Defining parameters
Level: | \( N \) | \(=\) | \( 1150 = 2 \cdot 5^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1150.k (of order \(11\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 23 \) |
Character field: | \(\Q(\zeta_{11})\) | ||
Sturm bound: | \(360\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1150, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1920 | 380 | 1540 |
Cusp forms | 1680 | 380 | 1300 |
Eisenstein series | 240 | 0 | 240 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1150, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(1150, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1150, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(575, [\chi])\)\(^{\oplus 2}\)