Properties

Label 1150.2.s
Level $1150$
Weight $2$
Character orbit 1150.s
Rep. character $\chi_{1150}(31,\cdot)$
Character field $\Q(\zeta_{55})$
Dimension $2400$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1150.s (of order \(55\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 575 \)
Character field: \(\Q(\zeta_{55})\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1150, [\chi])\).

Total New Old
Modular forms 7360 2400 4960
Cusp forms 7040 2400 4640
Eisenstein series 320 0 320

Trace form

\( 2400 q + 8 q^{3} + 60 q^{4} - 12 q^{5} + 8 q^{7} + 68 q^{9} - 8 q^{11} - 12 q^{12} + 16 q^{13} + 8 q^{14} - 38 q^{15} + 60 q^{16} - 12 q^{17} - 72 q^{18} - 20 q^{19} - 14 q^{20} + 8 q^{21} - 24 q^{22} + 126 q^{23}+ \cdots - 148 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1150, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1150, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1150, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(575, [\chi])\)\(^{\oplus 2}\)