0.912603i \(0.634069\pi\)
\(618\) −5977.24 −0.389061
\(619\) 4726.10 0.306879 0.153440 0.988158i \(-0.450965\pi\)
0.153440 + 0.988158i \(0.450965\pi\)
\(620\) 0 0
\(621\) −2849.33 −0.184122
\(622\) 19046.1 1.22778
\(623\) −2280.98 −0.146686
\(624\) 4669.94 0.299595
\(625\) 0 0
\(626\) −18082.9 −1.15453
\(627\) 12945.7 0.824566
\(628\) 340.396 0.0216294
\(629\) −7130.98 −0.452036
\(630\) 0 0
\(631\) 20880.9 1.31736 0.658682 0.752421i \(-0.271114\pi\)
0.658682 + 0.752421i \(0.271114\pi\)
\(632\) 3176.62 0.199936
\(633\) −2162.93 −0.135812
\(634\) −15028.7 −0.941432
\(635\) 0 0
\(636\) 12753.3 0.795130
\(637\) 10924.2 0.679485
\(638\) −24048.9 −1.49233
\(639\) 3758.67 0.232693
\(640\) 0 0
\(641\) −27696.7 −1.70664 −0.853318 0.521390i \(-0.825414\pi\)
−0.853318 + 0.521390i \(0.825414\pi\)
\(642\) −4974.31 −0.305795
\(643\) −13611.0 −0.834785 −0.417392 0.908726i \(-0.637056\pi\)
−0.417392 + 0.908726i \(0.637056\pi\)
\(644\) −1052.07 −0.0643750
\(645\) 0 0
\(646\) 3084.90 0.187885
\(647\) −10073.0 −0.612073 −0.306036 0.952020i \(-0.599003\pi\)
−0.306036 + 0.952020i \(0.599003\pi\)
\(648\) −6732.50 −0.408144
\(649\) −38986.6 −2.35802
\(650\) 0 0
\(651\) 5653.87 0.340388
\(652\) 11651.3 0.699845
\(653\) −24859.7 −1.48979 −0.744896 0.667181i \(-0.767501\pi\)
−0.744896 + 0.667181i \(0.767501\pi\)
\(654\) −7676.69 −0.458994
\(655\) 0 0
\(656\) 3891.30 0.231600
\(657\) −3650.78 −0.216789
\(658\) −9218.98 −0.546190
\(659\) 17125.8 1.01233 0.506165 0.862436i \(-0.331063\pi\)
0.506165 + 0.862436i \(0.331063\pi\)
\(660\) 0 0
\(661\) 8533.88 0.502162 0.251081 0.967966i \(-0.419214\pi\)
0.251081 + 0.967966i \(0.419214\pi\)
\(662\) 21827.0 1.28147
\(663\) 12693.0 0.743525
\(664\) −5115.27 −0.298963
\(665\) 0 0
\(666\) −1689.62 −0.0983054
\(667\) −4296.42 −0.249413
\(668\) 5736.12 0.332241
\(669\) 13038.7 0.753518
\(670\) 0 0
\(671\) −36969.7 −2.12697
\(672\) −2074.97 −0.119113
\(673\) 22983.4 1.31641 0.658206 0.752838i \(-0.271316\pi\)
0.658206 + 0.752838i \(0.271316\pi\)
\(674\) −8943.69 −0.511125
\(675\) 0 0
\(676\) 1810.24 0.102995
\(677\) −2276.48 −0.129235 −0.0646176 0.997910i \(-0.520583\pi\)
−0.0646176 + 0.997910i \(0.520583\pi\)
\(678\) −1551.12 −0.0878618
\(679\) 6014.84 0.339953
\(680\) 0 0
\(681\) −3571.23 −0.200954
\(682\) 11225.3 0.630263
\(683\) 23249.8 1.30253 0.651264 0.758851i \(-0.274239\pi\)
0.651264 + 0.758851i \(0.274239\pi\)
\(684\) 730.938 0.0408598
\(685\) 0 0
\(686\) −12698.7 −0.706762
\(687\) −4229.77 −0.234899
\(688\) 3592.33 0.199065
\(689\) 28943.2 1.60036
\(690\) 0 0
\(691\) −15941.7 −0.877641 −0.438820 0.898575i \(-0.644604\pi\)
−0.438820 + 0.898575i \(0.644604\pi\)
\(692\) 6094.74 0.334808
\(693\) −3792.51 −0.207887
\(694\) −6018.86 −0.329211
\(695\) 0 0
\(696\) −8473.71 −0.461488
\(697\) 10576.7 0.574778
\(698\) −895.768 −0.0485749
\(699\) −15989.9 −0.865224
\(700\) 0 0
\(701\) 18531.5 0.998464 0.499232 0.866468i \(-0.333615\pi\)
0.499232 + 0.866468i \(0.333615\pi\)
\(702\) −12753.6 −0.685687
\(703\) −5815.83 −0.312017
\(704\) −4119.70 −0.220550
\(705\) 0 0
\(706\) 22535.7 1.20133
\(707\) 21949.4 1.16760
\(708\) −13737.1 −0.729197
\(709\) −3100.98 −0.164259 −0.0821295 0.996622i \(-0.526172\pi\)
−0.0821295 + 0.996622i \(0.526172\pi\)
\(710\) 0 0
\(711\) 2045.78 0.107908
\(712\) −1595.71 −0.0839910
\(713\) 2005.45 0.105336
\(714\) −5639.84 −0.295610
\(715\) 0 0
\(716\) 17133.1 0.894263
\(717\) 24008.3 1.25050
\(718\) 7531.47 0.391465
\(719\) 16969.2 0.880175 0.440087 0.897955i \(-0.354947\pi\)
0.440087 + 0.897955i \(0.354947\pi\)
\(720\) 0 0
\(721\) 6027.32 0.311330
\(722\) −11202.0 −0.577419
\(723\) −15956.0 −0.820759
\(724\) 4528.64 0.232466
\(725\) 0 0
\(726\) −31895.7 −1.63052
\(727\) 22219.2 1.13351 0.566756 0.823886i \(-0.308198\pi\)
0.566756 + 0.823886i \(0.308198\pi\)
\(728\) −4709.07 −0.239739
\(729\) 14630.5 0.743307
\(730\) 0 0
\(731\) 9764.07 0.494032
\(732\) −13026.4 −0.657747
\(733\) −17810.6 −0.897475 −0.448738 0.893664i \(-0.648126\pi\)
−0.448738 + 0.893664i \(0.648126\pi\)
\(734\) −4895.47 −0.246179
\(735\) 0 0
\(736\) −736.000 −0.0368605
\(737\) −64254.4 −3.21145
\(738\) 2506.04 0.124998
\(739\) −16545.3 −0.823583 −0.411792 0.911278i \(-0.635097\pi\)
−0.411792 + 0.911278i \(0.635097\pi\)
\(740\) 0 0
\(741\) 10352.1 0.513217
\(742\) −12860.2 −0.636270
\(743\) 8939.79 0.441412 0.220706 0.975340i \(-0.429164\pi\)
0.220706 + 0.975340i \(0.429164\pi\)
\(744\) 3955.28 0.194903
\(745\) 0 0
\(746\) 6325.86 0.310464
\(747\) −3294.30 −0.161355
\(748\) −11197.5 −0.547353
\(749\) 5015.98 0.244700
\(750\) 0 0
\(751\) −11447.2 −0.556211 −0.278105 0.960551i \(-0.589706\pi\)
−0.278105 + 0.960551i \(0.589706\pi\)
\(752\) −6449.33 −0.312743
\(753\) −34564.1 −1.67276
\(754\) −19230.7 −0.928836
\(755\) 0 0
\(756\) 5666.73 0.272615
\(757\) −30177.1 −1.44889 −0.724443 0.689335i \(-0.757903\pi\)
−0.724443 + 0.689335i \(0.757903\pi\)
\(758\) 9084.85 0.435325
\(759\) −8394.95 −0.401472
\(760\) 0 0
\(761\) 27523.2 1.31106 0.655529 0.755170i \(-0.272446\pi\)
0.655529 + 0.755170i \(0.272446\pi\)
\(762\) −13947.8 −0.663093
\(763\) 7741.00 0.367291
\(764\) −5040.10 −0.238671
\(765\) 0 0
\(766\) 19393.3 0.914761
\(767\) −31175.7 −1.46765
\(768\) −1451.59 −0.0682029
\(769\) 14478.0 0.678920 0.339460 0.940621i \(-0.389756\pi\)
0.339460 + 0.940621i \(0.389756\pi\)
\(770\) 0 0
\(771\) 31392.0 1.46635
\(772\) −11867.7 −0.553276
\(773\) −31511.5 −1.46622 −0.733110 0.680110i \(-0.761932\pi\)
−0.733110 + 0.680110i \(0.761932\pi\)
\(774\) 2313.50 0.107438
\(775\) 0 0
\(776\) 4207.81 0.194654
\(777\) 10632.6 0.490915
\(778\) −25014.5 −1.15272
\(779\) 8626.04 0.396739
\(780\) 0 0
\(781\) −46960.8 −2.15159
\(782\) −2000.47 −0.0914792
\(783\) 23141.6 1.05621
\(784\) −3395.64 −0.154685
\(785\) 0 0
\(786\) 1833.27 0.0831942
\(787\) −17117.5 −0.775316 −0.387658 0.921803i \(-0.626716\pi\)
−0.387658 + 0.921803i \(0.626716\pi\)
\(788\) −3184.94 −0.143983
\(789\) 22694.7 1.02402
\(790\) 0 0
\(791\) 1564.11 0.0703078
\(792\) −2653.13 −0.119034
\(793\) −29562.9 −1.32385
\(794\) 10211.6 0.456417
\(795\) 0 0
\(796\) −7495.21 −0.333745
\(797\) 9546.95 0.424304 0.212152 0.977237i \(-0.431953\pi\)
0.212152 + 0.977237i \(0.431953\pi\)
\(798\) −4599.70 −0.204045
\(799\) −17529.5 −0.776156
\(800\) 0 0
\(801\) −1027.65 −0.0453313
\(802\) −19311.7 −0.850274
\(803\) 45612.8 2.00454
\(804\) −22640.3 −0.993111
\(805\) 0 0
\(806\) 8976.35 0.392281
\(807\) −20409.6 −0.890275
\(808\) 15355.1 0.668555
\(809\) −23328.7 −1.01384 −0.506919 0.861994i \(-0.669216\pi\)
−0.506919 + 0.861994i \(0.669216\pi\)
\(810\) 0 0
\(811\) 637.001 0.0275809 0.0137905 0.999905i \(-0.495610\pi\)
0.0137905 + 0.999905i \(0.495610\pi\)
\(812\) 8544.71 0.369286
\(813\) 1964.63 0.0847510
\(814\) 21110.1 0.908979
\(815\) 0 0
\(816\) −3945.47 −0.169264
\(817\) 7963.30 0.341005
\(818\) −11912.4 −0.509178
\(819\) −3032.69 −0.129391
\(820\) 0 0
\(821\) 19467.7 0.827560 0.413780 0.910377i \(-0.364208\pi\)
0.413780 + 0.910377i \(0.364208\pi\)
\(822\) −7139.18 −0.302929
\(823\) −12780.5 −0.541312 −0.270656 0.962676i \(-0.587241\pi\)
−0.270656 + 0.962676i \(0.587241\pi\)
\(824\) 4216.54 0.178265
\(825\) 0 0
\(826\) 13852.2 0.583509
\(827\) −6151.42 −0.258653 −0.129326 0.991602i \(-0.541281\pi\)
−0.129326 + 0.991602i \(0.541281\pi\)
\(828\) −473.993 −0.0198942
\(829\) 16579.5 0.694609 0.347305 0.937752i \(-0.387097\pi\)
0.347305 + 0.937752i \(0.387097\pi\)
\(830\) 0 0
\(831\) −3699.45 −0.154431
\(832\) −3294.33 −0.137272
\(833\) −9229.46 −0.383892
\(834\) 36044.7 1.49655
\(835\) 0 0
\(836\) −9132.34 −0.377809
\(837\) −10801.8 −0.446077
\(838\) 11900.9 0.490585
\(839\) 11380.2 0.468283 0.234142 0.972202i \(-0.424772\pi\)
0.234142 + 0.972202i \(0.424772\pi\)
\(840\) 0 0
\(841\) 10505.6 0.430752
\(842\) −29468.4 −1.20611
\(843\) 28283.1 1.15554
\(844\) 1525.80 0.0622278
\(845\) 0 0
\(846\) −4153.44 −0.168792
\(847\) 32162.9 1.30476
\(848\) −8996.61 −0.364322
\(849\) 27388.8 1.10716
\(850\) 0 0
\(851\) 3771.40 0.151918
\(852\) −16546.8 −0.665358
\(853\) −1675.74 −0.0672642 −0.0336321 0.999434i \(-0.510707\pi\)
−0.0336321 + 0.999434i \(0.510707\pi\)
\(854\) 13135.6 0.526334
\(855\) 0 0
\(856\) 3509.04 0.140113
\(857\) 16486.9 0.657156 0.328578 0.944477i \(-0.393431\pi\)
0.328578 + 0.944477i \(0.393431\pi\)
\(858\) −37575.7 −1.49512
\(859\) −35291.0 −1.40176 −0.700881 0.713278i \(-0.747210\pi\)
−0.700881 + 0.713278i \(0.747210\pi\)
\(860\) 0 0
\(861\) −15770.2 −0.624213
\(862\) −4463.19 −0.176354
\(863\) −29794.9 −1.17524 −0.587620 0.809137i \(-0.699935\pi\)
−0.587620 + 0.809137i \(0.699935\pi\)
\(864\) 3964.28 0.156097
\(865\) 0 0
\(866\) 16436.0 0.644941
\(867\) 17134.2 0.671173
\(868\) −3988.42 −0.155963
\(869\) −25560.0 −0.997773
\(870\) 0 0
\(871\) −51381.2 −1.99883
\(872\) 5415.38 0.210307
\(873\) 2709.88 0.105058
\(874\) −1631.53 −0.0631433
\(875\) 0 0
\(876\) 16071.9 0.619884
\(877\) 33656.3 1.29589 0.647943 0.761689i \(-0.275629\pi\)
0.647943 + 0.761689i \(0.275629\pi\)
\(878\) 11824.8 0.454517
\(879\) −10124.4 −0.388495
\(880\) 0 0
\(881\) −38607.8 −1.47642 −0.738212 0.674568i \(-0.764330\pi\)
−0.738212 + 0.674568i \(0.764330\pi\)
\(882\) −2186.83 −0.0834858
\(883\) 28429.1 1.08348 0.541741 0.840546i \(-0.317765\pi\)
0.541741 + 0.840546i \(0.317765\pi\)
\(884\) −8954.09 −0.340677
\(885\) 0 0
\(886\) −9061.35 −0.343591
\(887\) 1500.63 0.0568052 0.0284026 0.999597i \(-0.490958\pi\)
0.0284026 + 0.999597i \(0.490958\pi\)
\(888\) 7438.23 0.281093
\(889\) 14064.7 0.530613
\(890\) 0 0
\(891\) 54171.6 2.03683
\(892\) −9197.89 −0.345256
\(893\) −14296.6 −0.535740
\(894\) −31151.7 −1.16540
\(895\) 0 0
\(896\) 1463.75 0.0545765
\(897\) −6713.04 −0.249880
\(898\) 16272.6 0.604703
\(899\) −16287.8 −0.604259
\(900\) 0 0
\(901\) −24453.1 −0.904162
\(902\) −31310.5 −1.15579
\(903\) −14558.6 −0.536522
\(904\) 1094.21 0.0402576
\(905\) 0 0
\(906\) −24699.1 −0.905711
\(907\) −37704.3 −1.38032 −0.690160 0.723657i \(-0.742460\pi\)
−0.690160 + 0.723657i \(0.742460\pi\)
\(908\) 2519.26 0.0920755
\(909\) 9888.89 0.360829
\(910\) 0 0
\(911\) 36184.8 1.31598 0.657989 0.753028i \(-0.271407\pi\)
0.657989 + 0.753028i \(0.271407\pi\)
\(912\) −3217.82 −0.116834
\(913\) 41158.9 1.49196
\(914\) 31580.2 1.14286
\(915\) 0 0
\(916\) 2983.82 0.107629
\(917\) −1848.63 −0.0665727
\(918\) 10775.0 0.387396
\(919\) −3810.06 −0.136760 −0.0683800 0.997659i \(-0.521783\pi\)
−0.0683800 + 0.997659i \(0.521783\pi\)
\(920\) 0 0
\(921\) −6731.44 −0.240835
\(922\) −11916.6 −0.425653
\(923\) −37552.4 −1.33917
\(924\) 16695.8 0.594429
\(925\) 0 0
\(926\) −23723.6 −0.841908
\(927\) 2715.50 0.0962123
\(928\) 5977.63 0.211450
\(929\) −2804.57 −0.0990473 −0.0495237 0.998773i \(-0.515770\pi\)
−0.0495237 + 0.998773i \(0.515770\pi\)
\(930\) 0 0
\(931\) −7527.29 −0.264981
\(932\) 11279.8 0.396439
\(933\) −53998.3 −1.89478
\(934\) −3476.38 −0.121789
\(935\) 0 0
\(936\) −2121.59 −0.0740878
\(937\) −3654.12 −0.127401 −0.0637006 0.997969i \(-0.520290\pi\)
−0.0637006 + 0.997969i \(0.520290\pi\)
\(938\) 22830.0 0.794696
\(939\) 51267.6 1.78174
\(940\) 0 0
\(941\) 50184.3 1.73854 0.869268 0.494341i \(-0.164591\pi\)
0.869268 + 0.494341i \(0.164591\pi\)
\(942\) −965.070 −0.0333797
\(943\) −5593.74 −0.193168
\(944\) 9690.58 0.334112
\(945\) 0 0
\(946\) −28904.9 −0.993425
\(947\) 44661.5 1.53253 0.766263 0.642527i \(-0.222114\pi\)
0.766263 + 0.642527i \(0.222114\pi\)
\(948\) −9006.18 −0.308552
\(949\) 36474.4 1.24764
\(950\) 0 0
\(951\) 42608.6 1.45287
\(952\) 3978.53 0.135446
\(953\) 34444.6 1.17080 0.585398 0.810746i \(-0.300938\pi\)
0.585398 + 0.810746i \(0.300938\pi\)
\(954\) −5793.92 −0.196630
\(955\) 0 0
\(956\) −16936.2 −0.572967
\(957\) 68181.9 2.30304
\(958\) 8031.49 0.270862
\(959\) 7199.00 0.242406
\(960\) 0 0
\(961\) −22188.3 −0.744800
\(962\) 16880.8 0.565756
\(963\) 2259.86 0.0756210
\(964\) 11255.9 0.376065
\(965\) 0 0
\(966\) 2982.77 0.0993470
\(967\) −204.900 −0.00681400 −0.00340700 0.999994i \(-0.501084\pi\)
−0.00340700 + 0.999994i \(0.501084\pi\)
\(968\) 22500.3 0.747093
\(969\) −8746.13 −0.289955
\(970\) 0 0
\(971\) 23785.4 0.786107 0.393054 0.919516i \(-0.371419\pi\)
0.393054 + 0.919516i \(0.371419\pi\)
\(972\) 5708.14 0.188363
\(973\) −36346.7 −1.19756
\(974\) −37237.7 −1.22502
\(975\) 0 0
\(976\) 9189.26 0.301374
\(977\) −14532.6 −0.475884 −0.237942 0.971279i \(-0.576473\pi\)
−0.237942 + 0.971279i \(0.576473\pi\)
\(978\) −33033.0 −1.08004
\(979\) 12839.5 0.419155
\(980\) 0 0
\(981\) 3487.57 0.113506
\(982\) 15343.8 0.498615
\(983\) 22190.9 0.720021 0.360011 0.932948i \(-0.382773\pi\)
0.360011 + 0.932948i \(0.382773\pi\)
\(984\) −11032.4 −0.357418
\(985\) 0 0
\(986\) 16247.4 0.524769
\(987\) 26137.1 0.842911
\(988\) −7302.70 −0.235152
\(989\) −5163.98 −0.166031
\(990\) 0 0
\(991\) −18739.3 −0.600679 −0.300340 0.953832i \(-0.597100\pi\)
−0.300340 + 0.953832i \(0.597100\pi\)
\(992\) −2790.19 −0.0893029
\(993\) −61882.6 −1.97763
\(994\) 16685.5 0.532426
\(995\) 0 0
\(996\) 14502.5 0.461375
\(997\) 23656.5 0.751465 0.375732 0.926728i \(-0.377391\pi\)
0.375732 + 0.926728i \(0.377391\pi\)
\(998\) 7182.97 0.227829
\(999\) −20313.7 −0.643341
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.a.bb.1.2 9
5.2 odd 4 230.4.b.b.139.17 yes 18
5.3 odd 4 230.4.b.b.139.2 18
5.4 even 2 1150.4.a.ba.1.8 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.b.b.139.2 18 5.3 odd 4
230.4.b.b.139.17 yes 18 5.2 odd 4
1150.4.a.ba.1.8 9 5.4 even 2
1150.4.a.bb.1.2 9 1.1 even 1 trivial