# Properties

 Label 1150.2.a.n Level $1150$ Weight $2$ Character orbit 1150.a Self dual yes Analytic conductor $9.183$ Analytic rank $1$ Dimension $2$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1150,2,Mod(1,1150)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1150, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1150.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1150 = 2 \cdot 5^{2} \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1150.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$9.18279623245$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{5})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x - 1$$ x^2 - x - 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 230) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \frac{1}{2}(1 + \sqrt{5})$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{2} - \beta q^{3} + q^{4} - \beta q^{6} + (3 \beta - 3) q^{7} + q^{8} + (\beta - 2) q^{9} +O(q^{10})$$ q + q^2 - b * q^3 + q^4 - b * q^6 + (3*b - 3) * q^7 + q^8 + (b - 2) * q^9 $$q + q^{2} - \beta q^{3} + q^{4} - \beta q^{6} + (3 \beta - 3) q^{7} + q^{8} + (\beta - 2) q^{9} + ( - \beta - 4) q^{11} - \beta q^{12} + ( - \beta - 1) q^{13} + (3 \beta - 3) q^{14} + q^{16} + ( - 3 \beta + 4) q^{17} + (\beta - 2) q^{18} + (3 \beta - 5) q^{19} - 3 q^{21} + ( - \beta - 4) q^{22} - q^{23} - \beta q^{24} + ( - \beta - 1) q^{26} + (4 \beta - 1) q^{27} + (3 \beta - 3) q^{28} - 6 \beta q^{29} + (3 \beta - 7) q^{31} + q^{32} + (5 \beta + 1) q^{33} + ( - 3 \beta + 4) q^{34} + (\beta - 2) q^{36} + 6 \beta q^{37} + (3 \beta - 5) q^{38} + (2 \beta + 1) q^{39} + ( - \beta - 4) q^{41} - 3 q^{42} + ( - 2 \beta - 8) q^{43} + ( - \beta - 4) q^{44} - q^{46} + ( - 6 \beta + 8) q^{47} - \beta q^{48} + ( - 9 \beta + 11) q^{49} + ( - \beta + 3) q^{51} + ( - \beta - 1) q^{52} + 2 q^{53} + (4 \beta - 1) q^{54} + (3 \beta - 3) q^{56} + (2 \beta - 3) q^{57} - 6 \beta q^{58} - 6 q^{59} + (3 \beta - 2) q^{61} + (3 \beta - 7) q^{62} + ( - 6 \beta + 9) q^{63} + q^{64} + (5 \beta + 1) q^{66} + ( - 2 \beta - 2) q^{67} + ( - 3 \beta + 4) q^{68} + \beta q^{69} + ( - \beta + 2) q^{71} + (\beta - 2) q^{72} + (4 \beta + 10) q^{73} + 6 \beta q^{74} + (3 \beta - 5) q^{76} + ( - 12 \beta + 9) q^{77} + (2 \beta + 1) q^{78} + ( - 6 \beta + 2) q^{79} + ( - 6 \beta + 2) q^{81} + ( - \beta - 4) q^{82} + ( - 6 \beta + 2) q^{83} - 3 q^{84} + ( - 2 \beta - 8) q^{86} + (6 \beta + 6) q^{87} + ( - \beta - 4) q^{88} + (6 \beta - 6) q^{89} - 3 \beta q^{91} - q^{92} + (4 \beta - 3) q^{93} + ( - 6 \beta + 8) q^{94} - \beta q^{96} + ( - 13 \beta + 8) q^{97} + ( - 9 \beta + 11) q^{98} + ( - 3 \beta + 7) q^{99} +O(q^{100})$$ q + q^2 - b * q^3 + q^4 - b * q^6 + (3*b - 3) * q^7 + q^8 + (b - 2) * q^9 + (-b - 4) * q^11 - b * q^12 + (-b - 1) * q^13 + (3*b - 3) * q^14 + q^16 + (-3*b + 4) * q^17 + (b - 2) * q^18 + (3*b - 5) * q^19 - 3 * q^21 + (-b - 4) * q^22 - q^23 - b * q^24 + (-b - 1) * q^26 + (4*b - 1) * q^27 + (3*b - 3) * q^28 - 6*b * q^29 + (3*b - 7) * q^31 + q^32 + (5*b + 1) * q^33 + (-3*b + 4) * q^34 + (b - 2) * q^36 + 6*b * q^37 + (3*b - 5) * q^38 + (2*b + 1) * q^39 + (-b - 4) * q^41 - 3 * q^42 + (-2*b - 8) * q^43 + (-b - 4) * q^44 - q^46 + (-6*b + 8) * q^47 - b * q^48 + (-9*b + 11) * q^49 + (-b + 3) * q^51 + (-b - 1) * q^52 + 2 * q^53 + (4*b - 1) * q^54 + (3*b - 3) * q^56 + (2*b - 3) * q^57 - 6*b * q^58 - 6 * q^59 + (3*b - 2) * q^61 + (3*b - 7) * q^62 + (-6*b + 9) * q^63 + q^64 + (5*b + 1) * q^66 + (-2*b - 2) * q^67 + (-3*b + 4) * q^68 + b * q^69 + (-b + 2) * q^71 + (b - 2) * q^72 + (4*b + 10) * q^73 + 6*b * q^74 + (3*b - 5) * q^76 + (-12*b + 9) * q^77 + (2*b + 1) * q^78 + (-6*b + 2) * q^79 + (-6*b + 2) * q^81 + (-b - 4) * q^82 + (-6*b + 2) * q^83 - 3 * q^84 + (-2*b - 8) * q^86 + (6*b + 6) * q^87 + (-b - 4) * q^88 + (6*b - 6) * q^89 - 3*b * q^91 - q^92 + (4*b - 3) * q^93 + (-6*b + 8) * q^94 - b * q^96 + (-13*b + 8) * q^97 + (-9*b + 11) * q^98 + (-3*b + 7) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{2} - q^{3} + 2 q^{4} - q^{6} - 3 q^{7} + 2 q^{8} - 3 q^{9}+O(q^{10})$$ 2 * q + 2 * q^2 - q^3 + 2 * q^4 - q^6 - 3 * q^7 + 2 * q^8 - 3 * q^9 $$2 q + 2 q^{2} - q^{3} + 2 q^{4} - q^{6} - 3 q^{7} + 2 q^{8} - 3 q^{9} - 9 q^{11} - q^{12} - 3 q^{13} - 3 q^{14} + 2 q^{16} + 5 q^{17} - 3 q^{18} - 7 q^{19} - 6 q^{21} - 9 q^{22} - 2 q^{23} - q^{24} - 3 q^{26} + 2 q^{27} - 3 q^{28} - 6 q^{29} - 11 q^{31} + 2 q^{32} + 7 q^{33} + 5 q^{34} - 3 q^{36} + 6 q^{37} - 7 q^{38} + 4 q^{39} - 9 q^{41} - 6 q^{42} - 18 q^{43} - 9 q^{44} - 2 q^{46} + 10 q^{47} - q^{48} + 13 q^{49} + 5 q^{51} - 3 q^{52} + 4 q^{53} + 2 q^{54} - 3 q^{56} - 4 q^{57} - 6 q^{58} - 12 q^{59} - q^{61} - 11 q^{62} + 12 q^{63} + 2 q^{64} + 7 q^{66} - 6 q^{67} + 5 q^{68} + q^{69} + 3 q^{71} - 3 q^{72} + 24 q^{73} + 6 q^{74} - 7 q^{76} + 6 q^{77} + 4 q^{78} - 2 q^{79} - 2 q^{81} - 9 q^{82} - 2 q^{83} - 6 q^{84} - 18 q^{86} + 18 q^{87} - 9 q^{88} - 6 q^{89} - 3 q^{91} - 2 q^{92} - 2 q^{93} + 10 q^{94} - q^{96} + 3 q^{97} + 13 q^{98} + 11 q^{99}+O(q^{100})$$ 2 * q + 2 * q^2 - q^3 + 2 * q^4 - q^6 - 3 * q^7 + 2 * q^8 - 3 * q^9 - 9 * q^11 - q^12 - 3 * q^13 - 3 * q^14 + 2 * q^16 + 5 * q^17 - 3 * q^18 - 7 * q^19 - 6 * q^21 - 9 * q^22 - 2 * q^23 - q^24 - 3 * q^26 + 2 * q^27 - 3 * q^28 - 6 * q^29 - 11 * q^31 + 2 * q^32 + 7 * q^33 + 5 * q^34 - 3 * q^36 + 6 * q^37 - 7 * q^38 + 4 * q^39 - 9 * q^41 - 6 * q^42 - 18 * q^43 - 9 * q^44 - 2 * q^46 + 10 * q^47 - q^48 + 13 * q^49 + 5 * q^51 - 3 * q^52 + 4 * q^53 + 2 * q^54 - 3 * q^56 - 4 * q^57 - 6 * q^58 - 12 * q^59 - q^61 - 11 * q^62 + 12 * q^63 + 2 * q^64 + 7 * q^66 - 6 * q^67 + 5 * q^68 + q^69 + 3 * q^71 - 3 * q^72 + 24 * q^73 + 6 * q^74 - 7 * q^76 + 6 * q^77 + 4 * q^78 - 2 * q^79 - 2 * q^81 - 9 * q^82 - 2 * q^83 - 6 * q^84 - 18 * q^86 + 18 * q^87 - 9 * q^88 - 6 * q^89 - 3 * q^91 - 2 * q^92 - 2 * q^93 + 10 * q^94 - q^96 + 3 * q^97 + 13 * q^98 + 11 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 1.61803 −0.618034
1.00000 −1.61803 1.00000 0 −1.61803 1.85410 1.00000 −0.381966 0
1.2 1.00000 0.618034 1.00000 0 0.618034 −4.85410 1.00000 −2.61803 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$-1$$
$$23$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1150.2.a.n 2
4.b odd 2 1 9200.2.a.by 2
5.b even 2 1 1150.2.a.l 2
5.c odd 4 2 230.2.b.a 4
15.e even 4 2 2070.2.d.c 4
20.d odd 2 1 9200.2.a.bo 2
20.e even 4 2 1840.2.e.c 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
230.2.b.a 4 5.c odd 4 2
1150.2.a.l 2 5.b even 2 1
1150.2.a.n 2 1.a even 1 1 trivial
1840.2.e.c 4 20.e even 4 2
2070.2.d.c 4 15.e even 4 2
9200.2.a.bo 2 20.d odd 2 1
9200.2.a.by 2 4.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1150))$$:

 $$T_{3}^{2} + T_{3} - 1$$ T3^2 + T3 - 1 $$T_{7}^{2} + 3T_{7} - 9$$ T7^2 + 3*T7 - 9 $$T_{11}^{2} + 9T_{11} + 19$$ T11^2 + 9*T11 + 19

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$(T - 1)^{2}$$
$3$ $$T^{2} + T - 1$$
$5$ $$T^{2}$$
$7$ $$T^{2} + 3T - 9$$
$11$ $$T^{2} + 9T + 19$$
$13$ $$T^{2} + 3T + 1$$
$17$ $$T^{2} - 5T - 5$$
$19$ $$T^{2} + 7T + 1$$
$23$ $$(T + 1)^{2}$$
$29$ $$T^{2} + 6T - 36$$
$31$ $$T^{2} + 11T + 19$$
$37$ $$T^{2} - 6T - 36$$
$41$ $$T^{2} + 9T + 19$$
$43$ $$T^{2} + 18T + 76$$
$47$ $$T^{2} - 10T - 20$$
$53$ $$(T - 2)^{2}$$
$59$ $$(T + 6)^{2}$$
$61$ $$T^{2} + T - 11$$
$67$ $$T^{2} + 6T + 4$$
$71$ $$T^{2} - 3T + 1$$
$73$ $$T^{2} - 24T + 124$$
$79$ $$T^{2} + 2T - 44$$
$83$ $$T^{2} + 2T - 44$$
$89$ $$T^{2} + 6T - 36$$
$97$ $$T^{2} - 3T - 209$$