Properties

Label 1150.4.a
Level $1150$
Weight $4$
Character orbit 1150.a
Rep. character $\chi_{1150}(1,\cdot)$
Character field $\Q$
Dimension $104$
Newform subspaces $28$
Sturm bound $720$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 28 \)
Sturm bound: \(720\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1150))\).

Total New Old
Modular forms 552 104 448
Cusp forms 528 104 424
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(23\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(12\)
\(+\)\(+\)\(-\)\(-\)\(11\)
\(+\)\(-\)\(+\)\(-\)\(13\)
\(+\)\(-\)\(-\)\(+\)\(15\)
\(-\)\(+\)\(+\)\(-\)\(13\)
\(-\)\(+\)\(-\)\(+\)\(14\)
\(-\)\(-\)\(+\)\(+\)\(14\)
\(-\)\(-\)\(-\)\(-\)\(12\)
Plus space\(+\)\(55\)
Minus space\(-\)\(49\)

Trace form

\( 104 q + 4 q^{2} - 8 q^{3} + 416 q^{4} - 32 q^{6} - 16 q^{7} + 16 q^{8} + 864 q^{9} - 66 q^{11} - 32 q^{12} - 36 q^{13} + 40 q^{14} + 1664 q^{16} - 96 q^{17} + 52 q^{18} + 182 q^{19} + 380 q^{21} + 148 q^{22}+ \cdots - 3746 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1150))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 23
1150.4.a.a 1150.a 1.a $1$ $67.852$ \(\Q\) None 1150.4.a.a \(-2\) \(-2\) \(0\) \(-21\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}-2q^{3}+4q^{4}+4q^{6}-21q^{7}+\cdots\)
1150.4.a.b 1150.a 1.a $1$ $67.852$ \(\Q\) None 230.4.a.e \(-2\) \(-1\) \(0\) \(18\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-q^{3}+4q^{4}+2q^{6}+18q^{7}+\cdots\)
1150.4.a.c 1150.a 1.a $1$ $67.852$ \(\Q\) None 230.4.a.d \(-2\) \(1\) \(0\) \(32\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+q^{3}+4q^{4}-2q^{6}+2^{5}q^{7}+\cdots\)
1150.4.a.d 1150.a 1.a $1$ $67.852$ \(\Q\) None 46.4.a.b \(-2\) \(9\) \(0\) \(-2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+9q^{3}+4q^{4}-18q^{6}-2q^{7}+\cdots\)
1150.4.a.e 1150.a 1.a $1$ $67.852$ \(\Q\) None 230.4.a.c \(2\) \(-7\) \(0\) \(-20\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}-7q^{3}+4q^{4}-14q^{6}-20q^{7}+\cdots\)
1150.4.a.f 1150.a 1.a $1$ $67.852$ \(\Q\) None 230.4.a.b \(2\) \(-4\) \(0\) \(-3\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}-4q^{3}+4q^{4}-8q^{6}-3q^{7}+\cdots\)
1150.4.a.g 1150.a 1.a $1$ $67.852$ \(\Q\) None 46.4.a.a \(2\) \(1\) \(0\) \(12\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+q^{3}+4q^{4}+2q^{6}+12q^{7}+\cdots\)
1150.4.a.h 1150.a 1.a $1$ $67.852$ \(\Q\) None 1150.4.a.a \(2\) \(2\) \(0\) \(21\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+2q^{3}+4q^{4}+4q^{6}+21q^{7}+\cdots\)
1150.4.a.i 1150.a 1.a $1$ $67.852$ \(\Q\) None 230.4.a.a \(2\) \(5\) \(0\) \(-12\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+5q^{3}+4q^{4}+10q^{6}-12q^{7}+\cdots\)
1150.4.a.j 1150.a 1.a $2$ $67.852$ \(\Q(\sqrt{73}) \) None 46.4.a.d \(-4\) \(-3\) \(0\) \(-12\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-1-\beta )q^{3}+4q^{4}+(2+2\beta )q^{6}+\cdots\)
1150.4.a.k 1150.a 1.a $2$ $67.852$ \(\Q(\sqrt{41}) \) None 46.4.a.c \(4\) \(1\) \(0\) \(-6\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-1+3\beta )q^{3}+4q^{4}+(-2+\cdots)q^{6}+\cdots\)
1150.4.a.l 1150.a 1.a $2$ $67.852$ \(\Q(\sqrt{73}) \) None 230.4.a.f \(4\) \(3\) \(0\) \(17\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(1+\beta )q^{3}+4q^{4}+(2+2\beta )q^{6}+\cdots\)
1150.4.a.m 1150.a 1.a $3$ $67.852$ 3.3.318165.1 None 230.4.a.g \(6\) \(1\) \(0\) \(-7\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+\beta _{1}q^{3}+4q^{4}+2\beta _{1}q^{6}+(-1+\cdots)q^{7}+\cdots\)
1150.4.a.n 1150.a 1.a $4$ $67.852$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 230.4.a.j \(-8\) \(-14\) \(0\) \(-8\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-4+\beta _{1})q^{3}+4q^{4}+(8-2\beta _{1}+\cdots)q^{6}+\cdots\)
1150.4.a.o 1150.a 1.a $4$ $67.852$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 230.4.a.i \(-8\) \(-4\) \(0\) \(-26\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-1+\beta _{1})q^{3}+4q^{4}+(2-2\beta _{1}+\cdots)q^{6}+\cdots\)
1150.4.a.p 1150.a 1.a $4$ $67.852$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 230.4.a.h \(8\) \(4\) \(0\) \(1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(1-\beta _{1})q^{3}+4q^{4}+(2-2\beta _{1}+\cdots)q^{6}+\cdots\)
1150.4.a.q 1150.a 1.a $5$ $67.852$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 1150.4.a.q \(-10\) \(-5\) \(0\) \(3\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-1+\beta _{1})q^{3}+4q^{4}+(2-2\beta _{1}+\cdots)q^{6}+\cdots\)
1150.4.a.r 1150.a 1.a $5$ $67.852$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 1150.4.a.r \(-10\) \(0\) \(0\) \(-20\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-\beta _{1}q^{3}+4q^{4}+2\beta _{1}q^{6}+(-4+\cdots)q^{7}+\cdots\)
1150.4.a.s 1150.a 1.a $5$ $67.852$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 1150.4.a.s \(-10\) \(12\) \(0\) \(-24\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(2+\beta _{2})q^{3}+4q^{4}+(-4-2\beta _{2}+\cdots)q^{6}+\cdots\)
1150.4.a.t 1150.a 1.a $5$ $67.852$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 1150.4.a.s \(10\) \(-12\) \(0\) \(24\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-2-\beta _{2})q^{3}+4q^{4}+(-4+\cdots)q^{6}+\cdots\)
1150.4.a.u 1150.a 1.a $5$ $67.852$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 1150.4.a.r \(10\) \(0\) \(0\) \(20\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+\beta _{1}q^{3}+4q^{4}+2\beta _{1}q^{6}+(4+\cdots)q^{7}+\cdots\)
1150.4.a.v 1150.a 1.a $5$ $67.852$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 1150.4.a.q \(10\) \(5\) \(0\) \(-3\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(1-\beta _{1})q^{3}+4q^{4}+(2-2\beta _{1}+\cdots)q^{6}+\cdots\)
1150.4.a.w 1150.a 1.a $6$ $67.852$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 1150.4.a.w \(-12\) \(5\) \(0\) \(42\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(1-\beta _{1})q^{3}+4q^{4}+(-2+2\beta _{1}+\cdots)q^{6}+\cdots\)
1150.4.a.x 1150.a 1.a $6$ $67.852$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 1150.4.a.w \(12\) \(-5\) \(0\) \(-42\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-1+\beta _{1})q^{3}+4q^{4}+(-2+\cdots)q^{6}+\cdots\)
1150.4.a.y 1150.a 1.a $7$ $67.852$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 230.4.b.a \(-14\) \(9\) \(0\) \(44\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(1+\beta _{1})q^{3}+4q^{4}+(-2-2\beta _{1}+\cdots)q^{6}+\cdots\)
1150.4.a.z 1150.a 1.a $7$ $67.852$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 230.4.b.a \(14\) \(-9\) \(0\) \(-44\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-1-\beta _{1})q^{3}+4q^{4}+(-2+\cdots)q^{6}+\cdots\)
1150.4.a.ba 1150.a 1.a $9$ $67.852$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 230.4.b.b \(-18\) \(-3\) \(0\) \(-44\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-\beta _{1}q^{3}+4q^{4}+2\beta _{1}q^{6}+(-5+\cdots)q^{7}+\cdots\)
1150.4.a.bb 1150.a 1.a $9$ $67.852$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 230.4.b.b \(18\) \(3\) \(0\) \(44\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+\beta _{1}q^{3}+4q^{4}+2\beta _{1}q^{6}+(5+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1150))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1150)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(115))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(230))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(575))\)\(^{\oplus 2}\)