Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [115,7,Mod(114,115)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(115, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 7, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("115.114");
S:= CuspForms(chi, 7);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 115 = 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 115.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(26.4562196163\) |
Analytic rank: | \(0\) |
Dimension: | \(68\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
114.1 | − | 4.94808i | 27.5624i | 39.5165 | 31.3018 | − | 121.017i | 136.381 | −630.980 | − | 512.208i | −30.6878 | −598.804 | − | 154.884i | ||||||||||||
114.2 | 4.94808i | − | 27.5624i | 39.5165 | 31.3018 | + | 121.017i | 136.381 | −630.980 | 512.208i | −30.6878 | −598.804 | + | 154.884i | |||||||||||||
114.3 | − | 15.5178i | 42.9237i | −176.801 | 113.739 | − | 51.8501i | 666.080 | −624.197 | 1750.41i | −1113.45 | −804.597 | − | 1764.97i | |||||||||||||
114.4 | 15.5178i | − | 42.9237i | −176.801 | 113.739 | + | 51.8501i | 666.080 | −624.197 | − | 1750.41i | −1113.45 | −804.597 | + | 1764.97i | ||||||||||||
114.5 | − | 11.1333i | − | 17.3572i | −59.9514 | −121.447 | + | 29.5914i | −193.244 | 504.412 | − | 45.0744i | 427.728 | 329.451 | + | 1352.11i | |||||||||||
114.6 | 11.1333i | 17.3572i | −59.9514 | −121.447 | − | 29.5914i | −193.244 | 504.412 | 45.0744i | 427.728 | 329.451 | − | 1352.11i | ||||||||||||||
114.7 | − | 10.4494i | − | 30.8468i | −45.1897 | 41.2139 | + | 118.010i | −322.330 | 505.735 | − | 196.556i | −222.524 | 1233.13 | − | 430.660i | |||||||||||
114.8 | 10.4494i | 30.8468i | −45.1897 | 41.2139 | − | 118.010i | −322.330 | 505.735 | 196.556i | −222.524 | 1233.13 | + | 430.660i | ||||||||||||||
114.9 | − | 14.4471i | − | 3.70784i | −144.720 | 95.5216 | − | 80.6265i | −53.5677 | 454.114 | 1166.17i | 715.252 | −1164.82 | − | 1380.01i | ||||||||||||
114.10 | 14.4471i | 3.70784i | −144.720 | 95.5216 | + | 80.6265i | −53.5677 | 454.114 | − | 1166.17i | 715.252 | −1164.82 | + | 1380.01i | |||||||||||||
114.11 | − | 8.96761i | − | 45.1542i | −16.4180 | −49.9957 | + | 114.566i | −404.925 | −395.172 | − | 426.697i | −1309.90 | 1027.39 | + | 448.342i | |||||||||||
114.12 | 8.96761i | 45.1542i | −16.4180 | −49.9957 | − | 114.566i | −404.925 | −395.172 | 426.697i | −1309.90 | 1027.39 | − | 448.342i | ||||||||||||||
114.13 | − | 4.35786i | 24.6249i | 45.0090 | 108.536 | + | 62.0072i | 107.312 | −356.743 | − | 475.046i | 122.613 | 270.219 | − | 472.986i | ||||||||||||
114.14 | 4.35786i | − | 24.6249i | 45.0090 | 108.536 | − | 62.0072i | 107.312 | −356.743 | 475.046i | 122.613 | 270.219 | + | 472.986i | |||||||||||||
114.15 | − | 11.1327i | 32.3873i | −59.9364 | 122.088 | + | 26.8239i | 360.557 | 301.337 | − | 45.2393i | −319.938 | 298.622 | − | 1359.17i | ||||||||||||
114.16 | 11.1327i | − | 32.3873i | −59.9364 | 122.088 | − | 26.8239i | 360.557 | 301.337 | 45.2393i | −319.938 | 298.622 | + | 1359.17i | |||||||||||||
114.17 | − | 0.0499926i | 38.9668i | 63.9975 | 95.0255 | + | 81.2106i | 1.94805 | −273.692 | − | 6.39893i | −789.409 | 4.05993 | − | 4.75057i | ||||||||||||
114.18 | 0.0499926i | − | 38.9668i | 63.9975 | 95.0255 | − | 81.2106i | 1.94805 | −273.692 | 6.39893i | −789.409 | 4.05993 | + | 4.75057i | |||||||||||||
114.19 | − | 7.58308i | 53.1699i | 6.49696 | −65.6908 | + | 106.347i | 403.191 | −232.063 | − | 534.584i | −2098.04 | 806.439 | + | 498.138i | ||||||||||||
114.20 | 7.58308i | − | 53.1699i | 6.49696 | −65.6908 | − | 106.347i | 403.191 | −232.063 | 534.584i | −2098.04 | 806.439 | − | 498.138i | |||||||||||||
See all 68 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
23.b | odd | 2 | 1 | inner |
115.c | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 115.7.c.c | ✓ | 68 |
5.b | even | 2 | 1 | inner | 115.7.c.c | ✓ | 68 |
23.b | odd | 2 | 1 | inner | 115.7.c.c | ✓ | 68 |
115.c | odd | 2 | 1 | inner | 115.7.c.c | ✓ | 68 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
115.7.c.c | ✓ | 68 | 1.a | even | 1 | 1 | trivial |
115.7.c.c | ✓ | 68 | 5.b | even | 2 | 1 | inner |
115.7.c.c | ✓ | 68 | 23.b | odd | 2 | 1 | inner |
115.7.c.c | ✓ | 68 | 115.c | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{7}^{\mathrm{new}}(115, [\chi])\):
\( T_{2}^{34} + 1698 T_{2}^{32} + 1305039 T_{2}^{30} + 601112923 T_{2}^{28} + 185197947420 T_{2}^{26} + 40339513938099 T_{2}^{24} + \cdots + 92\!\cdots\!00 \)
|
\( T_{7}^{34} - 2201722 T_{7}^{32} + 2149633757328 T_{7}^{30} + \cdots - 29\!\cdots\!00 \)
|