Properties

Label 1150.2.e
Level $1150$
Weight $2$
Character orbit 1150.e
Rep. character $\chi_{1150}(643,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $72$
Newform subspaces $6$
Sturm bound $360$
Trace bound $14$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1150.e (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 115 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 6 \)
Sturm bound: \(360\)
Trace bound: \(14\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1150, [\chi])\).

Total New Old
Modular forms 384 72 312
Cusp forms 336 72 264
Eisenstein series 48 0 48

Trace form

\( 72 q - 8 q^{3} - 16 q^{6} - 8 q^{12} + 16 q^{13} - 72 q^{16} + 16 q^{18} + 8 q^{23} - 16 q^{26} + 16 q^{27} + 48 q^{31} + 56 q^{36} - 48 q^{41} - 16 q^{46} + 8 q^{47} + 8 q^{48} + 16 q^{52} - 32 q^{62}+ \cdots - 64 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1150, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1150.2.e.a 1150.e 115.e $8$ $9.183$ \(\Q(\zeta_{16})\) None 230.2.e.c \(0\) \(-16\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_1 q^{2}+(2\beta_{3}-2)q^{3}+\beta_{3} q^{4}+\cdots\)
1150.2.e.b 1150.e 115.e $8$ $9.183$ 8.0.110166016.2 None 230.2.e.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{2}q^{2}+(1+\beta _{5})q^{3}+\beta _{7}q^{4}+(1-\beta _{4}+\cdots)q^{6}+\cdots\)
1150.2.e.c 1150.e 115.e $8$ $9.183$ 8.0.110166016.2 None 230.2.e.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{2}q^{2}+(1+\beta _{5})q^{3}+\beta _{7}q^{4}+(1-\beta _{4}+\cdots)q^{6}+\cdots\)
1150.2.e.d 1150.e 115.e $16$ $9.183$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 1150.2.e.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{2}q^{2}+(\beta _{1}-\beta _{3})q^{3}-\beta _{4}q^{4}+(-1+\cdots)q^{6}+\cdots\)
1150.2.e.e 1150.e 115.e $16$ $9.183$ 16.0.\(\cdots\).1 None 1150.2.e.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{3}q^{2}+(\beta _{10}-\beta _{12})q^{3}-\beta _{9}q^{4}+\cdots\)
1150.2.e.f 1150.e 115.e $16$ $9.183$ 16.0.\(\cdots\).1 None 1150.2.e.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{6}q^{2}+(-\beta _{5}+\beta _{7}+\beta _{11})q^{3}-\beta _{8}q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1150, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1150, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(575, [\chi])\)\(^{\oplus 2}\)