Properties

Label 1150.2.i
Level $1150$
Weight $2$
Character orbit 1150.i
Rep. character $\chi_{1150}(139,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $224$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1150.i (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1150, [\chi])\).

Total New Old
Modular forms 736 224 512
Cusp forms 704 224 480
Eisenstein series 32 0 32

Trace form

\( 224 q + 56 q^{4} - 4 q^{6} + 60 q^{9} + 16 q^{15} - 56 q^{16} - 24 q^{21} - 16 q^{24} - 8 q^{25} + 56 q^{26} + 60 q^{27} - 20 q^{28} + 4 q^{29} + 12 q^{31} + 100 q^{33} + 16 q^{35} - 60 q^{36} + 20 q^{37}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1150, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1150, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1150, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(575, [\chi])\)\(^{\oplus 2}\)