Properties

Label 115.4.g.a.6.6
Level $115$
Weight $4$
Character 115.6
Analytic conductor $6.785$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(6,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 18]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.g (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78521965066\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 6.6
Character \(\chi\) \(=\) 115.6
Dual form 115.4.g.a.96.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.502951 + 1.10131i) q^{2} +(-7.38951 - 2.16976i) q^{3} +(4.27896 + 4.93819i) q^{4} +(4.20627 - 2.70320i) q^{5} +(6.10614 - 7.04686i) q^{6} +(2.63135 - 18.3014i) q^{7} +(-16.8840 + 4.95759i) q^{8} +(27.1832 + 17.4696i) q^{9} +O(q^{10})\) \(q+(-0.502951 + 1.10131i) q^{2} +(-7.38951 - 2.16976i) q^{3} +(4.27896 + 4.93819i) q^{4} +(4.20627 - 2.70320i) q^{5} +(6.10614 - 7.04686i) q^{6} +(2.63135 - 18.3014i) q^{7} +(-16.8840 + 4.95759i) q^{8} +(27.1832 + 17.4696i) q^{9} +(0.861517 + 5.99198i) q^{10} +(12.9405 + 28.3358i) q^{11} +(-20.9048 - 45.7751i) q^{12} +(6.69273 + 46.5490i) q^{13} +(18.8321 + 12.1027i) q^{14} +(-36.9476 + 10.8488i) q^{15} +(-4.40727 + 30.6532i) q^{16} +(-47.8147 + 55.1811i) q^{17} +(-32.9113 + 21.1508i) q^{18} +(57.1420 + 65.9454i) q^{19} +(31.3474 + 9.20442i) q^{20} +(-59.1540 + 129.529i) q^{21} -37.7150 q^{22} +(97.8235 + 50.9663i) q^{23} +135.521 q^{24} +(10.3854 - 22.7408i) q^{25} +(-54.6310 - 16.0411i) q^{26} +(-26.7943 - 30.9223i) q^{27} +(101.635 - 65.3170i) q^{28} +(-116.249 + 134.159i) q^{29} +(6.63496 - 46.1471i) q^{30} +(101.005 - 29.6576i) q^{31} +(-149.969 - 96.3792i) q^{32} +(-34.1424 - 237.466i) q^{33} +(-36.7230 - 80.4122i) q^{34} +(-38.4043 - 84.0937i) q^{35} +(30.0479 + 208.988i) q^{36} +(-234.483 - 150.693i) q^{37} +(-101.366 + 29.7638i) q^{38} +(51.5439 - 358.496i) q^{39} +(-57.6173 + 66.4939i) q^{40} +(38.6455 - 24.8359i) q^{41} +(-112.900 - 130.294i) q^{42} +(94.7313 + 27.8156i) q^{43} +(-84.5555 + 185.151i) q^{44} +161.564 q^{45} +(-105.330 + 82.1004i) q^{46} +436.665 q^{47} +(99.0777 - 216.950i) q^{48} +(1.08806 + 0.319483i) q^{49} +(19.8213 + 22.8750i) q^{50} +(473.057 - 304.015i) q^{51} +(-201.230 + 232.231i) q^{52} +(-26.6367 + 185.262i) q^{53} +(47.5313 - 13.9564i) q^{54} +(131.029 + 84.2071i) q^{55} +(46.3033 + 322.046i) q^{56} +(-279.166 - 611.289i) q^{57} +(-89.2827 - 195.502i) q^{58} +(29.5870 + 205.782i) q^{59} +(-211.671 - 136.032i) q^{60} +(175.617 - 51.5657i) q^{61} +(-18.1382 + 126.154i) q^{62} +(391.247 - 451.523i) q^{63} +(-26.8481 + 17.2542i) q^{64} +(153.983 + 177.706i) q^{65} +(278.695 + 81.8323i) q^{66} +(88.4106 - 193.592i) q^{67} -477.092 q^{68} +(-612.284 - 588.869i) q^{69} +111.929 q^{70} +(-400.051 + 875.989i) q^{71} +(-545.569 - 160.193i) q^{72} +(487.835 + 562.992i) q^{73} +(283.893 - 182.447i) q^{74} +(-126.085 + 145.510i) q^{75} +(-81.1422 + 564.356i) q^{76} +(552.637 - 162.269i) q^{77} +(368.891 + 237.072i) q^{78} +(-178.998 - 1244.96i) q^{79} +(64.3238 + 140.849i) q^{80} +(-231.523 - 506.965i) q^{81} +(7.91527 + 55.0519i) q^{82} +(-741.416 - 476.479i) q^{83} +(-892.757 + 262.137i) q^{84} +(-51.9556 + 361.359i) q^{85} +(-78.2788 + 90.3386i) q^{86} +(1150.12 - 739.136i) q^{87} +(-358.965 - 414.268i) q^{88} +(-1316.89 - 386.673i) q^{89} +(-81.2587 + 177.932i) q^{90} +869.523 q^{91} +(166.902 + 701.154i) q^{92} -810.724 q^{93} +(-219.621 + 480.903i) q^{94} +(418.619 + 122.918i) q^{95} +(899.079 + 1037.59i) q^{96} +(-183.511 + 117.935i) q^{97} +(-0.899091 + 1.03761i) q^{98} +(-143.250 + 996.325i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9} - 10 q^{10} + 2 q^{11} - 57 q^{12} + 34 q^{13} - 154 q^{14} + 30 q^{15} + 16 q^{16} + 252 q^{17} - 33 q^{18} - 160 q^{19} - 200 q^{20} - 684 q^{21} - 704 q^{22} + 127 q^{23} - 3090 q^{24} - 275 q^{25} - 567 q^{26} + 384 q^{27} - 188 q^{28} + 340 q^{29} - 15 q^{30} + 582 q^{31} - 1364 q^{32} + 1760 q^{33} + 1819 q^{34} + 665 q^{35} + 2794 q^{36} + 312 q^{37} + 3123 q^{38} - 1560 q^{39} - 1205 q^{40} + 1324 q^{41} + 1454 q^{42} - 1740 q^{43} - 369 q^{44} + 3730 q^{45} - 4322 q^{46} - 2858 q^{47} - 2686 q^{48} + 2015 q^{49} - 325 q^{50} - 1426 q^{51} + 1717 q^{52} + 882 q^{53} + 2541 q^{54} + 450 q^{55} + 7755 q^{56} + 3688 q^{57} + 6622 q^{58} + 2605 q^{59} + 1530 q^{60} - 104 q^{61} - 9360 q^{62} - 7618 q^{63} + 3483 q^{64} + 170 q^{65} - 1766 q^{66} - 166 q^{67} - 5018 q^{68} - 1194 q^{69} - 770 q^{70} - 1222 q^{71} + 3303 q^{72} - 922 q^{73} + 1245 q^{74} + 150 q^{75} + 1360 q^{76} - 3093 q^{77} - 1600 q^{78} + 2448 q^{79} + 2115 q^{80} - 1371 q^{81} + 6609 q^{82} + 6704 q^{83} + 3894 q^{84} - 720 q^{85} - 5074 q^{86} - 6324 q^{87} + 1918 q^{88} - 5380 q^{89} - 165 q^{90} + 7828 q^{91} - 16225 q^{92} - 24948 q^{93} - 16490 q^{94} + 685 q^{95} + 675 q^{96} - 4400 q^{97} + 8790 q^{98} - 3626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.502951 + 1.10131i −0.177820 + 0.389372i −0.977464 0.211103i \(-0.932294\pi\)
0.799644 + 0.600475i \(0.205022\pi\)
\(3\) −7.38951 2.16976i −1.42211 0.417570i −0.521895 0.853010i \(-0.674775\pi\)
−0.900218 + 0.435440i \(0.856593\pi\)
\(4\) 4.27896 + 4.93819i 0.534870 + 0.617273i
\(5\) 4.20627 2.70320i 0.376220 0.241782i
\(6\) 6.10614 7.04686i 0.415470 0.479478i
\(7\) 2.63135 18.3014i 0.142079 0.988184i −0.786643 0.617408i \(-0.788183\pi\)
0.928722 0.370776i \(-0.120908\pi\)
\(8\) −16.8840 + 4.95759i −0.746175 + 0.219097i
\(9\) 27.1832 + 17.4696i 1.00679 + 0.647022i
\(10\) 0.861517 + 5.99198i 0.0272436 + 0.189483i
\(11\) 12.9405 + 28.3358i 0.354702 + 0.776688i 0.999919 + 0.0126895i \(0.00403931\pi\)
−0.645218 + 0.763999i \(0.723233\pi\)
\(12\) −20.9048 45.7751i −0.502891 1.10118i
\(13\) 6.69273 + 46.5490i 0.142787 + 0.993105i 0.927654 + 0.373441i \(0.121822\pi\)
−0.784867 + 0.619664i \(0.787269\pi\)
\(14\) 18.8321 + 12.1027i 0.359506 + 0.231041i
\(15\) −36.9476 + 10.8488i −0.635988 + 0.186743i
\(16\) −4.40727 + 30.6532i −0.0688636 + 0.478957i
\(17\) −47.8147 + 55.1811i −0.682163 + 0.787258i −0.986228 0.165394i \(-0.947111\pi\)
0.304065 + 0.952651i \(0.401656\pi\)
\(18\) −32.9113 + 21.1508i −0.430959 + 0.276961i
\(19\) 57.1420 + 65.9454i 0.689962 + 0.796259i 0.987360 0.158495i \(-0.0506641\pi\)
−0.297397 + 0.954754i \(0.596119\pi\)
\(20\) 31.3474 + 9.20442i 0.350474 + 0.102909i
\(21\) −59.1540 + 129.529i −0.614689 + 1.34598i
\(22\) −37.7150 −0.365494
\(23\) 97.8235 + 50.9663i 0.886853 + 0.462052i
\(24\) 135.521 1.15263
\(25\) 10.3854 22.7408i 0.0830830 0.181926i
\(26\) −54.6310 16.0411i −0.412077 0.120997i
\(27\) −26.7943 30.9223i −0.190984 0.220407i
\(28\) 101.635 65.3170i 0.685974 0.440848i
\(29\) −116.249 + 134.159i −0.744378 + 0.859058i −0.994011 0.109283i \(-0.965145\pi\)
0.249633 + 0.968341i \(0.419690\pi\)
\(30\) 6.63496 46.1471i 0.0403791 0.280842i
\(31\) 101.005 29.6576i 0.585192 0.171828i 0.0242827 0.999705i \(-0.492270\pi\)
0.560909 + 0.827877i \(0.310452\pi\)
\(32\) −149.969 96.3792i −0.828470 0.532425i
\(33\) −34.1424 237.466i −0.180104 1.25265i
\(34\) −36.7230 80.4122i −0.185234 0.405605i
\(35\) −38.4043 84.0937i −0.185472 0.406127i
\(36\) 30.0479 + 208.988i 0.139111 + 0.967535i
\(37\) −234.483 150.693i −1.04186 0.669561i −0.0964121 0.995342i \(-0.530737\pi\)
−0.945446 + 0.325780i \(0.894373\pi\)
\(38\) −101.366 + 29.7638i −0.432730 + 0.127061i
\(39\) 51.5439 358.496i 0.211632 1.47193i
\(40\) −57.6173 + 66.4939i −0.227752 + 0.262840i
\(41\) 38.6455 24.8359i 0.147205 0.0946030i −0.464965 0.885329i \(-0.653933\pi\)
0.612170 + 0.790726i \(0.290297\pi\)
\(42\) −112.900 130.294i −0.414783 0.478685i
\(43\) 94.7313 + 27.8156i 0.335962 + 0.0986475i 0.445363 0.895350i \(-0.353075\pi\)
−0.109400 + 0.993998i \(0.534893\pi\)
\(44\) −84.5555 + 185.151i −0.289709 + 0.634375i
\(45\) 161.564 0.535211
\(46\) −105.330 + 82.1004i −0.337610 + 0.263153i
\(47\) 436.665 1.35519 0.677597 0.735433i \(-0.263021\pi\)
0.677597 + 0.735433i \(0.263021\pi\)
\(48\) 99.0777 216.950i 0.297930 0.652375i
\(49\) 1.08806 + 0.319483i 0.00317219 + 0.000931438i
\(50\) 19.8213 + 22.8750i 0.0560632 + 0.0647004i
\(51\) 473.057 304.015i 1.29885 0.834719i
\(52\) −201.230 + 232.231i −0.536645 + 0.619321i
\(53\) −26.6367 + 185.262i −0.0690346 + 0.480146i 0.925749 + 0.378139i \(0.123436\pi\)
−0.994784 + 0.102008i \(0.967473\pi\)
\(54\) 47.5313 13.9564i 0.119781 0.0351710i
\(55\) 131.029 + 84.2071i 0.321235 + 0.206445i
\(56\) 46.3033 + 322.046i 0.110492 + 0.768487i
\(57\) −279.166 611.289i −0.648710 1.42048i
\(58\) −89.2827 195.502i −0.202128 0.442597i
\(59\) 29.5870 + 205.782i 0.0652864 + 0.454077i 0.996075 + 0.0885179i \(0.0282131\pi\)
−0.930788 + 0.365559i \(0.880878\pi\)
\(60\) −211.671 136.032i −0.455443 0.292695i
\(61\) 175.617 51.5657i 0.368614 0.108235i −0.0921793 0.995742i \(-0.529383\pi\)
0.460793 + 0.887508i \(0.347565\pi\)
\(62\) −18.1382 + 126.154i −0.0371540 + 0.258412i
\(63\) 391.247 451.523i 0.782420 0.902961i
\(64\) −26.8481 + 17.2542i −0.0524377 + 0.0336996i
\(65\) 153.983 + 177.706i 0.293834 + 0.339103i
\(66\) 278.695 + 81.8323i 0.519773 + 0.152619i
\(67\) 88.4106 193.592i 0.161210 0.353001i −0.811739 0.584020i \(-0.801479\pi\)
0.972949 + 0.231020i \(0.0742061\pi\)
\(68\) −477.092 −0.850822
\(69\) −612.284 588.869i −1.06827 1.02741i
\(70\) 111.929 0.191115
\(71\) −400.051 + 875.989i −0.668694 + 1.46424i 0.205499 + 0.978657i \(0.434118\pi\)
−0.874193 + 0.485578i \(0.838609\pi\)
\(72\) −545.569 160.193i −0.892998 0.262208i
\(73\) 487.835 + 562.992i 0.782148 + 0.902647i 0.997263 0.0739417i \(-0.0235579\pi\)
−0.215114 + 0.976589i \(0.569012\pi\)
\(74\) 283.893 182.447i 0.445972 0.286609i
\(75\) −126.085 + 145.510i −0.194120 + 0.224027i
\(76\) −81.1422 + 564.356i −0.122469 + 0.851791i
\(77\) 552.637 162.269i 0.817906 0.240159i
\(78\) 368.891 + 237.072i 0.535496 + 0.344142i
\(79\) −178.998 1244.96i −0.254922 1.77302i −0.567742 0.823207i \(-0.692183\pi\)
0.312820 0.949812i \(-0.398726\pi\)
\(80\) 64.3238 + 140.849i 0.0898953 + 0.196843i
\(81\) −231.523 506.965i −0.317590 0.695426i
\(82\) 7.91527 + 55.0519i 0.0106597 + 0.0741399i
\(83\) −741.416 476.479i −0.980493 0.630125i −0.0508968 0.998704i \(-0.516208\pi\)
−0.929596 + 0.368579i \(0.879844\pi\)
\(84\) −892.757 + 262.137i −1.15962 + 0.340494i
\(85\) −51.9556 + 361.359i −0.0662986 + 0.461117i
\(86\) −78.2788 + 90.3386i −0.0981514 + 0.113273i
\(87\) 1150.12 739.136i 1.41731 0.910847i
\(88\) −358.965 414.268i −0.434839 0.501831i
\(89\) −1316.89 386.673i −1.56842 0.460531i −0.621882 0.783111i \(-0.713632\pi\)
−0.946542 + 0.322580i \(0.895450\pi\)
\(90\) −81.2587 + 177.932i −0.0951714 + 0.208396i
\(91\) 869.523 1.00166
\(92\) 166.902 + 701.154i 0.189139 + 0.794569i
\(93\) −810.724 −0.903959
\(94\) −219.621 + 480.903i −0.240981 + 0.527674i
\(95\) 418.619 + 122.918i 0.452099 + 0.132748i
\(96\) 899.079 + 1037.59i 0.955852 + 1.10311i
\(97\) −183.511 + 117.935i −0.192090 + 0.123449i −0.633151 0.774029i \(-0.718239\pi\)
0.441061 + 0.897477i \(0.354602\pi\)
\(98\) −0.899091 + 1.03761i −0.000926755 + 0.00106953i
\(99\) −143.250 + 996.325i −0.145426 + 1.01146i
\(100\) 156.737 46.0221i 0.156737 0.0460221i
\(101\) 180.502 + 116.002i 0.177828 + 0.114283i 0.626527 0.779400i \(-0.284476\pi\)
−0.448699 + 0.893683i \(0.648112\pi\)
\(102\) 96.8903 + 673.887i 0.0940546 + 0.654164i
\(103\) 616.716 + 1350.42i 0.589969 + 1.29185i 0.935461 + 0.353430i \(0.114985\pi\)
−0.345492 + 0.938422i \(0.612288\pi\)
\(104\) −343.771 752.753i −0.324130 0.709745i
\(105\) 101.326 + 704.740i 0.0941756 + 0.655005i
\(106\) −190.634 122.513i −0.174680 0.112260i
\(107\) −685.279 + 201.216i −0.619144 + 0.181797i −0.576238 0.817282i \(-0.695480\pi\)
−0.0429060 + 0.999079i \(0.513662\pi\)
\(108\) 38.0482 264.631i 0.0338999 0.235779i
\(109\) 946.278 1092.06i 0.831532 0.959639i −0.168127 0.985765i \(-0.553772\pi\)
0.999659 + 0.0261266i \(0.00831731\pi\)
\(110\) −158.639 + 101.951i −0.137506 + 0.0883697i
\(111\) 1405.75 + 1622.32i 1.20205 + 1.38724i
\(112\) 549.401 + 161.319i 0.463513 + 0.136100i
\(113\) −488.356 + 1069.35i −0.406555 + 0.890231i 0.590009 + 0.807397i \(0.299124\pi\)
−0.996563 + 0.0828338i \(0.973603\pi\)
\(114\) 813.626 0.668448
\(115\) 549.244 50.0590i 0.445368 0.0405916i
\(116\) −1159.93 −0.928419
\(117\) −631.262 + 1382.27i −0.498805 + 1.09223i
\(118\) −241.511 70.9139i −0.188414 0.0553233i
\(119\) 884.075 + 1020.28i 0.681034 + 0.785955i
\(120\) 570.039 366.342i 0.433643 0.278686i
\(121\) 236.159 272.542i 0.177430 0.204765i
\(122\) −31.5368 + 219.344i −0.0234034 + 0.162774i
\(123\) −339.459 + 99.6742i −0.248846 + 0.0730677i
\(124\) 578.649 + 371.875i 0.419067 + 0.269318i
\(125\) −17.7894 123.728i −0.0127290 0.0885323i
\(126\) 300.489 + 657.978i 0.212458 + 0.465217i
\(127\) −1081.71 2368.61i −0.755797 1.65497i −0.755659 0.654965i \(-0.772683\pi\)
−0.000138140 1.00000i \(-0.500044\pi\)
\(128\) −208.461 1449.88i −0.143949 1.00119i
\(129\) −639.665 411.088i −0.436584 0.280576i
\(130\) −273.155 + 80.2055i −0.184287 + 0.0541114i
\(131\) −12.9129 + 89.8114i −0.00861228 + 0.0598997i −0.993674 0.112300i \(-0.964178\pi\)
0.985062 + 0.172200i \(0.0550874\pi\)
\(132\) 1026.56 1184.71i 0.676895 0.781179i
\(133\) 1357.26 872.255i 0.884880 0.568678i
\(134\) 168.739 + 194.735i 0.108782 + 0.125541i
\(135\) −196.293 57.6370i −0.125143 0.0367452i
\(136\) 533.738 1168.72i 0.336527 0.736891i
\(137\) −2087.63 −1.30188 −0.650942 0.759127i \(-0.725626\pi\)
−0.650942 + 0.759127i \(0.725626\pi\)
\(138\) 956.476 378.141i 0.590005 0.233257i
\(139\) 2441.76 1.48998 0.744990 0.667076i \(-0.232454\pi\)
0.744990 + 0.667076i \(0.232454\pi\)
\(140\) 250.940 549.482i 0.151488 0.331712i
\(141\) −3226.74 947.457i −1.92724 0.565888i
\(142\) −763.529 881.159i −0.451225 0.520741i
\(143\) −1232.40 + 792.013i −0.720686 + 0.463157i
\(144\) −655.304 + 756.261i −0.379227 + 0.437651i
\(145\) −126.317 + 878.554i −0.0723452 + 0.503172i
\(146\) −865.386 + 254.100i −0.490547 + 0.144038i
\(147\) −7.34704 4.72165i −0.00412227 0.00264922i
\(148\) −259.193 1802.73i −0.143956 1.00124i
\(149\) −13.2973 29.1169i −0.00731110 0.0160091i 0.905941 0.423403i \(-0.139165\pi\)
−0.913252 + 0.407394i \(0.866437\pi\)
\(150\) −96.8367 212.043i −0.0527112 0.115421i
\(151\) −204.225 1420.42i −0.110064 0.765510i −0.967855 0.251511i \(-0.919073\pi\)
0.857791 0.513999i \(-0.171836\pi\)
\(152\) −1291.72 830.136i −0.689290 0.442980i
\(153\) −2263.75 + 664.697i −1.19617 + 0.351226i
\(154\) −99.2412 + 690.238i −0.0519291 + 0.361175i
\(155\) 344.682 397.784i 0.178616 0.206134i
\(156\) 1990.87 1279.46i 1.02178 0.656657i
\(157\) −675.784 779.896i −0.343525 0.396449i 0.557528 0.830158i \(-0.311750\pi\)
−0.901053 + 0.433709i \(0.857205\pi\)
\(158\) 1461.11 + 429.021i 0.735694 + 0.216019i
\(159\) 598.807 1311.20i 0.298670 0.653995i
\(160\) −891.343 −0.440418
\(161\) 1190.16 1656.20i 0.582596 0.810725i
\(162\) 674.771 0.327253
\(163\) −1675.46 + 3668.74i −0.805104 + 1.76293i −0.177946 + 0.984040i \(0.556945\pi\)
−0.627158 + 0.778892i \(0.715782\pi\)
\(164\) 288.007 + 84.5665i 0.137132 + 0.0402655i
\(165\) −785.530 906.550i −0.370627 0.427726i
\(166\) 897.647 576.883i 0.419704 0.269728i
\(167\) 2494.95 2879.32i 1.15608 1.33418i 0.222867 0.974849i \(-0.428459\pi\)
0.933209 0.359334i \(-0.116996\pi\)
\(168\) 356.604 2480.23i 0.163765 1.13901i
\(169\) −14.0087 + 4.11333i −0.00637630 + 0.00187225i
\(170\) −371.837 238.965i −0.167757 0.107811i
\(171\) 401.265 + 2790.86i 0.179447 + 1.24808i
\(172\) 267.993 + 586.823i 0.118804 + 0.260144i
\(173\) 1567.10 + 3431.47i 0.688697 + 1.50804i 0.853158 + 0.521652i \(0.174684\pi\)
−0.164462 + 0.986383i \(0.552589\pi\)
\(174\) 235.564 + 1638.39i 0.102633 + 0.713826i
\(175\) −388.861 249.906i −0.167972 0.107949i
\(176\) −925.617 + 271.786i −0.396426 + 0.116401i
\(177\) 227.864 1584.83i 0.0967642 0.673010i
\(178\) 1088.18 1255.82i 0.458215 0.528809i
\(179\) 1007.90 647.739i 0.420861 0.270471i −0.313023 0.949745i \(-0.601342\pi\)
0.733884 + 0.679275i \(0.237705\pi\)
\(180\) 691.325 + 797.832i 0.286269 + 0.330372i
\(181\) 1318.03 + 387.009i 0.541263 + 0.158929i 0.540925 0.841071i \(-0.318074\pi\)
0.000338039 1.00000i \(0.499892\pi\)
\(182\) −437.328 + 957.615i −0.178115 + 0.390017i
\(183\) −1409.61 −0.569406
\(184\) −1904.32 375.546i −0.762981 0.150465i
\(185\) −1393.65 −0.553855
\(186\) 407.755 892.859i 0.160742 0.351976i
\(187\) −2182.35 640.795i −0.853418 0.250586i
\(188\) 1868.47 + 2156.33i 0.724853 + 0.836525i
\(189\) −636.428 + 409.007i −0.244938 + 0.157412i
\(190\) −345.915 + 399.207i −0.132081 + 0.152429i
\(191\) 318.442 2214.81i 0.120637 0.839049i −0.836200 0.548424i \(-0.815228\pi\)
0.956837 0.290625i \(-0.0938631\pi\)
\(192\) 235.832 69.2465i 0.0886442 0.0260283i
\(193\) −377.047 242.314i −0.140624 0.0903737i 0.468437 0.883497i \(-0.344817\pi\)
−0.609061 + 0.793123i \(0.708454\pi\)
\(194\) −37.5862 261.418i −0.0139100 0.0967459i
\(195\) −752.280 1647.26i −0.276266 0.604938i
\(196\) 3.07810 + 6.74010i 0.00112176 + 0.00245631i
\(197\) 429.297 + 2985.83i 0.155260 + 1.07986i 0.907223 + 0.420650i \(0.138198\pi\)
−0.751963 + 0.659205i \(0.770893\pi\)
\(198\) −1025.21 658.865i −0.367974 0.236482i
\(199\) −1610.37 + 472.848i −0.573650 + 0.168439i −0.555675 0.831400i \(-0.687540\pi\)
−0.0179751 + 0.999838i \(0.505722\pi\)
\(200\) −62.6071 + 435.442i −0.0221350 + 0.153952i
\(201\) −1073.36 + 1238.72i −0.376661 + 0.434690i
\(202\) −218.537 + 140.445i −0.0761199 + 0.0489193i
\(203\) 2149.41 + 2480.55i 0.743146 + 0.857636i
\(204\) 3525.48 + 1035.17i 1.20996 + 0.355278i
\(205\) 95.4166 208.933i 0.0325082 0.0711831i
\(206\) −1797.41 −0.607919
\(207\) 1768.80 + 3094.37i 0.593913 + 1.03900i
\(208\) −1456.37 −0.485487
\(209\) −1129.17 + 2472.54i −0.373714 + 0.818320i
\(210\) −827.099 242.858i −0.271787 0.0798039i
\(211\) 2751.03 + 3174.85i 0.897576 + 1.03586i 0.999158 + 0.0410306i \(0.0130641\pi\)
−0.101582 + 0.994827i \(0.532390\pi\)
\(212\) −1028.84 + 661.194i −0.333306 + 0.214203i
\(213\) 4856.86 5605.12i 1.56238 1.80308i
\(214\) 123.061 855.906i 0.0393096 0.273404i
\(215\) 473.656 139.078i 0.150247 0.0441165i
\(216\) 605.696 + 389.257i 0.190798 + 0.122618i
\(217\) −276.998 1926.57i −0.0866538 0.602690i
\(218\) 726.768 + 1591.40i 0.225793 + 0.494418i
\(219\) −2383.31 5218.72i −0.735385 1.61027i
\(220\) 144.837 + 1007.36i 0.0443860 + 0.308711i
\(221\) −2888.63 1856.41i −0.879234 0.565049i
\(222\) −2493.70 + 732.216i −0.753901 + 0.221365i
\(223\) 662.276 4606.23i 0.198876 1.38321i −0.608678 0.793417i \(-0.708300\pi\)
0.807554 0.589794i \(-0.200791\pi\)
\(224\) −2158.50 + 2491.04i −0.643842 + 0.743034i
\(225\) 679.581 436.740i 0.201357 0.129404i
\(226\) −932.067 1075.66i −0.274337 0.316602i
\(227\) 5571.73 + 1636.01i 1.62911 + 0.478351i 0.963447 0.267899i \(-0.0863294\pi\)
0.665666 + 0.746250i \(0.268148\pi\)
\(228\) 1824.12 3994.26i 0.529847 1.16020i
\(229\) 2827.95 0.816053 0.408026 0.912970i \(-0.366217\pi\)
0.408026 + 0.912970i \(0.366217\pi\)
\(230\) −221.113 + 630.065i −0.0633901 + 0.180632i
\(231\) −4435.80 −1.26344
\(232\) 1297.65 2841.45i 0.367219 0.804098i
\(233\) −536.905 157.649i −0.150960 0.0443260i 0.205379 0.978682i \(-0.434157\pi\)
−0.356340 + 0.934356i \(0.615975\pi\)
\(234\) −1204.81 1390.43i −0.336586 0.388441i
\(235\) 1836.73 1180.39i 0.509851 0.327661i
\(236\) −889.588 + 1026.64i −0.245370 + 0.283172i
\(237\) −1378.55 + 9588.00i −0.377832 + 2.62788i
\(238\) −1568.29 + 460.491i −0.427130 + 0.125417i
\(239\) −3267.08 2099.62i −0.884224 0.568256i 0.0178485 0.999841i \(-0.494318\pi\)
−0.902073 + 0.431584i \(0.857955\pi\)
\(240\) −169.712 1180.38i −0.0456454 0.317471i
\(241\) −2392.02 5237.78i −0.639350 1.39998i −0.900574 0.434702i \(-0.856854\pi\)
0.261225 0.965278i \(-0.415874\pi\)
\(242\) 181.376 + 397.159i 0.0481790 + 0.105497i
\(243\) 768.073 + 5342.07i 0.202765 + 1.41026i
\(244\) 1006.10 + 646.581i 0.263971 + 0.169644i
\(245\) 5.44030 1.59742i 0.00141865 0.000416552i
\(246\) 60.9593 423.981i 0.0157993 0.109886i
\(247\) −2687.26 + 3101.26i −0.692251 + 0.798900i
\(248\) −1558.33 + 1001.48i −0.399008 + 0.256427i
\(249\) 4444.86 + 5129.64i 1.13125 + 1.30553i
\(250\) 145.210 + 42.6374i 0.0367355 + 0.0107865i
\(251\) 1157.46 2534.48i 0.291068 0.637349i −0.706450 0.707763i \(-0.749705\pi\)
0.997518 + 0.0704133i \(0.0224318\pi\)
\(252\) 3903.84 0.975867
\(253\) −178.283 + 3431.44i −0.0443026 + 0.852699i
\(254\) 3152.63 0.778793
\(255\) 1167.99 2557.54i 0.286833 0.628076i
\(256\) 1456.64 + 427.707i 0.355624 + 0.104421i
\(257\) 2611.18 + 3013.46i 0.633778 + 0.731419i 0.978262 0.207373i \(-0.0664914\pi\)
−0.344483 + 0.938792i \(0.611946\pi\)
\(258\) 774.455 497.712i 0.186882 0.120102i
\(259\) −3374.90 + 3894.84i −0.809676 + 0.934416i
\(260\) −218.657 + 1520.79i −0.0521558 + 0.362752i
\(261\) −5503.73 + 1616.04i −1.30526 + 0.383258i
\(262\) −92.4156 59.3919i −0.0217918 0.0140048i
\(263\) −200.204 1392.45i −0.0469396 0.326472i −0.999738 0.0228699i \(-0.992720\pi\)
0.952799 0.303602i \(-0.0981895\pi\)
\(264\) 1753.72 + 3840.11i 0.408841 + 0.895236i
\(265\) 388.761 + 851.268i 0.0901185 + 0.197332i
\(266\) 277.990 + 1933.46i 0.0640776 + 0.445670i
\(267\) 8892.17 + 5714.65i 2.03817 + 1.30985i
\(268\) 1334.30 391.786i 0.304124 0.0892990i
\(269\) 241.079 1676.74i 0.0546427 0.380048i −0.944089 0.329692i \(-0.893055\pi\)
0.998731 0.0503563i \(-0.0160357\pi\)
\(270\) 162.202 187.191i 0.0365604 0.0421930i
\(271\) −6374.07 + 4096.36i −1.42877 + 0.918215i −0.428881 + 0.903361i \(0.641092\pi\)
−0.999890 + 0.0148545i \(0.995271\pi\)
\(272\) −1480.75 1708.87i −0.330086 0.380940i
\(273\) −6425.35 1886.65i −1.42447 0.418262i
\(274\) 1049.98 2299.13i 0.231501 0.506917i
\(275\) 778.771 0.170770
\(276\) 288.008 5543.32i 0.0628117 1.20894i
\(277\) 95.9776 0.0208185 0.0104093 0.999946i \(-0.496687\pi\)
0.0104093 + 0.999946i \(0.496687\pi\)
\(278\) −1228.08 + 2689.13i −0.264948 + 0.580156i
\(279\) 3263.74 + 958.319i 0.700340 + 0.205638i
\(280\) 1065.32 + 1229.45i 0.227375 + 0.262405i
\(281\) −1944.93 + 1249.93i −0.412900 + 0.265355i −0.730558 0.682850i \(-0.760740\pi\)
0.317658 + 0.948205i \(0.397104\pi\)
\(282\) 2666.34 3077.12i 0.563043 0.649786i
\(283\) 306.814 2133.94i 0.0644459 0.448231i −0.931893 0.362735i \(-0.881843\pi\)
0.996338 0.0854968i \(-0.0272477\pi\)
\(284\) −6037.60 + 1772.80i −1.26150 + 0.370409i
\(285\) −2826.69 1816.60i −0.587504 0.377566i
\(286\) −252.416 1755.59i −0.0521877 0.362973i
\(287\) −352.843 772.619i −0.0725703 0.158907i
\(288\) −2392.93 5239.80i −0.489601 1.07208i
\(289\) −59.5159 413.942i −0.0121140 0.0842544i
\(290\) −904.028 580.984i −0.183056 0.117643i
\(291\) 1611.95 473.310i 0.324722 0.0953468i
\(292\) −692.730 + 4818.04i −0.138832 + 0.965598i
\(293\) −3181.31 + 3671.43i −0.634315 + 0.732039i −0.978359 0.206915i \(-0.933658\pi\)
0.344044 + 0.938954i \(0.388203\pi\)
\(294\) 8.89520 5.71660i 0.00176455 0.00113401i
\(295\) 680.722 + 785.595i 0.134350 + 0.155048i
\(296\) 4706.08 + 1381.83i 0.924106 + 0.271342i
\(297\) 529.476 1159.39i 0.103445 0.226514i
\(298\) 38.7547 0.00753355
\(299\) −1717.72 + 4894.69i −0.332236 + 0.946713i
\(300\) −1258.07 −0.242115
\(301\) 758.336 1660.52i 0.145215 0.317977i
\(302\) 1667.04 + 489.486i 0.317639 + 0.0932673i
\(303\) −1082.13 1248.84i −0.205170 0.236779i
\(304\) −2273.28 + 1460.95i −0.428887 + 0.275629i
\(305\) 599.299 691.627i 0.112511 0.129844i
\(306\) 406.519 2827.40i 0.0759448 0.528208i
\(307\) −283.030 + 83.1051i −0.0526169 + 0.0154497i −0.307935 0.951407i \(-0.599638\pi\)
0.255318 + 0.966857i \(0.417820\pi\)
\(308\) 3166.03 + 2034.68i 0.585718 + 0.376418i
\(309\) −1627.15 11317.1i −0.299564 2.08351i
\(310\) 264.725 + 579.667i 0.0485012 + 0.106203i
\(311\) −1608.58 3522.30i −0.293293 0.642223i 0.704422 0.709782i \(-0.251206\pi\)
−0.997715 + 0.0675585i \(0.978479\pi\)
\(312\) 907.008 + 6308.38i 0.164581 + 1.14468i
\(313\) 4040.46 + 2596.65i 0.729650 + 0.468918i 0.851982 0.523572i \(-0.175401\pi\)
−0.122332 + 0.992489i \(0.539037\pi\)
\(314\) 1198.79 351.998i 0.215452 0.0632623i
\(315\) 425.130 2956.85i 0.0760425 0.528887i
\(316\) 5381.90 6211.05i 0.958087 1.10569i
\(317\) 3237.86 2080.84i 0.573679 0.368681i −0.221404 0.975182i \(-0.571064\pi\)
0.795083 + 0.606501i \(0.207427\pi\)
\(318\) 1142.87 + 1318.94i 0.201538 + 0.232587i
\(319\) −5305.83 1557.93i −0.931252 0.273440i
\(320\) −66.2886 + 145.152i −0.0115801 + 0.0253570i
\(321\) 5500.46 0.956405
\(322\) 1225.39 + 2143.73i 0.212076 + 0.371010i
\(323\) −6371.17 −1.09753
\(324\) 1512.81 3312.59i 0.259398 0.568003i
\(325\) 1128.07 + 331.231i 0.192535 + 0.0565334i
\(326\) −3197.75 3690.40i −0.543272 0.626970i
\(327\) −9362.04 + 6016.62i −1.58325 + 1.01749i
\(328\) −529.364 + 610.919i −0.0891135 + 0.102842i
\(329\) 1149.02 7991.59i 0.192545 1.33918i
\(330\) 1393.48 409.162i 0.232450 0.0682533i
\(331\) −73.3444 47.1356i −0.0121794 0.00782721i 0.534537 0.845145i \(-0.320486\pi\)
−0.546716 + 0.837318i \(0.684122\pi\)
\(332\) −819.548 5700.08i −0.135478 0.942267i
\(333\) −3741.45 8192.64i −0.615707 1.34821i
\(334\) 1916.19 + 4195.87i 0.313920 + 0.687388i
\(335\) −151.441 1053.29i −0.0246988 0.171784i
\(336\) −3709.78 2384.13i −0.602337 0.387099i
\(337\) −281.865 + 82.7632i −0.0455614 + 0.0133780i −0.304434 0.952533i \(-0.598467\pi\)
0.258872 + 0.965912i \(0.416649\pi\)
\(338\) 2.51565 17.4968i 0.000404833 0.00281567i
\(339\) 5928.95 6842.37i 0.949900 1.09624i
\(340\) −2006.78 + 1289.68i −0.320096 + 0.205713i
\(341\) 2147.43 + 2478.26i 0.341025 + 0.393564i
\(342\) −3275.42 961.749i −0.517878 0.152063i
\(343\) 2643.25 5787.90i 0.416099 0.911129i
\(344\) −1737.34 −0.272300
\(345\) −4167.26 821.814i −0.650313 0.128246i
\(346\) −4567.29 −0.709651
\(347\) 1730.09 3788.36i 0.267654 0.586080i −0.727311 0.686308i \(-0.759230\pi\)
0.994964 + 0.100228i \(0.0319574\pi\)
\(348\) 8571.30 + 2516.76i 1.32032 + 0.387680i
\(349\) −184.493 212.916i −0.0282971 0.0326566i 0.741425 0.671036i \(-0.234150\pi\)
−0.769722 + 0.638380i \(0.779605\pi\)
\(350\) 470.802 302.566i 0.0719013 0.0462081i
\(351\) 1260.07 1454.20i 0.191618 0.221139i
\(352\) 790.305 5496.69i 0.119669 0.832314i
\(353\) 4285.69 1258.39i 0.646187 0.189738i 0.0578142 0.998327i \(-0.481587\pi\)
0.588373 + 0.808590i \(0.299769\pi\)
\(354\) 1630.78 + 1048.04i 0.244845 + 0.157352i
\(355\) 685.256 + 4766.06i 0.102450 + 0.712553i
\(356\) −3725.45 8157.59i −0.554630 1.21447i
\(357\) −4319.13 9457.58i −0.640316 1.40210i
\(358\) 206.436 + 1435.79i 0.0304762 + 0.211967i
\(359\) 5639.11 + 3624.04i 0.829028 + 0.532784i 0.884969 0.465650i \(-0.154180\pi\)
−0.0559412 + 0.998434i \(0.517816\pi\)
\(360\) −2727.84 + 800.967i −0.399361 + 0.117263i
\(361\) −107.450 + 747.329i −0.0156655 + 0.108956i
\(362\) −1089.12 + 1256.92i −0.158130 + 0.182492i
\(363\) −2336.45 + 1501.54i −0.337828 + 0.217109i
\(364\) 3720.66 + 4293.87i 0.535757 + 0.618296i
\(365\) 3573.85 + 1049.38i 0.512504 + 0.150485i
\(366\) 708.964 1552.41i 0.101252 0.221710i
\(367\) 13801.3 1.96300 0.981499 0.191467i \(-0.0613246\pi\)
0.981499 + 0.191467i \(0.0613246\pi\)
\(368\) −1993.42 + 2773.99i −0.282375 + 0.392946i
\(369\) 1484.38 0.209414
\(370\) 700.939 1534.84i 0.0984867 0.215656i
\(371\) 3320.48 + 974.980i 0.464664 + 0.136438i
\(372\) −3469.06 4003.51i −0.483501 0.557990i
\(373\) −1803.92 + 1159.31i −0.250412 + 0.160930i −0.659825 0.751419i \(-0.729370\pi\)
0.409413 + 0.912349i \(0.365733\pi\)
\(374\) 1803.33 2081.15i 0.249326 0.287738i
\(375\) −137.004 + 952.886i −0.0188663 + 0.131218i
\(376\) −7372.65 + 2164.81i −1.01121 + 0.296918i
\(377\) −7022.98 4513.40i −0.959422 0.616583i
\(378\) −130.351 906.615i −0.0177369 0.123363i
\(379\) 5045.48 + 11048.1i 0.683823 + 1.49736i 0.858541 + 0.512745i \(0.171372\pi\)
−0.174717 + 0.984619i \(0.555901\pi\)
\(380\) 1184.26 + 2593.18i 0.159872 + 0.350071i
\(381\) 2853.99 + 19850.0i 0.383765 + 2.66914i
\(382\) 2279.04 + 1464.65i 0.305250 + 0.196172i
\(383\) −250.350 + 73.5093i −0.0334002 + 0.00980717i −0.298390 0.954444i \(-0.596450\pi\)
0.264990 + 0.964251i \(0.414631\pi\)
\(384\) −1605.46 + 11166.2i −0.213355 + 1.48391i
\(385\) 1885.89 2176.44i 0.249647 0.288108i
\(386\) 456.499 293.374i 0.0601948 0.0386848i
\(387\) 2089.17 + 2411.03i 0.274415 + 0.316692i
\(388\) −1367.62 401.570i −0.178945 0.0525429i
\(389\) 5673.42 12423.1i 0.739470 1.61921i −0.0449535 0.998989i \(-0.514314\pi\)
0.784424 0.620225i \(-0.212959\pi\)
\(390\) 2192.51 0.284672
\(391\) −7489.78 + 2961.07i −0.968732 + 0.382987i
\(392\) −19.9547 −0.00257108
\(393\) 290.289 635.645i 0.0372599 0.0815879i
\(394\) −3504.24 1028.94i −0.448073 0.131566i
\(395\) −4118.28 4752.75i −0.524591 0.605410i
\(396\) −5533.00 + 3555.84i −0.702130 + 0.451232i
\(397\) 526.336 607.425i 0.0665392 0.0767903i −0.721504 0.692410i \(-0.756549\pi\)
0.788043 + 0.615620i \(0.211094\pi\)
\(398\) 289.187 2011.34i 0.0364212 0.253315i
\(399\) −11922.0 + 3500.63i −1.49586 + 0.439224i
\(400\) 651.308 + 418.570i 0.0814135 + 0.0523213i
\(401\) 1636.58 + 11382.7i 0.203808 + 1.41752i 0.792851 + 0.609415i \(0.208596\pi\)
−0.589043 + 0.808102i \(0.700495\pi\)
\(402\) −824.370 1805.12i −0.102278 0.223958i
\(403\) 2056.53 + 4503.17i 0.254201 + 0.556622i
\(404\) 199.524 + 1387.72i 0.0245710 + 0.170895i
\(405\) −2344.28 1506.58i −0.287625 0.184845i
\(406\) −3812.90 + 1119.57i −0.466086 + 0.136855i
\(407\) 1235.67 8594.31i 0.150492 1.04669i
\(408\) −6479.91 + 7478.22i −0.786283 + 0.907419i
\(409\) −5747.84 + 3693.91i −0.694896 + 0.446583i −0.839823 0.542860i \(-0.817342\pi\)
0.144927 + 0.989442i \(0.453705\pi\)
\(410\) 182.110 + 210.167i 0.0219361 + 0.0253156i
\(411\) 15426.6 + 4529.65i 1.85143 + 0.543628i
\(412\) −4029.72 + 8823.85i −0.481869 + 1.05515i
\(413\) 3843.96 0.457987
\(414\) −4297.47 + 391.679i −0.510167 + 0.0464975i
\(415\) −4406.61 −0.521234
\(416\) 3482.65 7625.94i 0.410459 0.898781i
\(417\) −18043.4 5298.02i −2.11892 0.622171i
\(418\) −2155.11 2487.13i −0.252177 0.291028i
\(419\) 1476.61 948.957i 0.172164 0.110643i −0.451721 0.892159i \(-0.649190\pi\)
0.623885 + 0.781516i \(0.285553\pi\)
\(420\) −3046.57 + 3515.92i −0.353946 + 0.408475i
\(421\) 1457.13 10134.6i 0.168684 1.17323i −0.712923 0.701242i \(-0.752629\pi\)
0.881607 0.471984i \(-0.156462\pi\)
\(422\) −4880.13 + 1432.94i −0.562941 + 0.165294i
\(423\) 11870.0 + 7628.36i 1.36439 + 0.876840i
\(424\) −468.721 3260.03i −0.0536866 0.373398i
\(425\) 758.289 + 1660.42i 0.0865468 + 0.189511i
\(426\) 3730.21 + 8168.01i 0.424247 + 0.928970i
\(427\) −481.618 3349.72i −0.0545834 0.379636i
\(428\) −3925.92 2523.04i −0.443380 0.284943i
\(429\) 10825.3 3178.59i 1.21830 0.357724i
\(430\) −85.0581 + 591.592i −0.00953922 + 0.0663467i
\(431\) 8788.44 10142.4i 0.982191 1.13351i −0.00885120 0.999961i \(-0.502817\pi\)
0.991042 0.133548i \(-0.0426371\pi\)
\(432\) 1065.96 685.050i 0.118718 0.0762951i
\(433\) 5031.12 + 5806.23i 0.558384 + 0.644410i 0.962816 0.270159i \(-0.0870761\pi\)
−0.404432 + 0.914568i \(0.632531\pi\)
\(434\) 2261.06 + 663.908i 0.250079 + 0.0734300i
\(435\) 2839.67 6218.01i 0.312992 0.685358i
\(436\) 9441.89 1.03712
\(437\) 2228.84 + 9363.33i 0.243981 + 1.02496i
\(438\) 6946.12 0.757759
\(439\) −2924.72 + 6404.23i −0.317970 + 0.696258i −0.999364 0.0356590i \(-0.988647\pi\)
0.681394 + 0.731917i \(0.261374\pi\)
\(440\) −2629.76 772.166i −0.284929 0.0836626i
\(441\) 23.9957 + 27.6926i 0.00259105 + 0.00299023i
\(442\) 3497.33 2247.60i 0.376360 0.241872i
\(443\) 6259.27 7223.58i 0.671302 0.774724i −0.313277 0.949662i \(-0.601427\pi\)
0.984580 + 0.174938i \(0.0559724\pi\)
\(444\) −1996.17 + 13883.7i −0.213365 + 1.48399i
\(445\) −6584.44 + 1933.36i −0.701421 + 0.205956i
\(446\) 4739.79 + 3046.08i 0.503219 + 0.323399i
\(447\) 35.0836 + 244.012i 0.00371230 + 0.0258196i
\(448\) 245.130 + 536.760i 0.0258511 + 0.0566061i
\(449\) −1475.39 3230.65i −0.155073 0.339563i 0.816110 0.577896i \(-0.196126\pi\)
−0.971183 + 0.238333i \(0.923399\pi\)
\(450\) 139.190 + 968.088i 0.0145811 + 0.101414i
\(451\) 1203.84 + 773.661i 0.125691 + 0.0807767i
\(452\) −7370.31 + 2164.12i −0.766970 + 0.225203i
\(453\) −1572.84 + 10939.3i −0.163131 + 1.13460i
\(454\) −4604.06 + 5313.37i −0.475945 + 0.549270i
\(455\) 3657.45 2350.50i 0.376844 0.242183i
\(456\) 7743.97 + 8937.01i 0.795273 + 0.917794i
\(457\) −16098.5 4726.96i −1.64783 0.483846i −0.679532 0.733646i \(-0.737817\pi\)
−0.968297 + 0.249800i \(0.919635\pi\)
\(458\) −1422.32 + 3114.45i −0.145111 + 0.317748i
\(459\) 2987.49 0.303800
\(460\) 2597.40 + 2498.07i 0.263270 + 0.253202i
\(461\) −10881.1 −1.09932 −0.549659 0.835389i \(-0.685242\pi\)
−0.549659 + 0.835389i \(0.685242\pi\)
\(462\) 2230.99 4885.19i 0.224665 0.491947i
\(463\) −4001.86 1175.05i −0.401690 0.117947i 0.0746463 0.997210i \(-0.476217\pi\)
−0.476336 + 0.879263i \(0.658035\pi\)
\(464\) −3600.06 4154.69i −0.360191 0.415683i
\(465\) −3410.12 + 2191.55i −0.340087 + 0.218561i
\(466\) 443.658 512.008i 0.0441031 0.0508977i
\(467\) 1741.48 12112.2i 0.172561 1.20019i −0.700888 0.713271i \(-0.747213\pi\)
0.873449 0.486916i \(-0.161878\pi\)
\(468\) −9527.06 + 2797.40i −0.941001 + 0.276303i
\(469\) −3310.37 2127.45i −0.325925 0.209459i
\(470\) 376.194 + 2616.49i 0.0369203 + 0.256786i
\(471\) 3301.53 + 7229.34i 0.322986 + 0.707241i
\(472\) −1519.73 3327.74i −0.148202 0.324517i
\(473\) 437.695 + 3044.24i 0.0425481 + 0.295928i
\(474\) −9866.02 6340.51i −0.956037 0.614407i
\(475\) 2093.09 614.588i 0.202185 0.0593668i
\(476\) −1255.39 + 8731.46i −0.120884 + 0.840768i
\(477\) −3960.53 + 4570.70i −0.380168 + 0.438738i
\(478\) 3955.51 2542.05i 0.378496 0.243245i
\(479\) 1129.41 + 1303.41i 0.107733 + 0.124331i 0.807055 0.590476i \(-0.201060\pi\)
−0.699322 + 0.714807i \(0.746515\pi\)
\(480\) 6586.59 + 1934.00i 0.626323 + 0.183905i
\(481\) 5445.27 11923.5i 0.516181 1.13028i
\(482\) 6971.49 0.658802
\(483\) −12388.3 + 9656.14i −1.16705 + 0.909668i
\(484\) 2356.38 0.221297
\(485\) −453.093 + 992.134i −0.0424204 + 0.0928876i
\(486\) −6269.57 1840.91i −0.585172 0.171822i
\(487\) −7435.62 8581.16i −0.691869 0.798459i 0.295761 0.955262i \(-0.404427\pi\)
−0.987630 + 0.156803i \(0.949881\pi\)
\(488\) −2709.47 + 1741.27i −0.251336 + 0.161524i
\(489\) 20341.1 23474.9i 1.88110 2.17090i
\(490\) −0.976956 + 6.79488i −9.00702e−5 + 0.000626452i
\(491\) 16428.2 4823.76i 1.50997 0.443367i 0.581118 0.813819i \(-0.302615\pi\)
0.928852 + 0.370452i \(0.120797\pi\)
\(492\) −1944.74 1249.81i −0.178203 0.114524i
\(493\) −1844.61 12829.5i −0.168513 1.17203i
\(494\) −2063.89 4519.28i −0.187973 0.411604i
\(495\) 2090.72 + 4578.04i 0.189840 + 0.415692i
\(496\) 463.948 + 3226.83i 0.0419997 + 0.292114i
\(497\) 14979.2 + 9626.52i 1.35193 + 0.868830i
\(498\) −7884.87 + 2315.21i −0.709497 + 0.208327i
\(499\) −621.956 + 4325.80i −0.0557968 + 0.388075i 0.942718 + 0.333591i \(0.108260\pi\)
−0.998515 + 0.0544839i \(0.982649\pi\)
\(500\) 534.870 617.273i 0.0478403 0.0552106i
\(501\) −24683.9 + 15863.4i −2.20118 + 1.41462i
\(502\) 2209.10 + 2549.44i 0.196408 + 0.226667i
\(503\) 12020.9 + 3529.65i 1.06558 + 0.312882i 0.767095 0.641533i \(-0.221701\pi\)
0.298482 + 0.954415i \(0.403520\pi\)
\(504\) −4367.35 + 9563.16i −0.385986 + 0.845192i
\(505\) 1072.81 0.0945339
\(506\) −3689.41 1922.19i −0.324139 0.168877i
\(507\) 112.443 0.00984961
\(508\) 7068.06 15476.9i 0.617312 1.35173i
\(509\) −13516.8 3968.90i −1.17706 0.345616i −0.366020 0.930607i \(-0.619280\pi\)
−0.811040 + 0.584991i \(0.801098\pi\)
\(510\) 2229.20 + 2572.64i 0.193550 + 0.223369i
\(511\) 11587.2 7446.65i 1.00311 0.644659i
\(512\) 6470.20 7467.01i 0.558486 0.644528i
\(513\) 508.102 3533.93i 0.0437296 0.304146i
\(514\) −4632.06 + 1360.09i −0.397493 + 0.116714i
\(515\) 6244.53 + 4013.12i 0.534305 + 0.343377i
\(516\) −707.075 4917.81i −0.0603241 0.419563i
\(517\) 5650.68 + 12373.3i 0.480689 + 1.05256i
\(518\) −2592.02 5675.73i −0.219859 0.481423i
\(519\) −4134.65 28757.2i −0.349694 2.43217i
\(520\) −3480.84 2237.00i −0.293548 0.188652i
\(521\) 1329.63 390.415i 0.111808 0.0328299i −0.225350 0.974278i \(-0.572352\pi\)
0.337158 + 0.941448i \(0.390534\pi\)
\(522\) 988.347 6874.10i 0.0828712 0.576382i
\(523\) 897.678 1035.98i 0.0750530 0.0866157i −0.716981 0.697092i \(-0.754477\pi\)
0.792034 + 0.610477i \(0.209022\pi\)
\(524\) −498.760 + 320.533i −0.0415809 + 0.0267224i
\(525\) 2331.26 + 2690.42i 0.193799 + 0.223656i
\(526\) 1634.21 + 479.848i 0.135466 + 0.0397764i
\(527\) −3192.96 + 6991.61i −0.263923 + 0.577912i
\(528\) 7429.57 0.612368
\(529\) 6971.87 + 9971.40i 0.573015 + 0.819545i
\(530\) −1133.04 −0.0928604
\(531\) −2790.66 + 6110.69i −0.228068 + 0.499400i
\(532\) 10115.0 + 2970.03i 0.824325 + 0.242044i
\(533\) 1414.73 + 1632.69i 0.114970 + 0.132682i
\(534\) −10765.9 + 6918.84i −0.872448 + 0.560688i
\(535\) −2338.54 + 2698.82i −0.188979 + 0.218093i
\(536\) −532.974 + 3706.91i −0.0429496 + 0.298721i
\(537\) −8853.34 + 2599.58i −0.711452 + 0.208901i
\(538\) 1725.36 + 1108.82i 0.138263 + 0.0888565i
\(539\) 5.02726 + 34.9654i 0.000401743 + 0.00279418i
\(540\) −555.310 1215.96i −0.0442533 0.0969011i
\(541\) 6971.40 + 15265.2i 0.554019 + 1.21313i 0.954880 + 0.296993i \(0.0959837\pi\)
−0.400861 + 0.916139i \(0.631289\pi\)
\(542\) −1305.52 9080.09i −0.103463 0.719600i
\(543\) −8899.91 5719.62i −0.703373 0.452030i
\(544\) 12489.0 3667.11i 0.984307 0.289019i
\(545\) 1028.23 7151.49i 0.0808156 0.562085i
\(546\) 5309.43 6127.41i 0.416159 0.480273i
\(547\) 12152.6 7810.01i 0.949923 0.610479i 0.0287315 0.999587i \(-0.490853\pi\)
0.921192 + 0.389108i \(0.127217\pi\)
\(548\) −8932.88 10309.1i −0.696339 0.803618i
\(549\) 5674.66 + 1666.23i 0.441145 + 0.129532i
\(550\) −391.684 + 857.669i −0.0303663 + 0.0664929i
\(551\) −15489.9 −1.19763
\(552\) 13257.2 + 6907.02i 1.02222 + 0.532577i
\(553\) −23255.5 −1.78829
\(554\) −48.2721 + 105.701i −0.00370196 + 0.00810615i
\(555\) 10298.4 + 3023.88i 0.787645 + 0.231273i
\(556\) 10448.2 + 12057.9i 0.796946 + 0.919724i
\(557\) 6689.92 4299.35i 0.508906 0.327054i −0.260864 0.965376i \(-0.584007\pi\)
0.769770 + 0.638321i \(0.220371\pi\)
\(558\) −2696.91 + 3112.40i −0.204604 + 0.236126i
\(559\) −660.777 + 4595.81i −0.0499962 + 0.347731i
\(560\) 2747.00 806.593i 0.207289 0.0608657i
\(561\) 14736.1 + 9470.33i 1.10902 + 0.712723i
\(562\) −398.356 2770.63i −0.0298997 0.207957i
\(563\) −4978.03 10900.4i −0.372645 0.815978i −0.999326 0.0367026i \(-0.988315\pi\)
0.626682 0.779275i \(-0.284413\pi\)
\(564\) −9128.39 19988.4i −0.681515 1.49231i
\(565\) 836.517 + 5818.10i 0.0622877 + 0.433220i
\(566\) 2195.81 + 1411.16i 0.163069 + 0.104798i
\(567\) −9887.40 + 2903.20i −0.732331 + 0.215032i
\(568\) 2411.66 16773.5i 0.178153 1.23908i
\(569\) 6280.45 7248.02i 0.462724 0.534012i −0.475649 0.879635i \(-0.657787\pi\)
0.938374 + 0.345623i \(0.112332\pi\)
\(570\) 3422.33 2199.40i 0.251483 0.161619i
\(571\) −11727.6 13534.3i −0.859515 0.991933i −0.999998 0.00185038i \(-0.999411\pi\)
0.140483 0.990083i \(-0.455134\pi\)
\(572\) −9184.48 2696.81i −0.671368 0.197131i
\(573\) −7158.74 + 15675.5i −0.521921 + 1.14285i
\(574\) 1028.36 0.0747783
\(575\) 2174.95 1695.28i 0.157742 0.122953i
\(576\) −1031.24 −0.0745979
\(577\) −9027.13 + 19766.7i −0.651307 + 1.42616i 0.239098 + 0.970995i \(0.423148\pi\)
−0.890405 + 0.455169i \(0.849579\pi\)
\(578\) 485.812 + 142.647i 0.0349604 + 0.0102653i
\(579\) 2260.44 + 2608.68i 0.162246 + 0.187242i
\(580\) −4878.97 + 3135.52i −0.349290 + 0.224475i
\(581\) −10671.2 + 12315.2i −0.761987 + 0.879380i
\(582\) −289.469 + 2013.30i −0.0206167 + 0.143392i
\(583\) −5594.26 + 1642.62i −0.397411 + 0.116690i
\(584\) −11027.7 7087.07i −0.781386 0.502166i
\(585\) 1081.30 + 7520.63i 0.0764212 + 0.531521i
\(586\) −2443.34 5350.17i −0.172241 0.377156i
\(587\) −2789.57 6108.30i −0.196146 0.429500i 0.785846 0.618422i \(-0.212228\pi\)
−0.981992 + 0.188922i \(0.939501\pi\)
\(588\) −8.12129 56.4848i −0.000569586 0.00396155i
\(589\) 7727.39 + 4966.09i 0.540580 + 0.347410i
\(590\) −1207.55 + 354.569i −0.0842613 + 0.0247413i
\(591\) 3306.22 22995.3i 0.230118 1.60051i
\(592\) 5652.66 6523.51i 0.392437 0.452897i
\(593\) 10040.3 6452.49i 0.695286 0.446833i −0.144676 0.989479i \(-0.546214\pi\)
0.839961 + 0.542646i \(0.182578\pi\)
\(594\) 1010.55 + 1166.23i 0.0698035 + 0.0805575i
\(595\) 6476.68 + 1901.72i 0.446248 + 0.131030i
\(596\) 86.8864 190.255i 0.00597149 0.0130757i
\(597\) 12925.8 0.886130
\(598\) −4526.64 4353.53i −0.309545 0.297708i
\(599\) −8192.86 −0.558850 −0.279425 0.960168i \(-0.590144\pi\)
−0.279425 + 0.960168i \(0.590144\pi\)
\(600\) 1407.44 3081.86i 0.0957642 0.209694i
\(601\) −24080.9 7070.79i −1.63441 0.479906i −0.669571 0.742748i \(-0.733522\pi\)
−0.964839 + 0.262842i \(0.915340\pi\)
\(602\) 1447.35 + 1670.33i 0.0979890 + 0.113085i
\(603\) 5785.26 3717.96i 0.390703 0.251090i
\(604\) 6140.41 7086.42i 0.413659 0.477388i
\(605\) 256.611 1784.77i 0.0172442 0.119936i
\(606\) 1919.62 563.650i 0.128678 0.0377834i
\(607\) −18608.4 11958.9i −1.24430 0.799663i −0.258245 0.966079i \(-0.583144\pi\)
−0.986056 + 0.166416i \(0.946780\pi\)
\(608\) −2213.77 15397.1i −0.147665 1.02703i
\(609\) −10500.9 22993.7i −0.698714 1.52997i
\(610\) 460.278 + 1007.87i 0.0305510 + 0.0668974i
\(611\) 2922.48 + 20326.3i 0.193504 + 1.34585i
\(612\) −12968.9 8334.60i −0.856595 0.550500i
\(613\) 19054.5 5594.90i 1.25547 0.368639i 0.414663 0.909975i \(-0.363899\pi\)
0.840807 + 0.541336i \(0.182081\pi\)
\(614\) 50.8259 353.502i 0.00334066 0.0232348i
\(615\) −1158.42 + 1336.88i −0.0759543 + 0.0876559i
\(616\) −8526.26 + 5479.49i −0.557683 + 0.358401i
\(617\) −15753.7 18180.7i −1.02791 1.18627i −0.982301 0.187309i \(-0.940023\pi\)
−0.0456068 0.998959i \(-0.514522\pi\)
\(618\) 13282.0 + 3899.94i 0.864530 + 0.253849i
\(619\) −2971.55 + 6506.78i −0.192951 + 0.422504i −0.981237 0.192805i \(-0.938241\pi\)
0.788286 + 0.615309i \(0.210969\pi\)
\(620\) 3439.21 0.222777
\(621\) −1045.12 4390.54i −0.0675350 0.283714i
\(622\) 4688.18 0.302217
\(623\) −10541.9 + 23083.4i −0.677930 + 1.48446i
\(624\) 10761.9 + 3159.98i 0.690418 + 0.202725i
\(625\) −409.288 472.343i −0.0261944 0.0302300i
\(626\) −4891.87 + 3143.81i −0.312330 + 0.200722i
\(627\) 13708.8 15820.8i 0.873169 1.00769i
\(628\) 959.619 6674.29i 0.0609760 0.424098i
\(629\) 19527.1 5733.68i 1.23783 0.363461i
\(630\) 3042.58 + 1955.35i 0.192412 + 0.123656i
\(631\) 3144.80 + 21872.5i 0.198403 + 1.37992i 0.808919 + 0.587920i \(0.200053\pi\)
−0.610516 + 0.792004i \(0.709038\pi\)
\(632\) 9194.18 + 20132.4i 0.578679 + 1.26713i
\(633\) −13440.1 29429.7i −0.843911 1.84791i
\(634\) 663.170 + 4612.45i 0.0415423 + 0.288933i
\(635\) −10952.8 7038.94i −0.684487 0.439893i
\(636\) 9037.24 2653.57i 0.563443 0.165442i
\(637\) −7.58953 + 52.7863i −0.000472069 + 0.00328331i
\(638\) 4384.34 5059.80i 0.272065 0.313980i
\(639\) −26177.8 + 16823.5i −1.62062 + 1.04151i
\(640\) −4796.16 5535.06i −0.296226 0.341863i
\(641\) 18661.4 + 5479.47i 1.14989 + 0.337638i 0.800496 0.599338i \(-0.204569\pi\)
0.349394 + 0.936976i \(0.386388\pi\)
\(642\) −2766.47 + 6057.72i −0.170068 + 0.372397i
\(643\) −2762.60 −0.169434 −0.0847171 0.996405i \(-0.526999\pi\)
−0.0847171 + 0.996405i \(0.526999\pi\)
\(644\) 13271.3 1209.57i 0.812052 0.0740118i
\(645\) −3801.86 −0.232090
\(646\) 3204.39 7016.63i 0.195163 0.427346i
\(647\) 18183.7 + 5339.23i 1.10491 + 0.324431i 0.782801 0.622272i \(-0.213790\pi\)
0.322109 + 0.946703i \(0.395608\pi\)
\(648\) 6422.37 + 7411.81i 0.389343 + 0.449326i
\(649\) −5448.13 + 3501.30i −0.329519 + 0.211769i
\(650\) −932.151 + 1075.76i −0.0562492 + 0.0649150i
\(651\) −2133.30 + 14837.4i −0.128434 + 0.893278i
\(652\) −25286.1 + 7424.68i −1.51884 + 0.445971i
\(653\) 3754.63 + 2412.95i 0.225007 + 0.144603i 0.648288 0.761395i \(-0.275485\pi\)
−0.423281 + 0.905999i \(0.639122\pi\)
\(654\) −1917.51 13336.6i −0.114649 0.797403i
\(655\) 188.463 + 412.677i 0.0112426 + 0.0246178i
\(656\) 590.981 + 1294.07i 0.0351737 + 0.0770196i
\(657\) 3425.69 + 23826.2i 0.203423 + 1.41484i
\(658\) 8223.31 + 5284.80i 0.487201 + 0.313105i
\(659\) −27192.0 + 7984.28i −1.60736 + 0.471963i −0.957581 0.288163i \(-0.906955\pi\)
−0.649776 + 0.760126i \(0.725137\pi\)
\(660\) 1115.46 7758.19i 0.0657867 0.457556i
\(661\) 13355.3 15412.8i 0.785870 0.906943i −0.211648 0.977346i \(-0.567883\pi\)
0.997519 + 0.0704032i \(0.0224286\pi\)
\(662\) 88.7995 57.0680i 0.00521343 0.00335047i
\(663\) 17317.6 + 19985.6i 1.01442 + 1.17070i
\(664\) 14880.3 + 4369.24i 0.869677 + 0.255360i
\(665\) 3351.10 7337.88i 0.195413 0.427896i
\(666\) 10904.4 0.634440
\(667\) −18209.5 + 7199.09i −1.05708 + 0.417916i
\(668\) 24894.4 1.44191
\(669\) −14888.3 + 32600.8i −0.860411 + 1.88404i
\(670\) 1236.17 + 362.972i 0.0712796 + 0.0209296i
\(671\) 3733.73 + 4308.96i 0.214812 + 0.247907i
\(672\) 21355.2 13724.2i 1.22588 0.787828i
\(673\) −5419.43 + 6254.35i −0.310406 + 0.358228i −0.889421 0.457089i \(-0.848892\pi\)
0.579014 + 0.815317i \(0.303437\pi\)
\(674\) 50.6167 352.047i 0.00289271 0.0201192i
\(675\) −981.467 + 288.185i −0.0559655 + 0.0164329i
\(676\) −80.2552 51.5769i −0.00456618 0.00293451i
\(677\) −1519.02 10565.0i −0.0862341 0.599771i −0.986417 0.164260i \(-0.947477\pi\)
0.900183 0.435512i \(-0.143433\pi\)
\(678\) 4553.60 + 9970.99i 0.257935 + 0.564798i
\(679\) 1675.50 + 3668.84i 0.0946979 + 0.207359i
\(680\) −914.253 6358.77i −0.0515588 0.358599i
\(681\) −37622.6 24178.6i −2.11704 1.36054i
\(682\) −3809.38 + 1118.54i −0.213884 + 0.0628020i
\(683\) −4825.24 + 33560.3i −0.270326 + 1.88016i 0.174669 + 0.984627i \(0.444114\pi\)
−0.444996 + 0.895533i \(0.646795\pi\)
\(684\) −12064.8 + 13923.5i −0.674427 + 0.778331i
\(685\) −8781.12 + 5643.29i −0.489795 + 0.314772i
\(686\) 5044.85 + 5822.07i 0.280777 + 0.324034i
\(687\) −20897.2 6135.96i −1.16052 0.340759i
\(688\) −1270.15 + 2781.23i −0.0703835 + 0.154118i
\(689\) −8802.05 −0.486693
\(690\) 3001.00 4176.11i 0.165574 0.230409i
\(691\) −16308.8 −0.897853 −0.448927 0.893569i \(-0.648194\pi\)
−0.448927 + 0.893569i \(0.648194\pi\)
\(692\) −10239.7 + 22421.8i −0.562506 + 1.23172i
\(693\) 17857.2 + 5243.35i 0.978845 + 0.287415i
\(694\) 3302.01 + 3810.72i 0.180609 + 0.208434i
\(695\) 10270.7 6600.57i 0.560560 0.360250i
\(696\) −15754.3 + 18181.4i −0.857994 + 0.990178i
\(697\) −477.347 + 3320.02i −0.0259409 + 0.180423i
\(698\) 327.278 96.0974i 0.0177473 0.00521109i
\(699\) 3625.40 + 2329.90i 0.196174 + 0.126073i
\(700\) −429.841 2989.61i −0.0232092 0.161424i
\(701\) 7126.20 + 15604.2i 0.383956 + 0.840746i 0.998648 + 0.0519789i \(0.0165529\pi\)
−0.614692 + 0.788767i \(0.710720\pi\)
\(702\) 967.773 + 2119.13i 0.0520317 + 0.113933i
\(703\) −3461.31 24074.0i −0.185698 1.29156i
\(704\) −836.341 537.484i −0.0447738 0.0287744i
\(705\) −16133.7 + 4737.28i −0.861887 + 0.253073i
\(706\) −769.613 + 5352.78i −0.0410266 + 0.285346i
\(707\) 2597.96 2998.20i 0.138198 0.159489i
\(708\) 8801.18 5656.18i 0.467187 0.300243i
\(709\) 20736.9 + 23931.6i 1.09843 + 1.26766i 0.960820 + 0.277175i \(0.0893981\pi\)
0.137615 + 0.990486i \(0.456056\pi\)
\(710\) −5593.56 1642.42i −0.295666 0.0868152i
\(711\) 16883.2 36968.9i 0.890531 1.94999i
\(712\) 24151.3 1.27122
\(713\) 11392.2 + 2246.62i 0.598373 + 0.118003i
\(714\) 12588.0 0.659798
\(715\) −3042.81 + 6662.83i −0.159154 + 0.348498i
\(716\) 7511.43 + 2205.56i 0.392061 + 0.115119i
\(717\) 19586.4 + 22603.9i 1.02018 + 1.17735i
\(718\) −6827.38 + 4387.69i −0.354869 + 0.228060i
\(719\) 5224.11 6028.94i 0.270969 0.312714i −0.603914 0.797050i \(-0.706393\pi\)
0.874883 + 0.484335i \(0.160938\pi\)
\(720\) −712.055 + 4952.45i −0.0368566 + 0.256343i
\(721\) 26337.4 7733.35i 1.36041 0.399452i
\(722\) −768.999 494.206i −0.0396388 0.0254743i
\(723\) 6311.11 + 43894.8i 0.324637 + 2.25790i
\(724\) 3728.69 + 8164.69i 0.191403 + 0.419114i
\(725\) 1843.59 + 4036.89i 0.0944401 + 0.206795i
\(726\) −478.545 3328.35i −0.0244635 0.170147i
\(727\) 20464.7 + 13151.9i 1.04401 + 0.670943i 0.945975 0.324240i \(-0.105108\pi\)
0.0980332 + 0.995183i \(0.468745\pi\)
\(728\) −14681.0 + 4310.74i −0.747411 + 0.219460i
\(729\) 3773.76 26247.1i 0.191727 1.33349i
\(730\) −2953.16 + 3408.13i −0.149728 + 0.172795i
\(731\) −6064.44 + 3897.38i −0.306842 + 0.197195i
\(732\) −6031.66 6960.91i −0.304558 0.351479i
\(733\) −11281.6 3312.57i −0.568479 0.166920i −0.0151527 0.999885i \(-0.504823\pi\)
−0.553326 + 0.832965i \(0.686642\pi\)
\(734\) −6941.37 + 15199.5i −0.349061 + 0.764336i
\(735\) −43.6672 −0.00219141
\(736\) −9758.40 17071.5i −0.488722 0.854979i
\(737\) 6629.67 0.331353
\(738\) −746.572 + 1634.77i −0.0372381 + 0.0815400i
\(739\) 10048.6 + 2950.53i 0.500193 + 0.146870i 0.522090 0.852890i \(-0.325152\pi\)
−0.0218970 + 0.999760i \(0.506971\pi\)
\(740\) −5963.38 6882.11i −0.296241 0.341880i
\(741\) 26586.5 17086.1i 1.31806 0.847063i
\(742\) −2743.79 + 3166.51i −0.135752 + 0.156666i
\(743\) 1931.66 13435.0i 0.0953776 0.663366i −0.884906 0.465770i \(-0.845777\pi\)
0.980284 0.197596i \(-0.0633134\pi\)
\(744\) 13688.3 4019.24i 0.674511 0.198054i
\(745\) −134.641 86.5284i −0.00662129 0.00425524i
\(746\) −369.475 2569.76i −0.0181333 0.126120i
\(747\) −11830.2 25904.5i −0.579442 1.26880i
\(748\) −6173.82 13518.8i −0.301788 0.660823i
\(749\) 1879.33 + 13071.0i 0.0916813 + 0.637657i
\(750\) −980.516 630.139i −0.0477378 0.0306793i
\(751\) −25627.2 + 7524.81i −1.24520 + 0.365625i −0.836968 0.547252i \(-0.815674\pi\)
−0.408236 + 0.912876i \(0.633856\pi\)
\(752\) −1924.50 + 13385.2i −0.0933236 + 0.649080i
\(753\) −14052.2 + 16217.1i −0.680069 + 0.784842i
\(754\) 8502.87 5464.46i 0.410685 0.263931i
\(755\) −4698.70 5422.59i −0.226495 0.261389i
\(756\) −4743.00 1392.67i −0.228176 0.0669986i
\(757\) 2057.17 4504.58i 0.0987704 0.216277i −0.853796 0.520608i \(-0.825705\pi\)
0.952566 + 0.304331i \(0.0984328\pi\)
\(758\) −14705.0 −0.704629
\(759\) 8762.82 24969.8i 0.419065 1.19413i
\(760\) −7677.33 −0.366429
\(761\) 8408.04 18411.0i 0.400514 0.877003i −0.596704 0.802462i \(-0.703523\pi\)
0.997218 0.0745419i \(-0.0237494\pi\)
\(762\) −23296.4 6840.43i −1.10753 0.325200i
\(763\) −17496.3 20191.8i −0.830156 0.958051i
\(764\) 12299.8 7904.58i 0.582448 0.374316i
\(765\) −7725.12