Defining parameters
Level: | \( N \) | \(=\) | \( 1150 = 2 \cdot 5^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1150.e (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 115 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(360\) | ||
Trace bound: | \(14\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1150, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 384 | 72 | 312 |
Cusp forms | 336 | 72 | 264 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1150, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1150, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1150, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(230, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(575, [\chi])\)\(^{\oplus 2}\)