Properties

Label 1150.2.k
Level $1150$
Weight $2$
Character orbit 1150.k
Rep. character $\chi_{1150}(101,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $380$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1150.k (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 23 \)
Character field: \(\Q(\zeta_{11})\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1150, [\chi])\).

Total New Old
Modular forms 1920 380 1540
Cusp forms 1680 380 1300
Eisenstein series 240 0 240

Trace form

\( 380 q + 4 q^{3} - 38 q^{4} + 4 q^{6} + 4 q^{7} - 30 q^{9} + 6 q^{11} + 4 q^{12} + 4 q^{13} + 12 q^{14} - 38 q^{16} + 14 q^{17} - 44 q^{18} + 32 q^{19} + 58 q^{21} + 28 q^{22} - 44 q^{23} + 4 q^{24} + 14 q^{26}+ \cdots - 102 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1150, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1150, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1150, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(575, [\chi])\)\(^{\oplus 2}\)