# Properties

 Label 1150.2.b.g Level $1150$ Weight $2$ Character orbit 1150.b Analytic conductor $9.183$ Analytic rank $0$ Dimension $4$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1150,2,Mod(599,1150)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1150, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([1, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1150.599");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1150 = 2 \cdot 5^{2} \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1150.b (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$9.18279623245$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(i, \sqrt{21})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{4} + 11x^{2} + 25$$ x^4 + 11*x^2 + 25 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 230) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{2} q^{2} + \beta_1 q^{3} - q^{4} + ( - \beta_{3} + 1) q^{6} + ( - \beta_{2} - \beta_1) q^{7} - \beta_{2} q^{8} + (\beta_{3} - 3) q^{9}+O(q^{10})$$ q + b2 * q^2 + b1 * q^3 - q^4 + (-b3 + 1) * q^6 + (-b2 - b1) * q^7 - b2 * q^8 + (b3 - 3) * q^9 $$q + \beta_{2} q^{2} + \beta_1 q^{3} - q^{4} + ( - \beta_{3} + 1) q^{6} + ( - \beta_{2} - \beta_1) q^{7} - \beta_{2} q^{8} + (\beta_{3} - 3) q^{9} + (\beta_{3} + 1) q^{11} - \beta_1 q^{12} + (3 \beta_{2} - \beta_1) q^{13} + \beta_{3} q^{14} + q^{16} + (2 \beta_{2} + \beta_1) q^{17} + ( - 2 \beta_{2} + \beta_1) q^{18} + (\beta_{3} - 4) q^{19} + 5 q^{21} + (2 \beta_{2} + \beta_1) q^{22} + \beta_{2} q^{23} + (\beta_{3} - 1) q^{24} + (\beta_{3} - 4) q^{26} + 5 \beta_{2} q^{27} + (\beta_{2} + \beta_1) q^{28} + (2 \beta_{3} - 4) q^{29} + (3 \beta_{3} + 2) q^{31} + \beta_{2} q^{32} + (5 \beta_{2} + \beta_1) q^{33} + ( - \beta_{3} - 1) q^{34} + ( - \beta_{3} + 3) q^{36} + 4 \beta_{2} q^{37} + ( - 3 \beta_{2} + \beta_1) q^{38} + ( - 4 \beta_{3} + 9) q^{39} + (\beta_{3} - 5) q^{41} + 5 \beta_{2} q^{42} - 4 \beta_1 q^{43} + ( - \beta_{3} - 1) q^{44} - q^{46} + (10 \beta_{2} + 2 \beta_1) q^{47} + \beta_1 q^{48} + ( - \beta_{3} + 2) q^{49} + ( - \beta_{3} - 4) q^{51} + ( - 3 \beta_{2} + \beta_1) q^{52} + 6 \beta_{2} q^{53} - 5 q^{54} - \beta_{3} q^{56} + (5 \beta_{2} - 4 \beta_1) q^{57} + ( - 2 \beta_{2} + 2 \beta_1) q^{58} + ( - 2 \beta_{3} + 10) q^{59} + ( - 3 \beta_{3} + 5) q^{61} + (5 \beta_{2} + 3 \beta_1) q^{62} + ( - 3 \beta_{2} + 2 \beta_1) q^{63} - q^{64} + ( - \beta_{3} - 4) q^{66} + 4 \beta_1 q^{67} + ( - 2 \beta_{2} - \beta_1) q^{68} + ( - \beta_{3} + 1) q^{69} + ( - 3 \beta_{3} + 3) q^{71} + (2 \beta_{2} - \beta_1) q^{72} + ( - 4 \beta_{2} - 6 \beta_1) q^{73} - 4 q^{74} + ( - \beta_{3} + 4) q^{76} + ( - 7 \beta_{2} - 2 \beta_1) q^{77} + (5 \beta_{2} - 4 \beta_1) q^{78} - 8 q^{79} + ( - 2 \beta_{3} - 4) q^{81} + ( - 4 \beta_{2} + \beta_1) q^{82} - 6 \beta_{2} q^{83} - 5 q^{84} + (4 \beta_{3} - 4) q^{86} + (10 \beta_{2} - 4 \beta_1) q^{87} + ( - 2 \beta_{2} - \beta_1) q^{88} + (4 \beta_{3} - 8) q^{89} + (3 \beta_{3} - 5) q^{91} - \beta_{2} q^{92} + (15 \beta_{2} + 2 \beta_1) q^{93} + ( - 2 \beta_{3} - 8) q^{94} + ( - \beta_{3} + 1) q^{96} + ( - 6 \beta_{2} - 5 \beta_1) q^{97} + (\beta_{2} - \beta_1) q^{98} + ( - \beta_{3} + 2) q^{99}+O(q^{100})$$ q + b2 * q^2 + b1 * q^3 - q^4 + (-b3 + 1) * q^6 + (-b2 - b1) * q^7 - b2 * q^8 + (b3 - 3) * q^9 + (b3 + 1) * q^11 - b1 * q^12 + (3*b2 - b1) * q^13 + b3 * q^14 + q^16 + (2*b2 + b1) * q^17 + (-2*b2 + b1) * q^18 + (b3 - 4) * q^19 + 5 * q^21 + (2*b2 + b1) * q^22 + b2 * q^23 + (b3 - 1) * q^24 + (b3 - 4) * q^26 + 5*b2 * q^27 + (b2 + b1) * q^28 + (2*b3 - 4) * q^29 + (3*b3 + 2) * q^31 + b2 * q^32 + (5*b2 + b1) * q^33 + (-b3 - 1) * q^34 + (-b3 + 3) * q^36 + 4*b2 * q^37 + (-3*b2 + b1) * q^38 + (-4*b3 + 9) * q^39 + (b3 - 5) * q^41 + 5*b2 * q^42 - 4*b1 * q^43 + (-b3 - 1) * q^44 - q^46 + (10*b2 + 2*b1) * q^47 + b1 * q^48 + (-b3 + 2) * q^49 + (-b3 - 4) * q^51 + (-3*b2 + b1) * q^52 + 6*b2 * q^53 - 5 * q^54 - b3 * q^56 + (5*b2 - 4*b1) * q^57 + (-2*b2 + 2*b1) * q^58 + (-2*b3 + 10) * q^59 + (-3*b3 + 5) * q^61 + (5*b2 + 3*b1) * q^62 + (-3*b2 + 2*b1) * q^63 - q^64 + (-b3 - 4) * q^66 + 4*b1 * q^67 + (-2*b2 - b1) * q^68 + (-b3 + 1) * q^69 + (-3*b3 + 3) * q^71 + (2*b2 - b1) * q^72 + (-4*b2 - 6*b1) * q^73 - 4 * q^74 + (-b3 + 4) * q^76 + (-7*b2 - 2*b1) * q^77 + (5*b2 - 4*b1) * q^78 - 8 * q^79 + (-2*b3 - 4) * q^81 + (-4*b2 + b1) * q^82 - 6*b2 * q^83 - 5 * q^84 + (4*b3 - 4) * q^86 + (10*b2 - 4*b1) * q^87 + (-2*b2 - b1) * q^88 + (4*b3 - 8) * q^89 + (3*b3 - 5) * q^91 - b2 * q^92 + (15*b2 + 2*b1) * q^93 + (-2*b3 - 8) * q^94 + (-b3 + 1) * q^96 + (-6*b2 - 5*b1) * q^97 + (b2 - b1) * q^98 + (-b3 + 2) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - 4 q^{4} + 2 q^{6} - 10 q^{9}+O(q^{10})$$ 4 * q - 4 * q^4 + 2 * q^6 - 10 * q^9 $$4 q - 4 q^{4} + 2 q^{6} - 10 q^{9} + 6 q^{11} + 2 q^{14} + 4 q^{16} - 14 q^{19} + 20 q^{21} - 2 q^{24} - 14 q^{26} - 12 q^{29} + 14 q^{31} - 6 q^{34} + 10 q^{36} + 28 q^{39} - 18 q^{41} - 6 q^{44} - 4 q^{46} + 6 q^{49} - 18 q^{51} - 20 q^{54} - 2 q^{56} + 36 q^{59} + 14 q^{61} - 4 q^{64} - 18 q^{66} + 2 q^{69} + 6 q^{71} - 16 q^{74} + 14 q^{76} - 32 q^{79} - 20 q^{81} - 20 q^{84} - 8 q^{86} - 24 q^{89} - 14 q^{91} - 36 q^{94} + 2 q^{96} + 6 q^{99}+O(q^{100})$$ 4 * q - 4 * q^4 + 2 * q^6 - 10 * q^9 + 6 * q^11 + 2 * q^14 + 4 * q^16 - 14 * q^19 + 20 * q^21 - 2 * q^24 - 14 * q^26 - 12 * q^29 + 14 * q^31 - 6 * q^34 + 10 * q^36 + 28 * q^39 - 18 * q^41 - 6 * q^44 - 4 * q^46 + 6 * q^49 - 18 * q^51 - 20 * q^54 - 2 * q^56 + 36 * q^59 + 14 * q^61 - 4 * q^64 - 18 * q^66 + 2 * q^69 + 6 * q^71 - 16 * q^74 + 14 * q^76 - 32 * q^79 - 20 * q^81 - 20 * q^84 - 8 * q^86 - 24 * q^89 - 14 * q^91 - 36 * q^94 + 2 * q^96 + 6 * q^99

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 11x^{2} + 25$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$( \nu^{3} + 6\nu ) / 5$$ (v^3 + 6*v) / 5 $$\beta_{3}$$ $$=$$ $$\nu^{2} + 6$$ v^2 + 6
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{3} - 6$$ b3 - 6 $$\nu^{3}$$ $$=$$ $$5\beta_{2} - 6\beta_1$$ 5*b2 - 6*b1

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1150\mathbb{Z}\right)^\times$$.

 $$n$$ $$51$$ $$277$$ $$\chi(n)$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
599.1
 − 1.79129i 2.79129i − 2.79129i 1.79129i
1.00000i 1.79129i −1.00000 0 −1.79129 2.79129i 1.00000i −0.208712 0
599.2 1.00000i 2.79129i −1.00000 0 2.79129 1.79129i 1.00000i −4.79129 0
599.3 1.00000i 2.79129i −1.00000 0 2.79129 1.79129i 1.00000i −4.79129 0
599.4 1.00000i 1.79129i −1.00000 0 −1.79129 2.79129i 1.00000i −0.208712 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1150.2.b.g 4
5.b even 2 1 inner 1150.2.b.g 4
5.c odd 4 1 230.2.a.a 2
5.c odd 4 1 1150.2.a.o 2
15.e even 4 1 2070.2.a.x 2
20.e even 4 1 1840.2.a.n 2
20.e even 4 1 9200.2.a.bs 2
40.i odd 4 1 7360.2.a.bq 2
40.k even 4 1 7360.2.a.bk 2
115.e even 4 1 5290.2.a.e 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
230.2.a.a 2 5.c odd 4 1
1150.2.a.o 2 5.c odd 4 1
1150.2.b.g 4 1.a even 1 1 trivial
1150.2.b.g 4 5.b even 2 1 inner
1840.2.a.n 2 20.e even 4 1
2070.2.a.x 2 15.e even 4 1
5290.2.a.e 2 115.e even 4 1
7360.2.a.bk 2 40.k even 4 1
7360.2.a.bq 2 40.i odd 4 1
9200.2.a.bs 2 20.e even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1150, [\chi])$$:

 $$T_{3}^{4} + 11T_{3}^{2} + 25$$ T3^4 + 11*T3^2 + 25 $$T_{7}^{4} + 11T_{7}^{2} + 25$$ T7^4 + 11*T7^2 + 25 $$T_{11}^{2} - 3T_{11} - 3$$ T11^2 - 3*T11 - 3

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$(T^{2} + 1)^{2}$$
$3$ $$T^{4} + 11T^{2} + 25$$
$5$ $$T^{4}$$
$7$ $$T^{4} + 11T^{2} + 25$$
$11$ $$(T^{2} - 3 T - 3)^{2}$$
$13$ $$T^{4} + 35T^{2} + 49$$
$17$ $$T^{4} + 15T^{2} + 9$$
$19$ $$(T^{2} + 7 T + 7)^{2}$$
$23$ $$(T^{2} + 1)^{2}$$
$29$ $$(T^{2} + 6 T - 12)^{2}$$
$31$ $$(T^{2} - 7 T - 35)^{2}$$
$37$ $$(T^{2} + 16)^{2}$$
$41$ $$(T^{2} + 9 T + 15)^{2}$$
$43$ $$T^{4} + 176T^{2} + 6400$$
$47$ $$T^{4} + 204T^{2} + 3600$$
$53$ $$(T^{2} + 36)^{2}$$
$59$ $$(T^{2} - 18 T + 60)^{2}$$
$61$ $$(T^{2} - 7 T - 35)^{2}$$
$67$ $$T^{4} + 176T^{2} + 6400$$
$71$ $$(T^{2} - 3 T - 45)^{2}$$
$73$ $$T^{4} + 380 T^{2} + 35344$$
$79$ $$(T + 8)^{4}$$
$83$ $$(T^{2} + 36)^{2}$$
$89$ $$(T^{2} + 12 T - 48)^{2}$$
$97$ $$T^{4} + 287 T^{2} + 14161$$