Properties

Label 1150.2.a.f.1.1
Level $1150$
Weight $2$
Character 1150.1
Self dual yes
Analytic conductor $9.183$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1150,2,Mod(1,1150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1150.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1150.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,-2,1,0,-2,-1,1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.18279623245\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1150.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -2.00000 q^{3} +1.00000 q^{4} -2.00000 q^{6} -1.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} +5.00000 q^{11} -2.00000 q^{12} -7.00000 q^{13} -1.00000 q^{14} +1.00000 q^{16} +1.00000 q^{18} -7.00000 q^{19} +2.00000 q^{21} +5.00000 q^{22} +1.00000 q^{23} -2.00000 q^{24} -7.00000 q^{26} +4.00000 q^{27} -1.00000 q^{28} +5.00000 q^{29} -10.0000 q^{31} +1.00000 q^{32} -10.0000 q^{33} +1.00000 q^{36} -2.00000 q^{37} -7.00000 q^{38} +14.0000 q^{39} +3.00000 q^{41} +2.00000 q^{42} -9.00000 q^{43} +5.00000 q^{44} +1.00000 q^{46} -8.00000 q^{47} -2.00000 q^{48} -6.00000 q^{49} -7.00000 q^{52} -4.00000 q^{53} +4.00000 q^{54} -1.00000 q^{56} +14.0000 q^{57} +5.00000 q^{58} -2.00000 q^{59} -6.00000 q^{61} -10.0000 q^{62} -1.00000 q^{63} +1.00000 q^{64} -10.0000 q^{66} -8.00000 q^{67} -2.00000 q^{69} -2.00000 q^{71} +1.00000 q^{72} +7.00000 q^{73} -2.00000 q^{74} -7.00000 q^{76} -5.00000 q^{77} +14.0000 q^{78} +1.00000 q^{79} -11.0000 q^{81} +3.00000 q^{82} -17.0000 q^{83} +2.00000 q^{84} -9.00000 q^{86} -10.0000 q^{87} +5.00000 q^{88} +6.00000 q^{89} +7.00000 q^{91} +1.00000 q^{92} +20.0000 q^{93} -8.00000 q^{94} -2.00000 q^{96} -4.00000 q^{97} -6.00000 q^{98} +5.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −2.00000 −1.15470 −0.577350 0.816497i \(-0.695913\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −2.00000 −0.816497
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) −2.00000 −0.577350
\(13\) −7.00000 −1.94145 −0.970725 0.240192i \(-0.922790\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 1.00000 0.235702
\(19\) −7.00000 −1.60591 −0.802955 0.596040i \(-0.796740\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 5.00000 1.06600
\(23\) 1.00000 0.208514
\(24\) −2.00000 −0.408248
\(25\) 0 0
\(26\) −7.00000 −1.37281
\(27\) 4.00000 0.769800
\(28\) −1.00000 −0.188982
\(29\) 5.00000 0.928477 0.464238 0.885710i \(-0.346328\pi\)
0.464238 + 0.885710i \(0.346328\pi\)
\(30\) 0 0
\(31\) −10.0000 −1.79605 −0.898027 0.439941i \(-0.854999\pi\)
−0.898027 + 0.439941i \(0.854999\pi\)
\(32\) 1.00000 0.176777
\(33\) −10.0000 −1.74078
\(34\) 0 0
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) −7.00000 −1.13555
\(39\) 14.0000 2.24179
\(40\) 0 0
\(41\) 3.00000 0.468521 0.234261 0.972174i \(-0.424733\pi\)
0.234261 + 0.972174i \(0.424733\pi\)
\(42\) 2.00000 0.308607
\(43\) −9.00000 −1.37249 −0.686244 0.727372i \(-0.740742\pi\)
−0.686244 + 0.727372i \(0.740742\pi\)
\(44\) 5.00000 0.753778
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) −2.00000 −0.288675
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) −7.00000 −0.970725
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 4.00000 0.544331
\(55\) 0 0
\(56\) −1.00000 −0.133631
\(57\) 14.0000 1.85435
\(58\) 5.00000 0.656532
\(59\) −2.00000 −0.260378 −0.130189 0.991489i \(-0.541558\pi\)
−0.130189 + 0.991489i \(0.541558\pi\)
\(60\) 0 0
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) −10.0000 −1.27000
\(63\) −1.00000 −0.125988
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −10.0000 −1.23091
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 0 0
\(69\) −2.00000 −0.240772
\(70\) 0 0
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 1.00000 0.117851
\(73\) 7.00000 0.819288 0.409644 0.912245i \(-0.365653\pi\)
0.409644 + 0.912245i \(0.365653\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) −7.00000 −0.802955
\(77\) −5.00000 −0.569803
\(78\) 14.0000 1.58519
\(79\) 1.00000 0.112509 0.0562544 0.998416i \(-0.482084\pi\)
0.0562544 + 0.998416i \(0.482084\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 3.00000 0.331295
\(83\) −17.0000 −1.86599 −0.932996 0.359886i \(-0.882816\pi\)
−0.932996 + 0.359886i \(0.882816\pi\)
\(84\) 2.00000 0.218218
\(85\) 0 0
\(86\) −9.00000 −0.970495
\(87\) −10.0000 −1.07211
\(88\) 5.00000 0.533002
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 7.00000 0.733799
\(92\) 1.00000 0.104257
\(93\) 20.0000 2.07390
\(94\) −8.00000 −0.825137
\(95\) 0 0
\(96\) −2.00000 −0.204124
\(97\) −4.00000 −0.406138 −0.203069 0.979164i \(-0.565092\pi\)
−0.203069 + 0.979164i \(0.565092\pi\)
\(98\) −6.00000 −0.606092
\(99\) 5.00000 0.502519
\(100\) 0 0
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) 0 0
\(103\) 5.00000 0.492665 0.246332 0.969185i \(-0.420775\pi\)
0.246332 + 0.969185i \(0.420775\pi\)
\(104\) −7.00000 −0.686406
\(105\) 0 0
\(106\) −4.00000 −0.388514
\(107\) 16.0000 1.54678 0.773389 0.633932i \(-0.218560\pi\)
0.773389 + 0.633932i \(0.218560\pi\)
\(108\) 4.00000 0.384900
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 4.00000 0.379663
\(112\) −1.00000 −0.0944911
\(113\) 16.0000 1.50515 0.752577 0.658505i \(-0.228811\pi\)
0.752577 + 0.658505i \(0.228811\pi\)
\(114\) 14.0000 1.31122
\(115\) 0 0
\(116\) 5.00000 0.464238
\(117\) −7.00000 −0.647150
\(118\) −2.00000 −0.184115
\(119\) 0 0
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) −6.00000 −0.543214
\(123\) −6.00000 −0.541002
\(124\) −10.0000 −0.898027
\(125\) 0 0
\(126\) −1.00000 −0.0890871
\(127\) 10.0000 0.887357 0.443678 0.896186i \(-0.353673\pi\)
0.443678 + 0.896186i \(0.353673\pi\)
\(128\) 1.00000 0.0883883
\(129\) 18.0000 1.58481
\(130\) 0 0
\(131\) 10.0000 0.873704 0.436852 0.899533i \(-0.356093\pi\)
0.436852 + 0.899533i \(0.356093\pi\)
\(132\) −10.0000 −0.870388
\(133\) 7.00000 0.606977
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) −2.00000 −0.170251
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 16.0000 1.34744
\(142\) −2.00000 −0.167836
\(143\) −35.0000 −2.92685
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 7.00000 0.579324
\(147\) 12.0000 0.989743
\(148\) −2.00000 −0.164399
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) −22.0000 −1.79033 −0.895167 0.445730i \(-0.852944\pi\)
−0.895167 + 0.445730i \(0.852944\pi\)
\(152\) −7.00000 −0.567775
\(153\) 0 0
\(154\) −5.00000 −0.402911
\(155\) 0 0
\(156\) 14.0000 1.12090
\(157\) 8.00000 0.638470 0.319235 0.947676i \(-0.396574\pi\)
0.319235 + 0.947676i \(0.396574\pi\)
\(158\) 1.00000 0.0795557
\(159\) 8.00000 0.634441
\(160\) 0 0
\(161\) −1.00000 −0.0788110
\(162\) −11.0000 −0.864242
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 3.00000 0.234261
\(165\) 0 0
\(166\) −17.0000 −1.31946
\(167\) 14.0000 1.08335 0.541676 0.840587i \(-0.317790\pi\)
0.541676 + 0.840587i \(0.317790\pi\)
\(168\) 2.00000 0.154303
\(169\) 36.0000 2.76923
\(170\) 0 0
\(171\) −7.00000 −0.535303
\(172\) −9.00000 −0.686244
\(173\) −1.00000 −0.0760286 −0.0380143 0.999277i \(-0.512103\pi\)
−0.0380143 + 0.999277i \(0.512103\pi\)
\(174\) −10.0000 −0.758098
\(175\) 0 0
\(176\) 5.00000 0.376889
\(177\) 4.00000 0.300658
\(178\) 6.00000 0.449719
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) 16.0000 1.18927 0.594635 0.803996i \(-0.297296\pi\)
0.594635 + 0.803996i \(0.297296\pi\)
\(182\) 7.00000 0.518875
\(183\) 12.0000 0.887066
\(184\) 1.00000 0.0737210
\(185\) 0 0
\(186\) 20.0000 1.46647
\(187\) 0 0
\(188\) −8.00000 −0.583460
\(189\) −4.00000 −0.290957
\(190\) 0 0
\(191\) −13.0000 −0.940647 −0.470323 0.882494i \(-0.655863\pi\)
−0.470323 + 0.882494i \(0.655863\pi\)
\(192\) −2.00000 −0.144338
\(193\) 22.0000 1.58359 0.791797 0.610784i \(-0.209146\pi\)
0.791797 + 0.610784i \(0.209146\pi\)
\(194\) −4.00000 −0.287183
\(195\) 0 0
\(196\) −6.00000 −0.428571
\(197\) −5.00000 −0.356235 −0.178118 0.984009i \(-0.557001\pi\)
−0.178118 + 0.984009i \(0.557001\pi\)
\(198\) 5.00000 0.355335
\(199\) −23.0000 −1.63043 −0.815213 0.579161i \(-0.803380\pi\)
−0.815213 + 0.579161i \(0.803380\pi\)
\(200\) 0 0
\(201\) 16.0000 1.12855
\(202\) 10.0000 0.703598
\(203\) −5.00000 −0.350931
\(204\) 0 0
\(205\) 0 0
\(206\) 5.00000 0.348367
\(207\) 1.00000 0.0695048
\(208\) −7.00000 −0.485363
\(209\) −35.0000 −2.42100
\(210\) 0 0
\(211\) −14.0000 −0.963800 −0.481900 0.876226i \(-0.660053\pi\)
−0.481900 + 0.876226i \(0.660053\pi\)
\(212\) −4.00000 −0.274721
\(213\) 4.00000 0.274075
\(214\) 16.0000 1.09374
\(215\) 0 0
\(216\) 4.00000 0.272166
\(217\) 10.0000 0.678844
\(218\) −2.00000 −0.135457
\(219\) −14.0000 −0.946032
\(220\) 0 0
\(221\) 0 0
\(222\) 4.00000 0.268462
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 16.0000 1.06430
\(227\) −20.0000 −1.32745 −0.663723 0.747978i \(-0.731025\pi\)
−0.663723 + 0.747978i \(0.731025\pi\)
\(228\) 14.0000 0.927173
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) 10.0000 0.657952
\(232\) 5.00000 0.328266
\(233\) 9.00000 0.589610 0.294805 0.955557i \(-0.404745\pi\)
0.294805 + 0.955557i \(0.404745\pi\)
\(234\) −7.00000 −0.457604
\(235\) 0 0
\(236\) −2.00000 −0.130189
\(237\) −2.00000 −0.129914
\(238\) 0 0
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) 16.0000 1.03065 0.515325 0.856995i \(-0.327671\pi\)
0.515325 + 0.856995i \(0.327671\pi\)
\(242\) 14.0000 0.899954
\(243\) 10.0000 0.641500
\(244\) −6.00000 −0.384111
\(245\) 0 0
\(246\) −6.00000 −0.382546
\(247\) 49.0000 3.11780
\(248\) −10.0000 −0.635001
\(249\) 34.0000 2.15466
\(250\) 0 0
\(251\) 28.0000 1.76734 0.883672 0.468106i \(-0.155064\pi\)
0.883672 + 0.468106i \(0.155064\pi\)
\(252\) −1.00000 −0.0629941
\(253\) 5.00000 0.314347
\(254\) 10.0000 0.627456
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 18.0000 1.12063
\(259\) 2.00000 0.124274
\(260\) 0 0
\(261\) 5.00000 0.309492
\(262\) 10.0000 0.617802
\(263\) 8.00000 0.493301 0.246651 0.969104i \(-0.420670\pi\)
0.246651 + 0.969104i \(0.420670\pi\)
\(264\) −10.0000 −0.615457
\(265\) 0 0
\(266\) 7.00000 0.429198
\(267\) −12.0000 −0.734388
\(268\) −8.00000 −0.488678
\(269\) −15.0000 −0.914566 −0.457283 0.889321i \(-0.651177\pi\)
−0.457283 + 0.889321i \(0.651177\pi\)
\(270\) 0 0
\(271\) −20.0000 −1.21491 −0.607457 0.794353i \(-0.707810\pi\)
−0.607457 + 0.794353i \(0.707810\pi\)
\(272\) 0 0
\(273\) −14.0000 −0.847319
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) −2.00000 −0.120386
\(277\) −9.00000 −0.540758 −0.270379 0.962754i \(-0.587149\pi\)
−0.270379 + 0.962754i \(0.587149\pi\)
\(278\) 4.00000 0.239904
\(279\) −10.0000 −0.598684
\(280\) 0 0
\(281\) 8.00000 0.477240 0.238620 0.971113i \(-0.423305\pi\)
0.238620 + 0.971113i \(0.423305\pi\)
\(282\) 16.0000 0.952786
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) −2.00000 −0.118678
\(285\) 0 0
\(286\) −35.0000 −2.06959
\(287\) −3.00000 −0.177084
\(288\) 1.00000 0.0589256
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 8.00000 0.468968
\(292\) 7.00000 0.409644
\(293\) 16.0000 0.934730 0.467365 0.884064i \(-0.345203\pi\)
0.467365 + 0.884064i \(0.345203\pi\)
\(294\) 12.0000 0.699854
\(295\) 0 0
\(296\) −2.00000 −0.116248
\(297\) 20.0000 1.16052
\(298\) −10.0000 −0.579284
\(299\) −7.00000 −0.404820
\(300\) 0 0
\(301\) 9.00000 0.518751
\(302\) −22.0000 −1.26596
\(303\) −20.0000 −1.14897
\(304\) −7.00000 −0.401478
\(305\) 0 0
\(306\) 0 0
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) −5.00000 −0.284901
\(309\) −10.0000 −0.568880
\(310\) 0 0
\(311\) 34.0000 1.92796 0.963982 0.265969i \(-0.0856919\pi\)
0.963982 + 0.265969i \(0.0856919\pi\)
\(312\) 14.0000 0.792594
\(313\) 34.0000 1.92179 0.960897 0.276907i \(-0.0893093\pi\)
0.960897 + 0.276907i \(0.0893093\pi\)
\(314\) 8.00000 0.451466
\(315\) 0 0
\(316\) 1.00000 0.0562544
\(317\) −21.0000 −1.17948 −0.589739 0.807594i \(-0.700769\pi\)
−0.589739 + 0.807594i \(0.700769\pi\)
\(318\) 8.00000 0.448618
\(319\) 25.0000 1.39973
\(320\) 0 0
\(321\) −32.0000 −1.78607
\(322\) −1.00000 −0.0557278
\(323\) 0 0
\(324\) −11.0000 −0.611111
\(325\) 0 0
\(326\) −4.00000 −0.221540
\(327\) 4.00000 0.221201
\(328\) 3.00000 0.165647
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) −30.0000 −1.64895 −0.824475 0.565899i \(-0.808529\pi\)
−0.824475 + 0.565899i \(0.808529\pi\)
\(332\) −17.0000 −0.932996
\(333\) −2.00000 −0.109599
\(334\) 14.0000 0.766046
\(335\) 0 0
\(336\) 2.00000 0.109109
\(337\) −16.0000 −0.871576 −0.435788 0.900049i \(-0.643530\pi\)
−0.435788 + 0.900049i \(0.643530\pi\)
\(338\) 36.0000 1.95814
\(339\) −32.0000 −1.73800
\(340\) 0 0
\(341\) −50.0000 −2.70765
\(342\) −7.00000 −0.378517
\(343\) 13.0000 0.701934
\(344\) −9.00000 −0.485247
\(345\) 0 0
\(346\) −1.00000 −0.0537603
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) −10.0000 −0.536056
\(349\) −27.0000 −1.44528 −0.722638 0.691226i \(-0.757071\pi\)
−0.722638 + 0.691226i \(0.757071\pi\)
\(350\) 0 0
\(351\) −28.0000 −1.49453
\(352\) 5.00000 0.266501
\(353\) −5.00000 −0.266123 −0.133062 0.991108i \(-0.542481\pi\)
−0.133062 + 0.991108i \(0.542481\pi\)
\(354\) 4.00000 0.212598
\(355\) 0 0
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) −4.00000 −0.211407
\(359\) −31.0000 −1.63612 −0.818059 0.575135i \(-0.804950\pi\)
−0.818059 + 0.575135i \(0.804950\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) 16.0000 0.840941
\(363\) −28.0000 −1.46962
\(364\) 7.00000 0.366900
\(365\) 0 0
\(366\) 12.0000 0.627250
\(367\) 3.00000 0.156599 0.0782994 0.996930i \(-0.475051\pi\)
0.0782994 + 0.996930i \(0.475051\pi\)
\(368\) 1.00000 0.0521286
\(369\) 3.00000 0.156174
\(370\) 0 0
\(371\) 4.00000 0.207670
\(372\) 20.0000 1.03695
\(373\) −24.0000 −1.24267 −0.621336 0.783544i \(-0.713410\pi\)
−0.621336 + 0.783544i \(0.713410\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −8.00000 −0.412568
\(377\) −35.0000 −1.80259
\(378\) −4.00000 −0.205738
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) −20.0000 −1.02463
\(382\) −13.0000 −0.665138
\(383\) 27.0000 1.37964 0.689818 0.723983i \(-0.257691\pi\)
0.689818 + 0.723983i \(0.257691\pi\)
\(384\) −2.00000 −0.102062
\(385\) 0 0
\(386\) 22.0000 1.11977
\(387\) −9.00000 −0.457496
\(388\) −4.00000 −0.203069
\(389\) −8.00000 −0.405616 −0.202808 0.979219i \(-0.565007\pi\)
−0.202808 + 0.979219i \(0.565007\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −6.00000 −0.303046
\(393\) −20.0000 −1.00887
\(394\) −5.00000 −0.251896
\(395\) 0 0
\(396\) 5.00000 0.251259
\(397\) −26.0000 −1.30490 −0.652451 0.757831i \(-0.726259\pi\)
−0.652451 + 0.757831i \(0.726259\pi\)
\(398\) −23.0000 −1.15289
\(399\) −14.0000 −0.700877
\(400\) 0 0
\(401\) 2.00000 0.0998752 0.0499376 0.998752i \(-0.484098\pi\)
0.0499376 + 0.998752i \(0.484098\pi\)
\(402\) 16.0000 0.798007
\(403\) 70.0000 3.48695
\(404\) 10.0000 0.497519
\(405\) 0 0
\(406\) −5.00000 −0.248146
\(407\) −10.0000 −0.495682
\(408\) 0 0
\(409\) −19.0000 −0.939490 −0.469745 0.882802i \(-0.655654\pi\)
−0.469745 + 0.882802i \(0.655654\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 5.00000 0.246332
\(413\) 2.00000 0.0984136
\(414\) 1.00000 0.0491473
\(415\) 0 0
\(416\) −7.00000 −0.343203
\(417\) −8.00000 −0.391762
\(418\) −35.0000 −1.71191
\(419\) 3.00000 0.146560 0.0732798 0.997311i \(-0.476653\pi\)
0.0732798 + 0.997311i \(0.476653\pi\)
\(420\) 0 0
\(421\) −30.0000 −1.46211 −0.731055 0.682318i \(-0.760972\pi\)
−0.731055 + 0.682318i \(0.760972\pi\)
\(422\) −14.0000 −0.681509
\(423\) −8.00000 −0.388973
\(424\) −4.00000 −0.194257
\(425\) 0 0
\(426\) 4.00000 0.193801
\(427\) 6.00000 0.290360
\(428\) 16.0000 0.773389
\(429\) 70.0000 3.37963
\(430\) 0 0
\(431\) 8.00000 0.385346 0.192673 0.981263i \(-0.438284\pi\)
0.192673 + 0.981263i \(0.438284\pi\)
\(432\) 4.00000 0.192450
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 10.0000 0.480015
\(435\) 0 0
\(436\) −2.00000 −0.0957826
\(437\) −7.00000 −0.334855
\(438\) −14.0000 −0.668946
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0 0
\(443\) −26.0000 −1.23530 −0.617649 0.786454i \(-0.711915\pi\)
−0.617649 + 0.786454i \(0.711915\pi\)
\(444\) 4.00000 0.189832
\(445\) 0 0
\(446\) 4.00000 0.189405
\(447\) 20.0000 0.945968
\(448\) −1.00000 −0.0472456
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) 15.0000 0.706322
\(452\) 16.0000 0.752577
\(453\) 44.0000 2.06730
\(454\) −20.0000 −0.938647
\(455\) 0 0
\(456\) 14.0000 0.655610
\(457\) −16.0000 −0.748448 −0.374224 0.927338i \(-0.622091\pi\)
−0.374224 + 0.927338i \(0.622091\pi\)
\(458\) 14.0000 0.654177
\(459\) 0 0
\(460\) 0 0
\(461\) −3.00000 −0.139724 −0.0698620 0.997557i \(-0.522256\pi\)
−0.0698620 + 0.997557i \(0.522256\pi\)
\(462\) 10.0000 0.465242
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) 5.00000 0.232119
\(465\) 0 0
\(466\) 9.00000 0.416917
\(467\) −3.00000 −0.138823 −0.0694117 0.997588i \(-0.522112\pi\)
−0.0694117 + 0.997588i \(0.522112\pi\)
\(468\) −7.00000 −0.323575
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) −16.0000 −0.737241
\(472\) −2.00000 −0.0920575
\(473\) −45.0000 −2.06910
\(474\) −2.00000 −0.0918630
\(475\) 0 0
\(476\) 0 0
\(477\) −4.00000 −0.183147
\(478\) −16.0000 −0.731823
\(479\) 27.0000 1.23366 0.616831 0.787096i \(-0.288416\pi\)
0.616831 + 0.787096i \(0.288416\pi\)
\(480\) 0 0
\(481\) 14.0000 0.638345
\(482\) 16.0000 0.728780
\(483\) 2.00000 0.0910032
\(484\) 14.0000 0.636364
\(485\) 0 0
\(486\) 10.0000 0.453609
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) −6.00000 −0.271607
\(489\) 8.00000 0.361773
\(490\) 0 0
\(491\) −6.00000 −0.270776 −0.135388 0.990793i \(-0.543228\pi\)
−0.135388 + 0.990793i \(0.543228\pi\)
\(492\) −6.00000 −0.270501
\(493\) 0 0
\(494\) 49.0000 2.20461
\(495\) 0 0
\(496\) −10.0000 −0.449013
\(497\) 2.00000 0.0897123
\(498\) 34.0000 1.52358
\(499\) −16.0000 −0.716258 −0.358129 0.933672i \(-0.616585\pi\)
−0.358129 + 0.933672i \(0.616585\pi\)
\(500\) 0 0
\(501\) −28.0000 −1.25095
\(502\) 28.0000 1.24970
\(503\) 9.00000 0.401290 0.200645 0.979664i \(-0.435696\pi\)
0.200645 + 0.979664i \(0.435696\pi\)
\(504\) −1.00000 −0.0445435
\(505\) 0 0
\(506\) 5.00000 0.222277
\(507\) −72.0000 −3.19763
\(508\) 10.0000 0.443678
\(509\) 6.00000 0.265945 0.132973 0.991120i \(-0.457548\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(510\) 0 0
\(511\) −7.00000 −0.309662
\(512\) 1.00000 0.0441942
\(513\) −28.0000 −1.23623
\(514\) 18.0000 0.793946
\(515\) 0 0
\(516\) 18.0000 0.792406
\(517\) −40.0000 −1.75920
\(518\) 2.00000 0.0878750
\(519\) 2.00000 0.0877903
\(520\) 0 0
\(521\) 30.0000 1.31432 0.657162 0.753749i \(-0.271757\pi\)
0.657162 + 0.753749i \(0.271757\pi\)
\(522\) 5.00000 0.218844
\(523\) −7.00000 −0.306089 −0.153044 0.988219i \(-0.548908\pi\)
−0.153044 + 0.988219i \(0.548908\pi\)
\(524\) 10.0000 0.436852
\(525\) 0 0
\(526\) 8.00000 0.348817
\(527\) 0 0
\(528\) −10.0000 −0.435194
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) −2.00000 −0.0867926
\(532\) 7.00000 0.303488
\(533\) −21.0000 −0.909611
\(534\) −12.0000 −0.519291
\(535\) 0 0
\(536\) −8.00000 −0.345547
\(537\) 8.00000 0.345225
\(538\) −15.0000 −0.646696
\(539\) −30.0000 −1.29219
\(540\) 0 0
\(541\) −11.0000 −0.472927 −0.236463 0.971640i \(-0.575988\pi\)
−0.236463 + 0.971640i \(0.575988\pi\)
\(542\) −20.0000 −0.859074
\(543\) −32.0000 −1.37325
\(544\) 0 0
\(545\) 0 0
\(546\) −14.0000 −0.599145
\(547\) −16.0000 −0.684111 −0.342055 0.939680i \(-0.611123\pi\)
−0.342055 + 0.939680i \(0.611123\pi\)
\(548\) −6.00000 −0.256307
\(549\) −6.00000 −0.256074
\(550\) 0 0
\(551\) −35.0000 −1.49105
\(552\) −2.00000 −0.0851257
\(553\) −1.00000 −0.0425243
\(554\) −9.00000 −0.382373
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) 38.0000 1.61011 0.805056 0.593199i \(-0.202135\pi\)
0.805056 + 0.593199i \(0.202135\pi\)
\(558\) −10.0000 −0.423334
\(559\) 63.0000 2.66462
\(560\) 0 0
\(561\) 0 0
\(562\) 8.00000 0.337460
\(563\) 15.0000 0.632175 0.316087 0.948730i \(-0.397631\pi\)
0.316087 + 0.948730i \(0.397631\pi\)
\(564\) 16.0000 0.673722
\(565\) 0 0
\(566\) 4.00000 0.168133
\(567\) 11.0000 0.461957
\(568\) −2.00000 −0.0839181
\(569\) −32.0000 −1.34151 −0.670755 0.741679i \(-0.734030\pi\)
−0.670755 + 0.741679i \(0.734030\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) −35.0000 −1.46342
\(573\) 26.0000 1.08617
\(574\) −3.00000 −0.125218
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) −17.0000 −0.707719 −0.353860 0.935299i \(-0.615131\pi\)
−0.353860 + 0.935299i \(0.615131\pi\)
\(578\) −17.0000 −0.707107
\(579\) −44.0000 −1.82858
\(580\) 0 0
\(581\) 17.0000 0.705279
\(582\) 8.00000 0.331611
\(583\) −20.0000 −0.828315
\(584\) 7.00000 0.289662
\(585\) 0 0
\(586\) 16.0000 0.660954
\(587\) −18.0000 −0.742940 −0.371470 0.928445i \(-0.621146\pi\)
−0.371470 + 0.928445i \(0.621146\pi\)
\(588\) 12.0000 0.494872
\(589\) 70.0000 2.88430
\(590\) 0 0
\(591\) 10.0000 0.411345
\(592\) −2.00000 −0.0821995
\(593\) −15.0000 −0.615976 −0.307988 0.951390i \(-0.599656\pi\)
−0.307988 + 0.951390i \(0.599656\pi\)
\(594\) 20.0000 0.820610
\(595\) 0 0
\(596\) −10.0000 −0.409616
\(597\) 46.0000 1.88265
\(598\) −7.00000 −0.286251
\(599\) 2.00000 0.0817178 0.0408589 0.999165i \(-0.486991\pi\)
0.0408589 + 0.999165i \(0.486991\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 9.00000 0.366813
\(603\) −8.00000 −0.325785
\(604\) −22.0000 −0.895167
\(605\) 0 0
\(606\) −20.0000 −0.812444
\(607\) 48.0000 1.94826 0.974130 0.225989i \(-0.0725612\pi\)
0.974130 + 0.225989i \(0.0725612\pi\)
\(608\) −7.00000 −0.283887
\(609\) 10.0000 0.405220
\(610\) 0 0
\(611\) 56.0000 2.26552
\(612\) 0 0
\(613\) 14.0000 0.565455 0.282727 0.959200i \(-0.408761\pi\)
0.282727 + 0.959200i \(0.408761\pi\)
\(614\) −4.00000 −0.161427
\(615\) 0 0
\(616\) −5.00000 −0.201456
\(617\) −48.0000 −1.93241 −0.966204 0.257780i \(-0.917009\pi\)
−0.966204 + 0.257780i \(0.917009\pi\)
\(618\) −10.0000 −0.402259
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) 4.00000 0.160514
\(622\) 34.0000 1.36328
\(623\) −6.00000 −0.240385
\(624\) 14.0000 0.560449
\(625\) 0 0
\(626\) 34.0000 1.35891
\(627\) 70.0000 2.79553
\(628\) 8.00000 0.319235
\(629\) 0 0
\(630\) 0 0
\(631\) −5.00000 −0.199047 −0.0995234 0.995035i \(-0.531732\pi\)
−0.0995234 + 0.995035i \(0.531732\pi\)
\(632\) 1.00000 0.0397779
\(633\) 28.0000 1.11290
\(634\) −21.0000 −0.834017
\(635\) 0 0
\(636\) 8.00000 0.317221
\(637\) 42.0000 1.66410
\(638\) 25.0000 0.989759
\(639\) −2.00000 −0.0791188
\(640\) 0 0
\(641\) −24.0000 −0.947943 −0.473972 0.880540i \(-0.657180\pi\)
−0.473972 + 0.880540i \(0.657180\pi\)
\(642\) −32.0000 −1.26294
\(643\) −37.0000 −1.45914 −0.729569 0.683907i \(-0.760279\pi\)
−0.729569 + 0.683907i \(0.760279\pi\)
\(644\) −1.00000 −0.0394055
\(645\) 0 0
\(646\) 0 0
\(647\) 28.0000 1.10079 0.550397 0.834903i \(-0.314476\pi\)
0.550397 + 0.834903i \(0.314476\pi\)
\(648\) −11.0000 −0.432121
\(649\) −10.0000 −0.392534
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) −4.00000 −0.156652
\(653\) 33.0000 1.29139 0.645695 0.763596i \(-0.276568\pi\)
0.645695 + 0.763596i \(0.276568\pi\)
\(654\) 4.00000 0.156412
\(655\) 0 0
\(656\) 3.00000 0.117130
\(657\) 7.00000 0.273096
\(658\) 8.00000 0.311872
\(659\) 27.0000 1.05177 0.525885 0.850555i \(-0.323734\pi\)
0.525885 + 0.850555i \(0.323734\pi\)
\(660\) 0 0
\(661\) −16.0000 −0.622328 −0.311164 0.950356i \(-0.600719\pi\)
−0.311164 + 0.950356i \(0.600719\pi\)
\(662\) −30.0000 −1.16598
\(663\) 0 0
\(664\) −17.0000 −0.659728
\(665\) 0 0
\(666\) −2.00000 −0.0774984
\(667\) 5.00000 0.193601
\(668\) 14.0000 0.541676
\(669\) −8.00000 −0.309298
\(670\) 0 0
\(671\) −30.0000 −1.15814
\(672\) 2.00000 0.0771517
\(673\) 1.00000 0.0385472 0.0192736 0.999814i \(-0.493865\pi\)
0.0192736 + 0.999814i \(0.493865\pi\)
\(674\) −16.0000 −0.616297
\(675\) 0 0
\(676\) 36.0000 1.38462
\(677\) −22.0000 −0.845529 −0.422764 0.906240i \(-0.638940\pi\)
−0.422764 + 0.906240i \(0.638940\pi\)
\(678\) −32.0000 −1.22895
\(679\) 4.00000 0.153506
\(680\) 0 0
\(681\) 40.0000 1.53280
\(682\) −50.0000 −1.91460
\(683\) −6.00000 −0.229584 −0.114792 0.993390i \(-0.536620\pi\)
−0.114792 + 0.993390i \(0.536620\pi\)
\(684\) −7.00000 −0.267652
\(685\) 0 0
\(686\) 13.0000 0.496342
\(687\) −28.0000 −1.06827
\(688\) −9.00000 −0.343122
\(689\) 28.0000 1.06672
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) −1.00000 −0.0380143
\(693\) −5.00000 −0.189934
\(694\) 12.0000 0.455514
\(695\) 0 0
\(696\) −10.0000 −0.379049
\(697\) 0 0
\(698\) −27.0000 −1.02197
\(699\) −18.0000 −0.680823
\(700\) 0 0
\(701\) 12.0000 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(702\) −28.0000 −1.05679
\(703\) 14.0000 0.528020
\(704\) 5.00000 0.188445
\(705\) 0 0
\(706\) −5.00000 −0.188177
\(707\) −10.0000 −0.376089
\(708\) 4.00000 0.150329
\(709\) 34.0000 1.27690 0.638448 0.769665i \(-0.279577\pi\)
0.638448 + 0.769665i \(0.279577\pi\)
\(710\) 0 0
\(711\) 1.00000 0.0375029
\(712\) 6.00000 0.224860
\(713\) −10.0000 −0.374503
\(714\) 0 0
\(715\) 0 0
\(716\) −4.00000 −0.149487
\(717\) 32.0000 1.19506
\(718\) −31.0000 −1.15691
\(719\) −50.0000 −1.86469 −0.932343 0.361576i \(-0.882239\pi\)
−0.932343 + 0.361576i \(0.882239\pi\)
\(720\) 0 0
\(721\) −5.00000 −0.186210
\(722\) 30.0000 1.11648
\(723\) −32.0000 −1.19009
\(724\) 16.0000 0.594635
\(725\) 0 0
\(726\) −28.0000 −1.03918
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 7.00000 0.259437
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 0 0
\(732\) 12.0000 0.443533
\(733\) −2.00000 −0.0738717 −0.0369358 0.999318i \(-0.511760\pi\)
−0.0369358 + 0.999318i \(0.511760\pi\)
\(734\) 3.00000 0.110732
\(735\) 0 0
\(736\) 1.00000 0.0368605
\(737\) −40.0000 −1.47342
\(738\) 3.00000 0.110432
\(739\) 2.00000 0.0735712 0.0367856 0.999323i \(-0.488288\pi\)
0.0367856 + 0.999323i \(0.488288\pi\)
\(740\) 0 0
\(741\) −98.0000 −3.60012
\(742\) 4.00000 0.146845
\(743\) 7.00000 0.256805 0.128403 0.991722i \(-0.459015\pi\)
0.128403 + 0.991722i \(0.459015\pi\)
\(744\) 20.0000 0.733236
\(745\) 0 0
\(746\) −24.0000 −0.878702
\(747\) −17.0000 −0.621997
\(748\) 0 0
\(749\) −16.0000 −0.584627
\(750\) 0 0
\(751\) −1.00000 −0.0364905 −0.0182453 0.999834i \(-0.505808\pi\)
−0.0182453 + 0.999834i \(0.505808\pi\)
\(752\) −8.00000 −0.291730
\(753\) −56.0000 −2.04075
\(754\) −35.0000 −1.27462
\(755\) 0 0
\(756\) −4.00000 −0.145479
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) −4.00000 −0.145287
\(759\) −10.0000 −0.362977
\(760\) 0 0
\(761\) −15.0000 −0.543750 −0.271875 0.962333i \(-0.587644\pi\)
−0.271875 + 0.962333i \(0.587644\pi\)
\(762\) −20.0000 −0.724524
\(763\) 2.00000 0.0724049
\(764\) −13.0000 −0.470323
\(765\) 0 0
\(766\) 27.0000 0.975550
\(767\) 14.0000 0.505511
\(768\) −2.00000 −0.0721688
\(769\) 50.0000 1.80305 0.901523 0.432731i \(-0.142450\pi\)
0.901523 + 0.432731i \(0.142450\pi\)
\(770\) 0 0
\(771\) −36.0000 −1.29651
\(772\) 22.0000 0.791797
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) −9.00000 −0.323498
\(775\) 0 0
\(776\) −4.00000 −0.143592
\(777\) −4.00000 −0.143499
\(778\) −8.00000 −0.286814
\(779\) −21.0000 −0.752403
\(780\) 0 0
\(781\) −10.0000 −0.357828
\(782\) 0 0
\(783\) 20.0000 0.714742
\(784\) −6.00000 −0.214286
\(785\) 0 0
\(786\) −20.0000 −0.713376
\(787\) −47.0000 −1.67537 −0.837685 0.546154i \(-0.816091\pi\)
−0.837685 + 0.546154i \(0.816091\pi\)
\(788\) −5.00000 −0.178118
\(789\) −16.0000 −0.569615
\(790\) 0 0
\(791\) −16.0000 −0.568895
\(792\) 5.00000 0.177667
\(793\) 42.0000 1.49146
\(794\) −26.0000 −0.922705
\(795\) 0 0
\(796\) −23.0000 −0.815213
\(797\) −30.0000 −1.06265 −0.531327 0.847167i \(-0.678307\pi\)
−0.531327 + 0.847167i \(0.678307\pi\)
\(798\) −14.0000 −0.495595
\(799\) 0 0
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 2.00000 0.0706225
\(803\) 35.0000 1.23512
\(804\) 16.0000 0.564276
\(805\) 0 0
\(806\) 70.0000 2.46564
\(807\) 30.0000 1.05605
\(808\) 10.0000 0.351799
\(809\) −15.0000 −0.527372 −0.263686 0.964609i \(-0.584938\pi\)
−0.263686 + 0.964609i \(0.584938\pi\)
\(810\) 0 0
\(811\) −24.0000 −0.842754 −0.421377 0.906886i \(-0.638453\pi\)
−0.421377 + 0.906886i \(0.638453\pi\)
\(812\) −5.00000 −0.175466
\(813\) 40.0000 1.40286
\(814\) −10.0000 −0.350500
\(815\) 0 0
\(816\) 0 0
\(817\) 63.0000 2.20409
\(818\) −19.0000 −0.664319
\(819\) 7.00000 0.244600
\(820\) 0 0
\(821\) 15.0000 0.523504 0.261752 0.965135i \(-0.415700\pi\)
0.261752 + 0.965135i \(0.415700\pi\)
\(822\) 12.0000 0.418548
\(823\) 24.0000 0.836587 0.418294 0.908312i \(-0.362628\pi\)
0.418294 + 0.908312i \(0.362628\pi\)
\(824\) 5.00000 0.174183
\(825\) 0 0
\(826\) 2.00000 0.0695889
\(827\) 9.00000 0.312961 0.156480 0.987681i \(-0.449985\pi\)
0.156480 + 0.987681i \(0.449985\pi\)
\(828\) 1.00000 0.0347524
\(829\) 37.0000 1.28506 0.642532 0.766259i \(-0.277884\pi\)
0.642532 + 0.766259i \(0.277884\pi\)
\(830\) 0 0
\(831\) 18.0000 0.624413
\(832\) −7.00000 −0.242681
\(833\) 0 0
\(834\) −8.00000 −0.277017
\(835\) 0 0
\(836\) −35.0000 −1.21050
\(837\) −40.0000 −1.38260
\(838\) 3.00000 0.103633
\(839\) −21.0000 −0.725001 −0.362500 0.931984i \(-0.618077\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) −30.0000 −1.03387
\(843\) −16.0000 −0.551069
\(844\) −14.0000 −0.481900
\(845\) 0 0
\(846\) −8.00000 −0.275046
\(847\) −14.0000 −0.481046
\(848\) −4.00000 −0.137361
\(849\) −8.00000 −0.274559
\(850\) 0 0
\(851\) −2.00000 −0.0685591
\(852\) 4.00000 0.137038
\(853\) −23.0000 −0.787505 −0.393753 0.919216i \(-0.628823\pi\)
−0.393753 + 0.919216i \(0.628823\pi\)
\(854\) 6.00000 0.205316
\(855\) 0 0
\(856\) 16.0000 0.546869
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 70.0000 2.38976
\(859\) −22.0000 −0.750630 −0.375315 0.926897i \(-0.622466\pi\)
−0.375315 + 0.926897i \(0.622466\pi\)
\(860\) 0 0
\(861\) 6.00000 0.204479
\(862\) 8.00000 0.272481
\(863\) −12.0000 −0.408485 −0.204242 0.978920i \(-0.565473\pi\)
−0.204242 + 0.978920i \(0.565473\pi\)
\(864\) 4.00000 0.136083
\(865\) 0 0
\(866\) −14.0000 −0.475739
\(867\) 34.0000 1.15470
\(868\) 10.0000 0.339422
\(869\) 5.00000 0.169613
\(870\) 0 0
\(871\) 56.0000 1.89749
\(872\) −2.00000 −0.0677285
\(873\) −4.00000 −0.135379
\(874\) −7.00000 −0.236779
\(875\) 0 0
\(876\) −14.0000 −0.473016
\(877\) −38.0000 −1.28317 −0.641584 0.767052i \(-0.721723\pi\)
−0.641584 + 0.767052i \(0.721723\pi\)
\(878\) −8.00000 −0.269987
\(879\) −32.0000 −1.07933
\(880\) 0 0
\(881\) −6.00000 −0.202145 −0.101073 0.994879i \(-0.532227\pi\)
−0.101073 + 0.994879i \(0.532227\pi\)
\(882\) −6.00000 −0.202031
\(883\) 40.0000 1.34611 0.673054 0.739594i \(-0.264982\pi\)
0.673054 + 0.739594i \(0.264982\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −26.0000 −0.873487
\(887\) 48.0000 1.61168 0.805841 0.592132i \(-0.201714\pi\)
0.805841 + 0.592132i \(0.201714\pi\)
\(888\) 4.00000 0.134231
\(889\) −10.0000 −0.335389
\(890\) 0 0
\(891\) −55.0000 −1.84257
\(892\) 4.00000 0.133930
\(893\) 56.0000 1.87397
\(894\) 20.0000 0.668900
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) 14.0000 0.467446
\(898\) 30.0000 1.00111
\(899\) −50.0000 −1.66759
\(900\) 0 0
\(901\) 0 0
\(902\) 15.0000 0.499445
\(903\) −18.0000 −0.599002
\(904\) 16.0000 0.532152
\(905\) 0 0
\(906\) 44.0000 1.46180
\(907\) 41.0000 1.36138 0.680691 0.732570i \(-0.261680\pi\)
0.680691 + 0.732570i \(0.261680\pi\)
\(908\) −20.0000 −0.663723
\(909\) 10.0000 0.331679
\(910\) 0 0
\(911\) 33.0000 1.09334 0.546669 0.837349i \(-0.315895\pi\)
0.546669 + 0.837349i \(0.315895\pi\)
\(912\) 14.0000 0.463586
\(913\) −85.0000 −2.81309
\(914\) −16.0000 −0.529233
\(915\) 0 0
\(916\) 14.0000 0.462573
\(917\) −10.0000 −0.330229
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) 8.00000 0.263609
\(922\) −3.00000 −0.0987997
\(923\) 14.0000 0.460816
\(924\) 10.0000 0.328976
\(925\) 0 0
\(926\) 4.00000 0.131448
\(927\) 5.00000 0.164222
\(928\) 5.00000 0.164133
\(929\) −45.0000 −1.47640 −0.738201 0.674581i \(-0.764324\pi\)
−0.738201 + 0.674581i \(0.764324\pi\)
\(930\) 0 0
\(931\) 42.0000 1.37649
\(932\) 9.00000 0.294805
\(933\) −68.0000 −2.22622
\(934\) −3.00000 −0.0981630
\(935\) 0 0
\(936\) −7.00000 −0.228802
\(937\) 36.0000 1.17607 0.588034 0.808836i \(-0.299902\pi\)
0.588034 + 0.808836i \(0.299902\pi\)
\(938\) 8.00000 0.261209
\(939\) −68.0000 −2.21910
\(940\) 0 0
\(941\) 32.0000 1.04317 0.521585 0.853199i \(-0.325341\pi\)
0.521585 + 0.853199i \(0.325341\pi\)
\(942\) −16.0000 −0.521308
\(943\) 3.00000 0.0976934
\(944\) −2.00000 −0.0650945
\(945\) 0 0
\(946\) −45.0000 −1.46308
\(947\) −34.0000 −1.10485 −0.552426 0.833562i \(-0.686298\pi\)
−0.552426 + 0.833562i \(0.686298\pi\)
\(948\) −2.00000 −0.0649570
\(949\) −49.0000 −1.59061
\(950\) 0 0
\(951\) 42.0000 1.36194
\(952\) 0 0
\(953\) 46.0000 1.49009 0.745043 0.667016i \(-0.232429\pi\)
0.745043 + 0.667016i \(0.232429\pi\)
\(954\) −4.00000 −0.129505
\(955\) 0 0
\(956\) −16.0000 −0.517477
\(957\) −50.0000 −1.61627
\(958\) 27.0000 0.872330
\(959\) 6.00000 0.193750
\(960\) 0 0
\(961\) 69.0000 2.22581
\(962\) 14.0000 0.451378
\(963\) 16.0000 0.515593
\(964\) 16.0000 0.515325
\(965\) 0 0
\(966\) 2.00000 0.0643489
\(967\) 8.00000 0.257263 0.128631 0.991692i \(-0.458942\pi\)
0.128631 + 0.991692i \(0.458942\pi\)
\(968\) 14.0000 0.449977
\(969\) 0 0
\(970\) 0 0
\(971\) 39.0000 1.25157 0.625785 0.779996i \(-0.284779\pi\)
0.625785 + 0.779996i \(0.284779\pi\)
\(972\) 10.0000 0.320750
\(973\) −4.00000 −0.128234
\(974\) −8.00000 −0.256337
\(975\) 0 0
\(976\) −6.00000 −0.192055
\(977\) 44.0000 1.40768 0.703842 0.710356i \(-0.251466\pi\)
0.703842 + 0.710356i \(0.251466\pi\)
\(978\) 8.00000 0.255812
\(979\) 30.0000 0.958804
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) −6.00000 −0.191468
\(983\) −51.0000 −1.62665 −0.813324 0.581811i \(-0.802344\pi\)
−0.813324 + 0.581811i \(0.802344\pi\)
\(984\) −6.00000 −0.191273
\(985\) 0 0
\(986\) 0 0
\(987\) −16.0000 −0.509286
\(988\) 49.0000 1.55890
\(989\) −9.00000 −0.286183
\(990\) 0 0
\(991\) 4.00000 0.127064 0.0635321 0.997980i \(-0.479763\pi\)
0.0635321 + 0.997980i \(0.479763\pi\)
\(992\) −10.0000 −0.317500
\(993\) 60.0000 1.90404
\(994\) 2.00000 0.0634361
\(995\) 0 0
\(996\) 34.0000 1.07733
\(997\) −25.0000 −0.791758 −0.395879 0.918303i \(-0.629560\pi\)
−0.395879 + 0.918303i \(0.629560\pi\)
\(998\) −16.0000 −0.506471
\(999\) −8.00000 −0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.2.a.f.1.1 yes 1
4.3 odd 2 9200.2.a.be.1.1 1
5.2 odd 4 1150.2.b.b.599.2 2
5.3 odd 4 1150.2.b.b.599.1 2
5.4 even 2 1150.2.a.c.1.1 1
20.19 odd 2 9200.2.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1150.2.a.c.1.1 1 5.4 even 2
1150.2.a.f.1.1 yes 1 1.1 even 1 trivial
1150.2.b.b.599.1 2 5.3 odd 4
1150.2.b.b.599.2 2 5.2 odd 4
9200.2.a.e.1.1 1 20.19 odd 2
9200.2.a.be.1.1 1 4.3 odd 2