Properties

Label 115.4.g.a.6.9
Level $115$
Weight $4$
Character 115.6
Analytic conductor $6.785$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(6,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 18]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.g (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78521965066\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 6.9
Character \(\chi\) \(=\) 115.6
Dual form 115.4.g.a.96.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.857442 - 1.87754i) q^{2} +(-4.53505 - 1.33161i) q^{3} +(2.44895 + 2.82624i) q^{4} +(4.20627 - 2.70320i) q^{5} +(-6.38869 + 7.37294i) q^{6} +(1.83914 - 12.7915i) q^{7} +(23.2498 - 6.82676i) q^{8} +(-3.92038 - 2.51948i) q^{9} +O(q^{10})\) \(q+(0.857442 - 1.87754i) q^{2} +(-4.53505 - 1.33161i) q^{3} +(2.44895 + 2.82624i) q^{4} +(4.20627 - 2.70320i) q^{5} +(-6.38869 + 7.37294i) q^{6} +(1.83914 - 12.7915i) q^{7} +(23.2498 - 6.82676i) q^{8} +(-3.92038 - 2.51948i) q^{9} +(-1.46873 - 10.2153i) q^{10} +(-0.872387 - 1.91026i) q^{11} +(-7.34265 - 16.0782i) q^{12} +(-8.93876 - 62.1704i) q^{13} +(-22.4395 - 14.4210i) q^{14} +(-22.6752 + 6.65805i) q^{15} +(2.86022 - 19.8933i) q^{16} +(11.3782 - 13.1312i) q^{17} +(-8.09191 + 5.20035i) q^{18} +(-38.9485 - 44.9490i) q^{19} +(17.9408 + 5.26791i) q^{20} +(-25.3738 + 55.5610i) q^{21} -4.33461 q^{22} +(-65.8584 - 88.4854i) q^{23} -114.530 q^{24} +(10.3854 - 22.7408i) q^{25} +(-124.392 - 36.5247i) q^{26} +(97.9946 + 113.092i) q^{27} +(40.6557 - 26.1279i) q^{28} +(5.07537 - 5.85729i) q^{29} +(-6.94197 + 48.2825i) q^{30} +(12.9633 - 3.80635i) q^{31} +(128.180 + 82.3762i) q^{32} +(1.41259 + 9.82481i) q^{33} +(-14.8981 - 32.6223i) q^{34} +(-26.8421 - 58.7760i) q^{35} +(-2.48018 - 17.2500i) q^{36} +(311.189 + 199.989i) q^{37} +(-117.790 + 34.5861i) q^{38} +(-42.2491 + 293.849i) q^{39} +(79.3408 - 91.5642i) q^{40} +(33.4303 - 21.4843i) q^{41} +(82.5611 + 95.2806i) q^{42} +(213.228 + 62.6094i) q^{43} +(3.26242 - 7.14371i) q^{44} -23.3008 q^{45} +(-222.604 + 47.7804i) q^{46} -85.8592 q^{47} +(-39.4613 + 86.4082i) q^{48} +(168.866 + 49.5837i) q^{49} +(-33.7918 - 38.9978i) q^{50} +(-69.0865 + 44.3992i) q^{51} +(153.818 - 177.515i) q^{52} +(64.1751 - 446.348i) q^{53} +(296.359 - 87.0188i) q^{54} +(-8.83332 - 5.67683i) q^{55} +(-44.5648 - 309.955i) q^{56} +(116.779 + 255.710i) q^{57} +(-6.64544 - 14.5515i) q^{58} +(31.7657 + 220.935i) q^{59} +(-74.3477 - 47.7804i) q^{60} +(-405.433 + 119.046i) q^{61} +(3.96867 - 27.6027i) q^{62} +(-39.4379 + 45.5138i) q^{63} +(399.830 - 256.955i) q^{64} +(-205.658 - 237.342i) q^{65} +(19.6576 + 5.77201i) q^{66} +(-291.985 + 639.358i) q^{67} +64.9767 q^{68} +(180.843 + 488.983i) q^{69} -133.370 q^{70} +(-416.668 + 912.376i) q^{71} +(-108.348 - 31.8138i) q^{72} +(328.131 + 378.684i) q^{73} +(642.313 - 412.790i) q^{74} +(-77.3800 + 89.3013i) q^{75} +(31.6536 - 220.156i) q^{76} +(-26.0395 + 7.64589i) q^{77} +(515.485 + 331.282i) q^{78} +(87.5788 + 609.124i) q^{79} +(-41.7447 - 91.4081i) q^{80} +(-241.547 - 528.913i) q^{81} +(-11.6731 - 81.1882i) q^{82} +(-859.520 - 552.380i) q^{83} +(-219.168 + 64.3535i) q^{84} +(12.3636 - 85.9911i) q^{85} +(300.382 - 346.659i) q^{86} +(-30.8167 + 19.8047i) q^{87} +(-33.3238 - 38.4577i) q^{88} +(-21.6078 - 6.34464i) q^{89} +(-19.9791 + 43.7481i) q^{90} -811.691 q^{91} +(88.7971 - 402.828i) q^{92} -63.8575 q^{93} +(-73.6193 + 161.204i) q^{94} +(-285.334 - 83.7817i) q^{95} +(-471.609 - 544.266i) q^{96} +(1340.02 - 861.181i) q^{97} +(237.888 - 274.538i) q^{98} +(-1.39277 + 9.68691i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9} - 10 q^{10} + 2 q^{11} - 57 q^{12} + 34 q^{13} - 154 q^{14} + 30 q^{15} + 16 q^{16} + 252 q^{17} - 33 q^{18} - 160 q^{19} - 200 q^{20} - 684 q^{21} - 704 q^{22} + 127 q^{23} - 3090 q^{24} - 275 q^{25} - 567 q^{26} + 384 q^{27} - 188 q^{28} + 340 q^{29} - 15 q^{30} + 582 q^{31} - 1364 q^{32} + 1760 q^{33} + 1819 q^{34} + 665 q^{35} + 2794 q^{36} + 312 q^{37} + 3123 q^{38} - 1560 q^{39} - 1205 q^{40} + 1324 q^{41} + 1454 q^{42} - 1740 q^{43} - 369 q^{44} + 3730 q^{45} - 4322 q^{46} - 2858 q^{47} - 2686 q^{48} + 2015 q^{49} - 325 q^{50} - 1426 q^{51} + 1717 q^{52} + 882 q^{53} + 2541 q^{54} + 450 q^{55} + 7755 q^{56} + 3688 q^{57} + 6622 q^{58} + 2605 q^{59} + 1530 q^{60} - 104 q^{61} - 9360 q^{62} - 7618 q^{63} + 3483 q^{64} + 170 q^{65} - 1766 q^{66} - 166 q^{67} - 5018 q^{68} - 1194 q^{69} - 770 q^{70} - 1222 q^{71} + 3303 q^{72} - 922 q^{73} + 1245 q^{74} + 150 q^{75} + 1360 q^{76} - 3093 q^{77} - 1600 q^{78} + 2448 q^{79} + 2115 q^{80} - 1371 q^{81} + 6609 q^{82} + 6704 q^{83} + 3894 q^{84} - 720 q^{85} - 5074 q^{86} - 6324 q^{87} + 1918 q^{88} - 5380 q^{89} - 165 q^{90} + 7828 q^{91} - 16225 q^{92} - 24948 q^{93} - 16490 q^{94} + 685 q^{95} + 675 q^{96} - 4400 q^{97} + 8790 q^{98} - 3626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.857442 1.87754i 0.303152 0.663809i −0.695342 0.718679i \(-0.744747\pi\)
0.998494 + 0.0548697i \(0.0174743\pi\)
\(3\) −4.53505 1.33161i −0.872770 0.256268i −0.185477 0.982649i \(-0.559383\pi\)
−0.687293 + 0.726380i \(0.741201\pi\)
\(4\) 2.44895 + 2.82624i 0.306119 + 0.353280i
\(5\) 4.20627 2.70320i 0.376220 0.241782i
\(6\) −6.38869 + 7.37294i −0.434695 + 0.501665i
\(7\) 1.83914 12.7915i 0.0993041 0.690675i −0.877973 0.478710i \(-0.841105\pi\)
0.977277 0.211965i \(-0.0679864\pi\)
\(8\) 23.2498 6.82676i 1.02751 0.301703i
\(9\) −3.92038 2.51948i −0.145199 0.0933139i
\(10\) −1.46873 10.2153i −0.0464454 0.323035i
\(11\) −0.872387 1.91026i −0.0239122 0.0523605i 0.897299 0.441423i \(-0.145526\pi\)
−0.921211 + 0.389063i \(0.872799\pi\)
\(12\) −7.34265 16.0782i −0.176637 0.386781i
\(13\) −8.93876 62.1704i −0.190705 1.32638i −0.830148 0.557544i \(-0.811744\pi\)
0.639443 0.768839i \(-0.279165\pi\)
\(14\) −22.4395 14.4210i −0.428372 0.275298i
\(15\) −22.6752 + 6.65805i −0.390315 + 0.114607i
\(16\) 2.86022 19.8933i 0.0446909 0.310832i
\(17\) 11.3782 13.1312i 0.162331 0.187340i −0.668757 0.743481i \(-0.733173\pi\)
0.831088 + 0.556141i \(0.187719\pi\)
\(18\) −8.09191 + 5.20035i −0.105960 + 0.0680964i
\(19\) −38.9485 44.9490i −0.470285 0.542737i 0.470206 0.882557i \(-0.344180\pi\)
−0.940491 + 0.339819i \(0.889634\pi\)
\(20\) 17.9408 + 5.26791i 0.200585 + 0.0588970i
\(21\) −25.3738 + 55.5610i −0.263668 + 0.577352i
\(22\) −4.33461 −0.0420064
\(23\) −65.8584 88.4854i −0.597062 0.802195i
\(24\) −114.530 −0.974094
\(25\) 10.3854 22.7408i 0.0830830 0.181926i
\(26\) −124.392 36.5247i −0.938278 0.275503i
\(27\) 97.9946 + 113.092i 0.698484 + 0.806093i
\(28\) 40.6557 26.1279i 0.274400 0.176346i
\(29\) 5.07537 5.85729i 0.0324991 0.0375059i −0.739267 0.673412i \(-0.764828\pi\)
0.771766 + 0.635906i \(0.219373\pi\)
\(30\) −6.94197 + 48.2825i −0.0422475 + 0.293838i
\(31\) 12.9633 3.80635i 0.0751055 0.0220530i −0.243964 0.969784i \(-0.578448\pi\)
0.319069 + 0.947731i \(0.396630\pi\)
\(32\) 128.180 + 82.3762i 0.708101 + 0.455069i
\(33\) 1.41259 + 9.82481i 0.00745155 + 0.0518266i
\(34\) −14.8981 32.6223i −0.0751472 0.164549i
\(35\) −26.8421 58.7760i −0.129633 0.283856i
\(36\) −2.48018 17.2500i −0.0114823 0.0798611i
\(37\) 311.189 + 199.989i 1.38268 + 0.888595i 0.999386 0.0350317i \(-0.0111532\pi\)
0.383294 + 0.923626i \(0.374790\pi\)
\(38\) −117.790 + 34.5861i −0.502842 + 0.147648i
\(39\) −42.2491 + 293.849i −0.173468 + 1.20650i
\(40\) 79.3408 91.5642i 0.313622 0.361939i
\(41\) 33.4303 21.4843i 0.127340 0.0818364i −0.475420 0.879759i \(-0.657704\pi\)
0.602760 + 0.797922i \(0.294068\pi\)
\(42\) 82.5611 + 95.2806i 0.303320 + 0.350050i
\(43\) 213.228 + 62.6094i 0.756209 + 0.222043i 0.637040 0.770831i \(-0.280159\pi\)
0.119169 + 0.992874i \(0.461977\pi\)
\(44\) 3.26242 7.14371i 0.0111779 0.0244762i
\(45\) −23.3008 −0.0771885
\(46\) −222.604 + 47.7804i −0.713505 + 0.153149i
\(47\) −85.8592 −0.266465 −0.133232 0.991085i \(-0.542536\pi\)
−0.133232 + 0.991085i \(0.542536\pi\)
\(48\) −39.4613 + 86.4082i −0.118661 + 0.259832i
\(49\) 168.866 + 49.5837i 0.492322 + 0.144559i
\(50\) −33.7918 38.9978i −0.0955777 0.110303i
\(51\) −69.0865 + 44.3992i −0.189687 + 0.121905i
\(52\) 153.818 177.515i 0.410206 0.473403i
\(53\) 64.1751 446.348i 0.166323 1.15680i −0.720080 0.693891i \(-0.755895\pi\)
0.886404 0.462913i \(-0.153196\pi\)
\(54\) 296.359 87.0188i 0.746839 0.219292i
\(55\) −8.83332 5.67683i −0.0216561 0.0139175i
\(56\) −44.5648 309.955i −0.106343 0.739634i
\(57\) 116.779 + 255.710i 0.271364 + 0.594204i
\(58\) −6.64544 14.5515i −0.0150446 0.0329432i
\(59\) 31.7657 + 220.935i 0.0700939 + 0.487514i 0.994385 + 0.105825i \(0.0337484\pi\)
−0.924291 + 0.381689i \(0.875343\pi\)
\(60\) −74.3477 47.7804i −0.159971 0.102807i
\(61\) −405.433 + 119.046i −0.850989 + 0.249873i −0.678010 0.735053i \(-0.737157\pi\)
−0.172979 + 0.984925i \(0.555339\pi\)
\(62\) 3.96867 27.6027i 0.00812938 0.0565411i
\(63\) −39.4379 + 45.5138i −0.0788685 + 0.0910191i
\(64\) 399.830 256.955i 0.780918 0.501866i
\(65\) −205.658 237.342i −0.392442 0.452903i
\(66\) 19.6576 + 5.77201i 0.0366620 + 0.0107649i
\(67\) −291.985 + 639.358i −0.532413 + 1.16582i 0.432110 + 0.901821i \(0.357769\pi\)
−0.964523 + 0.264001i \(0.914958\pi\)
\(68\) 64.9767 0.115876
\(69\) 180.843 + 488.983i 0.315520 + 0.853140i
\(70\) −133.370 −0.227724
\(71\) −416.668 + 912.376i −0.696471 + 1.52506i 0.147728 + 0.989028i \(0.452804\pi\)
−0.844199 + 0.536030i \(0.819923\pi\)
\(72\) −108.348 31.8138i −0.177346 0.0520736i
\(73\) 328.131 + 378.684i 0.526094 + 0.607145i 0.955146 0.296135i \(-0.0956977\pi\)
−0.429052 + 0.903280i \(0.641152\pi\)
\(74\) 642.313 412.790i 1.00902 0.648457i
\(75\) −77.3800 + 89.3013i −0.119134 + 0.137488i
\(76\) 31.6536 220.156i 0.0477752 0.332284i
\(77\) −26.0395 + 7.64589i −0.0385387 + 0.0113160i
\(78\) 515.485 + 331.282i 0.748298 + 0.480902i
\(79\) 87.5788 + 609.124i 0.124726 + 0.867491i 0.952089 + 0.305822i \(0.0989313\pi\)
−0.827362 + 0.561669i \(0.810160\pi\)
\(80\) −41.7447 91.4081i −0.0583400 0.127747i
\(81\) −241.547 528.913i −0.331340 0.725533i
\(82\) −11.6731 81.1882i −0.0157205 0.109338i
\(83\) −859.520 552.380i −1.13668 0.730501i −0.169737 0.985489i \(-0.554292\pi\)
−0.966944 + 0.254989i \(0.917928\pi\)
\(84\) −219.168 + 64.3535i −0.284681 + 0.0835898i
\(85\) 12.3636 85.9911i 0.0157768 0.109730i
\(86\) 300.382 346.659i 0.376640 0.434666i
\(87\) −30.8167 + 19.8047i −0.0379758 + 0.0244056i
\(88\) −33.3238 38.4577i −0.0403673 0.0465864i
\(89\) −21.6078 6.34464i −0.0257351 0.00755652i 0.268840 0.963185i \(-0.413360\pi\)
−0.294575 + 0.955628i \(0.595178\pi\)
\(90\) −19.9791 + 43.7481i −0.0233998 + 0.0512384i
\(91\) −811.691 −0.935037
\(92\) 88.7971 402.828i 0.100628 0.456497i
\(93\) −63.8575 −0.0712013
\(94\) −73.6193 + 161.204i −0.0807792 + 0.176882i
\(95\) −285.334 83.7817i −0.308155 0.0904823i
\(96\) −471.609 544.266i −0.501389 0.578634i
\(97\) 1340.02 861.181i 1.40267 0.901440i 0.402765 0.915303i \(-0.368049\pi\)
0.999904 + 0.0138630i \(0.00441288\pi\)
\(98\) 237.888 274.538i 0.245208 0.282985i
\(99\) −1.39277 + 9.68691i −0.00141392 + 0.00983405i
\(100\) 89.7042 26.3395i 0.0897042 0.0263395i
\(101\) 186.040 + 119.561i 0.183284 + 0.117790i 0.629066 0.777352i \(-0.283438\pi\)
−0.445781 + 0.895142i \(0.647074\pi\)
\(102\) 24.1234 + 167.782i 0.0234174 + 0.162872i
\(103\) 69.2627 + 151.664i 0.0662588 + 0.145086i 0.939864 0.341549i \(-0.110951\pi\)
−0.873605 + 0.486635i \(0.838224\pi\)
\(104\) −632.247 1384.43i −0.596124 1.30533i
\(105\) 43.4635 + 302.295i 0.0403962 + 0.280962i
\(106\) −783.008 503.209i −0.717476 0.461094i
\(107\) −200.095 + 58.7533i −0.180785 + 0.0530832i −0.370872 0.928684i \(-0.620941\pi\)
0.190087 + 0.981767i \(0.439123\pi\)
\(108\) −79.6406 + 553.912i −0.0709576 + 0.493521i
\(109\) 104.937 121.104i 0.0922126 0.106419i −0.707768 0.706445i \(-0.750298\pi\)
0.799980 + 0.600026i \(0.204843\pi\)
\(110\) −18.2325 + 11.7173i −0.0158037 + 0.0101564i
\(111\) −1144.95 1321.34i −0.979043 1.12988i
\(112\) −249.204 73.1729i −0.210246 0.0617338i
\(113\) −17.0412 + 37.3150i −0.0141867 + 0.0310646i −0.916593 0.399822i \(-0.869072\pi\)
0.902406 + 0.430887i \(0.141799\pi\)
\(114\) 580.236 0.476703
\(115\) −516.212 194.165i −0.418583 0.157443i
\(116\) 28.9834 0.0231987
\(117\) −121.593 + 266.253i −0.0960797 + 0.210385i
\(118\) 442.051 + 129.798i 0.344866 + 0.101262i
\(119\) −147.041 169.695i −0.113271 0.130722i
\(120\) −481.742 + 309.597i −0.366474 + 0.235518i
\(121\) 868.732 1002.57i 0.652691 0.753245i
\(122\) −124.122 + 863.290i −0.0921107 + 0.640644i
\(123\) −180.217 + 52.9164i −0.132111 + 0.0387911i
\(124\) 42.5040 + 27.3157i 0.0307820 + 0.0197824i
\(125\) −17.7894 123.728i −0.0127290 0.0885323i
\(126\) 51.6381 + 113.072i 0.0365102 + 0.0799462i
\(127\) −274.568 601.220i −0.191842 0.420076i 0.789129 0.614227i \(-0.210532\pi\)
−0.980972 + 0.194151i \(0.937805\pi\)
\(128\) 33.8619 + 235.515i 0.0233828 + 0.162631i
\(129\) −883.628 567.873i −0.603094 0.387585i
\(130\) −621.958 + 182.623i −0.419610 + 0.123209i
\(131\) 333.965 2322.77i 0.222738 1.54917i −0.504879 0.863190i \(-0.668463\pi\)
0.727617 0.685984i \(-0.240628\pi\)
\(132\) −24.3079 + 28.0528i −0.0160283 + 0.0184976i
\(133\) −646.596 + 415.542i −0.421556 + 0.270918i
\(134\) 950.058 + 1096.43i 0.612482 + 0.706841i
\(135\) 717.902 + 210.795i 0.457682 + 0.134388i
\(136\) 174.899 382.975i 0.110275 0.241469i
\(137\) 2278.52 1.42093 0.710463 0.703734i \(-0.248485\pi\)
0.710463 + 0.703734i \(0.248485\pi\)
\(138\) 1073.15 + 79.7360i 0.661973 + 0.0491854i
\(139\) 514.710 0.314080 0.157040 0.987592i \(-0.449805\pi\)
0.157040 + 0.987592i \(0.449805\pi\)
\(140\) 100.380 219.802i 0.0605976 0.132690i
\(141\) 389.375 + 114.331i 0.232563 + 0.0682865i
\(142\) 1355.75 + 1564.62i 0.801212 + 0.924648i
\(143\) −110.964 + 71.3120i −0.0648899 + 0.0417022i
\(144\) −61.3337 + 70.7829i −0.0354940 + 0.0409623i
\(145\) 5.51492 38.3571i 0.00315855 0.0219682i
\(146\) 992.347 291.379i 0.562515 0.165169i
\(147\) −699.791 449.729i −0.392638 0.252333i
\(148\) 196.870 + 1369.26i 0.109342 + 0.760489i
\(149\) 611.245 + 1338.44i 0.336075 + 0.735901i 0.999928 0.0119617i \(-0.00380761\pi\)
−0.663854 + 0.747862i \(0.731080\pi\)
\(150\) 101.318 + 221.855i 0.0551503 + 0.120762i
\(151\) 256.644 + 1785.00i 0.138314 + 0.961993i 0.934252 + 0.356614i \(0.116069\pi\)
−0.795938 + 0.605378i \(0.793022\pi\)
\(152\) −1212.40 779.164i −0.646966 0.415780i
\(153\) −77.6908 + 22.8121i −0.0410518 + 0.0120539i
\(154\) −7.97194 + 55.4461i −0.00417141 + 0.0290128i
\(155\) 44.2376 51.0529i 0.0229242 0.0264559i
\(156\) −933.952 + 600.215i −0.479334 + 0.308049i
\(157\) 1643.63 + 1896.85i 0.835516 + 0.964236i 0.999754 0.0221843i \(-0.00706206\pi\)
−0.164238 + 0.986421i \(0.552517\pi\)
\(158\) 1218.75 + 357.856i 0.613659 + 0.180187i
\(159\) −885.399 + 1938.75i −0.441614 + 0.967000i
\(160\) 761.839 0.376429
\(161\) −1252.98 + 679.689i −0.613347 + 0.332715i
\(162\) −1200.17 −0.582061
\(163\) −1207.42 + 2643.88i −0.580200 + 1.27046i 0.360986 + 0.932571i \(0.382440\pi\)
−0.941186 + 0.337889i \(0.890287\pi\)
\(164\) 142.589 + 41.8679i 0.0678922 + 0.0199350i
\(165\) 32.5002 + 37.5072i 0.0153342 + 0.0176966i
\(166\) −1774.10 + 1140.15i −0.829500 + 0.533087i
\(167\) 1936.53 2234.87i 0.897323 1.03557i −0.101846 0.994800i \(-0.532475\pi\)
0.999169 0.0407653i \(-0.0129796\pi\)
\(168\) −210.636 + 1465.00i −0.0967315 + 0.672783i
\(169\) −1677.25 + 492.486i −0.763429 + 0.224163i
\(170\) −150.850 96.9456i −0.0680570 0.0437376i
\(171\) 39.4452 + 274.347i 0.0176400 + 0.122689i
\(172\) 345.236 + 755.961i 0.153046 + 0.335125i
\(173\) −1586.81 3474.63i −0.697358 1.52700i −0.843146 0.537685i \(-0.819299\pi\)
0.145788 0.989316i \(-0.453428\pi\)
\(174\) 10.7605 + 74.8408i 0.00468822 + 0.0326073i
\(175\) −271.788 174.668i −0.117402 0.0754494i
\(176\) −40.4965 + 11.8909i −0.0173440 + 0.00509265i
\(177\) 150.141 1044.25i 0.0637586 0.443451i
\(178\) −30.4398 + 35.1294i −0.0128177 + 0.0147925i
\(179\) −1087.42 + 698.842i −0.454064 + 0.291810i −0.747613 0.664135i \(-0.768800\pi\)
0.293548 + 0.955944i \(0.405164\pi\)
\(180\) −57.0625 65.8537i −0.0236288 0.0272691i
\(181\) 3240.62 + 951.532i 1.33079 + 0.390756i 0.868376 0.495907i \(-0.165164\pi\)
0.462417 + 0.886663i \(0.346982\pi\)
\(182\) −695.978 + 1523.98i −0.283458 + 0.620686i
\(183\) 1997.18 0.806753
\(184\) −2135.26 1607.67i −0.855510 0.644125i
\(185\) 1849.56 0.735038
\(186\) −54.7542 + 119.895i −0.0215848 + 0.0472641i
\(187\) −35.0103 10.2799i −0.0136909 0.00402002i
\(188\) −210.265 242.659i −0.0815699 0.0941367i
\(189\) 1626.84 1045.50i 0.626111 0.402377i
\(190\) −401.961 + 463.888i −0.153481 + 0.177126i
\(191\) −450.514 + 3133.39i −0.170670 + 1.18704i 0.706802 + 0.707411i \(0.250137\pi\)
−0.877473 + 0.479627i \(0.840772\pi\)
\(192\) −2155.41 + 632.886i −0.810174 + 0.237889i
\(193\) −2753.95 1769.86i −1.02712 0.660088i −0.0853493 0.996351i \(-0.527201\pi\)
−0.941768 + 0.336263i \(0.890837\pi\)
\(194\) −467.906 3254.36i −0.173163 1.20438i
\(195\) 616.622 + 1350.21i 0.226447 + 0.495850i
\(196\) 273.410 + 598.685i 0.0996393 + 0.218180i
\(197\) −123.704 860.384i −0.0447390 0.311166i −0.999887 0.0150375i \(-0.995213\pi\)
0.955148 0.296129i \(-0.0956958\pi\)
\(198\) 16.9933 + 10.9209i 0.00609930 + 0.00391978i
\(199\) 926.003 271.899i 0.329862 0.0968563i −0.112608 0.993639i \(-0.535920\pi\)
0.442470 + 0.896783i \(0.354102\pi\)
\(200\) 86.2121 599.618i 0.0304806 0.211997i
\(201\) 2175.54 2510.71i 0.763437 0.881054i
\(202\) 383.999 246.781i 0.133753 0.0859577i
\(203\) −65.5891 75.6939i −0.0226771 0.0261708i
\(204\) −294.672 86.5236i −0.101133 0.0296954i
\(205\) 82.5402 180.738i 0.0281213 0.0615769i
\(206\) 344.144 0.116396
\(207\) 35.2530 + 512.825i 0.0118370 + 0.172192i
\(208\) −1262.34 −0.420805
\(209\) −51.8862 + 113.615i −0.0171724 + 0.0376024i
\(210\) 604.837 + 177.596i 0.198751 + 0.0583586i
\(211\) −485.967 560.835i −0.158556 0.182983i 0.670913 0.741536i \(-0.265902\pi\)
−0.829469 + 0.558553i \(0.811357\pi\)
\(212\) 1418.65 911.709i 0.459590 0.295361i
\(213\) 3104.54 3582.83i 0.998683 1.15254i
\(214\) −61.2588 + 426.064i −0.0195681 + 0.136099i
\(215\) 1066.14 313.047i 0.338187 0.0993006i
\(216\) 3050.41 + 1960.38i 0.960898 + 0.617532i
\(217\) −24.8477 172.820i −0.00777315 0.0540634i
\(218\) −137.400 300.864i −0.0426876 0.0934727i
\(219\) −983.832 2154.29i −0.303567 0.664720i
\(220\) −5.58828 38.8674i −0.00171255 0.0119111i
\(221\) −918.080 590.014i −0.279442 0.179587i
\(222\) −3462.60 + 1016.71i −1.04682 + 0.307374i
\(223\) 162.714 1131.70i 0.0488615 0.339839i −0.950697 0.310122i \(-0.899630\pi\)
0.999558 0.0297175i \(-0.00946075\pi\)
\(224\) 1289.45 1488.11i 0.384622 0.443877i
\(225\) −98.0095 + 62.9869i −0.0290398 + 0.0186628i
\(226\) 55.4484 + 63.9908i 0.0163202 + 0.0188345i
\(227\) −740.935 217.558i −0.216641 0.0636117i 0.171611 0.985165i \(-0.445103\pi\)
−0.388252 + 0.921553i \(0.626921\pi\)
\(228\) −436.712 + 956.266i −0.126851 + 0.277764i
\(229\) −62.5216 −0.0180417 −0.00902084 0.999959i \(-0.502871\pi\)
−0.00902084 + 0.999959i \(0.502871\pi\)
\(230\) −807.174 + 802.722i −0.231406 + 0.230130i
\(231\) 128.272 0.0365353
\(232\) 78.0152 170.829i 0.0220774 0.0483427i
\(233\) −1638.72 481.173i −0.460757 0.135290i 0.0431126 0.999070i \(-0.486273\pi\)
−0.503870 + 0.863780i \(0.668091\pi\)
\(234\) 395.640 + 456.592i 0.110529 + 0.127557i
\(235\) −361.147 + 232.095i −0.100249 + 0.0644264i
\(236\) −546.623 + 630.837i −0.150772 + 0.174000i
\(237\) 413.941 2879.03i 0.113453 0.789083i
\(238\) −444.688 + 130.572i −0.121113 + 0.0355619i
\(239\) −1867.53 1200.19i −0.505442 0.324828i 0.262948 0.964810i \(-0.415305\pi\)
−0.768390 + 0.639982i \(0.778942\pi\)
\(240\) 67.5942 + 470.128i 0.0181799 + 0.126444i
\(241\) 2241.55 + 4908.31i 0.599133 + 1.31192i 0.929763 + 0.368158i \(0.120011\pi\)
−0.330631 + 0.943760i \(0.607261\pi\)
\(242\) −1137.47 2490.72i −0.302147 0.661610i
\(243\) −183.880 1278.91i −0.0485428 0.337623i
\(244\) −1329.34 854.313i −0.348779 0.224147i
\(245\) 844.332 247.918i 0.220173 0.0646487i
\(246\) −55.1729 + 383.736i −0.0142996 + 0.0994558i
\(247\) −2446.35 + 2823.23i −0.630192 + 0.727280i
\(248\) 275.408 176.994i 0.0705179 0.0453191i
\(249\) 3162.41 + 3649.61i 0.804857 + 0.928855i
\(250\) −247.557 72.6892i −0.0626274 0.0183891i
\(251\) 2582.64 5655.19i 0.649461 1.42212i −0.242563 0.970136i \(-0.577988\pi\)
0.892025 0.451987i \(-0.149285\pi\)
\(252\) −225.214 −0.0562983
\(253\) −111.576 + 203.000i −0.0277263 + 0.0504447i
\(254\) −1364.24 −0.337008
\(255\) −170.576 + 373.510i −0.0418898 + 0.0917259i
\(256\) 4119.44 + 1209.58i 1.00572 + 0.295307i
\(257\) −4876.94 5628.29i −1.18372 1.36608i −0.915296 0.402781i \(-0.868044\pi\)
−0.268421 0.963302i \(-0.586502\pi\)
\(258\) −1823.86 + 1172.13i −0.440111 + 0.282842i
\(259\) 3130.48 3612.76i 0.751036 0.866742i
\(260\) 167.139 1162.48i 0.0398674 0.277284i
\(261\) −34.6547 + 10.1755i −0.00821866 + 0.00241322i
\(262\) −4074.74 2618.68i −0.960833 0.617490i
\(263\) 65.1366 + 453.035i 0.0152718 + 0.106218i 0.996032 0.0890009i \(-0.0283674\pi\)
−0.980760 + 0.195219i \(0.937458\pi\)
\(264\) 99.9142 + 218.782i 0.0232928 + 0.0510041i
\(265\) −936.632 2050.94i −0.217120 0.475427i
\(266\) 225.777 + 1570.31i 0.0520423 + 0.361962i
\(267\) 89.5440 + 57.5464i 0.0205244 + 0.0131902i
\(268\) −2522.04 + 740.537i −0.574843 + 0.168789i
\(269\) −810.352 + 5636.12i −0.183673 + 1.27747i 0.664313 + 0.747454i \(0.268724\pi\)
−0.847986 + 0.530019i \(0.822185\pi\)
\(270\) 1011.33 1167.14i 0.227955 0.263074i
\(271\) −3398.40 + 2184.02i −0.761764 + 0.489556i −0.862936 0.505313i \(-0.831377\pi\)
0.101172 + 0.994869i \(0.467741\pi\)
\(272\) −228.678 263.909i −0.0509766 0.0588302i
\(273\) 3681.06 + 1080.86i 0.816072 + 0.239621i
\(274\) 1953.70 4278.00i 0.430756 0.943225i
\(275\) −52.5010 −0.0115125
\(276\) −939.109 + 1708.60i −0.204810 + 0.372629i
\(277\) −6611.73 −1.43415 −0.717076 0.696995i \(-0.754520\pi\)
−0.717076 + 0.696995i \(0.754520\pi\)
\(278\) 441.334 966.388i 0.0952140 0.208490i
\(279\) −60.4109 17.7382i −0.0129631 0.00380631i
\(280\) −1025.32 1183.29i −0.218838 0.252553i
\(281\) 2985.00 1918.34i 0.633702 0.407256i −0.183977 0.982931i \(-0.558897\pi\)
0.817679 + 0.575675i \(0.195261\pi\)
\(282\) 548.527 633.034i 0.115831 0.133676i
\(283\) 1313.76 9137.39i 0.275954 1.91930i −0.104551 0.994520i \(-0.533340\pi\)
0.380504 0.924779i \(-0.375750\pi\)
\(284\) −3598.99 + 1056.76i −0.751975 + 0.220800i
\(285\) 1182.44 + 759.908i 0.245760 + 0.157941i
\(286\) 38.7460 + 269.484i 0.00801084 + 0.0557166i
\(287\) −213.334 467.136i −0.0438770 0.0960772i
\(288\) −294.969 645.892i −0.0603515 0.132151i
\(289\) 656.229 + 4564.17i 0.133570 + 0.928999i
\(290\) −67.2881 43.2435i −0.0136252 0.00875636i
\(291\) −7223.83 + 2121.11i −1.45522 + 0.427291i
\(292\) −266.674 + 1854.76i −0.0534448 + 0.371717i
\(293\) −481.218 + 555.355i −0.0959490 + 0.110731i −0.801693 0.597736i \(-0.796067\pi\)
0.705744 + 0.708467i \(0.250613\pi\)
\(294\) −1444.41 + 928.268i −0.286530 + 0.184142i
\(295\) 730.848 + 843.444i 0.144243 + 0.166465i
\(296\) 8600.37 + 2525.30i 1.68880 + 0.495878i
\(297\) 130.546 285.855i 0.0255051 0.0558485i
\(298\) 3037.07 0.590379
\(299\) −4912.48 + 4885.39i −0.950155 + 0.944915i
\(300\) −441.887 −0.0850411
\(301\) 1193.02 2612.36i 0.228454 0.500245i
\(302\) 3571.45 + 1048.67i 0.680510 + 0.199816i
\(303\) −684.494 789.948i −0.129779 0.149773i
\(304\) −1005.58 + 646.249i −0.189718 + 0.121924i
\(305\) −1383.55 + 1596.71i −0.259744 + 0.299761i
\(306\) −23.7849 + 165.427i −0.00444343 + 0.0309047i
\(307\) −9238.18 + 2712.57i −1.71743 + 0.504283i −0.984405 0.175920i \(-0.943710\pi\)
−0.733024 + 0.680202i \(0.761892\pi\)
\(308\) −85.3786 54.8695i −0.0157951 0.0101509i
\(309\) −112.152 780.035i −0.0206476 0.143607i
\(310\) −57.9225 126.833i −0.0106122 0.0232374i
\(311\) 1235.07 + 2704.42i 0.225191 + 0.493099i 0.988177 0.153315i \(-0.0489950\pi\)
−0.762987 + 0.646414i \(0.776268\pi\)
\(312\) 1023.75 + 7120.35i 0.185765 + 1.29202i
\(313\) 7019.06 + 4510.87i 1.26754 + 0.814600i 0.989298 0.145911i \(-0.0466112\pi\)
0.278244 + 0.960510i \(0.410248\pi\)
\(314\) 4970.72 1459.54i 0.893357 0.262313i
\(315\) −42.8534 + 298.052i −0.00766513 + 0.0533122i
\(316\) −1507.05 + 1739.23i −0.268286 + 0.309618i
\(317\) 5146.97 3307.76i 0.911933 0.586064i 0.00162630 0.999999i \(-0.499482\pi\)
0.910306 + 0.413935i \(0.135846\pi\)
\(318\) 2880.90 + 3324.74i 0.508028 + 0.586295i
\(319\) −15.6167 4.58546i −0.00274096 0.000804817i
\(320\) 987.190 2161.64i 0.172455 0.377624i
\(321\) 985.679 0.171387
\(322\) 201.782 + 2935.31i 0.0349219 + 0.508008i
\(323\) −1033.40 −0.178018
\(324\) 903.300 1977.95i 0.154887 0.339155i
\(325\) −1506.64 442.389i −0.257148 0.0755056i
\(326\) 3928.70 + 4533.96i 0.667455 + 0.770284i
\(327\) −637.159 + 409.477i −0.107752 + 0.0692482i
\(328\) 630.580 727.728i 0.106152 0.122506i
\(329\) −157.907 + 1098.27i −0.0264611 + 0.184041i
\(330\) 98.2882 28.8600i 0.0163957 0.00481422i
\(331\) 7704.43 + 4951.34i 1.27938 + 0.822206i 0.990811 0.135254i \(-0.0431850\pi\)
0.288567 + 0.957460i \(0.406821\pi\)
\(332\) −543.763 3781.96i −0.0898882 0.625186i
\(333\) −716.112 1568.07i −0.117846 0.258047i
\(334\) −2535.59 5552.17i −0.415393 0.909584i
\(335\) 500.148 + 3478.61i 0.0815702 + 0.567333i
\(336\) 1032.71 + 663.685i 0.167676 + 0.107759i
\(337\) 2055.22 603.467i 0.332210 0.0975458i −0.111373 0.993779i \(-0.535525\pi\)
0.443584 + 0.896233i \(0.353707\pi\)
\(338\) −513.487 + 3571.38i −0.0826332 + 0.574726i
\(339\) 126.971 146.533i 0.0203426 0.0234766i
\(340\) 273.309 175.645i 0.0435949 0.0280168i
\(341\) −18.5801 21.4426i −0.00295064 0.00340522i
\(342\) 548.919 + 161.177i 0.0867898 + 0.0254838i
\(343\) 2786.18 6100.89i 0.438600 0.960400i
\(344\) 5384.93 0.844000
\(345\) 2082.49 + 1567.94i 0.324979 + 0.244681i
\(346\) −7884.34 −1.22504
\(347\) −2012.19 + 4406.08i −0.311297 + 0.681644i −0.999017 0.0443313i \(-0.985884\pi\)
0.687720 + 0.725976i \(0.258612\pi\)
\(348\) −131.441 38.5946i −0.0202471 0.00594509i
\(349\) −483.427 557.905i −0.0741469 0.0855701i 0.717464 0.696596i \(-0.245303\pi\)
−0.791611 + 0.611025i \(0.790757\pi\)
\(350\) −560.988 + 360.525i −0.0856745 + 0.0550597i
\(351\) 6155.01 7103.26i 0.935984 1.08018i
\(352\) 45.5376 316.721i 0.00689535 0.0479582i
\(353\) −2985.17 + 876.525i −0.450098 + 0.132161i −0.498922 0.866647i \(-0.666271\pi\)
0.0488244 + 0.998807i \(0.484453\pi\)
\(354\) −1831.88 1177.28i −0.275038 0.176756i
\(355\) 713.721 + 4964.04i 0.106705 + 0.742152i
\(356\) −34.9851 76.6066i −0.00520844 0.0114049i
\(357\) 440.872 + 965.375i 0.0653598 + 0.143118i
\(358\) 379.702 + 2640.89i 0.0560555 + 0.389875i
\(359\) 1472.71 + 946.452i 0.216509 + 0.139142i 0.644400 0.764688i \(-0.277107\pi\)
−0.427892 + 0.903830i \(0.640743\pi\)
\(360\) −541.740 + 159.069i −0.0793117 + 0.0232880i
\(361\) 472.713 3287.79i 0.0689186 0.479339i
\(362\) 4565.18 5268.50i 0.662819 0.764934i
\(363\) −5274.77 + 3389.89i −0.762682 + 0.490146i
\(364\) −1987.79 2294.03i −0.286232 0.330330i
\(365\) 2403.87 + 705.840i 0.344724 + 0.101220i
\(366\) 1712.47 3749.78i 0.244568 0.535530i
\(367\) 7515.57 1.06896 0.534482 0.845180i \(-0.320507\pi\)
0.534482 + 0.845180i \(0.320507\pi\)
\(368\) −1948.63 + 1057.05i −0.276031 + 0.149735i
\(369\) −185.189 −0.0261261
\(370\) 1585.89 3472.61i 0.222828 0.487925i
\(371\) −5591.42 1641.79i −0.782459 0.229751i
\(372\) −156.384 180.477i −0.0217960 0.0251540i
\(373\) −3548.93 + 2280.76i −0.492645 + 0.316604i −0.763268 0.646082i \(-0.776407\pi\)
0.270623 + 0.962685i \(0.412770\pi\)
\(374\) −49.3202 + 56.9186i −0.00681896 + 0.00786949i
\(375\) −84.0814 + 584.799i −0.0115785 + 0.0805304i
\(376\) −1996.21 + 586.140i −0.273794 + 0.0803933i
\(377\) −409.518 263.181i −0.0559449 0.0359536i
\(378\) −568.055 3950.91i −0.0772952 0.537600i
\(379\) −2102.58 4604.01i −0.284966 0.623990i 0.711970 0.702210i \(-0.247803\pi\)
−0.996936 + 0.0782207i \(0.975076\pi\)
\(380\) −461.982 1011.60i −0.0623663 0.136563i
\(381\) 444.588 + 3092.18i 0.0597820 + 0.415793i
\(382\) 5496.77 + 3532.56i 0.736228 + 0.473145i
\(383\) −8130.89 + 2387.44i −1.08478 + 0.318519i −0.774787 0.632222i \(-0.782143\pi\)
−0.309988 + 0.950741i \(0.600325\pi\)
\(384\) 160.049 1113.16i 0.0212694 0.147932i
\(385\) −88.8608 + 102.551i −0.0117630 + 0.0135753i
\(386\) −5684.32 + 3653.09i −0.749545 + 0.481703i
\(387\) −678.192 782.675i −0.0890812 0.102805i
\(388\) 5715.56 + 1678.24i 0.747844 + 0.219587i
\(389\) −4948.15 + 10834.9i −0.644939 + 1.41222i 0.250977 + 0.967993i \(0.419248\pi\)
−0.895915 + 0.444225i \(0.853479\pi\)
\(390\) 3063.79 0.397798
\(391\) −1911.27 142.010i −0.247205 0.0183676i
\(392\) 4264.61 0.549478
\(393\) −4607.57 + 10089.2i −0.591403 + 1.29499i
\(394\) −1721.47 505.470i −0.220118 0.0646325i
\(395\) 2014.97 + 2325.39i 0.256668 + 0.296211i
\(396\) −30.7883 + 19.7865i −0.00390700 + 0.00251088i
\(397\) 7491.73 8645.92i 0.947102 1.09301i −0.0484529 0.998825i \(-0.515429\pi\)
0.995554 0.0941879i \(-0.0300255\pi\)
\(398\) 283.494 1971.74i 0.0357042 0.248328i
\(399\) 3485.68 1023.49i 0.437350 0.128417i
\(400\) −422.684 271.643i −0.0528355 0.0339553i
\(401\) −566.134 3937.55i −0.0705022 0.490354i −0.994227 0.107297i \(-0.965780\pi\)
0.923725 0.383057i \(-0.125129\pi\)
\(402\) −2848.55 6237.45i −0.353414 0.773870i
\(403\) −352.518 771.907i −0.0435736 0.0954129i
\(404\) 117.696 + 818.594i 0.0144940 + 0.100808i
\(405\) −2445.77 1571.80i −0.300077 0.192848i
\(406\) −198.357 + 58.2429i −0.0242470 + 0.00711957i
\(407\) 110.554 768.921i 0.0134643 0.0936461i
\(408\) −1303.15 + 1503.91i −0.158126 + 0.182487i
\(409\) 4033.63 2592.26i 0.487653 0.313396i −0.273608 0.961841i \(-0.588217\pi\)
0.761261 + 0.648446i \(0.224581\pi\)
\(410\) −268.568 309.944i −0.0323504 0.0373343i
\(411\) −10333.2 3034.10i −1.24014 0.364139i
\(412\) −259.018 + 567.171i −0.0309731 + 0.0678216i
\(413\) 2884.51 0.343674
\(414\) 993.075 + 373.529i 0.117891 + 0.0443429i
\(415\) −5108.56 −0.604264
\(416\) 3975.59 8705.34i 0.468557 1.02600i
\(417\) −2334.24 685.394i −0.274120 0.0804889i
\(418\) 168.827 + 194.836i 0.0197550 + 0.0227985i
\(419\) −10909.4 + 7011.02i −1.27197 + 0.817448i −0.989876 0.141937i \(-0.954667\pi\)
−0.282099 + 0.959385i \(0.591031\pi\)
\(420\) −747.918 + 863.143i −0.0868920 + 0.100279i
\(421\) 1014.77 7057.90i 0.117475 0.817057i −0.842845 0.538157i \(-0.819121\pi\)
0.960320 0.278901i \(-0.0899701\pi\)
\(422\) −1469.68 + 431.536i −0.169533 + 0.0497793i
\(423\) 336.601 + 216.320i 0.0386905 + 0.0248649i
\(424\) −1555.05 10815.6i −0.178113 1.23880i
\(425\) −180.447 395.123i −0.0205952 0.0450971i
\(426\) −4064.93 8900.96i −0.462316 1.01233i
\(427\) 777.126 + 5405.03i 0.0880743 + 0.612571i
\(428\) −656.075 421.634i −0.0740948 0.0476178i
\(429\) 598.185 175.643i 0.0673209 0.0197672i
\(430\) 326.396 2270.14i 0.0366052 0.254595i
\(431\) −1143.82 + 1320.04i −0.127833 + 0.147527i −0.816058 0.577971i \(-0.803845\pi\)
0.688225 + 0.725498i \(0.258390\pi\)
\(432\) 2530.05 1625.96i 0.281776 0.181086i
\(433\) 6537.09 + 7544.21i 0.725526 + 0.837301i 0.991960 0.126552i \(-0.0403910\pi\)
−0.266434 + 0.963853i \(0.585846\pi\)
\(434\) −345.781 101.530i −0.0382442 0.0112295i
\(435\) −76.0871 + 166.608i −0.00838643 + 0.0183637i
\(436\) 599.256 0.0658237
\(437\) −1412.24 + 6406.65i −0.154592 + 0.701308i
\(438\) −4888.34 −0.533274
\(439\) 1735.84 3800.95i 0.188717 0.413233i −0.791497 0.611173i \(-0.790698\pi\)
0.980214 + 0.197940i \(0.0634251\pi\)
\(440\) −244.128 71.6823i −0.0264507 0.00776664i
\(441\) −537.096 619.842i −0.0579955 0.0669303i
\(442\) −1894.97 + 1217.83i −0.203925 + 0.131054i
\(443\) −3546.33 + 4092.68i −0.380341 + 0.438937i −0.913352 0.407172i \(-0.866515\pi\)
0.533011 + 0.846108i \(0.321061\pi\)
\(444\) 930.505 6471.80i 0.0994590 0.691753i
\(445\) −108.039 + 31.7232i −0.0115091 + 0.00337938i
\(446\) −1985.29 1275.87i −0.210776 0.135458i
\(447\) −989.744 6883.82i −0.104728 0.728397i
\(448\) −2551.50 5587.00i −0.269078 0.589198i
\(449\) 3446.68 + 7547.19i 0.362270 + 0.793260i 0.999740 + 0.0227854i \(0.00725344\pi\)
−0.637471 + 0.770475i \(0.720019\pi\)
\(450\) 34.2227 + 238.024i 0.00358505 + 0.0249346i
\(451\) −70.2049 45.1179i −0.00732997 0.00471069i
\(452\) −147.194 + 43.2201i −0.0153173 + 0.00449757i
\(453\) 1213.03 8436.79i 0.125812 0.875044i
\(454\) −1043.78 + 1204.59i −0.107901 + 0.124525i
\(455\) −3414.19 + 2194.17i −0.351780 + 0.226075i
\(456\) 4460.76 + 5147.99i 0.458101 + 0.528677i
\(457\) −2158.24 633.717i −0.220915 0.0648665i 0.169402 0.985547i \(-0.445816\pi\)
−0.390317 + 0.920681i \(0.627635\pi\)
\(458\) −53.6087 + 117.387i −0.00546936 + 0.0119762i
\(459\) 2600.04 0.264400
\(460\) −715.422 1934.44i −0.0725146 0.196073i
\(461\) −13866.1 −1.40089 −0.700445 0.713706i \(-0.747015\pi\)
−0.700445 + 0.713706i \(0.747015\pi\)
\(462\) 109.986 240.835i 0.0110757 0.0242525i
\(463\) 3574.99 + 1049.71i 0.358842 + 0.105365i 0.456184 0.889886i \(-0.349216\pi\)
−0.0973422 + 0.995251i \(0.531034\pi\)
\(464\) −102.004 117.719i −0.0102056 0.0117779i
\(465\) −268.602 + 172.620i −0.0267873 + 0.0172152i
\(466\) −2308.53 + 2664.19i −0.229486 + 0.264841i
\(467\) −1569.43 + 10915.7i −0.155513 + 1.08162i 0.751262 + 0.660005i \(0.229446\pi\)
−0.906775 + 0.421615i \(0.861463\pi\)
\(468\) −1050.27 + 308.387i −0.103737 + 0.0304598i
\(469\) 7641.34 + 4910.79i 0.752333 + 0.483495i
\(470\) 126.104 + 877.074i 0.0123761 + 0.0860775i
\(471\) −4928.07 10791.0i −0.482110 1.05567i
\(472\) 2246.82 + 4919.85i 0.219107 + 0.479776i
\(473\) −66.4171 461.941i −0.00645637 0.0449050i
\(474\) −5050.54 3245.79i −0.489408 0.314523i
\(475\) −1426.67 + 418.909i −0.137811 + 0.0404649i
\(476\) 119.501 831.148i 0.0115070 0.0800328i
\(477\) −1376.15 + 1588.17i −0.132096 + 0.152447i
\(478\) −3854.70 + 2477.27i −0.368849 + 0.237045i
\(479\) 12514.6 + 14442.6i 1.19375 + 1.37766i 0.907790 + 0.419424i \(0.137768\pi\)
0.285963 + 0.958241i \(0.407686\pi\)
\(480\) −3454.97 1014.47i −0.328536 0.0964669i
\(481\) 9651.76 21134.4i 0.914932 2.00342i
\(482\) 11137.5 1.05249
\(483\) 6587.42 1413.94i 0.620575 0.133202i
\(484\) 4960.98 0.465907
\(485\) 3308.55 7244.72i 0.309760 0.678280i
\(486\) −2558.87 751.353i −0.238833 0.0701277i
\(487\) 6485.65 + 7484.84i 0.603476 + 0.696448i 0.972482 0.232979i \(-0.0748473\pi\)
−0.369006 + 0.929427i \(0.620302\pi\)
\(488\) −8613.54 + 5535.59i −0.799010 + 0.513492i
\(489\) 8996.34 10382.3i 0.831960 0.960133i
\(490\) 258.490 1797.84i 0.0238314 0.165751i
\(491\) −15800.7 + 4639.49i −1.45229 + 0.426430i −0.910298 0.413954i \(-0.864147\pi\)
−0.541991 + 0.840384i \(0.682329\pi\)
\(492\) −590.896 379.746i −0.0541456 0.0347973i
\(493\) −19.1644 133.291i −0.00175075 0.0121768i
\(494\) 3203.13 + 7013.87i 0.291732 + 0.638803i
\(495\) 20.3273 + 44.5107i 0.00184575 + 0.00404163i
\(496\) −38.6431 268.768i −0.00349823 0.0243308i
\(497\) 10904.3 + 7007.79i 0.984158 + 0.632480i
\(498\) 9563.86 2808.20i 0.860576 0.252688i
\(499\) 2838.65 19743.2i 0.254660 1.77120i −0.314779 0.949165i \(-0.601931\pi\)
0.569439 0.822033i \(-0.307160\pi\)
\(500\) 306.119 353.280i 0.0273801 0.0315983i
\(501\) −11758.2 + 7556.54i −1.04854 + 0.673855i
\(502\) −8403.37 9698.00i −0.747133 0.862237i
\(503\) 10041.4 + 2948.42i 0.890108 + 0.261359i 0.694646 0.719352i \(-0.255561\pi\)
0.195462 + 0.980711i \(0.437379\pi\)
\(504\) −606.213 + 1327.42i −0.0535771 + 0.117318i
\(505\) 1105.73 0.0974347
\(506\) 285.470 + 383.550i 0.0250804 + 0.0336974i
\(507\) 8262.22 0.723744
\(508\) 1026.79 2248.35i 0.0896779 0.196367i
\(509\) −15242.2 4475.53i −1.32731 0.389733i −0.460184 0.887823i \(-0.652217\pi\)
−0.867125 + 0.498090i \(0.834035\pi\)
\(510\) 555.019 + 640.526i 0.0481895 + 0.0556137i
\(511\) 5447.41 3500.84i 0.471583 0.303068i
\(512\) 4556.68 5258.69i 0.393318 0.453913i
\(513\) 1266.62 8809.52i 0.109011 0.758187i
\(514\) −14749.0 + 4330.70i −1.26566 + 0.371633i
\(515\) 701.316 + 450.709i 0.0600072 + 0.0385643i
\(516\) −559.015 3888.04i −0.0476924 0.331708i
\(517\) 74.9025 + 164.014i 0.00637177 + 0.0139522i
\(518\) −4098.89 8975.32i −0.347674 0.761299i
\(519\) 2569.41 + 17870.6i 0.217311 + 1.51143i
\(520\) −6401.79 4114.18i −0.539879 0.346959i
\(521\) 1786.15 524.461i 0.150197 0.0441019i −0.205770 0.978600i \(-0.565970\pi\)
0.355967 + 0.934499i \(0.384152\pi\)
\(522\) −10.6095 + 73.7904i −0.000889585 + 0.00618720i
\(523\) 617.377 712.492i 0.0516176 0.0595699i −0.729354 0.684137i \(-0.760179\pi\)
0.780971 + 0.624567i \(0.214725\pi\)
\(524\) 7382.58 4744.49i 0.615476 0.395542i
\(525\) 999.984 + 1154.04i 0.0831293 + 0.0959363i
\(526\) 906.440 + 266.155i 0.0751382 + 0.0220626i
\(527\) 97.5171 213.533i 0.00806056 0.0176502i
\(528\) 199.488 0.0164424
\(529\) −3492.35 + 11655.0i −0.287034 + 0.957920i
\(530\) −4653.82 −0.381413
\(531\) 432.107 946.183i 0.0353142 0.0773274i
\(532\) −2757.90 809.793i −0.224756 0.0659943i
\(533\) −1634.52 1886.33i −0.132831 0.153295i
\(534\) 184.824 118.779i 0.0149778 0.00962563i
\(535\) −682.833 + 788.031i −0.0551803 + 0.0636814i
\(536\) −2423.85 + 16858.3i −0.195326 + 1.35852i
\(537\) 5862.08 1721.26i 0.471076 0.138320i
\(538\) 9887.19 + 6354.11i 0.792318 + 0.509192i
\(539\) −52.5992 365.835i −0.00420335 0.0292350i
\(540\) 1162.35 + 2545.19i 0.0926287 + 0.202829i
\(541\) 4680.77 + 10249.5i 0.371982 + 0.814526i 0.999359 + 0.0358106i \(0.0114013\pi\)
−0.627377 + 0.778716i \(0.715871\pi\)
\(542\) 1186.64 + 8253.29i 0.0940419 + 0.654076i
\(543\) −13429.3 8630.49i −1.06134 0.682080i
\(544\) 2540.16 745.859i 0.200199 0.0587839i
\(545\) 114.025 793.064i 0.00896203 0.0623323i
\(546\) 5185.64 5984.55i 0.406456 0.469075i
\(547\) 3760.78 2416.91i 0.293966 0.188920i −0.385342 0.922774i \(-0.625917\pi\)
0.679308 + 0.733853i \(0.262280\pi\)
\(548\) 5579.98 + 6439.64i 0.434972 + 0.501985i
\(549\) 1889.38 + 554.773i 0.146880 + 0.0431277i
\(550\) −45.0165 + 98.5724i −0.00349002 + 0.00764208i
\(551\) −460.958 −0.0356397
\(552\) 7542.74 + 10134.2i 0.581594 + 0.781414i
\(553\) 7952.66 0.611540
\(554\) −5669.17 + 12413.8i −0.434766 + 0.952004i
\(555\) −8387.82 2462.89i −0.641519 0.188367i
\(556\) 1260.50 + 1454.69i 0.0961459 + 0.110958i
\(557\) −10237.9 + 6579.48i −0.778802 + 0.500506i −0.868636 0.495451i \(-0.835003\pi\)
0.0898337 + 0.995957i \(0.471366\pi\)
\(558\) −85.1030 + 98.2141i −0.00645645 + 0.00745114i
\(559\) 1986.46 13816.1i 0.150301 1.04537i
\(560\) −1246.02 + 365.864i −0.0940249 + 0.0276082i
\(561\) 145.084 + 93.2400i 0.0109188 + 0.00701711i
\(562\) −1042.29 7249.32i −0.0782323 0.544118i
\(563\) −1744.95 3820.92i −0.130624 0.286026i 0.833008 0.553262i \(-0.186617\pi\)
−0.963631 + 0.267236i \(0.913890\pi\)
\(564\) 630.434 + 1380.46i 0.0470675 + 0.103063i
\(565\) 29.1902 + 203.022i 0.00217353 + 0.0151172i
\(566\) −16029.3 10301.4i −1.19039 0.765019i
\(567\) −7209.82 + 2116.99i −0.534011 + 0.156800i
\(568\) −3458.89 + 24057.1i −0.255513 + 1.77713i
\(569\) 4353.75 5024.49i 0.320771 0.370189i −0.572347 0.820011i \(-0.693967\pi\)
0.893118 + 0.449822i \(0.148513\pi\)
\(570\) 2440.63 1568.50i 0.179345 0.115258i
\(571\) 13437.1 + 15507.3i 0.984811 + 1.13653i 0.990633 + 0.136549i \(0.0436013\pi\)
−0.00582222 + 0.999983i \(0.501853\pi\)
\(572\) −473.289 138.970i −0.0345965 0.0101585i
\(573\) 6215.56 13610.2i 0.453156 0.992274i
\(574\) −1059.99 −0.0770783
\(575\) −2696.19 + 578.718i −0.195546 + 0.0419725i
\(576\) −2214.88 −0.160220
\(577\) −5946.10 + 13020.2i −0.429011 + 0.939404i 0.564475 + 0.825450i \(0.309079\pi\)
−0.993486 + 0.113954i \(0.963649\pi\)
\(578\) 9132.08 + 2681.42i 0.657170 + 0.192963i
\(579\) 10132.5 + 11693.6i 0.727278 + 0.839323i
\(580\) 121.912 78.3482i 0.00872780 0.00560902i
\(581\) −8646.53 + 9978.63i −0.617416 + 0.712536i
\(582\) −2211.56 + 15381.7i −0.157512 + 1.09552i
\(583\) −908.627 + 266.797i −0.0645480 + 0.0189530i
\(584\) 10214.2 + 6564.26i 0.723743 + 0.465121i
\(585\) 208.280 + 1448.62i 0.0147202 + 0.102381i
\(586\) 630.083 + 1379.69i 0.0444172 + 0.0972602i
\(587\) −3895.56 8530.09i −0.273913 0.599786i 0.721818 0.692083i \(-0.243307\pi\)
−0.995732 + 0.0922963i \(0.970579\pi\)
\(588\) −442.714 3079.14i −0.0310497 0.215955i
\(589\) −675.992 434.433i −0.0472899 0.0303914i
\(590\) 2210.26 648.990i 0.154229 0.0452856i
\(591\) −584.690 + 4066.61i −0.0406953 + 0.283042i
\(592\) 4868.50 5618.55i 0.337997 0.390069i
\(593\) 16566.2 10646.4i 1.14720 0.737263i 0.178123 0.984008i \(-0.442998\pi\)
0.969080 + 0.246746i \(0.0793612\pi\)
\(594\) −424.768 490.209i −0.0293408 0.0338611i
\(595\) −1077.21 316.299i −0.0742210 0.0217933i
\(596\) −2285.84 + 5005.29i −0.157100 + 0.344001i
\(597\) −4561.53 −0.312715
\(598\) 4960.33 + 13412.3i 0.339202 + 0.917174i
\(599\) 10662.0 0.727275 0.363638 0.931540i \(-0.381535\pi\)
0.363638 + 0.931540i \(0.381535\pi\)
\(600\) −1189.43 + 2604.49i −0.0809307 + 0.177213i
\(601\) −16785.0 4928.51i −1.13922 0.334506i −0.342896 0.939373i \(-0.611408\pi\)
−0.796326 + 0.604868i \(0.793226\pi\)
\(602\) −3881.84 4479.89i −0.262811 0.303300i
\(603\) 2755.54 1770.88i 0.186093 0.119595i
\(604\) −4416.32 + 5096.70i −0.297512 + 0.343347i
\(605\) 943.967 6565.44i 0.0634342 0.441195i
\(606\) −2070.07 + 607.827i −0.138764 + 0.0407447i
\(607\) −4317.04 2774.39i −0.288671 0.185518i 0.388288 0.921538i \(-0.373066\pi\)
−0.676960 + 0.736020i \(0.736703\pi\)
\(608\) −1289.69 8969.99i −0.0860261 0.598324i
\(609\) 196.655 + 430.615i 0.0130852 + 0.0286525i
\(610\) 1811.56 + 3966.76i 0.120242 + 0.263294i
\(611\) 767.474 + 5337.90i 0.0508162 + 0.353434i
\(612\) −254.733 163.707i −0.0168251 0.0108129i
\(613\) −20293.0 + 5958.58i −1.33708 + 0.392601i −0.870626 0.491945i \(-0.836286\pi\)
−0.466451 + 0.884547i \(0.654468\pi\)
\(614\) −2828.25 + 19670.9i −0.185894 + 1.29292i
\(615\) −614.996 + 709.743i −0.0403236 + 0.0465359i
\(616\) −553.217 + 355.531i −0.0361847 + 0.0232545i
\(617\) 4743.49 + 5474.28i 0.309507 + 0.357190i 0.889098 0.457718i \(-0.151333\pi\)
−0.579591 + 0.814908i \(0.696788\pi\)
\(618\) −1560.71 458.265i −0.101587 0.0298287i
\(619\) 2772.72 6071.42i 0.180041 0.394234i −0.797997 0.602661i \(-0.794107\pi\)
0.978038 + 0.208427i \(0.0668344\pi\)
\(620\) 252.623 0.0163639
\(621\) 3553.21 16119.1i 0.229606 1.04161i
\(622\) 6136.65 0.395591
\(623\) −120.897 + 264.728i −0.00777470 + 0.0170242i
\(624\) 5724.77 + 1680.94i 0.367266 + 0.107839i
\(625\) −409.288 472.343i −0.0261944 0.0302300i
\(626\) 14487.8 9310.72i 0.924996 0.594459i
\(627\) 386.597 446.157i 0.0246239 0.0284175i
\(628\) −1335.78 + 9290.58i −0.0848783 + 0.590342i
\(629\) 6166.88 1810.76i 0.390922 0.114785i
\(630\) 522.859 + 336.021i 0.0330654 + 0.0212499i
\(631\) 2541.03 + 17673.3i 0.160312 + 1.11499i 0.898045 + 0.439903i \(0.144987\pi\)
−0.737733 + 0.675092i \(0.764104\pi\)
\(632\) 6194.53 + 13564.1i 0.389882 + 0.853722i
\(633\) 1457.07 + 3190.53i 0.0914901 + 0.200335i
\(634\) −1797.20 12499.8i −0.112581 0.783016i
\(635\) −2780.13 1786.68i −0.173742 0.111657i
\(636\) −7647.67 + 2245.56i −0.476808 + 0.140004i
\(637\) 1573.18 10941.7i 0.0978520 0.680575i
\(638\) −21.9998 + 25.3891i −0.00136517 + 0.00157549i
\(639\) 3932.21 2527.08i 0.243436 0.156447i
\(640\) 779.077 + 899.103i 0.0481183 + 0.0555315i
\(641\) 24019.3 + 7052.70i 1.48004 + 0.434578i 0.919347 0.393447i \(-0.128718\pi\)
0.560691 + 0.828025i \(0.310536\pi\)
\(642\) 845.163 1850.65i 0.0519562 0.113768i
\(643\) 8767.81 0.537743 0.268872 0.963176i \(-0.413349\pi\)
0.268872 + 0.963176i \(0.413349\pi\)
\(644\) −4989.46 1876.70i −0.305298 0.114833i
\(645\) −5251.85 −0.320607
\(646\) −886.081 + 1940.25i −0.0539666 + 0.118170i
\(647\) −16494.7 4843.27i −1.00228 0.294295i −0.260886 0.965370i \(-0.584015\pi\)
−0.741389 + 0.671075i \(0.765833\pi\)
\(648\) −9226.68 10648.2i −0.559349 0.645523i
\(649\) 394.332 253.422i 0.0238504 0.0153277i
\(650\) −2122.46 + 2449.44i −0.128076 + 0.147808i
\(651\) −117.443 + 816.833i −0.00707058 + 0.0491770i
\(652\) −10429.2 + 3062.28i −0.626438 + 0.183939i
\(653\) −26295.3 16898.9i −1.57582 1.01272i −0.977363 0.211567i \(-0.932143\pi\)
−0.598460 0.801153i \(-0.704220\pi\)
\(654\) 222.482 + 1547.39i 0.0133023 + 0.0925197i
\(655\) −4874.19 10673.0i −0.290764 0.636684i
\(656\) −331.776 726.487i −0.0197464 0.0432387i
\(657\) −332.315 2311.30i −0.0197334 0.137249i
\(658\) 1926.64 + 1238.18i 0.114146 + 0.0733573i
\(659\) 14625.9 4294.55i 0.864559 0.253857i 0.180759 0.983527i \(-0.442145\pi\)
0.683799 + 0.729670i \(0.260326\pi\)
\(660\) −26.4130 + 183.707i −0.00155777 + 0.0108345i
\(661\) 9838.14 11353.8i 0.578910 0.668097i −0.388460 0.921465i \(-0.626993\pi\)
0.967370 + 0.253368i \(0.0815384\pi\)
\(662\) 15902.4 10219.9i 0.933633 0.600010i
\(663\) 3377.87 + 3898.26i 0.197866 + 0.228350i
\(664\) −23754.6 6974.99i −1.38834 0.407654i
\(665\) −1596.46 + 3495.76i −0.0930949 + 0.203849i
\(666\) −3558.13 −0.207019
\(667\) −852.541 63.3448i −0.0494910 0.00367724i
\(668\) 11058.7 0.640532
\(669\) −2244.90 + 4915.64i −0.129735 + 0.284080i
\(670\) 6960.06 + 2043.66i 0.401329 + 0.117841i
\(671\) 581.103 + 670.629i 0.0334325 + 0.0385832i
\(672\) −7829.32 + 5031.60i −0.449438 + 0.288836i
\(673\) −9552.95 + 11024.7i −0.547161 + 0.631457i −0.960219 0.279247i \(-0.909915\pi\)
0.413058 + 0.910705i \(0.364461\pi\)
\(674\) 629.201 4376.19i 0.0359583 0.250096i
\(675\) 3589.51 1053.97i 0.204682 0.0601000i
\(676\) −5499.39 3534.24i −0.312892 0.201084i
\(677\) −1779.38 12375.9i −0.101015 0.702576i −0.975896 0.218237i \(-0.929969\pi\)
0.874881 0.484339i \(-0.160940\pi\)
\(678\) −166.250 364.037i −0.00941711 0.0206206i
\(679\) −8551.30 18724.7i −0.483312 1.05831i
\(680\) −299.588 2083.68i −0.0168951 0.117508i
\(681\) 3070.47 + 1973.27i 0.172777 + 0.111037i
\(682\) −56.1906 + 16.4991i −0.00315491 + 0.000926366i
\(683\) 3755.80 26122.1i 0.210412 1.46345i −0.561371 0.827564i \(-0.689726\pi\)
0.771783 0.635885i \(-0.219365\pi\)
\(684\) −678.771 + 783.344i −0.0379437 + 0.0437893i
\(685\) 9584.06 6159.30i 0.534581 0.343554i
\(686\) −9065.66 10462.3i −0.504560 0.582294i
\(687\) 283.538 + 83.2544i 0.0157462 + 0.00462351i
\(688\) 1855.38 4062.72i 0.102814 0.225131i
\(689\) −28323.3 −1.56608
\(690\) 4729.48 2565.54i 0.260940 0.141549i
\(691\) −13670.9 −0.752628 −0.376314 0.926492i \(-0.622809\pi\)
−0.376314 + 0.926492i \(0.622809\pi\)
\(692\) 5934.11 12993.9i 0.325984 0.713806i
\(693\) 121.348 + 35.6311i 0.00665173 + 0.00195312i
\(694\) 6547.24 + 7555.91i 0.358112 + 0.413283i
\(695\) 2165.01 1391.37i 0.118163 0.0759390i
\(696\) −581.280 + 670.833i −0.0316572 + 0.0365343i
\(697\) 98.2630 683.434i 0.00533999 0.0371405i
\(698\) −1462.00 + 429.281i −0.0792800 + 0.0232787i
\(699\) 6790.96 + 4364.28i 0.367464 + 0.236155i
\(700\) −171.943 1195.89i −0.00928406 0.0645721i
\(701\) −5761.60 12616.1i −0.310432 0.679750i 0.688535 0.725203i \(-0.258254\pi\)
−0.998966 + 0.0454529i \(0.985527\pi\)
\(702\) −8059.07 17646.9i −0.433291 0.948774i
\(703\) −3131.05 21776.9i −0.167980 1.16832i
\(704\) −839.658 539.616i −0.0449514 0.0288885i
\(705\) 1946.88 571.655i 0.104005 0.0305387i
\(706\) −913.903 + 6356.33i −0.0487184 + 0.338844i
\(707\) 1871.52 2159.84i 0.0995553 0.114893i
\(708\) 3318.99 2132.99i 0.176180 0.113224i
\(709\) −22355.4 25799.5i −1.18417 1.36660i −0.914973 0.403515i \(-0.867788\pi\)
−0.269194 0.963086i \(-0.586757\pi\)
\(710\) 9932.14 + 2916.34i 0.524995 + 0.154152i
\(711\) 1191.33 2608.65i 0.0628388 0.137598i
\(712\) −545.692 −0.0287228
\(713\) −1190.55 896.379i −0.0625334 0.0470823i
\(714\) 2190.55 0.114817
\(715\) −273.972 + 599.915i −0.0143300 + 0.0313784i
\(716\) −4638.13 1361.88i −0.242088 0.0710835i
\(717\) 6871.16 + 7929.74i 0.357891 + 0.413029i
\(718\) 3039.76 1953.54i 0.157998 0.101539i
\(719\) 8462.68 9766.45i 0.438949 0.506575i −0.492567 0.870275i \(-0.663941\pi\)
0.931516 + 0.363700i \(0.118487\pi\)
\(720\) −66.6454 + 463.529i −0.00344962 + 0.0239927i
\(721\) 2067.39 607.041i 0.106787 0.0313556i
\(722\) −5767.62 3706.62i −0.297297 0.191061i
\(723\) −3629.58 25244.3i −0.186702 1.29854i
\(724\) 5246.86 + 11489.0i 0.269334 + 0.589760i
\(725\) −80.4899 176.248i −0.00412320 0.00902854i
\(726\) 1841.83 + 12810.2i 0.0941553 + 0.654864i
\(727\) 24163.4 + 15528.9i 1.23270 + 0.792207i 0.984309 0.176454i \(-0.0564627\pi\)
0.248389 + 0.968660i \(0.420099\pi\)
\(728\) −18871.7 + 5541.22i −0.960757 + 0.282104i
\(729\) −3103.36 + 21584.4i −0.157667 + 1.09660i
\(730\) 3386.42 3908.13i 0.171694 0.198146i
\(731\) 3248.30 2087.55i 0.164354 0.105624i
\(732\) 4890.99 + 5644.50i 0.246962 + 0.285009i
\(733\) 2716.88 + 797.747i 0.136903 + 0.0401984i 0.349466 0.936949i \(-0.386363\pi\)
−0.212563 + 0.977147i \(0.568181\pi\)
\(734\) 6444.17 14110.8i 0.324058 0.709588i
\(735\) −4159.22 −0.208728
\(736\) −1152.63 16767.2i −0.0577260 0.839739i
\(737\) 1476.07 0.0737742
\(738\) −158.789 + 347.699i −0.00792017 + 0.0173428i
\(739\) −25919.9 7610.76i −1.29023 0.378845i −0.436565 0.899673i \(-0.643805\pi\)
−0.853662 + 0.520828i \(0.825623\pi\)
\(740\) 4529.47 + 5227.29i 0.225009 + 0.259674i
\(741\) 14853.7 9545.92i 0.736391 0.473250i
\(742\) −7876.84 + 9090.36i −0.389714 + 0.449754i
\(743\) −4104.10 + 28544.7i −0.202645 + 1.40942i 0.593752 + 0.804648i \(0.297646\pi\)
−0.796396 + 0.604775i \(0.793263\pi\)
\(744\) −1484.68 + 435.940i −0.0731598 + 0.0214816i
\(745\) 6189.13 + 3977.51i 0.304365 + 0.195604i
\(746\) 1239.21 + 8618.86i 0.0608184 + 0.423001i
\(747\) 1977.94 + 4331.08i 0.0968794 + 0.212136i
\(748\) −56.6848 124.122i −0.00277086 0.00606733i
\(749\) 383.539 + 2667.57i 0.0187106 + 0.130135i
\(750\) 1025.89 + 659.298i 0.0499468 + 0.0320989i
\(751\) 2738.31 804.040i 0.133052 0.0390677i −0.214528 0.976718i \(-0.568821\pi\)
0.347581 + 0.937650i \(0.387003\pi\)
\(752\) −245.576 + 1708.02i −0.0119086 + 0.0828258i
\(753\) −19242.9 + 22207.5i −0.931276 + 1.07475i
\(754\) −845.270 + 543.222i −0.0408262 + 0.0262374i
\(755\) 5904.72 + 6814.41i 0.284629 + 0.328479i
\(756\) 6938.89 + 2037.44i 0.333816 + 0.0980172i
\(757\) −5734.07 + 12555.9i −0.275308 + 0.602841i −0.995894 0.0905246i \(-0.971146\pi\)
0.720586 + 0.693366i \(0.243873\pi\)
\(758\) −10447.0 −0.500598
\(759\) 776.321 772.040i 0.0371261 0.0369213i
\(760\) −7205.93 −0.343930
\(761\) −1668.83 + 3654.23i −0.0794941 + 0.174068i −0.945206 0.326475i \(-0.894139\pi\)
0.865712 + 0.500543i \(0.166866\pi\)
\(762\) 6186.89 + 1816.63i 0.294130 + 0.0863645i
\(763\) −1356.11 1565.03i −0.0643439 0.0742568i
\(764\) −9959.00 + 6400.26i</