Properties

Label 1150.2.a.n.1.2
Level $1150$
Weight $2$
Character 1150.1
Self dual yes
Analytic conductor $9.183$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1150,2,Mod(1,1150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1150.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,-1,2,0,-1,-3,2,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.18279623245\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 1150.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.618034 q^{3} +1.00000 q^{4} +0.618034 q^{6} -4.85410 q^{7} +1.00000 q^{8} -2.61803 q^{9} -3.38197 q^{11} +0.618034 q^{12} -0.381966 q^{13} -4.85410 q^{14} +1.00000 q^{16} +5.85410 q^{17} -2.61803 q^{18} -6.85410 q^{19} -3.00000 q^{21} -3.38197 q^{22} -1.00000 q^{23} +0.618034 q^{24} -0.381966 q^{26} -3.47214 q^{27} -4.85410 q^{28} +3.70820 q^{29} -8.85410 q^{31} +1.00000 q^{32} -2.09017 q^{33} +5.85410 q^{34} -2.61803 q^{36} -3.70820 q^{37} -6.85410 q^{38} -0.236068 q^{39} -3.38197 q^{41} -3.00000 q^{42} -6.76393 q^{43} -3.38197 q^{44} -1.00000 q^{46} +11.7082 q^{47} +0.618034 q^{48} +16.5623 q^{49} +3.61803 q^{51} -0.381966 q^{52} +2.00000 q^{53} -3.47214 q^{54} -4.85410 q^{56} -4.23607 q^{57} +3.70820 q^{58} -6.00000 q^{59} -3.85410 q^{61} -8.85410 q^{62} +12.7082 q^{63} +1.00000 q^{64} -2.09017 q^{66} -0.763932 q^{67} +5.85410 q^{68} -0.618034 q^{69} +2.61803 q^{71} -2.61803 q^{72} +7.52786 q^{73} -3.70820 q^{74} -6.85410 q^{76} +16.4164 q^{77} -0.236068 q^{78} +5.70820 q^{79} +5.70820 q^{81} -3.38197 q^{82} +5.70820 q^{83} -3.00000 q^{84} -6.76393 q^{86} +2.29180 q^{87} -3.38197 q^{88} -9.70820 q^{89} +1.85410 q^{91} -1.00000 q^{92} -5.47214 q^{93} +11.7082 q^{94} +0.618034 q^{96} +16.0344 q^{97} +16.5623 q^{98} +8.85410 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - q^{3} + 2 q^{4} - q^{6} - 3 q^{7} + 2 q^{8} - 3 q^{9} - 9 q^{11} - q^{12} - 3 q^{13} - 3 q^{14} + 2 q^{16} + 5 q^{17} - 3 q^{18} - 7 q^{19} - 6 q^{21} - 9 q^{22} - 2 q^{23} - q^{24}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.618034 0.356822 0.178411 0.983956i \(-0.442904\pi\)
0.178411 + 0.983956i \(0.442904\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0.618034 0.252311
\(7\) −4.85410 −1.83468 −0.917339 0.398107i \(-0.869667\pi\)
−0.917339 + 0.398107i \(0.869667\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.61803 −0.872678
\(10\) 0 0
\(11\) −3.38197 −1.01970 −0.509851 0.860263i \(-0.670299\pi\)
−0.509851 + 0.860263i \(0.670299\pi\)
\(12\) 0.618034 0.178411
\(13\) −0.381966 −0.105938 −0.0529692 0.998596i \(-0.516869\pi\)
−0.0529692 + 0.998596i \(0.516869\pi\)
\(14\) −4.85410 −1.29731
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 5.85410 1.41983 0.709914 0.704288i \(-0.248734\pi\)
0.709914 + 0.704288i \(0.248734\pi\)
\(18\) −2.61803 −0.617077
\(19\) −6.85410 −1.57244 −0.786219 0.617947i \(-0.787964\pi\)
−0.786219 + 0.617947i \(0.787964\pi\)
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) −3.38197 −0.721038
\(23\) −1.00000 −0.208514
\(24\) 0.618034 0.126156
\(25\) 0 0
\(26\) −0.381966 −0.0749097
\(27\) −3.47214 −0.668213
\(28\) −4.85410 −0.917339
\(29\) 3.70820 0.688596 0.344298 0.938860i \(-0.388117\pi\)
0.344298 + 0.938860i \(0.388117\pi\)
\(30\) 0 0
\(31\) −8.85410 −1.59024 −0.795122 0.606450i \(-0.792593\pi\)
−0.795122 + 0.606450i \(0.792593\pi\)
\(32\) 1.00000 0.176777
\(33\) −2.09017 −0.363852
\(34\) 5.85410 1.00397
\(35\) 0 0
\(36\) −2.61803 −0.436339
\(37\) −3.70820 −0.609625 −0.304812 0.952412i \(-0.598594\pi\)
−0.304812 + 0.952412i \(0.598594\pi\)
\(38\) −6.85410 −1.11188
\(39\) −0.236068 −0.0378011
\(40\) 0 0
\(41\) −3.38197 −0.528174 −0.264087 0.964499i \(-0.585071\pi\)
−0.264087 + 0.964499i \(0.585071\pi\)
\(42\) −3.00000 −0.462910
\(43\) −6.76393 −1.03149 −0.515745 0.856742i \(-0.672485\pi\)
−0.515745 + 0.856742i \(0.672485\pi\)
\(44\) −3.38197 −0.509851
\(45\) 0 0
\(46\) −1.00000 −0.147442
\(47\) 11.7082 1.70782 0.853909 0.520423i \(-0.174226\pi\)
0.853909 + 0.520423i \(0.174226\pi\)
\(48\) 0.618034 0.0892055
\(49\) 16.5623 2.36604
\(50\) 0 0
\(51\) 3.61803 0.506626
\(52\) −0.381966 −0.0529692
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) −3.47214 −0.472498
\(55\) 0 0
\(56\) −4.85410 −0.648657
\(57\) −4.23607 −0.561081
\(58\) 3.70820 0.486911
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) −3.85410 −0.493467 −0.246734 0.969083i \(-0.579357\pi\)
−0.246734 + 0.969083i \(0.579357\pi\)
\(62\) −8.85410 −1.12447
\(63\) 12.7082 1.60108
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −2.09017 −0.257282
\(67\) −0.763932 −0.0933292 −0.0466646 0.998911i \(-0.514859\pi\)
−0.0466646 + 0.998911i \(0.514859\pi\)
\(68\) 5.85410 0.709914
\(69\) −0.618034 −0.0744025
\(70\) 0 0
\(71\) 2.61803 0.310703 0.155352 0.987859i \(-0.450349\pi\)
0.155352 + 0.987859i \(0.450349\pi\)
\(72\) −2.61803 −0.308538
\(73\) 7.52786 0.881070 0.440535 0.897735i \(-0.354789\pi\)
0.440535 + 0.897735i \(0.354789\pi\)
\(74\) −3.70820 −0.431070
\(75\) 0 0
\(76\) −6.85410 −0.786219
\(77\) 16.4164 1.87082
\(78\) −0.236068 −0.0267294
\(79\) 5.70820 0.642223 0.321112 0.947041i \(-0.395944\pi\)
0.321112 + 0.947041i \(0.395944\pi\)
\(80\) 0 0
\(81\) 5.70820 0.634245
\(82\) −3.38197 −0.373476
\(83\) 5.70820 0.626557 0.313278 0.949661i \(-0.398573\pi\)
0.313278 + 0.949661i \(0.398573\pi\)
\(84\) −3.00000 −0.327327
\(85\) 0 0
\(86\) −6.76393 −0.729374
\(87\) 2.29180 0.245706
\(88\) −3.38197 −0.360519
\(89\) −9.70820 −1.02907 −0.514534 0.857470i \(-0.672035\pi\)
−0.514534 + 0.857470i \(0.672035\pi\)
\(90\) 0 0
\(91\) 1.85410 0.194363
\(92\) −1.00000 −0.104257
\(93\) −5.47214 −0.567434
\(94\) 11.7082 1.20761
\(95\) 0 0
\(96\) 0.618034 0.0630778
\(97\) 16.0344 1.62805 0.814025 0.580829i \(-0.197272\pi\)
0.814025 + 0.580829i \(0.197272\pi\)
\(98\) 16.5623 1.67305
\(99\) 8.85410 0.889871
\(100\) 0 0
\(101\) −10.4721 −1.04202 −0.521008 0.853552i \(-0.674444\pi\)
−0.521008 + 0.853552i \(0.674444\pi\)
\(102\) 3.61803 0.358239
\(103\) −4.14590 −0.408507 −0.204254 0.978918i \(-0.565477\pi\)
−0.204254 + 0.978918i \(0.565477\pi\)
\(104\) −0.381966 −0.0374548
\(105\) 0 0
\(106\) 2.00000 0.194257
\(107\) 1.70820 0.165138 0.0825692 0.996585i \(-0.473687\pi\)
0.0825692 + 0.996585i \(0.473687\pi\)
\(108\) −3.47214 −0.334106
\(109\) −12.5623 −1.20325 −0.601625 0.798778i \(-0.705480\pi\)
−0.601625 + 0.798778i \(0.705480\pi\)
\(110\) 0 0
\(111\) −2.29180 −0.217528
\(112\) −4.85410 −0.458670
\(113\) −13.4164 −1.26211 −0.631055 0.775738i \(-0.717378\pi\)
−0.631055 + 0.775738i \(0.717378\pi\)
\(114\) −4.23607 −0.396744
\(115\) 0 0
\(116\) 3.70820 0.344298
\(117\) 1.00000 0.0924500
\(118\) −6.00000 −0.552345
\(119\) −28.4164 −2.60493
\(120\) 0 0
\(121\) 0.437694 0.0397904
\(122\) −3.85410 −0.348934
\(123\) −2.09017 −0.188464
\(124\) −8.85410 −0.795122
\(125\) 0 0
\(126\) 12.7082 1.13214
\(127\) −3.70820 −0.329050 −0.164525 0.986373i \(-0.552609\pi\)
−0.164525 + 0.986373i \(0.552609\pi\)
\(128\) 1.00000 0.0883883
\(129\) −4.18034 −0.368058
\(130\) 0 0
\(131\) 8.18034 0.714720 0.357360 0.933967i \(-0.383677\pi\)
0.357360 + 0.933967i \(0.383677\pi\)
\(132\) −2.09017 −0.181926
\(133\) 33.2705 2.88492
\(134\) −0.763932 −0.0659937
\(135\) 0 0
\(136\) 5.85410 0.501985
\(137\) 7.14590 0.610515 0.305258 0.952270i \(-0.401257\pi\)
0.305258 + 0.952270i \(0.401257\pi\)
\(138\) −0.618034 −0.0526105
\(139\) 17.7082 1.50199 0.750995 0.660308i \(-0.229574\pi\)
0.750995 + 0.660308i \(0.229574\pi\)
\(140\) 0 0
\(141\) 7.23607 0.609387
\(142\) 2.61803 0.219701
\(143\) 1.29180 0.108025
\(144\) −2.61803 −0.218169
\(145\) 0 0
\(146\) 7.52786 0.623010
\(147\) 10.2361 0.844257
\(148\) −3.70820 −0.304812
\(149\) −0.381966 −0.0312919 −0.0156459 0.999878i \(-0.504980\pi\)
−0.0156459 + 0.999878i \(0.504980\pi\)
\(150\) 0 0
\(151\) −19.2705 −1.56821 −0.784106 0.620627i \(-0.786878\pi\)
−0.784106 + 0.620627i \(0.786878\pi\)
\(152\) −6.85410 −0.555941
\(153\) −15.3262 −1.23905
\(154\) 16.4164 1.32287
\(155\) 0 0
\(156\) −0.236068 −0.0189006
\(157\) −15.7082 −1.25365 −0.626826 0.779160i \(-0.715646\pi\)
−0.626826 + 0.779160i \(0.715646\pi\)
\(158\) 5.70820 0.454120
\(159\) 1.23607 0.0980266
\(160\) 0 0
\(161\) 4.85410 0.382557
\(162\) 5.70820 0.448479
\(163\) −7.03444 −0.550980 −0.275490 0.961304i \(-0.588840\pi\)
−0.275490 + 0.961304i \(0.588840\pi\)
\(164\) −3.38197 −0.264087
\(165\) 0 0
\(166\) 5.70820 0.443043
\(167\) −3.70820 −0.286949 −0.143475 0.989654i \(-0.545828\pi\)
−0.143475 + 0.989654i \(0.545828\pi\)
\(168\) −3.00000 −0.231455
\(169\) −12.8541 −0.988777
\(170\) 0 0
\(171\) 17.9443 1.37223
\(172\) −6.76393 −0.515745
\(173\) 3.56231 0.270837 0.135419 0.990788i \(-0.456762\pi\)
0.135419 + 0.990788i \(0.456762\pi\)
\(174\) 2.29180 0.173741
\(175\) 0 0
\(176\) −3.38197 −0.254925
\(177\) −3.70820 −0.278726
\(178\) −9.70820 −0.727661
\(179\) 16.4721 1.23119 0.615593 0.788065i \(-0.288917\pi\)
0.615593 + 0.788065i \(0.288917\pi\)
\(180\) 0 0
\(181\) −4.56231 −0.339114 −0.169557 0.985520i \(-0.554234\pi\)
−0.169557 + 0.985520i \(0.554234\pi\)
\(182\) 1.85410 0.137435
\(183\) −2.38197 −0.176080
\(184\) −1.00000 −0.0737210
\(185\) 0 0
\(186\) −5.47214 −0.401236
\(187\) −19.7984 −1.44780
\(188\) 11.7082 0.853909
\(189\) 16.8541 1.22596
\(190\) 0 0
\(191\) −1.41641 −0.102488 −0.0512438 0.998686i \(-0.516319\pi\)
−0.0512438 + 0.998686i \(0.516319\pi\)
\(192\) 0.618034 0.0446028
\(193\) 2.29180 0.164967 0.0824835 0.996592i \(-0.473715\pi\)
0.0824835 + 0.996592i \(0.473715\pi\)
\(194\) 16.0344 1.15121
\(195\) 0 0
\(196\) 16.5623 1.18302
\(197\) 0.437694 0.0311844 0.0155922 0.999878i \(-0.495037\pi\)
0.0155922 + 0.999878i \(0.495037\pi\)
\(198\) 8.85410 0.629234
\(199\) −15.4164 −1.09284 −0.546420 0.837511i \(-0.684010\pi\)
−0.546420 + 0.837511i \(0.684010\pi\)
\(200\) 0 0
\(201\) −0.472136 −0.0333019
\(202\) −10.4721 −0.736817
\(203\) −18.0000 −1.26335
\(204\) 3.61803 0.253313
\(205\) 0 0
\(206\) −4.14590 −0.288858
\(207\) 2.61803 0.181966
\(208\) −0.381966 −0.0264846
\(209\) 23.1803 1.60342
\(210\) 0 0
\(211\) 5.70820 0.392969 0.196484 0.980507i \(-0.437047\pi\)
0.196484 + 0.980507i \(0.437047\pi\)
\(212\) 2.00000 0.137361
\(213\) 1.61803 0.110866
\(214\) 1.70820 0.116770
\(215\) 0 0
\(216\) −3.47214 −0.236249
\(217\) 42.9787 2.91759
\(218\) −12.5623 −0.850827
\(219\) 4.65248 0.314385
\(220\) 0 0
\(221\) −2.23607 −0.150414
\(222\) −2.29180 −0.153815
\(223\) 22.3607 1.49738 0.748691 0.662919i \(-0.230683\pi\)
0.748691 + 0.662919i \(0.230683\pi\)
\(224\) −4.85410 −0.324328
\(225\) 0 0
\(226\) −13.4164 −0.892446
\(227\) −23.7082 −1.57357 −0.786784 0.617228i \(-0.788256\pi\)
−0.786784 + 0.617228i \(0.788256\pi\)
\(228\) −4.23607 −0.280540
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 10.1459 0.667551
\(232\) 3.70820 0.243456
\(233\) 19.1246 1.25289 0.626447 0.779464i \(-0.284508\pi\)
0.626447 + 0.779464i \(0.284508\pi\)
\(234\) 1.00000 0.0653720
\(235\) 0 0
\(236\) −6.00000 −0.390567
\(237\) 3.52786 0.229159
\(238\) −28.4164 −1.84196
\(239\) −1.52786 −0.0988293 −0.0494147 0.998778i \(-0.515736\pi\)
−0.0494147 + 0.998778i \(0.515736\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 0.437694 0.0281360
\(243\) 13.9443 0.894525
\(244\) −3.85410 −0.246734
\(245\) 0 0
\(246\) −2.09017 −0.133264
\(247\) 2.61803 0.166582
\(248\) −8.85410 −0.562236
\(249\) 3.52786 0.223569
\(250\) 0 0
\(251\) 7.79837 0.492229 0.246114 0.969241i \(-0.420846\pi\)
0.246114 + 0.969241i \(0.420846\pi\)
\(252\) 12.7082 0.800542
\(253\) 3.38197 0.212622
\(254\) −3.70820 −0.232673
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −15.4164 −0.961649 −0.480825 0.876817i \(-0.659663\pi\)
−0.480825 + 0.876817i \(0.659663\pi\)
\(258\) −4.18034 −0.260257
\(259\) 18.0000 1.11847
\(260\) 0 0
\(261\) −9.70820 −0.600923
\(262\) 8.18034 0.505383
\(263\) −15.2705 −0.941620 −0.470810 0.882235i \(-0.656038\pi\)
−0.470810 + 0.882235i \(0.656038\pi\)
\(264\) −2.09017 −0.128641
\(265\) 0 0
\(266\) 33.2705 2.03995
\(267\) −6.00000 −0.367194
\(268\) −0.763932 −0.0466646
\(269\) −10.4721 −0.638497 −0.319249 0.947671i \(-0.603431\pi\)
−0.319249 + 0.947671i \(0.603431\pi\)
\(270\) 0 0
\(271\) 19.1459 1.16303 0.581515 0.813536i \(-0.302460\pi\)
0.581515 + 0.813536i \(0.302460\pi\)
\(272\) 5.85410 0.354957
\(273\) 1.14590 0.0693529
\(274\) 7.14590 0.431699
\(275\) 0 0
\(276\) −0.618034 −0.0372013
\(277\) −16.4721 −0.989715 −0.494857 0.868974i \(-0.664780\pi\)
−0.494857 + 0.868974i \(0.664780\pi\)
\(278\) 17.7082 1.06207
\(279\) 23.1803 1.38777
\(280\) 0 0
\(281\) −0.652476 −0.0389234 −0.0194617 0.999811i \(-0.506195\pi\)
−0.0194617 + 0.999811i \(0.506195\pi\)
\(282\) 7.23607 0.430902
\(283\) −3.05573 −0.181644 −0.0908221 0.995867i \(-0.528949\pi\)
−0.0908221 + 0.995867i \(0.528949\pi\)
\(284\) 2.61803 0.155352
\(285\) 0 0
\(286\) 1.29180 0.0763855
\(287\) 16.4164 0.969030
\(288\) −2.61803 −0.154269
\(289\) 17.2705 1.01591
\(290\) 0 0
\(291\) 9.90983 0.580925
\(292\) 7.52786 0.440535
\(293\) 27.7082 1.61873 0.809365 0.587306i \(-0.199811\pi\)
0.809365 + 0.587306i \(0.199811\pi\)
\(294\) 10.2361 0.596980
\(295\) 0 0
\(296\) −3.70820 −0.215535
\(297\) 11.7426 0.681377
\(298\) −0.381966 −0.0221267
\(299\) 0.381966 0.0220897
\(300\) 0 0
\(301\) 32.8328 1.89245
\(302\) −19.2705 −1.10889
\(303\) −6.47214 −0.371814
\(304\) −6.85410 −0.393110
\(305\) 0 0
\(306\) −15.3262 −0.876143
\(307\) −10.1459 −0.579057 −0.289528 0.957169i \(-0.593498\pi\)
−0.289528 + 0.957169i \(0.593498\pi\)
\(308\) 16.4164 0.935412
\(309\) −2.56231 −0.145764
\(310\) 0 0
\(311\) −13.5279 −0.767095 −0.383547 0.923521i \(-0.625298\pi\)
−0.383547 + 0.923521i \(0.625298\pi\)
\(312\) −0.236068 −0.0133647
\(313\) −19.1459 −1.08219 −0.541095 0.840961i \(-0.681990\pi\)
−0.541095 + 0.840961i \(0.681990\pi\)
\(314\) −15.7082 −0.886465
\(315\) 0 0
\(316\) 5.70820 0.321112
\(317\) −26.2705 −1.47550 −0.737749 0.675075i \(-0.764111\pi\)
−0.737749 + 0.675075i \(0.764111\pi\)
\(318\) 1.23607 0.0693153
\(319\) −12.5410 −0.702162
\(320\) 0 0
\(321\) 1.05573 0.0589250
\(322\) 4.85410 0.270509
\(323\) −40.1246 −2.23259
\(324\) 5.70820 0.317122
\(325\) 0 0
\(326\) −7.03444 −0.389602
\(327\) −7.76393 −0.429346
\(328\) −3.38197 −0.186738
\(329\) −56.8328 −3.13329
\(330\) 0 0
\(331\) 15.1246 0.831324 0.415662 0.909519i \(-0.363550\pi\)
0.415662 + 0.909519i \(0.363550\pi\)
\(332\) 5.70820 0.313278
\(333\) 9.70820 0.532006
\(334\) −3.70820 −0.202904
\(335\) 0 0
\(336\) −3.00000 −0.163663
\(337\) 5.61803 0.306034 0.153017 0.988224i \(-0.451101\pi\)
0.153017 + 0.988224i \(0.451101\pi\)
\(338\) −12.8541 −0.699171
\(339\) −8.29180 −0.450349
\(340\) 0 0
\(341\) 29.9443 1.62157
\(342\) 17.9443 0.970315
\(343\) −46.4164 −2.50625
\(344\) −6.76393 −0.364687
\(345\) 0 0
\(346\) 3.56231 0.191511
\(347\) 5.56231 0.298600 0.149300 0.988792i \(-0.452298\pi\)
0.149300 + 0.988792i \(0.452298\pi\)
\(348\) 2.29180 0.122853
\(349\) 14.2918 0.765022 0.382511 0.923951i \(-0.375059\pi\)
0.382511 + 0.923951i \(0.375059\pi\)
\(350\) 0 0
\(351\) 1.32624 0.0707893
\(352\) −3.38197 −0.180259
\(353\) −8.00000 −0.425797 −0.212899 0.977074i \(-0.568290\pi\)
−0.212899 + 0.977074i \(0.568290\pi\)
\(354\) −3.70820 −0.197089
\(355\) 0 0
\(356\) −9.70820 −0.514534
\(357\) −17.5623 −0.929496
\(358\) 16.4721 0.870579
\(359\) 13.4164 0.708091 0.354045 0.935228i \(-0.384806\pi\)
0.354045 + 0.935228i \(0.384806\pi\)
\(360\) 0 0
\(361\) 27.9787 1.47256
\(362\) −4.56231 −0.239789
\(363\) 0.270510 0.0141981
\(364\) 1.85410 0.0971813
\(365\) 0 0
\(366\) −2.38197 −0.124507
\(367\) −12.0000 −0.626395 −0.313197 0.949688i \(-0.601400\pi\)
−0.313197 + 0.949688i \(0.601400\pi\)
\(368\) −1.00000 −0.0521286
\(369\) 8.85410 0.460926
\(370\) 0 0
\(371\) −9.70820 −0.504025
\(372\) −5.47214 −0.283717
\(373\) 3.05573 0.158220 0.0791098 0.996866i \(-0.474792\pi\)
0.0791098 + 0.996866i \(0.474792\pi\)
\(374\) −19.7984 −1.02375
\(375\) 0 0
\(376\) 11.7082 0.603805
\(377\) −1.41641 −0.0729487
\(378\) 16.8541 0.866881
\(379\) 9.27051 0.476194 0.238097 0.971241i \(-0.423476\pi\)
0.238097 + 0.971241i \(0.423476\pi\)
\(380\) 0 0
\(381\) −2.29180 −0.117412
\(382\) −1.41641 −0.0724697
\(383\) −27.4164 −1.40091 −0.700456 0.713695i \(-0.747020\pi\)
−0.700456 + 0.713695i \(0.747020\pi\)
\(384\) 0.618034 0.0315389
\(385\) 0 0
\(386\) 2.29180 0.116649
\(387\) 17.7082 0.900159
\(388\) 16.0344 0.814025
\(389\) −5.67376 −0.287671 −0.143836 0.989602i \(-0.545944\pi\)
−0.143836 + 0.989602i \(0.545944\pi\)
\(390\) 0 0
\(391\) −5.85410 −0.296055
\(392\) 16.5623 0.836523
\(393\) 5.05573 0.255028
\(394\) 0.437694 0.0220507
\(395\) 0 0
\(396\) 8.85410 0.444935
\(397\) −35.5623 −1.78482 −0.892410 0.451224i \(-0.850987\pi\)
−0.892410 + 0.451224i \(0.850987\pi\)
\(398\) −15.4164 −0.772755
\(399\) 20.5623 1.02940
\(400\) 0 0
\(401\) −34.4721 −1.72146 −0.860728 0.509065i \(-0.829991\pi\)
−0.860728 + 0.509065i \(0.829991\pi\)
\(402\) −0.472136 −0.0235480
\(403\) 3.38197 0.168468
\(404\) −10.4721 −0.521008
\(405\) 0 0
\(406\) −18.0000 −0.893325
\(407\) 12.5410 0.621635
\(408\) 3.61803 0.179119
\(409\) −6.56231 −0.324485 −0.162243 0.986751i \(-0.551873\pi\)
−0.162243 + 0.986751i \(0.551873\pi\)
\(410\) 0 0
\(411\) 4.41641 0.217845
\(412\) −4.14590 −0.204254
\(413\) 29.1246 1.43313
\(414\) 2.61803 0.128669
\(415\) 0 0
\(416\) −0.381966 −0.0187274
\(417\) 10.9443 0.535943
\(418\) 23.1803 1.13379
\(419\) 5.88854 0.287674 0.143837 0.989601i \(-0.454056\pi\)
0.143837 + 0.989601i \(0.454056\pi\)
\(420\) 0 0
\(421\) 6.85410 0.334048 0.167024 0.985953i \(-0.446584\pi\)
0.167024 + 0.985953i \(0.446584\pi\)
\(422\) 5.70820 0.277871
\(423\) −30.6525 −1.49037
\(424\) 2.00000 0.0971286
\(425\) 0 0
\(426\) 1.61803 0.0783940
\(427\) 18.7082 0.905353
\(428\) 1.70820 0.0825692
\(429\) 0.798374 0.0385459
\(430\) 0 0
\(431\) −6.76393 −0.325807 −0.162904 0.986642i \(-0.552086\pi\)
−0.162904 + 0.986642i \(0.552086\pi\)
\(432\) −3.47214 −0.167053
\(433\) 29.6180 1.42335 0.711676 0.702508i \(-0.247936\pi\)
0.711676 + 0.702508i \(0.247936\pi\)
\(434\) 42.9787 2.06304
\(435\) 0 0
\(436\) −12.5623 −0.601625
\(437\) 6.85410 0.327876
\(438\) 4.65248 0.222304
\(439\) −0.270510 −0.0129107 −0.00645536 0.999979i \(-0.502055\pi\)
−0.00645536 + 0.999979i \(0.502055\pi\)
\(440\) 0 0
\(441\) −43.3607 −2.06479
\(442\) −2.23607 −0.106359
\(443\) −6.85410 −0.325648 −0.162824 0.986655i \(-0.552060\pi\)
−0.162824 + 0.986655i \(0.552060\pi\)
\(444\) −2.29180 −0.108764
\(445\) 0 0
\(446\) 22.3607 1.05881
\(447\) −0.236068 −0.0111656
\(448\) −4.85410 −0.229335
\(449\) 2.56231 0.120923 0.0604613 0.998171i \(-0.480743\pi\)
0.0604613 + 0.998171i \(0.480743\pi\)
\(450\) 0 0
\(451\) 11.4377 0.538580
\(452\) −13.4164 −0.631055
\(453\) −11.9098 −0.559573
\(454\) −23.7082 −1.11268
\(455\) 0 0
\(456\) −4.23607 −0.198372
\(457\) 25.4164 1.18893 0.594465 0.804122i \(-0.297364\pi\)
0.594465 + 0.804122i \(0.297364\pi\)
\(458\) −10.0000 −0.467269
\(459\) −20.3262 −0.948748
\(460\) 0 0
\(461\) −25.3050 −1.17857 −0.589285 0.807926i \(-0.700590\pi\)
−0.589285 + 0.807926i \(0.700590\pi\)
\(462\) 10.1459 0.472030
\(463\) 2.29180 0.106509 0.0532544 0.998581i \(-0.483041\pi\)
0.0532544 + 0.998581i \(0.483041\pi\)
\(464\) 3.70820 0.172149
\(465\) 0 0
\(466\) 19.1246 0.885931
\(467\) 17.1246 0.792433 0.396216 0.918157i \(-0.370323\pi\)
0.396216 + 0.918157i \(0.370323\pi\)
\(468\) 1.00000 0.0462250
\(469\) 3.70820 0.171229
\(470\) 0 0
\(471\) −9.70820 −0.447330
\(472\) −6.00000 −0.276172
\(473\) 22.8754 1.05181
\(474\) 3.52786 0.162040
\(475\) 0 0
\(476\) −28.4164 −1.30246
\(477\) −5.23607 −0.239743
\(478\) −1.52786 −0.0698829
\(479\) −19.5279 −0.892251 −0.446125 0.894970i \(-0.647196\pi\)
−0.446125 + 0.894970i \(0.647196\pi\)
\(480\) 0 0
\(481\) 1.41641 0.0645826
\(482\) −2.00000 −0.0910975
\(483\) 3.00000 0.136505
\(484\) 0.437694 0.0198952
\(485\) 0 0
\(486\) 13.9443 0.632525
\(487\) 21.7082 0.983693 0.491846 0.870682i \(-0.336322\pi\)
0.491846 + 0.870682i \(0.336322\pi\)
\(488\) −3.85410 −0.174467
\(489\) −4.34752 −0.196602
\(490\) 0 0
\(491\) −26.8328 −1.21095 −0.605474 0.795865i \(-0.707016\pi\)
−0.605474 + 0.795865i \(0.707016\pi\)
\(492\) −2.09017 −0.0942321
\(493\) 21.7082 0.977688
\(494\) 2.61803 0.117791
\(495\) 0 0
\(496\) −8.85410 −0.397561
\(497\) −12.7082 −0.570041
\(498\) 3.52786 0.158087
\(499\) 11.4164 0.511069 0.255534 0.966800i \(-0.417749\pi\)
0.255534 + 0.966800i \(0.417749\pi\)
\(500\) 0 0
\(501\) −2.29180 −0.102390
\(502\) 7.79837 0.348058
\(503\) −16.8541 −0.751487 −0.375744 0.926724i \(-0.622613\pi\)
−0.375744 + 0.926724i \(0.622613\pi\)
\(504\) 12.7082 0.566068
\(505\) 0 0
\(506\) 3.38197 0.150347
\(507\) −7.94427 −0.352818
\(508\) −3.70820 −0.164525
\(509\) −24.6525 −1.09270 −0.546351 0.837556i \(-0.683983\pi\)
−0.546351 + 0.837556i \(0.683983\pi\)
\(510\) 0 0
\(511\) −36.5410 −1.61648
\(512\) 1.00000 0.0441942
\(513\) 23.7984 1.05072
\(514\) −15.4164 −0.679989
\(515\) 0 0
\(516\) −4.18034 −0.184029
\(517\) −39.5967 −1.74146
\(518\) 18.0000 0.790875
\(519\) 2.20163 0.0966407
\(520\) 0 0
\(521\) 20.0689 0.879234 0.439617 0.898185i \(-0.355114\pi\)
0.439617 + 0.898185i \(0.355114\pi\)
\(522\) −9.70820 −0.424917
\(523\) 40.3607 1.76485 0.882425 0.470454i \(-0.155910\pi\)
0.882425 + 0.470454i \(0.155910\pi\)
\(524\) 8.18034 0.357360
\(525\) 0 0
\(526\) −15.2705 −0.665826
\(527\) −51.8328 −2.25787
\(528\) −2.09017 −0.0909630
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 15.7082 0.681678
\(532\) 33.2705 1.44246
\(533\) 1.29180 0.0559539
\(534\) −6.00000 −0.259645
\(535\) 0 0
\(536\) −0.763932 −0.0329968
\(537\) 10.1803 0.439314
\(538\) −10.4721 −0.451486
\(539\) −56.0132 −2.41266
\(540\) 0 0
\(541\) −27.4164 −1.17872 −0.589362 0.807869i \(-0.700621\pi\)
−0.589362 + 0.807869i \(0.700621\pi\)
\(542\) 19.1459 0.822387
\(543\) −2.81966 −0.121003
\(544\) 5.85410 0.250993
\(545\) 0 0
\(546\) 1.14590 0.0490399
\(547\) 1.14590 0.0489951 0.0244975 0.999700i \(-0.492201\pi\)
0.0244975 + 0.999700i \(0.492201\pi\)
\(548\) 7.14590 0.305258
\(549\) 10.0902 0.430638
\(550\) 0 0
\(551\) −25.4164 −1.08278
\(552\) −0.618034 −0.0263053
\(553\) −27.7082 −1.17827
\(554\) −16.4721 −0.699834
\(555\) 0 0
\(556\) 17.7082 0.750995
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 23.1803 0.981302
\(559\) 2.58359 0.109274
\(560\) 0 0
\(561\) −12.2361 −0.516607
\(562\) −0.652476 −0.0275230
\(563\) 2.29180 0.0965877 0.0482938 0.998833i \(-0.484622\pi\)
0.0482938 + 0.998833i \(0.484622\pi\)
\(564\) 7.23607 0.304693
\(565\) 0 0
\(566\) −3.05573 −0.128442
\(567\) −27.7082 −1.16364
\(568\) 2.61803 0.109850
\(569\) 28.3607 1.18894 0.594471 0.804117i \(-0.297362\pi\)
0.594471 + 0.804117i \(0.297362\pi\)
\(570\) 0 0
\(571\) −25.2705 −1.05754 −0.528769 0.848766i \(-0.677346\pi\)
−0.528769 + 0.848766i \(0.677346\pi\)
\(572\) 1.29180 0.0540127
\(573\) −0.875388 −0.0365699
\(574\) 16.4164 0.685208
\(575\) 0 0
\(576\) −2.61803 −0.109085
\(577\) 26.2918 1.09454 0.547271 0.836956i \(-0.315667\pi\)
0.547271 + 0.836956i \(0.315667\pi\)
\(578\) 17.2705 0.718359
\(579\) 1.41641 0.0588639
\(580\) 0 0
\(581\) −27.7082 −1.14953
\(582\) 9.90983 0.410776
\(583\) −6.76393 −0.280133
\(584\) 7.52786 0.311505
\(585\) 0 0
\(586\) 27.7082 1.14462
\(587\) 2.14590 0.0885707 0.0442853 0.999019i \(-0.485899\pi\)
0.0442853 + 0.999019i \(0.485899\pi\)
\(588\) 10.2361 0.422128
\(589\) 60.6869 2.50056
\(590\) 0 0
\(591\) 0.270510 0.0111273
\(592\) −3.70820 −0.152406
\(593\) −33.4164 −1.37225 −0.686124 0.727485i \(-0.740689\pi\)
−0.686124 + 0.727485i \(0.740689\pi\)
\(594\) 11.7426 0.481807
\(595\) 0 0
\(596\) −0.381966 −0.0156459
\(597\) −9.52786 −0.389950
\(598\) 0.381966 0.0156198
\(599\) 21.3820 0.873643 0.436822 0.899548i \(-0.356104\pi\)
0.436822 + 0.899548i \(0.356104\pi\)
\(600\) 0 0
\(601\) −3.14590 −0.128324 −0.0641619 0.997940i \(-0.520437\pi\)
−0.0641619 + 0.997940i \(0.520437\pi\)
\(602\) 32.8328 1.33817
\(603\) 2.00000 0.0814463
\(604\) −19.2705 −0.784106
\(605\) 0 0
\(606\) −6.47214 −0.262913
\(607\) −38.9443 −1.58070 −0.790350 0.612656i \(-0.790101\pi\)
−0.790350 + 0.612656i \(0.790101\pi\)
\(608\) −6.85410 −0.277971
\(609\) −11.1246 −0.450792
\(610\) 0 0
\(611\) −4.47214 −0.180923
\(612\) −15.3262 −0.619526
\(613\) 5.23607 0.211483 0.105741 0.994394i \(-0.466278\pi\)
0.105741 + 0.994394i \(0.466278\pi\)
\(614\) −10.1459 −0.409455
\(615\) 0 0
\(616\) 16.4164 0.661436
\(617\) −17.5623 −0.707032 −0.353516 0.935429i \(-0.615014\pi\)
−0.353516 + 0.935429i \(0.615014\pi\)
\(618\) −2.56231 −0.103071
\(619\) −21.1459 −0.849925 −0.424963 0.905211i \(-0.639713\pi\)
−0.424963 + 0.905211i \(0.639713\pi\)
\(620\) 0 0
\(621\) 3.47214 0.139332
\(622\) −13.5279 −0.542418
\(623\) 47.1246 1.88801
\(624\) −0.236068 −0.00945028
\(625\) 0 0
\(626\) −19.1459 −0.765224
\(627\) 14.3262 0.572135
\(628\) −15.7082 −0.626826
\(629\) −21.7082 −0.865563
\(630\) 0 0
\(631\) 3.41641 0.136005 0.0680025 0.997685i \(-0.478337\pi\)
0.0680025 + 0.997685i \(0.478337\pi\)
\(632\) 5.70820 0.227060
\(633\) 3.52786 0.140220
\(634\) −26.2705 −1.04334
\(635\) 0 0
\(636\) 1.23607 0.0490133
\(637\) −6.32624 −0.250655
\(638\) −12.5410 −0.496504
\(639\) −6.85410 −0.271144
\(640\) 0 0
\(641\) 30.6525 1.21070 0.605350 0.795959i \(-0.293033\pi\)
0.605350 + 0.795959i \(0.293033\pi\)
\(642\) 1.05573 0.0416663
\(643\) −35.0132 −1.38078 −0.690392 0.723435i \(-0.742562\pi\)
−0.690392 + 0.723435i \(0.742562\pi\)
\(644\) 4.85410 0.191278
\(645\) 0 0
\(646\) −40.1246 −1.57868
\(647\) 0.291796 0.0114717 0.00573584 0.999984i \(-0.498174\pi\)
0.00573584 + 0.999984i \(0.498174\pi\)
\(648\) 5.70820 0.224239
\(649\) 20.2918 0.796523
\(650\) 0 0
\(651\) 26.5623 1.04106
\(652\) −7.03444 −0.275490
\(653\) 11.9787 0.468763 0.234382 0.972145i \(-0.424693\pi\)
0.234382 + 0.972145i \(0.424693\pi\)
\(654\) −7.76393 −0.303594
\(655\) 0 0
\(656\) −3.38197 −0.132044
\(657\) −19.7082 −0.768890
\(658\) −56.8328 −2.21557
\(659\) 17.8885 0.696839 0.348419 0.937339i \(-0.386719\pi\)
0.348419 + 0.937339i \(0.386719\pi\)
\(660\) 0 0
\(661\) 34.3951 1.33782 0.668908 0.743346i \(-0.266762\pi\)
0.668908 + 0.743346i \(0.266762\pi\)
\(662\) 15.1246 0.587835
\(663\) −1.38197 −0.0536711
\(664\) 5.70820 0.221521
\(665\) 0 0
\(666\) 9.70820 0.376185
\(667\) −3.70820 −0.143582
\(668\) −3.70820 −0.143475
\(669\) 13.8197 0.534299
\(670\) 0 0
\(671\) 13.0344 0.503189
\(672\) −3.00000 −0.115728
\(673\) 14.2918 0.550908 0.275454 0.961314i \(-0.411172\pi\)
0.275454 + 0.961314i \(0.411172\pi\)
\(674\) 5.61803 0.216399
\(675\) 0 0
\(676\) −12.8541 −0.494389
\(677\) −42.0000 −1.61419 −0.807096 0.590421i \(-0.798962\pi\)
−0.807096 + 0.590421i \(0.798962\pi\)
\(678\) −8.29180 −0.318445
\(679\) −77.8328 −2.98695
\(680\) 0 0
\(681\) −14.6525 −0.561484
\(682\) 29.9443 1.14663
\(683\) −35.9787 −1.37669 −0.688344 0.725385i \(-0.741662\pi\)
−0.688344 + 0.725385i \(0.741662\pi\)
\(684\) 17.9443 0.686116
\(685\) 0 0
\(686\) −46.4164 −1.77219
\(687\) −6.18034 −0.235795
\(688\) −6.76393 −0.257872
\(689\) −0.763932 −0.0291035
\(690\) 0 0
\(691\) 19.1246 0.727535 0.363767 0.931490i \(-0.381490\pi\)
0.363767 + 0.931490i \(0.381490\pi\)
\(692\) 3.56231 0.135419
\(693\) −42.9787 −1.63263
\(694\) 5.56231 0.211142
\(695\) 0 0
\(696\) 2.29180 0.0868703
\(697\) −19.7984 −0.749917
\(698\) 14.2918 0.540952
\(699\) 11.8197 0.447061
\(700\) 0 0
\(701\) 36.9230 1.39456 0.697281 0.716798i \(-0.254393\pi\)
0.697281 + 0.716798i \(0.254393\pi\)
\(702\) 1.32624 0.0500556
\(703\) 25.4164 0.958598
\(704\) −3.38197 −0.127463
\(705\) 0 0
\(706\) −8.00000 −0.301084
\(707\) 50.8328 1.91176
\(708\) −3.70820 −0.139363
\(709\) −11.5623 −0.434232 −0.217116 0.976146i \(-0.569665\pi\)
−0.217116 + 0.976146i \(0.569665\pi\)
\(710\) 0 0
\(711\) −14.9443 −0.560454
\(712\) −9.70820 −0.363830
\(713\) 8.85410 0.331589
\(714\) −17.5623 −0.657253
\(715\) 0 0
\(716\) 16.4721 0.615593
\(717\) −0.944272 −0.0352645
\(718\) 13.4164 0.500696
\(719\) −32.4508 −1.21021 −0.605106 0.796145i \(-0.706869\pi\)
−0.605106 + 0.796145i \(0.706869\pi\)
\(720\) 0 0
\(721\) 20.1246 0.749480
\(722\) 27.9787 1.04126
\(723\) −1.23607 −0.0459699
\(724\) −4.56231 −0.169557
\(725\) 0 0
\(726\) 0.270510 0.0100396
\(727\) 1.74265 0.0646312 0.0323156 0.999478i \(-0.489712\pi\)
0.0323156 + 0.999478i \(0.489712\pi\)
\(728\) 1.85410 0.0687176
\(729\) −8.50658 −0.315058
\(730\) 0 0
\(731\) −39.5967 −1.46454
\(732\) −2.38197 −0.0880400
\(733\) −35.8885 −1.32557 −0.662787 0.748808i \(-0.730626\pi\)
−0.662787 + 0.748808i \(0.730626\pi\)
\(734\) −12.0000 −0.442928
\(735\) 0 0
\(736\) −1.00000 −0.0368605
\(737\) 2.58359 0.0951678
\(738\) 8.85410 0.325924
\(739\) −32.5410 −1.19704 −0.598520 0.801108i \(-0.704244\pi\)
−0.598520 + 0.801108i \(0.704244\pi\)
\(740\) 0 0
\(741\) 1.61803 0.0594400
\(742\) −9.70820 −0.356399
\(743\) 9.97871 0.366084 0.183042 0.983105i \(-0.441406\pi\)
0.183042 + 0.983105i \(0.441406\pi\)
\(744\) −5.47214 −0.200618
\(745\) 0 0
\(746\) 3.05573 0.111878
\(747\) −14.9443 −0.546782
\(748\) −19.7984 −0.723900
\(749\) −8.29180 −0.302976
\(750\) 0 0
\(751\) −41.1246 −1.50066 −0.750329 0.661064i \(-0.770105\pi\)
−0.750329 + 0.661064i \(0.770105\pi\)
\(752\) 11.7082 0.426954
\(753\) 4.81966 0.175638
\(754\) −1.41641 −0.0515825
\(755\) 0 0
\(756\) 16.8541 0.612978
\(757\) 47.0132 1.70872 0.854361 0.519680i \(-0.173949\pi\)
0.854361 + 0.519680i \(0.173949\pi\)
\(758\) 9.27051 0.336720
\(759\) 2.09017 0.0758684
\(760\) 0 0
\(761\) −11.5066 −0.417113 −0.208557 0.978010i \(-0.566877\pi\)
−0.208557 + 0.978010i \(0.566877\pi\)
\(762\) −2.29180 −0.0830230
\(763\) 60.9787 2.20758
\(764\) −1.41641 −0.0512438
\(765\) 0 0
\(766\) −27.4164 −0.990595
\(767\) 2.29180 0.0827520
\(768\) 0.618034 0.0223014
\(769\) −34.2918 −1.23659 −0.618297 0.785945i \(-0.712177\pi\)
−0.618297 + 0.785945i \(0.712177\pi\)
\(770\) 0 0
\(771\) −9.52786 −0.343138
\(772\) 2.29180 0.0824835
\(773\) −14.0000 −0.503545 −0.251773 0.967786i \(-0.581013\pi\)
−0.251773 + 0.967786i \(0.581013\pi\)
\(774\) 17.7082 0.636508
\(775\) 0 0
\(776\) 16.0344 0.575603
\(777\) 11.1246 0.399093
\(778\) −5.67376 −0.203414
\(779\) 23.1803 0.830522
\(780\) 0 0
\(781\) −8.85410 −0.316825
\(782\) −5.85410 −0.209342
\(783\) −12.8754 −0.460129
\(784\) 16.5623 0.591511
\(785\) 0 0
\(786\) 5.05573 0.180332
\(787\) −31.4164 −1.11987 −0.559937 0.828535i \(-0.689175\pi\)
−0.559937 + 0.828535i \(0.689175\pi\)
\(788\) 0.437694 0.0155922
\(789\) −9.43769 −0.335991
\(790\) 0 0
\(791\) 65.1246 2.31556
\(792\) 8.85410 0.314617
\(793\) 1.47214 0.0522771
\(794\) −35.5623 −1.26206
\(795\) 0 0
\(796\) −15.4164 −0.546420
\(797\) −18.5836 −0.658265 −0.329132 0.944284i \(-0.606756\pi\)
−0.329132 + 0.944284i \(0.606756\pi\)
\(798\) 20.5623 0.727898
\(799\) 68.5410 2.42481
\(800\) 0 0
\(801\) 25.4164 0.898045
\(802\) −34.4721 −1.21725
\(803\) −25.4590 −0.898428
\(804\) −0.472136 −0.0166510
\(805\) 0 0
\(806\) 3.38197 0.119125
\(807\) −6.47214 −0.227830
\(808\) −10.4721 −0.368408
\(809\) 27.1591 0.954861 0.477431 0.878669i \(-0.341568\pi\)
0.477431 + 0.878669i \(0.341568\pi\)
\(810\) 0 0
\(811\) −7.70820 −0.270672 −0.135336 0.990800i \(-0.543211\pi\)
−0.135336 + 0.990800i \(0.543211\pi\)
\(812\) −18.0000 −0.631676
\(813\) 11.8328 0.414995
\(814\) 12.5410 0.439563
\(815\) 0 0
\(816\) 3.61803 0.126657
\(817\) 46.3607 1.62195
\(818\) −6.56231 −0.229446
\(819\) −4.85410 −0.169616
\(820\) 0 0
\(821\) −2.94427 −0.102756 −0.0513779 0.998679i \(-0.516361\pi\)
−0.0513779 + 0.998679i \(0.516361\pi\)
\(822\) 4.41641 0.154040
\(823\) −20.8328 −0.726186 −0.363093 0.931753i \(-0.618279\pi\)
−0.363093 + 0.931753i \(0.618279\pi\)
\(824\) −4.14590 −0.144429
\(825\) 0 0
\(826\) 29.1246 1.01337
\(827\) −48.2492 −1.67779 −0.838895 0.544293i \(-0.816798\pi\)
−0.838895 + 0.544293i \(0.816798\pi\)
\(828\) 2.61803 0.0909830
\(829\) 32.5410 1.13020 0.565098 0.825024i \(-0.308838\pi\)
0.565098 + 0.825024i \(0.308838\pi\)
\(830\) 0 0
\(831\) −10.1803 −0.353152
\(832\) −0.381966 −0.0132423
\(833\) 96.9574 3.35938
\(834\) 10.9443 0.378969
\(835\) 0 0
\(836\) 23.1803 0.801709
\(837\) 30.7426 1.06262
\(838\) 5.88854 0.203416
\(839\) −6.76393 −0.233517 −0.116758 0.993160i \(-0.537250\pi\)
−0.116758 + 0.993160i \(0.537250\pi\)
\(840\) 0 0
\(841\) −15.2492 −0.525835
\(842\) 6.85410 0.236208
\(843\) −0.403252 −0.0138887
\(844\) 5.70820 0.196484
\(845\) 0 0
\(846\) −30.6525 −1.05385
\(847\) −2.12461 −0.0730025
\(848\) 2.00000 0.0686803
\(849\) −1.88854 −0.0648147
\(850\) 0 0
\(851\) 3.70820 0.127116
\(852\) 1.61803 0.0554329
\(853\) 51.2148 1.75356 0.876780 0.480891i \(-0.159687\pi\)
0.876780 + 0.480891i \(0.159687\pi\)
\(854\) 18.7082 0.640182
\(855\) 0 0
\(856\) 1.70820 0.0583852
\(857\) 36.0000 1.22974 0.614868 0.788630i \(-0.289209\pi\)
0.614868 + 0.788630i \(0.289209\pi\)
\(858\) 0.798374 0.0272560
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 0 0
\(861\) 10.1459 0.345771
\(862\) −6.76393 −0.230380
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) −3.47214 −0.118124
\(865\) 0 0
\(866\) 29.6180 1.00646
\(867\) 10.6738 0.362500
\(868\) 42.9787 1.45879
\(869\) −19.3050 −0.654876
\(870\) 0 0
\(871\) 0.291796 0.00988713
\(872\) −12.5623 −0.425413
\(873\) −41.9787 −1.42076
\(874\) 6.85410 0.231843
\(875\) 0 0
\(876\) 4.65248 0.157193
\(877\) 34.6869 1.17129 0.585647 0.810566i \(-0.300840\pi\)
0.585647 + 0.810566i \(0.300840\pi\)
\(878\) −0.270510 −0.00912926
\(879\) 17.1246 0.577599
\(880\) 0 0
\(881\) −38.2918 −1.29008 −0.645042 0.764147i \(-0.723160\pi\)
−0.645042 + 0.764147i \(0.723160\pi\)
\(882\) −43.3607 −1.46003
\(883\) 17.7295 0.596645 0.298322 0.954465i \(-0.403573\pi\)
0.298322 + 0.954465i \(0.403573\pi\)
\(884\) −2.23607 −0.0752071
\(885\) 0 0
\(886\) −6.85410 −0.230268
\(887\) 36.5410 1.22693 0.613464 0.789723i \(-0.289776\pi\)
0.613464 + 0.789723i \(0.289776\pi\)
\(888\) −2.29180 −0.0769076
\(889\) 18.0000 0.603701
\(890\) 0 0
\(891\) −19.3050 −0.646740
\(892\) 22.3607 0.748691
\(893\) −80.2492 −2.68544
\(894\) −0.236068 −0.00789529
\(895\) 0 0
\(896\) −4.85410 −0.162164
\(897\) 0.236068 0.00788208
\(898\) 2.56231 0.0855053
\(899\) −32.8328 −1.09504
\(900\) 0 0
\(901\) 11.7082 0.390057
\(902\) 11.4377 0.380834
\(903\) 20.2918 0.675269
\(904\) −13.4164 −0.446223
\(905\) 0 0
\(906\) −11.9098 −0.395678
\(907\) −30.5410 −1.01410 −0.507049 0.861917i \(-0.669264\pi\)
−0.507049 + 0.861917i \(0.669264\pi\)
\(908\) −23.7082 −0.786784
\(909\) 27.4164 0.909345
\(910\) 0 0
\(911\) 22.3607 0.740842 0.370421 0.928864i \(-0.379213\pi\)
0.370421 + 0.928864i \(0.379213\pi\)
\(912\) −4.23607 −0.140270
\(913\) −19.3050 −0.638901
\(914\) 25.4164 0.840700
\(915\) 0 0
\(916\) −10.0000 −0.330409
\(917\) −39.7082 −1.31128
\(918\) −20.3262 −0.670866
\(919\) −14.5836 −0.481068 −0.240534 0.970641i \(-0.577323\pi\)
−0.240534 + 0.970641i \(0.577323\pi\)
\(920\) 0 0
\(921\) −6.27051 −0.206620
\(922\) −25.3050 −0.833374
\(923\) −1.00000 −0.0329154
\(924\) 10.1459 0.333776
\(925\) 0 0
\(926\) 2.29180 0.0753131
\(927\) 10.8541 0.356495
\(928\) 3.70820 0.121728
\(929\) 19.3050 0.633375 0.316687 0.948530i \(-0.397429\pi\)
0.316687 + 0.948530i \(0.397429\pi\)
\(930\) 0 0
\(931\) −113.520 −3.72046
\(932\) 19.1246 0.626447
\(933\) −8.36068 −0.273716
\(934\) 17.1246 0.560334
\(935\) 0 0
\(936\) 1.00000 0.0326860
\(937\) 8.67376 0.283359 0.141680 0.989913i \(-0.454750\pi\)
0.141680 + 0.989913i \(0.454750\pi\)
\(938\) 3.70820 0.121077
\(939\) −11.8328 −0.386149
\(940\) 0 0
\(941\) −24.2148 −0.789379 −0.394690 0.918814i \(-0.629148\pi\)
−0.394690 + 0.918814i \(0.629148\pi\)
\(942\) −9.70820 −0.316310
\(943\) 3.38197 0.110132
\(944\) −6.00000 −0.195283
\(945\) 0 0
\(946\) 22.8754 0.743743
\(947\) 47.3951 1.54013 0.770067 0.637963i \(-0.220223\pi\)
0.770067 + 0.637963i \(0.220223\pi\)
\(948\) 3.52786 0.114580
\(949\) −2.87539 −0.0933391
\(950\) 0 0
\(951\) −16.2361 −0.526491
\(952\) −28.4164 −0.920981
\(953\) 36.3951 1.17895 0.589477 0.807785i \(-0.299334\pi\)
0.589477 + 0.807785i \(0.299334\pi\)
\(954\) −5.23607 −0.169524
\(955\) 0 0
\(956\) −1.52786 −0.0494147
\(957\) −7.75078 −0.250547
\(958\) −19.5279 −0.630917
\(959\) −34.6869 −1.12010
\(960\) 0 0
\(961\) 47.3951 1.52887
\(962\) 1.41641 0.0456668
\(963\) −4.47214 −0.144113
\(964\) −2.00000 −0.0644157
\(965\) 0 0
\(966\) 3.00000 0.0965234
\(967\) −24.7639 −0.796354 −0.398177 0.917309i \(-0.630357\pi\)
−0.398177 + 0.917309i \(0.630357\pi\)
\(968\) 0.437694 0.0140680
\(969\) −24.7984 −0.796639
\(970\) 0 0
\(971\) 25.8541 0.829698 0.414849 0.909890i \(-0.363834\pi\)
0.414849 + 0.909890i \(0.363834\pi\)
\(972\) 13.9443 0.447263
\(973\) −85.9574 −2.75567
\(974\) 21.7082 0.695576
\(975\) 0 0
\(976\) −3.85410 −0.123367
\(977\) 32.2705 1.03243 0.516213 0.856461i \(-0.327341\pi\)
0.516213 + 0.856461i \(0.327341\pi\)
\(978\) −4.34752 −0.139018
\(979\) 32.8328 1.04934
\(980\) 0 0
\(981\) 32.8885 1.05005
\(982\) −26.8328 −0.856270
\(983\) −26.3951 −0.841874 −0.420937 0.907090i \(-0.638299\pi\)
−0.420937 + 0.907090i \(0.638299\pi\)
\(984\) −2.09017 −0.0666322
\(985\) 0 0
\(986\) 21.7082 0.691330
\(987\) −35.1246 −1.11803
\(988\) 2.61803 0.0832908
\(989\) 6.76393 0.215081
\(990\) 0 0
\(991\) 51.2705 1.62866 0.814331 0.580401i \(-0.197104\pi\)
0.814331 + 0.580401i \(0.197104\pi\)
\(992\) −8.85410 −0.281118
\(993\) 9.34752 0.296635
\(994\) −12.7082 −0.403080
\(995\) 0 0
\(996\) 3.52786 0.111785
\(997\) −26.7214 −0.846274 −0.423137 0.906066i \(-0.639071\pi\)
−0.423137 + 0.906066i \(0.639071\pi\)
\(998\) 11.4164 0.361380
\(999\) 12.8754 0.407359
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.2.a.n.1.2 2
4.3 odd 2 9200.2.a.by.1.1 2
5.2 odd 4 230.2.b.a.139.3 yes 4
5.3 odd 4 230.2.b.a.139.2 4
5.4 even 2 1150.2.a.l.1.1 2
15.2 even 4 2070.2.d.c.829.1 4
15.8 even 4 2070.2.d.c.829.3 4
20.3 even 4 1840.2.e.c.369.2 4
20.7 even 4 1840.2.e.c.369.3 4
20.19 odd 2 9200.2.a.bo.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.2.b.a.139.2 4 5.3 odd 4
230.2.b.a.139.3 yes 4 5.2 odd 4
1150.2.a.l.1.1 2 5.4 even 2
1150.2.a.n.1.2 2 1.1 even 1 trivial
1840.2.e.c.369.2 4 20.3 even 4
1840.2.e.c.369.3 4 20.7 even 4
2070.2.d.c.829.1 4 15.2 even 4
2070.2.d.c.829.3 4 15.8 even 4
9200.2.a.bo.1.2 2 20.19 odd 2
9200.2.a.by.1.1 2 4.3 odd 2