Properties

Label 115.4.g.a.6.7
Level $115$
Weight $4$
Character 115.6
Analytic conductor $6.785$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(6,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 18]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.g (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78521965066\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 6.7
Character \(\chi\) \(=\) 115.6
Dual form 115.4.g.a.96.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.274193 - 0.600398i) q^{2} +(0.833837 + 0.244837i) q^{3} +(4.95359 + 5.71675i) q^{4} +(4.20627 - 2.70320i) q^{5} +(0.375631 - 0.433502i) q^{6} +(-4.72226 + 32.8441i) q^{7} +(9.85703 - 2.89429i) q^{8} +(-22.0785 - 14.1890i) q^{9} +O(q^{10})\) \(q+(0.274193 - 0.600398i) q^{2} +(0.833837 + 0.244837i) q^{3} +(4.95359 + 5.71675i) q^{4} +(4.20627 - 2.70320i) q^{5} +(0.375631 - 0.433502i) q^{6} +(-4.72226 + 32.8441i) q^{7} +(9.85703 - 2.89429i) q^{8} +(-22.0785 - 14.1890i) q^{9} +(-0.469671 - 3.26663i) q^{10} +(17.0273 + 37.2845i) q^{11} +(2.73082 + 5.97966i) q^{12} +(-4.80412 - 33.4134i) q^{13} +(18.4247 + 11.8408i) q^{14} +(4.16919 - 1.22418i) q^{15} +(-7.64714 + 53.1870i) q^{16} +(21.3976 - 24.6941i) q^{17} +(-14.5728 + 9.36537i) q^{18} +(44.5912 + 51.4610i) q^{19} +(36.2897 + 10.6556i) q^{20} +(-11.9790 + 26.2304i) q^{21} +27.0543 q^{22} +(52.9307 + 96.7747i) q^{23} +8.92778 q^{24} +(10.3854 - 22.7408i) q^{25} +(-21.3786 - 6.27732i) q^{26} +(-30.3016 - 34.9699i) q^{27} +(-211.153 + 135.700i) q^{28} +(164.016 - 189.285i) q^{29} +(0.408163 - 2.83883i) q^{30} +(134.639 - 39.5336i) q^{31} +(98.9753 + 63.6076i) q^{32} +(5.06935 + 35.2581i) q^{33} +(-8.95924 - 19.6180i) q^{34} +(68.9211 + 150.916i) q^{35} +(-28.2530 - 196.504i) q^{36} +(-369.717 - 237.603i) q^{37} +(43.1237 - 12.6623i) q^{38} +(4.17497 - 29.0376i) q^{39} +(33.6375 - 38.8197i) q^{40} +(179.988 - 115.671i) q^{41} +(12.4641 + 14.3844i) q^{42} +(-73.7935 - 21.6677i) q^{43} +(-128.800 + 282.033i) q^{44} -131.224 q^{45} +(72.6165 - 5.24460i) q^{46} -419.749 q^{47} +(-19.3986 + 42.4770i) q^{48} +(-727.326 - 213.562i) q^{49} +(-10.8059 - 12.4707i) q^{50} +(23.8881 - 15.3520i) q^{51} +(167.218 - 192.980i) q^{52} +(-5.00404 + 34.8039i) q^{53} +(-29.3043 + 8.60453i) q^{54} +(172.409 + 110.800i) q^{55} +(48.5126 + 337.412i) q^{56} +(24.5823 + 53.8277i) q^{57} +(-68.6742 - 150.376i) q^{58} +(-55.1150 - 383.333i) q^{59} +(27.6508 + 17.7701i) q^{60} +(709.595 - 208.356i) q^{61} +(13.1811 - 91.6768i) q^{62} +(570.285 - 658.144i) q^{63} +(-296.303 + 190.422i) q^{64} +(-110.531 - 127.559i) q^{65} +(22.5589 + 6.62388i) q^{66} +(157.655 - 345.215i) q^{67} +247.165 q^{68} +(20.4416 + 93.6537i) q^{69} +109.507 q^{70} +(-98.8141 + 216.373i) q^{71} +(-258.695 - 75.9598i) q^{72} +(-159.714 - 184.320i) q^{73} +(-244.030 + 156.829i) q^{74} +(14.2275 - 16.4194i) q^{75} +(-73.3030 + 509.834i) q^{76} +(-1304.98 + 383.177i) q^{77} +(-16.2893 - 10.4685i) q^{78} +(-7.05386 - 49.0607i) q^{79} +(111.609 + 244.391i) q^{80} +(277.662 + 607.995i) q^{81} +(-20.0974 - 139.781i) q^{82} +(-541.167 - 347.787i) q^{83} +(-209.292 + 61.4536i) q^{84} +(23.2507 - 161.712i) q^{85} +(-33.2429 + 38.3643i) q^{86} +(183.107 - 117.676i) q^{87} +(275.750 + 318.233i) q^{88} +(1145.93 + 336.477i) q^{89} +(-35.9806 + 78.7865i) q^{90} +1120.12 q^{91} +(-291.039 + 781.974i) q^{92} +121.946 q^{93} +(-115.092 + 252.017i) q^{94} +(326.672 + 95.9197i) q^{95} +(66.9558 + 77.2711i) q^{96} +(854.509 - 549.159i) q^{97} +(-327.650 + 378.128i) q^{98} +(153.093 - 1064.79i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9} - 10 q^{10} + 2 q^{11} - 57 q^{12} + 34 q^{13} - 154 q^{14} + 30 q^{15} + 16 q^{16} + 252 q^{17} - 33 q^{18} - 160 q^{19} - 200 q^{20} - 684 q^{21} - 704 q^{22} + 127 q^{23} - 3090 q^{24} - 275 q^{25} - 567 q^{26} + 384 q^{27} - 188 q^{28} + 340 q^{29} - 15 q^{30} + 582 q^{31} - 1364 q^{32} + 1760 q^{33} + 1819 q^{34} + 665 q^{35} + 2794 q^{36} + 312 q^{37} + 3123 q^{38} - 1560 q^{39} - 1205 q^{40} + 1324 q^{41} + 1454 q^{42} - 1740 q^{43} - 369 q^{44} + 3730 q^{45} - 4322 q^{46} - 2858 q^{47} - 2686 q^{48} + 2015 q^{49} - 325 q^{50} - 1426 q^{51} + 1717 q^{52} + 882 q^{53} + 2541 q^{54} + 450 q^{55} + 7755 q^{56} + 3688 q^{57} + 6622 q^{58} + 2605 q^{59} + 1530 q^{60} - 104 q^{61} - 9360 q^{62} - 7618 q^{63} + 3483 q^{64} + 170 q^{65} - 1766 q^{66} - 166 q^{67} - 5018 q^{68} - 1194 q^{69} - 770 q^{70} - 1222 q^{71} + 3303 q^{72} - 922 q^{73} + 1245 q^{74} + 150 q^{75} + 1360 q^{76} - 3093 q^{77} - 1600 q^{78} + 2448 q^{79} + 2115 q^{80} - 1371 q^{81} + 6609 q^{82} + 6704 q^{83} + 3894 q^{84} - 720 q^{85} - 5074 q^{86} - 6324 q^{87} + 1918 q^{88} - 5380 q^{89} - 165 q^{90} + 7828 q^{91} - 16225 q^{92} - 24948 q^{93} - 16490 q^{94} + 685 q^{95} + 675 q^{96} - 4400 q^{97} + 8790 q^{98} - 3626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.274193 0.600398i 0.0969417 0.212273i −0.854948 0.518714i \(-0.826411\pi\)
0.951890 + 0.306441i \(0.0991383\pi\)
\(3\) 0.833837 + 0.244837i 0.160472 + 0.0471188i 0.360982 0.932573i \(-0.382442\pi\)
−0.200510 + 0.979692i \(0.564260\pi\)
\(4\) 4.95359 + 5.71675i 0.619199 + 0.714593i
\(5\) 4.20627 2.70320i 0.376220 0.241782i
\(6\) 0.375631 0.433502i 0.0255585 0.0294961i
\(7\) −4.72226 + 32.8441i −0.254978 + 1.77341i 0.312396 + 0.949952i \(0.398868\pi\)
−0.567374 + 0.823460i \(0.692041\pi\)
\(8\) 9.85703 2.89429i 0.435623 0.127911i
\(9\) −22.0785 14.1890i −0.817722 0.525518i
\(10\) −0.469671 3.26663i −0.0148523 0.103300i
\(11\) 17.0273 + 37.2845i 0.466719 + 1.02197i 0.985904 + 0.167311i \(0.0535083\pi\)
−0.519185 + 0.854662i \(0.673764\pi\)
\(12\) 2.73082 + 5.97966i 0.0656933 + 0.143848i
\(13\) −4.80412 33.4134i −0.102494 0.712862i −0.974666 0.223664i \(-0.928198\pi\)
0.872172 0.489199i \(-0.162711\pi\)
\(14\) 18.4247 + 11.8408i 0.351729 + 0.226043i
\(15\) 4.16919 1.22418i 0.0717653 0.0210722i
\(16\) −7.64714 + 53.1870i −0.119487 + 0.831047i
\(17\) 21.3976 24.6941i 0.305275 0.352306i −0.582296 0.812977i \(-0.697846\pi\)
0.887571 + 0.460671i \(0.152391\pi\)
\(18\) −14.5728 + 9.36537i −0.190825 + 0.122636i
\(19\) 44.5912 + 51.4610i 0.538417 + 0.621367i 0.958145 0.286283i \(-0.0924198\pi\)
−0.419728 + 0.907650i \(0.637874\pi\)
\(20\) 36.2897 + 10.6556i 0.405731 + 0.119133i
\(21\) −11.9790 + 26.2304i −0.124478 + 0.272569i
\(22\) 27.0543 0.262182
\(23\) 52.9307 + 96.7747i 0.479862 + 0.877344i
\(24\) 8.92778 0.0759323
\(25\) 10.3854 22.7408i 0.0830830 0.181926i
\(26\) −21.3786 6.27732i −0.161257 0.0473494i
\(27\) −30.3016 34.9699i −0.215983 0.249258i
\(28\) −211.153 + 135.700i −1.42515 + 0.915889i
\(29\) 164.016 189.285i 1.05024 1.21205i 0.0735756 0.997290i \(-0.476559\pi\)
0.976668 0.214756i \(-0.0688956\pi\)
\(30\) 0.408163 2.83883i 0.00248400 0.0172766i
\(31\) 134.639 39.5336i 0.780060 0.229046i 0.132625 0.991166i \(-0.457660\pi\)
0.647436 + 0.762120i \(0.275841\pi\)
\(32\) 98.9753 + 63.6076i 0.546766 + 0.351385i
\(33\) 5.06935 + 35.2581i 0.0267412 + 0.185989i
\(34\) −8.95924 19.6180i −0.0451911 0.0989547i
\(35\) 68.9211 + 150.916i 0.332851 + 0.728842i
\(36\) −28.2530 196.504i −0.130801 0.909739i
\(37\) −369.717 237.603i −1.64273 1.05572i −0.938225 0.346025i \(-0.887531\pi\)
−0.704508 0.709696i \(-0.748832\pi\)
\(38\) 43.1237 12.6623i 0.184094 0.0540550i
\(39\) 4.17497 29.0376i 0.0171418 0.119224i
\(40\) 33.6375 38.8197i 0.132964 0.153448i
\(41\) 179.988 115.671i 0.685596 0.440606i −0.150922 0.988546i \(-0.548224\pi\)
0.836518 + 0.547940i \(0.184588\pi\)
\(42\) 12.4641 + 14.3844i 0.0457918 + 0.0528466i
\(43\) −73.7935 21.6677i −0.261707 0.0768441i 0.148247 0.988950i \(-0.452637\pi\)
−0.409954 + 0.912106i \(0.634455\pi\)
\(44\) −128.800 + 282.033i −0.441303 + 0.966319i
\(45\) −131.224 −0.434704
\(46\) 72.6165 5.24460i 0.232755 0.0168103i
\(47\) −419.749 −1.30270 −0.651348 0.758779i \(-0.725796\pi\)
−0.651348 + 0.758779i \(0.725796\pi\)
\(48\) −19.3986 + 42.4770i −0.0583322 + 0.127730i
\(49\) −727.326 213.562i −2.12048 0.622630i
\(50\) −10.8059 12.4707i −0.0305638 0.0352725i
\(51\) 23.8881 15.3520i 0.0655883 0.0421511i
\(52\) 167.218 192.980i 0.445943 0.514645i
\(53\) −5.00404 + 34.8039i −0.0129690 + 0.0902015i −0.995278 0.0970663i \(-0.969054\pi\)
0.982309 + 0.187268i \(0.0599632\pi\)
\(54\) −29.3043 + 8.60453i −0.0738484 + 0.0216838i
\(55\) 172.409 + 110.800i 0.422684 + 0.271642i
\(56\) 48.5126 + 337.412i 0.115764 + 0.805154i
\(57\) 24.5823 + 53.8277i 0.0571229 + 0.125082i
\(58\) −68.6742 150.376i −0.155472 0.340436i
\(59\) −55.1150 383.333i −0.121616 0.845860i −0.955725 0.294260i \(-0.904927\pi\)
0.834109 0.551599i \(-0.185982\pi\)
\(60\) 27.6508 + 17.7701i 0.0594950 + 0.0382351i
\(61\) 709.595 208.356i 1.48942 0.437332i 0.567061 0.823676i \(-0.308081\pi\)
0.922355 + 0.386344i \(0.126262\pi\)
\(62\) 13.1811 91.6768i 0.0270001 0.187790i
\(63\) 570.285 658.144i 1.14046 1.31616i
\(64\) −296.303 + 190.422i −0.578717 + 0.371919i
\(65\) −110.531 127.559i −0.210918 0.243412i
\(66\) 22.5589 + 6.62388i 0.0420728 + 0.0123537i
\(67\) 157.655 345.215i 0.287471 0.629474i −0.709711 0.704493i \(-0.751174\pi\)
0.997182 + 0.0750189i \(0.0239017\pi\)
\(68\) 247.165 0.440781
\(69\) 20.4416 + 93.6537i 0.0356649 + 0.163400i
\(70\) 109.507 0.186981
\(71\) −98.8141 + 216.373i −0.165170 + 0.361672i −0.974061 0.226287i \(-0.927341\pi\)
0.808891 + 0.587959i \(0.200068\pi\)
\(72\) −258.695 75.9598i −0.423438 0.124333i
\(73\) −159.714 184.320i −0.256071 0.295521i 0.613129 0.789983i \(-0.289911\pi\)
−0.869199 + 0.494462i \(0.835365\pi\)
\(74\) −244.030 + 156.829i −0.383350 + 0.246364i
\(75\) 14.2275 16.4194i 0.0219047 0.0252793i
\(76\) −73.3030 + 509.834i −0.110637 + 0.769499i
\(77\) −1304.98 + 383.177i −1.93138 + 0.567105i
\(78\) −16.2893 10.4685i −0.0236462 0.0151965i
\(79\) −7.05386 49.0607i −0.0100458 0.0698704i 0.984182 0.177161i \(-0.0566914\pi\)
−0.994228 + 0.107291i \(0.965782\pi\)
\(80\) 111.609 + 244.391i 0.155979 + 0.341546i
\(81\) 277.662 + 607.995i 0.380881 + 0.834012i
\(82\) −20.0974 139.781i −0.0270657 0.188246i
\(83\) −541.167 347.787i −0.715673 0.459935i 0.131457 0.991322i \(-0.458035\pi\)
−0.847129 + 0.531387i \(0.821671\pi\)
\(84\) −209.292 + 61.4536i −0.271852 + 0.0798231i
\(85\) 23.2507 161.712i 0.0296693 0.206355i
\(86\) −33.2429 + 38.3643i −0.0416822 + 0.0481039i
\(87\) 183.107 117.676i 0.225645 0.145013i
\(88\) 275.750 + 318.233i 0.334035 + 0.385497i
\(89\) 1145.93 + 336.477i 1.36482 + 0.400747i 0.880459 0.474123i \(-0.157235\pi\)
0.484359 + 0.874869i \(0.339053\pi\)
\(90\) −35.9806 + 78.7865i −0.0421410 + 0.0922759i
\(91\) 1120.12 1.29033
\(92\) −291.039 + 781.974i −0.329815 + 0.886156i
\(93\) 121.946 0.135970
\(94\) −115.092 + 252.017i −0.126286 + 0.276527i
\(95\) 326.672 + 95.9197i 0.352799 + 0.103591i
\(96\) 66.9558 + 77.2711i 0.0711838 + 0.0821505i
\(97\) 854.509 549.159i 0.894456 0.574832i −0.0106855 0.999943i \(-0.503401\pi\)
0.905141 + 0.425111i \(0.139765\pi\)
\(98\) −327.650 + 378.128i −0.337731 + 0.389762i
\(99\) 153.093 1064.79i 0.155419 1.08096i
\(100\) 181.448 53.2780i 0.181448 0.0532780i
\(101\) 686.593 + 441.246i 0.676421 + 0.434710i 0.833235 0.552919i \(-0.186486\pi\)
−0.156814 + 0.987628i \(0.550122\pi\)
\(102\) −2.66734 18.5518i −0.00258928 0.0180088i
\(103\) 319.485 + 699.575i 0.305629 + 0.669235i 0.998664 0.0516692i \(-0.0164541\pi\)
−0.693035 + 0.720904i \(0.743727\pi\)
\(104\) −144.062 315.452i −0.135831 0.297429i
\(105\) 20.5192 + 142.714i 0.0190711 + 0.132642i
\(106\) 19.5241 + 12.5474i 0.0178901 + 0.0114973i
\(107\) −486.157 + 142.749i −0.439239 + 0.128972i −0.493873 0.869534i \(-0.664419\pi\)
0.0546337 + 0.998506i \(0.482601\pi\)
\(108\) 49.8124 346.453i 0.0443815 0.308680i
\(109\) −200.599 + 231.504i −0.176274 + 0.203431i −0.837011 0.547187i \(-0.815699\pi\)
0.660736 + 0.750618i \(0.270244\pi\)
\(110\) 113.798 73.1333i 0.0986379 0.0633908i
\(111\) −250.110 288.642i −0.213868 0.246817i
\(112\) −1710.77 502.326i −1.44332 0.423798i
\(113\) −499.209 + 1093.11i −0.415590 + 0.910014i 0.579859 + 0.814717i \(0.303108\pi\)
−0.995449 + 0.0952975i \(0.969620\pi\)
\(114\) 39.0583 0.0320890
\(115\) 484.243 + 263.978i 0.392660 + 0.214053i
\(116\) 1894.56 1.51643
\(117\) −368.035 + 805.884i −0.290810 + 0.636786i
\(118\) −245.265 72.0162i −0.191343 0.0561833i
\(119\) 710.010 + 819.395i 0.546945 + 0.631209i
\(120\) 37.5527 24.1336i 0.0285673 0.0183591i
\(121\) −228.586 + 263.803i −0.171740 + 0.198199i
\(122\) 69.4692 483.169i 0.0515529 0.358558i
\(123\) 178.401 52.3834i 0.130780 0.0384004i
\(124\) 892.950 + 573.864i 0.646687 + 0.415601i
\(125\) −17.7894 123.728i −0.0127290 0.0885323i
\(126\) −238.780 522.856i −0.168827 0.369680i
\(127\) −458.736 1004.49i −0.320521 0.701844i 0.678956 0.734179i \(-0.262433\pi\)
−0.999477 + 0.0323352i \(0.989706\pi\)
\(128\) 167.034 + 1161.75i 0.115343 + 0.802227i
\(129\) −56.2267 36.1347i −0.0383759 0.0246627i
\(130\) −106.893 + 31.3866i −0.0721164 + 0.0211753i
\(131\) 36.0212 250.533i 0.0240243 0.167093i −0.974277 0.225353i \(-0.927646\pi\)
0.998301 + 0.0582605i \(0.0185554\pi\)
\(132\) −176.450 + 203.634i −0.116349 + 0.134273i
\(133\) −1900.76 + 1221.54i −1.23922 + 0.796401i
\(134\) −164.039 189.311i −0.105752 0.122045i
\(135\) −221.987 65.1814i −0.141523 0.0415550i
\(136\) 139.445 305.341i 0.0879212 0.192521i
\(137\) 2364.05 1.47427 0.737134 0.675746i \(-0.236179\pi\)
0.737134 + 0.675746i \(0.236179\pi\)
\(138\) 61.8344 + 13.4060i 0.0381427 + 0.00826955i
\(139\) −3056.66 −1.86520 −0.932598 0.360916i \(-0.882464\pi\)
−0.932598 + 0.360916i \(0.882464\pi\)
\(140\) −521.343 + 1141.58i −0.314725 + 0.689151i
\(141\) −350.003 102.770i −0.209046 0.0613816i
\(142\) 102.816 + 118.656i 0.0607613 + 0.0701222i
\(143\) 1164.00 748.058i 0.680690 0.437453i
\(144\) 923.508 1065.79i 0.534438 0.616774i
\(145\) 178.221 1239.55i 0.102072 0.709926i
\(146\) −154.458 + 45.3530i −0.0875550 + 0.0257085i
\(147\) −554.184 356.152i −0.310941 0.199830i
\(148\) −473.112 3290.57i −0.262767 1.82759i
\(149\) −1320.86 2892.29i −0.726238 1.59024i −0.804950 0.593342i \(-0.797808\pi\)
0.0787124 0.996897i \(-0.474919\pi\)
\(150\) −5.95710 13.0442i −0.00324264 0.00710038i
\(151\) 195.132 + 1357.17i 0.105163 + 0.731424i 0.972365 + 0.233467i \(0.0750072\pi\)
−0.867202 + 0.497957i \(0.834084\pi\)
\(152\) 588.480 + 378.193i 0.314027 + 0.201813i
\(153\) −822.811 + 241.599i −0.434773 + 0.127661i
\(154\) −127.757 + 888.573i −0.0668506 + 0.464956i
\(155\) 459.460 530.245i 0.238095 0.274776i
\(156\) 186.682 119.973i 0.0958108 0.0615739i
\(157\) −361.388 417.064i −0.183706 0.212008i 0.656425 0.754391i \(-0.272068\pi\)
−0.840131 + 0.542383i \(0.817522\pi\)
\(158\) −31.3901 9.21695i −0.0158054 0.00464089i
\(159\) −12.6938 + 27.7956i −0.00633136 + 0.0138637i
\(160\) 588.261 0.290663
\(161\) −3428.43 + 1281.46i −1.67825 + 0.627289i
\(162\) 441.172 0.213961
\(163\) 1323.05 2897.07i 0.635761 1.39212i −0.267722 0.963496i \(-0.586271\pi\)
0.903482 0.428625i \(-0.141002\pi\)
\(164\) 1552.85 + 455.958i 0.739374 + 0.217100i
\(165\) 116.633 + 134.601i 0.0550294 + 0.0635073i
\(166\) −357.195 + 229.555i −0.167010 + 0.107331i
\(167\) −1389.19 + 1603.21i −0.643705 + 0.742875i −0.980025 0.198872i \(-0.936272\pi\)
0.336320 + 0.941748i \(0.390818\pi\)
\(168\) −42.1593 + 293.225i −0.0193611 + 0.134659i
\(169\) 1014.63 297.922i 0.461825 0.135604i
\(170\) −90.7164 58.2999i −0.0409273 0.0263024i
\(171\) −254.328 1768.89i −0.113736 0.791054i
\(172\) −241.674 529.192i −0.107136 0.234596i
\(173\) −208.267 456.042i −0.0915276 0.200418i 0.858332 0.513095i \(-0.171501\pi\)
−0.949859 + 0.312678i \(0.898774\pi\)
\(174\) −20.4457 142.203i −0.00890794 0.0619561i
\(175\) 697.858 + 448.486i 0.301446 + 0.193728i
\(176\) −2113.26 + 620.510i −0.905074 + 0.265754i
\(177\) 47.8971 333.131i 0.0203399 0.141467i
\(178\) 516.226 595.757i 0.217375 0.250865i
\(179\) −1092.51 + 702.115i −0.456191 + 0.293176i −0.748484 0.663153i \(-0.769218\pi\)
0.292293 + 0.956329i \(0.405582\pi\)
\(180\) −650.029 750.174i −0.269168 0.310637i
\(181\) 4330.89 + 1271.66i 1.77852 + 0.522221i 0.995065 0.0992266i \(-0.0316369\pi\)
0.783456 + 0.621447i \(0.213455\pi\)
\(182\) 307.128 672.517i 0.125087 0.273902i
\(183\) 642.700 0.259616
\(184\) 801.833 + 800.714i 0.321260 + 0.320812i
\(185\) −2197.42 −0.873283
\(186\) 33.4368 73.2163i 0.0131812 0.0288628i
\(187\) 1285.05 + 377.325i 0.502525 + 0.147555i
\(188\) −2079.27 2399.60i −0.806628 0.930898i
\(189\) 1291.65 830.090i 0.497108 0.319472i
\(190\) 147.161 169.833i 0.0561905 0.0648473i
\(191\) −313.992 + 2183.86i −0.118951 + 0.827324i 0.839763 + 0.542953i \(0.182694\pi\)
−0.958714 + 0.284371i \(0.908215\pi\)
\(192\) −293.691 + 86.2354i −0.110392 + 0.0324141i
\(193\) −2178.99 1400.35i −0.812681 0.522279i 0.0670501 0.997750i \(-0.478641\pi\)
−0.879731 + 0.475471i \(0.842278\pi\)
\(194\) −95.4142 663.621i −0.0353110 0.245594i
\(195\) −60.9334 133.426i −0.0223771 0.0489990i
\(196\) −2381.99 5215.84i −0.868074 1.90082i
\(197\) 271.736 + 1889.96i 0.0982760 + 0.683525i 0.978086 + 0.208200i \(0.0667604\pi\)
−0.879810 + 0.475325i \(0.842331\pi\)
\(198\) −597.318 383.873i −0.214392 0.137781i
\(199\) −1494.82 + 438.918i −0.532487 + 0.156352i −0.536912 0.843638i \(-0.680409\pi\)
0.00442580 + 0.999990i \(0.498591\pi\)
\(200\) 36.5506 254.215i 0.0129226 0.0898786i
\(201\) 215.980 249.254i 0.0757912 0.0874677i
\(202\) 453.182 291.243i 0.157850 0.101444i
\(203\) 5442.35 + 6280.81i 1.88167 + 2.17156i
\(204\) 206.095 + 60.5150i 0.0707331 + 0.0207691i
\(205\) 444.395 973.090i 0.151404 0.331529i
\(206\) 507.624 0.171689
\(207\) 204.504 2887.67i 0.0686667 0.969600i
\(208\) 1813.90 0.604669
\(209\) −1159.43 + 2538.80i −0.383730 + 0.840252i
\(210\) 91.3113 + 26.8114i 0.0300051 + 0.00881031i
\(211\) −1754.42 2024.71i −0.572414 0.660601i 0.393542 0.919307i \(-0.371249\pi\)
−0.965956 + 0.258706i \(0.916704\pi\)
\(212\) −223.753 + 143.797i −0.0724878 + 0.0465851i
\(213\) −135.371 + 156.226i −0.0435467 + 0.0502556i
\(214\) −47.5947 + 331.028i −0.0152033 + 0.105741i
\(215\) −368.968 + 108.339i −0.117039 + 0.0343657i
\(216\) −399.896 256.998i −0.125970 0.0809560i
\(217\) 662.642 + 4608.78i 0.207295 + 1.44177i
\(218\) 83.9915 + 183.916i 0.0260946 + 0.0571392i
\(219\) −88.0474 192.797i −0.0271676 0.0594886i
\(220\) 220.625 + 1534.48i 0.0676114 + 0.470247i
\(221\) −927.911 596.332i −0.282435 0.181510i
\(222\) −241.879 + 71.0220i −0.0731254 + 0.0214715i
\(223\) −538.229 + 3743.46i −0.161625 + 1.12413i 0.733945 + 0.679209i \(0.237677\pi\)
−0.895570 + 0.444920i \(0.853232\pi\)
\(224\) −2556.52 + 2950.38i −0.762565 + 0.880047i
\(225\) −551.963 + 354.725i −0.163544 + 0.105104i
\(226\) 519.425 + 599.448i 0.152883 + 0.176437i
\(227\) 3170.34 + 930.895i 0.926972 + 0.272184i 0.710169 0.704032i \(-0.248619\pi\)
0.216804 + 0.976215i \(0.430437\pi\)
\(228\) −185.949 + 407.171i −0.0540121 + 0.118270i
\(229\) −4690.01 −1.35338 −0.676691 0.736267i \(-0.736587\pi\)
−0.676691 + 0.736267i \(0.736587\pi\)
\(230\) 291.267 218.358i 0.0835026 0.0626003i
\(231\) −1181.96 −0.336654
\(232\) 1068.87 2340.50i 0.302477 0.662332i
\(233\) 1484.96 + 436.024i 0.417524 + 0.122596i 0.483745 0.875209i \(-0.339276\pi\)
−0.0662215 + 0.997805i \(0.521094\pi\)
\(234\) 382.939 + 441.935i 0.106981 + 0.123462i
\(235\) −1765.58 + 1134.67i −0.490101 + 0.314969i
\(236\) 1918.40 2213.95i 0.529141 0.610661i
\(237\) 6.13008 42.6357i 0.00168013 0.0116856i
\(238\) 686.643 201.617i 0.187010 0.0549112i
\(239\) 5189.70 + 3335.22i 1.40458 + 0.902666i 0.999930 0.0118068i \(-0.00375832\pi\)
0.404646 + 0.914473i \(0.367395\pi\)
\(240\) 33.2283 + 231.108i 0.00893700 + 0.0621582i
\(241\) 308.986 + 676.586i 0.0825874 + 0.180841i 0.946420 0.322937i \(-0.104670\pi\)
−0.863833 + 0.503778i \(0.831943\pi\)
\(242\) 95.7100 + 209.576i 0.0254234 + 0.0556696i
\(243\) 260.465 + 1811.57i 0.0687606 + 0.478241i
\(244\) 4706.16 + 3024.47i 1.23476 + 0.793531i
\(245\) −3636.63 + 1067.81i −0.948309 + 0.278449i
\(246\) 17.4655 121.475i 0.00452666 0.0314836i
\(247\) 1505.27 1737.17i 0.387764 0.447504i
\(248\) 1212.72 779.367i 0.310515 0.199556i
\(249\) −366.094 422.495i −0.0931738 0.107528i
\(250\) −79.1636 23.2445i −0.0200270 0.00588045i
\(251\) 1997.33 4373.54i 0.502272 1.09982i −0.473452 0.880820i \(-0.656992\pi\)
0.975724 0.219003i \(-0.0702806\pi\)
\(252\) 6587.40 1.64669
\(253\) −2706.93 + 3621.30i −0.672661 + 0.899879i
\(254\) −728.877 −0.180054
\(255\) 58.9803 129.149i 0.0144843 0.0317162i
\(256\) −1960.28 575.590i −0.478584 0.140525i
\(257\) 1550.70 + 1789.60i 0.376381 + 0.434367i 0.912061 0.410054i \(-0.134490\pi\)
−0.535680 + 0.844421i \(0.679945\pi\)
\(258\) −37.1122 + 23.8505i −0.00895543 + 0.00575531i
\(259\) 9549.74 11021.0i 2.29109 2.64406i
\(260\) 181.700 1263.75i 0.0433406 0.301441i
\(261\) −6307.00 + 1851.90i −1.49576 + 0.439195i
\(262\) −140.543 90.3213i −0.0331403 0.0212980i
\(263\) −23.8802 166.091i −0.00559893 0.0389414i 0.986830 0.161758i \(-0.0517164\pi\)
−0.992429 + 0.122817i \(0.960807\pi\)
\(264\) 152.016 + 332.868i 0.0354391 + 0.0776008i
\(265\) 73.0337 + 159.921i 0.0169299 + 0.0370713i
\(266\) 212.239 + 1476.15i 0.0489217 + 0.340258i
\(267\) 873.140 + 561.133i 0.200132 + 0.128617i
\(268\) 2754.46 808.784i 0.627820 0.184345i
\(269\) −41.2800 + 287.109i −0.00935646 + 0.0650756i −0.993965 0.109700i \(-0.965011\pi\)
0.984608 + 0.174776i \(0.0559200\pi\)
\(270\) −100.002 + 115.409i −0.0225405 + 0.0260131i
\(271\) −1431.07 + 919.692i −0.320779 + 0.206152i −0.691114 0.722746i \(-0.742880\pi\)
0.370334 + 0.928899i \(0.379243\pi\)
\(272\) 1149.78 + 1326.91i 0.256307 + 0.295794i
\(273\) 933.996 + 274.246i 0.207062 + 0.0607990i
\(274\) 648.206 1419.37i 0.142918 0.312947i
\(275\) 1024.71 0.224700
\(276\) −434.135 + 580.782i −0.0946807 + 0.126663i
\(277\) −5533.30 −1.20023 −0.600115 0.799914i \(-0.704879\pi\)
−0.600115 + 0.799914i \(0.704879\pi\)
\(278\) −838.113 + 1835.21i −0.180815 + 0.395930i
\(279\) −3533.57 1037.55i −0.758241 0.222640i
\(280\) 1116.15 + 1288.11i 0.238224 + 0.274926i
\(281\) −5124.78 + 3293.50i −1.08797 + 0.699194i −0.956384 0.292111i \(-0.905642\pi\)
−0.131583 + 0.991305i \(0.542006\pi\)
\(282\) −157.671 + 181.962i −0.0332949 + 0.0384244i
\(283\) −413.583 + 2876.54i −0.0868727 + 0.604213i 0.899155 + 0.437631i \(0.144182\pi\)
−0.986028 + 0.166582i \(0.946727\pi\)
\(284\) −1726.43 + 506.926i −0.360722 + 0.105917i
\(285\) 248.907 + 159.963i 0.0517332 + 0.0332469i
\(286\) −129.972 903.976i −0.0268721 0.186899i
\(287\) 2949.17 + 6457.77i 0.606564 + 1.32819i
\(288\) −1282.70 2808.72i −0.262444 0.574672i
\(289\) 547.250 + 3806.20i 0.111388 + 0.774721i
\(290\) −695.358 446.879i −0.140803 0.0904885i
\(291\) 846.975 248.694i 0.170621 0.0500987i
\(292\) 262.553 1826.09i 0.0526189 0.365973i
\(293\) 2871.08 3313.40i 0.572458 0.660652i −0.393508 0.919321i \(-0.628739\pi\)
0.965966 + 0.258669i \(0.0832840\pi\)
\(294\) −365.786 + 235.076i −0.0725615 + 0.0466324i
\(295\) −1268.06 1463.41i −0.250268 0.288825i
\(296\) −4332.00 1271.99i −0.850651 0.249774i
\(297\) 787.882 1725.22i 0.153931 0.337062i
\(298\) −2098.70 −0.407967
\(299\) 2979.29 2233.51i 0.576243 0.431998i
\(300\) 164.343 0.0316278
\(301\) 1060.13 2321.36i 0.203006 0.444521i
\(302\) 868.347 + 254.970i 0.165456 + 0.0485823i
\(303\) 464.473 + 536.031i 0.0880637 + 0.101631i
\(304\) −3078.06 + 1978.15i −0.580719 + 0.373205i
\(305\) 2421.52 2794.58i 0.454609 0.524647i
\(306\) −80.5531 + 560.259i −0.0150487 + 0.104666i
\(307\) −7373.42 + 2165.03i −1.37076 + 0.402492i −0.882544 0.470231i \(-0.844171\pi\)
−0.488217 + 0.872722i \(0.662353\pi\)
\(308\) −8654.87 5562.15i −1.60116 1.02900i
\(309\) 95.1170 + 661.553i 0.0175114 + 0.121794i
\(310\) −192.378 421.248i −0.0352462 0.0771784i
\(311\) −1587.18 3475.43i −0.289391 0.633677i 0.707973 0.706239i \(-0.249610\pi\)
−0.997364 + 0.0725619i \(0.976883\pi\)
\(312\) −42.8902 298.308i −0.00778262 0.0541293i
\(313\) −7085.52 4553.59i −1.27954 0.822313i −0.288712 0.957416i \(-0.593227\pi\)
−0.990832 + 0.135103i \(0.956863\pi\)
\(314\) −349.494 + 102.621i −0.0628124 + 0.0184434i
\(315\) 619.673 4309.92i 0.110840 0.770910i
\(316\) 245.526 283.352i 0.0437085 0.0504423i
\(317\) 5786.06 3718.47i 1.02516 0.658834i 0.0838902 0.996475i \(-0.473266\pi\)
0.941275 + 0.337641i \(0.109629\pi\)
\(318\) 13.2079 + 15.2427i 0.00232912 + 0.00268795i
\(319\) 9850.14 + 2892.26i 1.72885 + 0.507635i
\(320\) −731.579 + 1601.94i −0.127802 + 0.279847i
\(321\) −440.326 −0.0765626
\(322\) −170.660 + 2409.79i −0.0295358 + 0.417057i
\(323\) 2224.93 0.383277
\(324\) −2100.33 + 4599.08i −0.360139 + 0.788594i
\(325\) −809.740 237.761i −0.138204 0.0405804i
\(326\) −1376.62 1588.71i −0.233878 0.269909i
\(327\) −223.947 + 143.922i −0.0378725 + 0.0243392i
\(328\) 1439.36 1661.11i 0.242303 0.279633i
\(329\) 1982.17 13786.3i 0.332159 2.31022i
\(330\) 112.794 33.1194i 0.0188155 0.00552474i
\(331\) −3930.39 2525.91i −0.652670 0.419445i 0.171971 0.985102i \(-0.444986\pi\)
−0.824641 + 0.565657i \(0.808623\pi\)
\(332\) −692.510 4816.51i −0.114477 0.796206i
\(333\) 4791.46 + 10491.8i 0.788499 + 1.72657i
\(334\) 581.659 + 1273.66i 0.0952903 + 0.208657i
\(335\) −270.050 1878.24i −0.0440430 0.306326i
\(336\) −1303.51 837.717i −0.211644 0.136015i
\(337\) −4215.56 + 1237.80i −0.681414 + 0.200081i −0.604079 0.796924i \(-0.706459\pi\)
−0.0773342 + 0.997005i \(0.524641\pi\)
\(338\) 99.3321 690.870i 0.0159851 0.111179i
\(339\) −683.894 + 789.255i −0.109569 + 0.126450i
\(340\) 1039.64 668.137i 0.165831 0.106573i
\(341\) 3766.52 + 4346.80i 0.598148 + 0.690300i
\(342\) −1131.77 332.318i −0.178945 0.0525430i
\(343\) 5720.89 12527.0i 0.900580 1.97199i
\(344\) −790.097 −0.123835
\(345\) 339.148 + 338.675i 0.0529250 + 0.0528511i
\(346\) −330.912 −0.0514160
\(347\) 36.1765 79.2156i 0.00559671 0.0122551i −0.906813 0.421533i \(-0.861492\pi\)
0.912410 + 0.409278i \(0.134219\pi\)
\(348\) 1579.76 + 463.859i 0.243344 + 0.0714524i
\(349\) 2209.50 + 2549.90i 0.338888 + 0.391098i 0.899456 0.437011i \(-0.143963\pi\)
−0.560568 + 0.828108i \(0.689417\pi\)
\(350\) 460.617 296.021i 0.0703458 0.0452085i
\(351\) −1022.89 + 1180.48i −0.155549 + 0.179514i
\(352\) −686.298 + 4773.31i −0.103920 + 0.722779i
\(353\) −4125.34 + 1211.31i −0.622010 + 0.182639i −0.577527 0.816371i \(-0.695982\pi\)
−0.0444831 + 0.999010i \(0.514164\pi\)
\(354\) −186.878 120.099i −0.0280578 0.0180317i
\(355\) 169.261 + 1177.24i 0.0253055 + 0.176003i
\(356\) 3752.93 + 8217.78i 0.558722 + 1.22343i
\(357\) 391.415 + 857.079i 0.0580276 + 0.127063i
\(358\) 121.990 + 848.457i 0.0180094 + 0.125258i
\(359\) −7928.76 5095.51i −1.16564 0.749110i −0.192946 0.981209i \(-0.561804\pi\)
−0.972692 + 0.232099i \(0.925441\pi\)
\(360\) −1293.48 + 379.799i −0.189367 + 0.0556033i
\(361\) 316.278 2199.76i 0.0461114 0.320712i
\(362\) 1951.00 2251.58i 0.283266 0.326907i
\(363\) −255.193 + 164.002i −0.0368984 + 0.0237132i
\(364\) 5548.61 + 6403.43i 0.798972 + 0.922063i
\(365\) −1170.06 343.560i −0.167791 0.0492678i
\(366\) 176.224 385.876i 0.0251676 0.0551094i
\(367\) 6105.76 0.868441 0.434221 0.900807i \(-0.357024\pi\)
0.434221 + 0.900807i \(0.357024\pi\)
\(368\) −5551.93 + 2075.18i −0.786452 + 0.293957i
\(369\) −5615.13 −0.792174
\(370\) −602.516 + 1319.33i −0.0846576 + 0.185374i
\(371\) −1119.47 328.706i −0.156658 0.0459988i
\(372\) 604.072 + 697.136i 0.0841926 + 0.0971635i
\(373\) −6382.30 + 4101.66i −0.885960 + 0.569372i −0.902596 0.430490i \(-0.858341\pi\)
0.0166353 + 0.999862i \(0.494705\pi\)
\(374\) 578.896 668.082i 0.0800374 0.0923681i
\(375\) 15.4596 107.524i 0.00212889 0.0148067i
\(376\) −4137.48 + 1214.87i −0.567485 + 0.166629i
\(377\) −7112.61 4570.99i −0.971665 0.624451i
\(378\) −144.225 1003.11i −0.0196247 0.136493i
\(379\) −4306.36 9429.62i −0.583649 1.27801i −0.939205 0.343358i \(-0.888436\pi\)
0.355556 0.934655i \(-0.384292\pi\)
\(380\) 1069.85 + 2342.65i 0.144427 + 0.316251i
\(381\) −136.575 949.898i −0.0183647 0.127729i
\(382\) 1225.09 + 787.320i 0.164087 + 0.105452i
\(383\) 846.308 248.499i 0.112910 0.0331532i −0.224790 0.974407i \(-0.572170\pi\)
0.337699 + 0.941254i \(0.390351\pi\)
\(384\) −145.159 + 1009.61i −0.0192907 + 0.134170i
\(385\) −4453.29 + 5139.38i −0.589509 + 0.680329i
\(386\) −1438.23 + 924.297i −0.189648 + 0.121880i
\(387\) 1321.81 + 1525.45i 0.173621 + 0.200369i
\(388\) 7372.29 + 2164.70i 0.964617 + 0.283237i
\(389\) 716.215 1568.29i 0.0933511 0.204410i −0.857196 0.514990i \(-0.827796\pi\)
0.950547 + 0.310579i \(0.100523\pi\)
\(390\) −96.8159 −0.0125704
\(391\) 3522.35 + 763.666i 0.455583 + 0.0987730i
\(392\) −7787.38 −1.00337
\(393\) 91.3755 200.084i 0.0117285 0.0256817i
\(394\) 1209.24 + 355.065i 0.154621 + 0.0454007i
\(395\) −162.291 187.294i −0.0206728 0.0238577i
\(396\) 6845.47 4399.32i 0.868681 0.558268i
\(397\) 9178.86 10593.0i 1.16039 1.33916i 0.229735 0.973253i \(-0.426214\pi\)
0.930652 0.365905i \(-0.119240\pi\)
\(398\) −146.342 + 1017.83i −0.0184309 + 0.128189i
\(399\) −1884.00 + 553.193i −0.236386 + 0.0694093i
\(400\) 1130.10 + 726.269i 0.141262 + 0.0907837i
\(401\) −477.455 3320.78i −0.0594588 0.413545i −0.997713 0.0675976i \(-0.978467\pi\)
0.938254 0.345948i \(-0.112443\pi\)
\(402\) −90.4314 198.017i −0.0112197 0.0245677i
\(403\) −1967.77 4308.82i −0.243230 0.532600i
\(404\) 878.605 + 6110.83i 0.108199 + 0.752538i
\(405\) 2811.46 + 1806.81i 0.344944 + 0.221682i
\(406\) 5263.24 1545.43i 0.643375 0.188912i
\(407\) 2563.63 17830.4i 0.312222 2.17155i
\(408\) 191.033 220.464i 0.0231802 0.0267514i
\(409\) −10027.9 + 6444.55i −1.21234 + 0.779126i −0.981049 0.193758i \(-0.937932\pi\)
−0.231294 + 0.972884i \(0.574296\pi\)
\(410\) −462.391 533.628i −0.0556973 0.0642781i
\(411\) 1971.24 + 578.807i 0.236579 + 0.0694658i
\(412\) −2416.70 + 5291.82i −0.288985 + 0.632790i
\(413\) 12850.5 1.53107
\(414\) −1677.68 914.563i −0.199163 0.108571i
\(415\) −3216.43 −0.380454
\(416\) 1649.86 3612.68i 0.194449 0.425784i
\(417\) −2548.75 748.382i −0.299312 0.0878859i
\(418\) 1206.38 + 1392.24i 0.141163 + 0.162911i
\(419\) −6191.98 + 3979.34i −0.721952 + 0.463970i −0.849315 0.527886i \(-0.822985\pi\)
0.127363 + 0.991856i \(0.459349\pi\)
\(420\) −714.216 + 824.249i −0.0829766 + 0.0957601i
\(421\) −238.211 + 1656.79i −0.0275764 + 0.191798i −0.998953 0.0457461i \(-0.985433\pi\)
0.971377 + 0.237545i \(0.0763426\pi\)
\(422\) −1696.68 + 498.191i −0.195718 + 0.0574681i
\(423\) 9267.44 + 5955.82i 1.06524 + 0.684591i
\(424\) 51.4074 + 357.546i 0.00588812 + 0.0409528i
\(425\) −339.342 743.056i −0.0387306 0.0848082i
\(426\) 56.6803 + 124.112i 0.00644640 + 0.0141157i
\(427\) 3492.36 + 24289.9i 0.395801 + 2.75286i
\(428\) −3224.28 2072.12i −0.364139 0.234018i
\(429\) 1153.74 338.768i 0.129844 0.0381256i
\(430\) −36.1219 + 251.233i −0.00405105 + 0.0281757i
\(431\) 7259.32 8377.70i 0.811297 0.936287i −0.187646 0.982237i \(-0.560086\pi\)
0.998944 + 0.0459495i \(0.0146313\pi\)
\(432\) 2091.67 1344.23i 0.232952 0.149709i
\(433\) 4996.20 + 5765.92i 0.554508 + 0.639937i 0.961928 0.273305i \(-0.0881167\pi\)
−0.407419 + 0.913241i \(0.633571\pi\)
\(434\) 2948.79 + 865.844i 0.326144 + 0.0957646i
\(435\) 452.095 989.950i 0.0498306 0.109114i
\(436\) −2317.13 −0.254520
\(437\) −2619.88 + 7039.17i −0.286787 + 0.770548i
\(438\) −139.897 −0.0152615
\(439\) −4141.97 + 9069.65i −0.450309 + 0.986039i 0.539282 + 0.842126i \(0.318696\pi\)
−0.989590 + 0.143913i \(0.954031\pi\)
\(440\) 2020.13 + 593.163i 0.218877 + 0.0642680i
\(441\) 13028.0 + 15035.2i 1.40676 + 1.62349i
\(442\) −612.463 + 393.606i −0.0659093 + 0.0423573i
\(443\) −3670.66 + 4236.16i −0.393675 + 0.454326i −0.917639 0.397415i \(-0.869907\pi\)
0.523964 + 0.851741i \(0.324453\pi\)
\(444\) 411.153 2859.63i 0.0439470 0.305658i
\(445\) 5729.67 1682.38i 0.610365 0.179219i
\(446\) 2099.99 + 1349.58i 0.222954 + 0.143284i
\(447\) −393.247 2735.10i −0.0416107 0.289408i
\(448\) −4855.02 10631.0i −0.512005 1.12113i
\(449\) −7710.54 16883.7i −0.810430 1.77459i −0.605552 0.795806i \(-0.707047\pi\)
−0.204878 0.978787i \(-0.565680\pi\)
\(450\) 61.6320 + 428.660i 0.00645636 + 0.0449050i
\(451\) 7377.45 + 4741.20i 0.770268 + 0.495021i
\(452\) −8721.94 + 2560.99i −0.907623 + 0.266502i
\(453\) −169.577 + 1179.44i −0.0175882 + 0.122328i
\(454\) 1428.19 1648.22i 0.147639 0.170385i
\(455\) 4711.52 3027.91i 0.485449 0.311979i
\(456\) 398.101 + 459.433i 0.0408833 + 0.0471818i
\(457\) 4659.04 + 1368.02i 0.476895 + 0.140029i 0.511341 0.859378i \(-0.329149\pi\)
−0.0344469 + 0.999407i \(0.510967\pi\)
\(458\) −1285.97 + 2815.87i −0.131199 + 0.287286i
\(459\) −1511.93 −0.153749
\(460\) 889.645 + 4075.93i 0.0901737 + 0.413133i
\(461\) 3719.98 0.375828 0.187914 0.982186i \(-0.439827\pi\)
0.187914 + 0.982186i \(0.439827\pi\)
\(462\) −324.084 + 709.645i −0.0326358 + 0.0714625i
\(463\) −8237.48 2418.74i −0.826843 0.242783i −0.159183 0.987249i \(-0.550886\pi\)
−0.667660 + 0.744466i \(0.732704\pi\)
\(464\) 8813.25 + 10171.0i 0.881777 + 1.01763i
\(465\) 512.938 329.646i 0.0511547 0.0328752i
\(466\) 668.953 772.013i 0.0664992 0.0767442i
\(467\) −582.989 + 4054.78i −0.0577677 + 0.401783i 0.940337 + 0.340245i \(0.110510\pi\)
−0.998105 + 0.0615388i \(0.980399\pi\)
\(468\) −6430.13 + 1888.06i −0.635113 + 0.186486i
\(469\) 10593.8 + 6808.21i 1.04302 + 0.670307i
\(470\) 197.144 + 1371.17i 0.0193480 + 0.134569i
\(471\) −199.226 436.244i −0.0194901 0.0426774i
\(472\) −1652.75 3619.01i −0.161173 0.352920i
\(473\) −448.631 3120.30i −0.0436111 0.303322i
\(474\) −23.9175 15.3709i −0.00231766 0.00148947i
\(475\) 1633.36 479.598i 0.157776 0.0463273i
\(476\) −1167.18 + 8117.90i −0.112390 + 0.781687i
\(477\) 604.314 697.415i 0.0580076 0.0669444i
\(478\) 3425.44 2201.39i 0.327774 0.210647i
\(479\) −2599.76 3000.29i −0.247988 0.286193i 0.618085 0.786111i \(-0.287909\pi\)
−0.866073 + 0.499918i \(0.833363\pi\)
\(480\) 490.514 + 144.028i 0.0466433 + 0.0136957i
\(481\) −6162.95 + 13495.0i −0.584213 + 1.27925i
\(482\) 490.943 0.0463938
\(483\) −3172.50 + 229.128i −0.298869 + 0.0215853i
\(484\) −2640.42 −0.247973
\(485\) 2109.80 4619.82i 0.197528 0.432526i
\(486\) 1159.08 + 340.337i 0.108183 + 0.0317655i
\(487\) −9286.68 10717.4i −0.864106 0.997232i −0.999979 0.00650563i \(-0.997929\pi\)
0.135872 0.990726i \(-0.456616\pi\)
\(488\) 6391.46 4107.54i 0.592885 0.381024i
\(489\) 1812.51 2091.75i 0.167617 0.193440i
\(490\) −356.025 + 2476.21i −0.0328237 + 0.228294i
\(491\) 8776.64 2577.05i 0.806689 0.236865i 0.147714 0.989030i \(-0.452808\pi\)
0.658975 + 0.752165i \(0.270990\pi\)
\(492\) 1183.19 + 760.390i 0.108419 + 0.0696769i
\(493\) −1164.67 8100.47i −0.106398 0.740014i
\(494\) −630.261 1380.08i −0.0574024 0.125694i
\(495\) −2234.38 4892.62i −0.202885 0.444256i
\(496\) 1073.07 + 7463.37i 0.0971417 + 0.675635i
\(497\) −6639.93 4267.22i −0.599279 0.385133i
\(498\) −354.046 + 103.957i −0.0318578 + 0.00935428i
\(499\) −1072.58 + 7459.98i −0.0962233 + 0.669248i 0.883432 + 0.468560i \(0.155227\pi\)
−0.979655 + 0.200688i \(0.935682\pi\)
\(500\) 619.199 714.593i 0.0553828 0.0639152i
\(501\) −1550.88 + 996.692i −0.138300 + 0.0888801i
\(502\) −2078.21 2398.39i −0.184771 0.213238i
\(503\) 3974.35 + 1166.97i 0.352301 + 0.103445i 0.453095 0.891462i \(-0.350320\pi\)
−0.100794 + 0.994907i \(0.532138\pi\)
\(504\) 3716.46 8137.91i 0.328461 0.719229i
\(505\) 4080.77 0.359588
\(506\) 1432.00 + 2618.17i 0.125811 + 0.230023i
\(507\) 918.978 0.0804995
\(508\) 3470.03 7598.32i 0.303067 0.663624i
\(509\) 2581.14 + 757.890i 0.224768 + 0.0659978i 0.392177 0.919890i \(-0.371722\pi\)
−0.167409 + 0.985887i \(0.553540\pi\)
\(510\) −61.3688 70.8234i −0.00532834 0.00614924i
\(511\) 6808.04 4375.26i 0.589373 0.378767i
\(512\) −7031.94 + 8115.29i −0.606974 + 0.700485i
\(513\) 448.402 3118.70i 0.0385914 0.268409i
\(514\) 1499.66 440.341i 0.128691 0.0377872i
\(515\) 3234.93 + 2078.97i 0.276793 + 0.177884i
\(516\) −71.9510 500.430i −0.00613850 0.0426942i
\(517\) −7147.18 15650.1i −0.607994 1.33132i
\(518\) −3998.51 8755.52i −0.339159 0.742655i
\(519\) −62.0053 431.256i −0.00524418 0.0364741i
\(520\) −1458.70 937.448i −0.123016 0.0790573i
\(521\) −15100.7 + 4433.97i −1.26982 + 0.372852i −0.846139 0.532962i \(-0.821079\pi\)
−0.423677 + 0.905813i \(0.639261\pi\)
\(522\) −617.454 + 4294.49i −0.0517725 + 0.360085i
\(523\) −14493.9 + 16726.9i −1.21181 + 1.39850i −0.319189 + 0.947691i \(0.603410\pi\)
−0.892620 + 0.450811i \(0.851135\pi\)
\(524\) 1610.67 1035.11i 0.134279 0.0862961i
\(525\) 472.094 + 544.825i 0.0392455 + 0.0452917i
\(526\) −106.268 31.2032i −0.00880897 0.00258655i
\(527\) 1904.70 4170.71i 0.157438 0.344742i
\(528\) −1914.04 −0.157761
\(529\) −6563.68 + 10244.7i −0.539466 + 0.842008i
\(530\) 116.042 0.00951044
\(531\) −4222.25 + 9245.45i −0.345066 + 0.755590i
\(532\) −16398.8 4815.14i −1.33643 0.392411i
\(533\) −4729.66 5458.32i −0.384361 0.443576i
\(534\) 576.312 370.373i 0.0467031 0.0300143i
\(535\) −1659.03 + 1914.62i −0.134067 + 0.154722i
\(536\) 554.854 3859.10i 0.0447128 0.310984i
\(537\) −1082.88 + 317.962i −0.0870200 + 0.0255514i
\(538\) 161.061 + 103.508i 0.0129067 + 0.00829466i
\(539\) −4421.81 30754.4i −0.353360 2.45767i
\(540\) −727.009 1591.93i −0.0579361 0.126862i
\(541\) −907.998 1988.24i −0.0721587 0.158006i 0.870115 0.492848i \(-0.164044\pi\)
−0.942274 + 0.334843i \(0.891317\pi\)
\(542\) 159.793 + 1111.38i 0.0126636 + 0.0880775i
\(543\) 3299.90 + 2120.72i 0.260796 + 0.167604i
\(544\) 3688.56 1083.06i 0.290709 0.0853600i
\(545\) −217.972 + 1516.03i −0.0171319 + 0.119155i
\(546\) 420.752 485.573i 0.0329789 0.0380597i
\(547\) −5650.05 + 3631.06i −0.441643 + 0.283826i −0.742504 0.669841i \(-0.766362\pi\)
0.300862 + 0.953668i \(0.402726\pi\)
\(548\) 11710.6 + 13514.7i 0.912865 + 1.05350i
\(549\) −18623.2 5468.25i −1.44775 0.425099i
\(550\) 280.969 615.236i 0.0217828 0.0476977i
\(551\) 17054.5 1.31859
\(552\) 472.554 + 863.983i 0.0364370 + 0.0666188i
\(553\) 1644.66 0.126470
\(554\) −1517.19 + 3322.18i −0.116352 + 0.254776i
\(555\) −1832.29 538.009i −0.140138 0.0411481i
\(556\) −15141.4 17474.1i −1.15493 1.33286i
\(557\) 4917.31 3160.16i 0.374063 0.240396i −0.340079 0.940397i \(-0.610454\pi\)
0.714142 + 0.700001i \(0.246817\pi\)
\(558\) −1591.82 + 1837.06i −0.120766 + 0.139371i
\(559\) −369.480 + 2569.79i −0.0279558 + 0.194437i
\(560\) −8553.83 + 2511.63i −0.645474 + 0.189528i
\(561\) 979.139 + 629.255i 0.0736886 + 0.0473568i
\(562\) 572.232 + 3979.96i 0.0429504 + 0.298727i
\(563\) −4189.98 9174.77i −0.313653 0.686803i 0.685495 0.728077i \(-0.259586\pi\)
−0.999148 + 0.0412737i \(0.986858\pi\)
\(564\) −1146.26 2509.96i −0.0855784 0.187391i
\(565\) 855.107 + 5947.40i 0.0636719 + 0.442848i
\(566\) 1613.66 + 1037.04i 0.119836 + 0.0770142i
\(567\) −21280.2 + 6248.44i −1.57616 + 0.462804i
\(568\) −347.769 + 2418.79i −0.0256903 + 0.178680i
\(569\) 9870.44 11391.1i 0.727224 0.839261i −0.264932 0.964267i \(-0.585350\pi\)
0.992156 + 0.125006i \(0.0398950\pi\)
\(570\) 164.290 105.583i 0.0120725 0.00775854i
\(571\) 9395.13 + 10842.6i 0.688571 + 0.794653i 0.987161 0.159728i \(-0.0510619\pi\)
−0.298590 + 0.954381i \(0.596516\pi\)
\(572\) 10042.4 + 2948.73i 0.734083 + 0.215546i
\(573\) −796.509 + 1744.11i −0.0580709 + 0.127158i
\(574\) 4685.87 0.340740
\(575\) 2750.44 198.646i 0.199480 0.0144071i
\(576\) 9243.83 0.668680
\(577\) 8209.48 17976.3i 0.592314 1.29699i −0.341720 0.939802i \(-0.611009\pi\)
0.934034 0.357185i \(-0.116263\pi\)
\(578\) 2435.29 + 715.065i 0.175250 + 0.0514581i
\(579\) −1474.07 1701.17i −0.105803 0.122104i
\(580\) 7969.04 5121.39i 0.570511 0.366645i
\(581\) 13978.3 16131.8i 0.998135 1.15191i
\(582\) 82.9187 576.712i 0.00590566 0.0410747i
\(583\) −1382.85 + 406.042i −0.0982364 + 0.0288448i
\(584\) −2107.78 1354.59i −0.149351 0.0959818i
\(585\) 630.415 + 4384.64i 0.0445547 + 0.309884i
\(586\) −1202.13 2632.30i −0.0847434 0.185562i
\(587\) 2079.98 + 4554.52i 0.146252 + 0.320247i 0.968554 0.248805i \(-0.0800377\pi\)
−0.822302 + 0.569052i \(0.807310\pi\)
\(588\) −709.166 4932.36i −0.0497373 0.345930i
\(589\) 8038.16 + 5165.81i 0.562320 + 0.361381i
\(590\) −1226.32 + 360.081i −0.0855710 + 0.0251259i
\(591\) −236.149 + 1642.45i −0.0164363 + 0.114317i
\(592\) 15464.7 17847.2i 1.07364 1.23905i
\(593\) 7915.45 5086.95i 0.548143 0.352270i −0.237073 0.971492i \(-0.576188\pi\)
0.785216 + 0.619222i \(0.212552\pi\)
\(594\) −819.788 946.086i −0.0566268 0.0653508i
\(595\) 5201.48 + 1527.29i 0.358387 + 0.105232i
\(596\) 9991.47 21878.3i 0.686689 1.50364i
\(597\) −1353.90 −0.0928163
\(598\) −524.099 2401.17i −0.0358395 0.164199i
\(599\) 8690.04 0.592764 0.296382 0.955070i \(-0.404220\pi\)
0.296382 + 0.955070i \(0.404220\pi\)
\(600\) 92.7184 203.025i 0.00630869 0.0138141i
\(601\) −9111.47 2675.37i −0.618410 0.181582i −0.0425027 0.999096i \(-0.513533\pi\)
−0.575908 + 0.817515i \(0.695351\pi\)
\(602\) −1103.06 1273.00i −0.0746799 0.0861853i
\(603\) −8379.04 + 5384.88i −0.565872 + 0.363664i
\(604\) −6792.00 + 7838.39i −0.457554 + 0.528046i
\(605\) −248.383 + 1727.54i −0.0166912 + 0.116090i
\(606\) 449.187 131.893i 0.0301105 0.00884125i
\(607\) −1114.57 716.293i −0.0745291 0.0478969i 0.502846 0.864376i \(-0.332286\pi\)
−0.577375 + 0.816479i \(0.695923\pi\)
\(608\) 1140.12 + 7929.71i 0.0760493 + 0.528935i
\(609\) 3000.26 + 6569.66i 0.199634 + 0.437137i
\(610\) −1013.90 2220.13i −0.0672976 0.147361i
\(611\) 2016.53 + 14025.3i 0.133519 + 0.928644i
\(612\) −5457.03 3507.02i −0.360437 0.231639i
\(613\) −17865.8 + 5245.88i −1.17715 + 0.345643i −0.811075 0.584942i \(-0.801117\pi\)
−0.366077 + 0.930585i \(0.619299\pi\)
\(614\) −721.857 + 5020.63i −0.0474459 + 0.329993i
\(615\) 608.801 702.594i 0.0399175 0.0460672i
\(616\) −11754.2 + 7553.98i −0.768816 + 0.494088i
\(617\) −16604.3 19162.3i −1.08341 1.25032i −0.966360 0.257192i \(-0.917203\pi\)
−0.117047 0.993126i \(-0.537343\pi\)
\(618\) 423.276 + 124.285i 0.0275512 + 0.00808976i
\(619\) −1843.88 + 4037.54i −0.119729 + 0.262169i −0.960002 0.279994i \(-0.909667\pi\)
0.840273 + 0.542163i \(0.182395\pi\)
\(620\) 5307.26 0.343781
\(621\) 1780.32 4783.41i 0.115043 0.309101i
\(622\) −2521.84 −0.162567
\(623\) −16462.7 + 36048.2i −1.05869 + 2.31820i
\(624\) 1512.50 + 444.109i 0.0970325 + 0.0284913i
\(625\) −409.288 472.343i −0.0261944 0.0302300i
\(626\) −4676.76 + 3005.57i −0.298596 + 0.191896i
\(627\) −1588.37 + 1833.08i −0.101170 + 0.116756i
\(628\) 594.081 4131.92i 0.0377491 0.262550i
\(629\) −13778.4 + 4045.72i −0.873422 + 0.256460i
\(630\) −2417.76 1553.80i −0.152898 0.0982617i
\(631\) −4107.91 28571.1i −0.259165 1.80253i −0.538808 0.842429i \(-0.681125\pi\)
0.279643 0.960104i \(-0.409784\pi\)
\(632\) −211.526 463.177i −0.0133134 0.0291522i
\(633\) −967.178 2117.82i −0.0607297 0.132979i
\(634\) −646.070 4493.51i −0.0404712 0.281483i
\(635\) −4644.91 2985.10i −0.290280 0.186552i
\(636\) −221.780 + 65.1206i −0.0138273 + 0.00406006i
\(637\) −3641.68 + 25328.4i −0.226513 + 1.57543i
\(638\) 4437.34 5120.97i 0.275354 0.317776i
\(639\) 5251.78 3375.11i 0.325129 0.208947i
\(640\) 3843.04 + 4435.10i 0.237358 + 0.273926i
\(641\) −7961.25 2337.63i −0.490562 0.144042i 0.0270904 0.999633i \(-0.491376\pi\)
−0.517653 + 0.855591i \(0.673194\pi\)
\(642\) −120.734 + 264.371i −0.00742211 + 0.0162521i
\(643\) −4066.93 −0.249431 −0.124715 0.992193i \(-0.539802\pi\)
−0.124715 + 0.992193i \(0.539802\pi\)
\(644\) −24308.8 13251.6i −1.48743 0.810848i
\(645\) −334.184 −0.0204008
\(646\) 610.059 1335.84i 0.0371555 0.0813592i
\(647\) −7034.42 2065.49i −0.427437 0.125507i 0.0609364 0.998142i \(-0.480591\pi\)
−0.488373 + 0.872635i \(0.662409\pi\)
\(648\) 4496.63 + 5189.39i 0.272600 + 0.314597i
\(649\) 13353.9 8582.04i 0.807685 0.519067i
\(650\) −364.776 + 420.974i −0.0220118 + 0.0254030i
\(651\) −575.862 + 4005.21i −0.0346695 + 0.241131i
\(652\) 23115.6 6787.36i 1.38846 0.407690i
\(653\) 26333.9 + 16923.8i 1.57814 + 1.01421i 0.976519 + 0.215429i \(0.0691150\pi\)
0.601622 + 0.798781i \(0.294521\pi\)
\(654\) 25.0059 + 173.920i 0.00149512 + 0.0103988i
\(655\) −525.727 1151.18i −0.0313616 0.0686723i
\(656\) 4775.82 + 10457.6i 0.284245 + 0.622409i
\(657\) 910.936 + 6335.70i 0.0540929 + 0.376224i
\(658\) −7733.76 4970.18i −0.458196 0.294465i
\(659\) 5549.54 1629.49i 0.328041 0.0963217i −0.113565 0.993531i \(-0.536227\pi\)
0.441606 + 0.897209i \(0.354409\pi\)
\(660\) −191.731 + 1333.52i −0.0113078 + 0.0786473i
\(661\) 1187.97 1370.99i 0.0699042 0.0806738i −0.719720 0.694264i \(-0.755730\pi\)
0.789624 + 0.613590i \(0.210275\pi\)
\(662\) −2594.23 + 1667.21i −0.152308 + 0.0978822i
\(663\) −627.723 724.431i −0.0367703 0.0424352i
\(664\) −6340.90 1861.86i −0.370594 0.108816i
\(665\) −4693.02 + 10276.3i −0.273666 + 0.599244i
\(666\) 7613.06 0.442943
\(667\) 26999.5 + 5853.64i 1.56735 + 0.339811i
\(668\) −16046.6 −0.929435
\(669\) −1365.33 + 2989.66i −0.0789040 + 0.172776i
\(670\) −1201.74 352.862i −0.0692943 0.0203466i
\(671\) 19850.9 + 22909.2i 1.14208 + 1.31803i
\(672\) −2854.08 + 1834.21i −0.163837 + 0.105292i
\(673\) 8404.56 9699.38i 0.481385 0.555548i −0.462158 0.886797i \(-0.652925\pi\)
0.943543 + 0.331250i \(0.107470\pi\)
\(674\) −412.703 + 2870.41i −0.0235856 + 0.164042i
\(675\) −1109.94 + 325.907i −0.0632911 + 0.0185839i
\(676\) 6729.21 + 4324.60i 0.382863 + 0.246051i
\(677\) 3759.03 + 26144.7i 0.213399 + 1.48423i 0.761692 + 0.647939i \(0.224369\pi\)
−0.548292 + 0.836287i \(0.684722\pi\)
\(678\) 286.349 + 627.016i 0.0162200 + 0.0355168i
\(679\) 14001.4 + 30658.8i 0.791347 + 1.73281i
\(680\) −238.858 1661.29i −0.0134703 0.0936879i
\(681\) 2415.63 + 1552.43i 0.135928 + 0.0873557i
\(682\) 3642.56 1069.55i 0.204517 0.0600517i
\(683\) 3683.76 25621.1i 0.206377 1.43538i −0.578476 0.815699i \(-0.696353\pi\)
0.784853 0.619682i \(-0.212738\pi\)
\(684\) 8852.45 10216.3i 0.494856 0.571095i
\(685\) 9943.84 6390.52i 0.554649 0.356451i
\(686\) −5952.56 6869.62i −0.331297 0.382337i
\(687\) −3910.70 1148.29i −0.217180 0.0637698i
\(688\) 1716.75 3759.16i 0.0951316 0.208309i
\(689\) 1186.96 0.0656305
\(690\) 296.331 110.762i 0.0163495 0.00611105i
\(691\) −28074.0 −1.54557 −0.772783 0.634671i \(-0.781136\pi\)
−0.772783 + 0.634671i \(0.781136\pi\)
\(692\) 1575.41 3449.66i 0.0865433 0.189503i
\(693\) 34248.9 + 10056.4i 1.87736 + 0.551242i
\(694\) −37.6415 43.4407i −0.00205887 0.00237606i
\(695\) −12857.1 + 8262.77i −0.701724 + 0.450971i
\(696\) 1464.30 1689.89i 0.0797474 0.0920335i
\(697\) 994.908 6919.74i 0.0540672 0.376045i
\(698\) 2136.78 627.417i 0.115872 0.0340230i
\(699\) 1131.46 + 727.146i 0.0612243 + 0.0393465i
\(700\) 893.020 + 6211.09i 0.0482185 + 0.335367i
\(701\) −1715.17 3755.71i −0.0924126 0.202355i 0.857781 0.514015i \(-0.171842\pi\)
−0.950194 + 0.311660i \(0.899115\pi\)
\(702\) 428.288 + 937.820i 0.0230266 + 0.0504213i
\(703\) −4258.86 29621.0i −0.228486 1.58916i
\(704\) −12145.0 7805.14i −0.650189 0.417851i
\(705\) −1750.01 + 513.850i −0.0934884 + 0.0274507i
\(706\) −403.870 + 2808.98i −0.0215295 + 0.149741i
\(707\) −17734.6 + 20466.8i −0.943392 + 1.08873i
\(708\) 2141.69 1376.38i 0.113686 0.0730615i
\(709\) 22897.2 + 26424.7i 1.21287 + 1.39972i 0.891656 + 0.452713i \(0.149544\pi\)
0.321209 + 0.947008i \(0.395911\pi\)
\(710\) 753.220 + 221.165i 0.0398139 + 0.0116904i
\(711\) −540.383 + 1183.27i −0.0285034 + 0.0624138i
\(712\) 12269.4 0.645806
\(713\) 10952.4 + 10937.1i 0.575274 + 0.574471i
\(714\) 621.911 0.0325973
\(715\) 2873.95 6293.06i 0.150321 0.329157i
\(716\) −9425.67 2767.63i −0.491975 0.144457i
\(717\) 3510.78 + 4051.66i 0.182863 + 0.211035i
\(718\) −5233.34 + 3363.26i −0.272015 + 0.174813i
\(719\) −16771.2 + 19355.0i −0.869902 + 1.00392i 0.130021 + 0.991511i \(0.458496\pi\)
−0.999923 + 0.0124094i \(0.996050\pi\)
\(720\) 1003.49 6979.41i 0.0519413 0.361260i
\(721\) −24485.6 + 7189.61i −1.26476 + 0.371366i
\(722\) −1234.01 793.052i −0.0636083 0.0408786i
\(723\) 91.9913 + 639.814i 0.00473194 + 0.0329114i
\(724\) 14183.7 + 31057.9i 0.728082 + 1.59428i
\(725\) −2601.12 5695.66i −0.133246 0.291767i
\(726\) 28.4947 + 198.185i 0.00145667 + 0.0101313i
\(727\) 20770.3 + 13348.3i 1.05960 + 0.680962i 0.949757 0.312987i \(-0.101330\pi\)
0.109841 + 0.993949i \(0.464966\pi\)
\(728\) 11041.0 3241.94i 0.562099 0.165047i
\(729\) 2341.96 16288.7i 0.118984 0.827551i
\(730\) −527.093 + 608.298i −0.0267241 + 0.0308413i
\(731\) −2114.07 + 1358.63i −0.106965 + 0.0687424i
\(732\) 3183.67 + 3674.15i 0.160754 + 0.185520i
\(733\) 8367.19 + 2456.83i 0.421622 + 0.123799i 0.485660 0.874148i \(-0.338579\pi\)
−0.0640373 + 0.997948i \(0.520398\pi\)
\(734\) 1674.15 3665.89i 0.0841882 0.184346i
\(735\) −3293.80 −0.165297
\(736\) −916.767 + 12945.1i −0.0459137 + 0.648319i
\(737\) 15555.6 0.777474
\(738\) −1539.63 + 3371.31i −0.0767947 + 0.168157i
\(739\) −24886.5 7307.35i −1.23879 0.363742i −0.404230 0.914657i \(-0.632460\pi\)
−0.834561 + 0.550916i \(0.814279\pi\)
\(740\) −10885.1 12562.1i −0.540736 0.624043i
\(741\) 1680.47 1079.97i 0.0833112 0.0535409i
\(742\) −504.305 + 581.999i −0.0249510 + 0.0287950i
\(743\) 3241.53 22545.3i 0.160054 1.11320i −0.738474 0.674282i \(-0.764453\pi\)
0.898528 0.438917i \(-0.144638\pi\)
\(744\) 1202.03 352.947i 0.0592318 0.0173920i
\(745\) −13374.4 8595.18i −0.657716 0.422689i
\(746\) 712.647 + 4956.57i 0.0349757 + 0.243261i
\(747\) 7013.42 + 15357.2i 0.343517 + 0.752198i
\(748\) 4208.54 + 9215.42i 0.205721 + 0.450467i
\(749\) −2392.68 16641.5i −0.116725 0.811837i
\(750\) −60.3184 38.7643i −0.00293669 0.00188730i
\(751\) 6839.10 2008.14i 0.332307 0.0975740i −0.111323 0.993784i \(-0.535509\pi\)
0.443630 + 0.896210i \(0.353691\pi\)
\(752\) 3209.88 22325.2i 0.155655 1.08260i
\(753\) 2736.25 3157.80i 0.132423 0.152824i
\(754\) −4694.64 + 3017.06i −0.226749 + 0.145723i
\(755\) 4489.49 + 5181.15i 0.216410 + 0.249750i
\(756\) 11143.7 + 3272.08i 0.536101 + 0.157413i
\(757\) 2293.96 5023.06i 0.110139 0.241171i −0.846534 0.532334i \(-0.821315\pi\)
0.956673 + 0.291163i \(0.0940423\pi\)
\(758\) −6842.30 −0.327867
\(759\) −3143.77 + 2356.82i −0.150345 + 0.112710i
\(760\) 3497.64 0.166938
\(761\) −10600.5 + 23211.8i −0.504950 + 1.10569i 0.469879 + 0.882731i \(0.344298\pi\)
−0.974829 + 0.222955i \(0.928430\pi\)
\(762\) −607.764 178.456i −0.0288937 0.00848395i
\(763\) −6656.24 7681.71i −0.315822 0.364478i
\(764\) −14040.0 + 9022.96i −0.664855 + 0.427276i