Properties

Label 1150.2.m
Level $1150$
Weight $2$
Character orbit 1150.m
Rep. character $\chi_{1150}(137,\cdot)$
Character field $\Q(\zeta_{20})$
Dimension $480$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1150.m (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 575 \)
Character field: \(\Q(\zeta_{20})\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1150, [\chi])\).

Total New Old
Modular forms 1472 480 992
Cusp forms 1408 480 928
Eisenstein series 64 0 64

Trace form

\( 480 q - 8 q^{3} - 8 q^{12} + 16 q^{13} + 120 q^{16} + 16 q^{18} - 32 q^{23} - 120 q^{25} - 104 q^{27} + 80 q^{29} + 32 q^{35} - 120 q^{36} - 80 q^{39} - 32 q^{47} + 8 q^{48} + 8 q^{50} + 16 q^{52} + 40 q^{55}+ \cdots - 64 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1150, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1150, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1150, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(575, [\chi])\)\(^{\oplus 2}\)