Properties

Label 115.4.g.a.6.5
Level $115$
Weight $4$
Character 115.6
Analytic conductor $6.785$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(6,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 18]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.g (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78521965066\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 6.5
Character \(\chi\) \(=\) 115.6
Dual form 115.4.g.a.96.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.743310 + 1.62762i) q^{2} +(9.31398 + 2.73483i) q^{3} +(3.14224 + 3.62634i) q^{4} +(4.20627 - 2.70320i) q^{5} +(-11.3745 + 13.1268i) q^{6} +(-1.18121 + 8.21547i) q^{7} +(-21.9727 + 6.45176i) q^{8} +(56.5571 + 36.3470i) q^{9} +O(q^{10})\) \(q+(-0.743310 + 1.62762i) q^{2} +(9.31398 + 2.73483i) q^{3} +(3.14224 + 3.62634i) q^{4} +(4.20627 - 2.70320i) q^{5} +(-11.3745 + 13.1268i) q^{6} +(-1.18121 + 8.21547i) q^{7} +(-21.9727 + 6.45176i) q^{8} +(56.5571 + 36.3470i) q^{9} +(1.27323 + 8.85554i) q^{10} +(-12.5186 - 27.4119i) q^{11} +(19.3493 + 42.3691i) q^{12} +(-11.2741 - 78.4134i) q^{13} +(-12.4937 - 8.02920i) q^{14} +(46.5699 - 13.6742i) q^{15} +(0.368500 - 2.56297i) q^{16} +(-8.15688 + 9.41354i) q^{17} +(-101.199 + 65.0365i) q^{18} +(-73.8957 - 85.2802i) q^{19} +(23.0198 + 6.75923i) q^{20} +(-33.4697 + 73.2883i) q^{21} +53.9215 q^{22} +(92.4421 + 60.1786i) q^{23} -222.298 q^{24} +(10.3854 - 22.7408i) q^{25} +(136.008 + 39.9354i) q^{26} +(255.734 + 295.132i) q^{27} +(-33.5037 + 21.5315i) q^{28} +(-137.124 + 158.250i) q^{29} +(-12.3595 + 85.9624i) q^{30} +(66.4084 - 19.4993i) q^{31} +(-150.222 - 96.5419i) q^{32} +(-41.6311 - 289.550i) q^{33} +(-9.25860 - 20.2735i) q^{34} +(17.2396 + 37.7495i) q^{35} +(45.9093 + 319.306i) q^{36} +(56.4601 + 36.2847i) q^{37} +(193.731 - 56.8847i) q^{38} +(109.440 - 761.173i) q^{39} +(-74.9826 + 86.5345i) q^{40} +(-212.484 + 136.555i) q^{41} +(-94.4074 - 108.952i) q^{42} +(-100.522 - 29.5158i) q^{43} +(60.0685 - 131.532i) q^{44} +336.148 q^{45} +(-166.661 + 105.729i) q^{46} -50.7819 q^{47} +(10.4415 - 22.8637i) q^{48} +(263.007 + 77.2259i) q^{49} +(29.2939 + 33.8069i) q^{50} +(-101.717 + 65.3698i) q^{51} +(248.927 - 287.277i) q^{52} +(89.7864 - 624.478i) q^{53} +(-670.454 + 196.863i) q^{54} +(-126.757 - 81.4615i) q^{55} +(-27.0500 - 188.137i) q^{56} +(-455.036 - 996.390i) q^{57} +(-155.645 - 340.815i) q^{58} +(4.07708 + 28.3567i) q^{59} +(195.921 + 125.911i) q^{60} +(817.001 - 239.893i) q^{61} +(-17.6246 + 122.582i) q^{62} +(-365.414 + 421.710i) q^{63} +(286.222 - 183.944i) q^{64} +(-259.389 - 299.351i) q^{65} +(502.224 + 147.466i) q^{66} +(98.5586 - 215.813i) q^{67} -59.7675 q^{68} +(696.425 + 813.316i) q^{69} -74.2563 q^{70} +(-398.456 + 872.496i) q^{71} +(-1477.21 - 433.749i) q^{72} +(-82.8202 - 95.5796i) q^{73} +(-101.025 + 64.9249i) q^{74} +(158.921 - 183.405i) q^{75} +(77.0568 - 535.941i) q^{76} +(239.989 - 70.4671i) q^{77} +(1157.56 + 743.916i) q^{78} +(75.1633 + 522.772i) q^{79} +(-5.37823 - 11.7767i) q^{80} +(820.700 + 1797.08i) q^{81} +(-64.3186 - 447.346i) q^{82} +(299.599 + 192.540i) q^{83} +(-370.938 + 108.917i) q^{84} +(-8.86329 + 61.6456i) q^{85} +(122.759 - 141.672i) q^{86} +(-1709.96 + 1098.92i) q^{87} +(451.923 + 521.547i) q^{88} +(-1365.69 - 401.002i) q^{89} +(-249.862 + 547.122i) q^{90} +657.520 q^{91} +(72.2471 + 524.322i) q^{92} +671.854 q^{93} +(37.7467 - 82.6538i) q^{94} +(-541.355 - 158.956i) q^{95} +(-1135.14 - 1310.02i) q^{96} +(-427.054 + 274.451i) q^{97} +(-321.191 + 370.674i) q^{98} +(288.326 - 2005.35i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9} - 10 q^{10} + 2 q^{11} - 57 q^{12} + 34 q^{13} - 154 q^{14} + 30 q^{15} + 16 q^{16} + 252 q^{17} - 33 q^{18} - 160 q^{19} - 200 q^{20} - 684 q^{21} - 704 q^{22} + 127 q^{23} - 3090 q^{24} - 275 q^{25} - 567 q^{26} + 384 q^{27} - 188 q^{28} + 340 q^{29} - 15 q^{30} + 582 q^{31} - 1364 q^{32} + 1760 q^{33} + 1819 q^{34} + 665 q^{35} + 2794 q^{36} + 312 q^{37} + 3123 q^{38} - 1560 q^{39} - 1205 q^{40} + 1324 q^{41} + 1454 q^{42} - 1740 q^{43} - 369 q^{44} + 3730 q^{45} - 4322 q^{46} - 2858 q^{47} - 2686 q^{48} + 2015 q^{49} - 325 q^{50} - 1426 q^{51} + 1717 q^{52} + 882 q^{53} + 2541 q^{54} + 450 q^{55} + 7755 q^{56} + 3688 q^{57} + 6622 q^{58} + 2605 q^{59} + 1530 q^{60} - 104 q^{61} - 9360 q^{62} - 7618 q^{63} + 3483 q^{64} + 170 q^{65} - 1766 q^{66} - 166 q^{67} - 5018 q^{68} - 1194 q^{69} - 770 q^{70} - 1222 q^{71} + 3303 q^{72} - 922 q^{73} + 1245 q^{74} + 150 q^{75} + 1360 q^{76} - 3093 q^{77} - 1600 q^{78} + 2448 q^{79} + 2115 q^{80} - 1371 q^{81} + 6609 q^{82} + 6704 q^{83} + 3894 q^{84} - 720 q^{85} - 5074 q^{86} - 6324 q^{87} + 1918 q^{88} - 5380 q^{89} - 165 q^{90} + 7828 q^{91} - 16225 q^{92} - 24948 q^{93} - 16490 q^{94} + 685 q^{95} + 675 q^{96} - 4400 q^{97} + 8790 q^{98} - 3626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.743310 + 1.62762i −0.262800 + 0.575452i −0.994328 0.106360i \(-0.966080\pi\)
0.731528 + 0.681812i \(0.238808\pi\)
\(3\) 9.31398 + 2.73483i 1.79248 + 0.526319i 0.996839 0.0794537i \(-0.0253176\pi\)
0.795638 + 0.605772i \(0.207136\pi\)
\(4\) 3.14224 + 3.62634i 0.392780 + 0.453292i
\(5\) 4.20627 2.70320i 0.376220 0.241782i
\(6\) −11.3745 + 13.1268i −0.773934 + 0.893167i
\(7\) −1.18121 + 8.21547i −0.0637791 + 0.443594i 0.932762 + 0.360493i \(0.117391\pi\)
−0.996541 + 0.0831009i \(0.973518\pi\)
\(8\) −21.9727 + 6.45176i −0.971065 + 0.285130i
\(9\) 56.5571 + 36.3470i 2.09471 + 1.34619i
\(10\) 1.27323 + 8.85554i 0.0402632 + 0.280037i
\(11\) −12.5186 27.4119i −0.343137 0.751364i 0.656860 0.754013i \(-0.271884\pi\)
−0.999996 + 0.00264838i \(0.999157\pi\)
\(12\) 19.3493 + 42.3691i 0.465473 + 1.01924i
\(13\) −11.2741 78.4134i −0.240530 1.67292i −0.649492 0.760368i \(-0.725018\pi\)
0.408963 0.912551i \(-0.365891\pi\)
\(14\) −12.4937 8.02920i −0.238505 0.153278i
\(15\) 46.5699 13.6742i 0.801620 0.235377i
\(16\) 0.368500 2.56297i 0.00575781 0.0400464i
\(17\) −8.15688 + 9.41354i −0.116373 + 0.134301i −0.810947 0.585120i \(-0.801047\pi\)
0.694574 + 0.719421i \(0.255593\pi\)
\(18\) −101.199 + 65.0365i −1.32515 + 0.851625i
\(19\) −73.8957 85.2802i −0.892254 1.02972i −0.999371 0.0354699i \(-0.988707\pi\)
0.107116 0.994246i \(-0.465838\pi\)
\(20\) 23.0198 + 6.75923i 0.257370 + 0.0755705i
\(21\) −33.4697 + 73.2883i −0.347794 + 0.761563i
\(22\) 53.9215 0.522550
\(23\) 92.4421 + 60.1786i 0.838065 + 0.545570i
\(24\) −222.298 −1.89068
\(25\) 10.3854 22.7408i 0.0830830 0.181926i
\(26\) 136.008 + 39.9354i 1.02590 + 0.301230i
\(27\) 255.734 + 295.132i 1.82281 + 2.10364i
\(28\) −33.5037 + 21.5315i −0.226129 + 0.145324i
\(29\) −137.124 + 158.250i −0.878046 + 1.01332i 0.121738 + 0.992562i \(0.461153\pi\)
−0.999785 + 0.0207574i \(0.993392\pi\)
\(30\) −12.3595 + 85.9624i −0.0752177 + 0.523150i
\(31\) 66.4084 19.4993i 0.384752 0.112973i −0.0836359 0.996496i \(-0.526653\pi\)
0.468388 + 0.883523i \(0.344835\pi\)
\(32\) −150.222 96.5419i −0.829868 0.533324i
\(33\) −41.6311 289.550i −0.219607 1.52740i
\(34\) −9.25860 20.2735i −0.0467011 0.102261i
\(35\) 17.2396 + 37.7495i 0.0832579 + 0.182309i
\(36\) 45.9093 + 319.306i 0.212543 + 1.47827i
\(37\) 56.4601 + 36.2847i 0.250864 + 0.161221i 0.660030 0.751240i \(-0.270544\pi\)
−0.409165 + 0.912460i \(0.634180\pi\)
\(38\) 193.731 56.8847i 0.827036 0.242840i
\(39\) 109.440 761.173i 0.449345 3.12526i
\(40\) −74.9826 + 86.5345i −0.296395 + 0.342058i
\(41\) −212.484 + 136.555i −0.809374 + 0.520153i −0.878663 0.477443i \(-0.841564\pi\)
0.0692882 + 0.997597i \(0.477927\pi\)
\(42\) −94.4074 108.952i −0.346842 0.400277i
\(43\) −100.522 29.5158i −0.356498 0.104677i 0.0985793 0.995129i \(-0.468570\pi\)
−0.455077 + 0.890452i \(0.650388\pi\)
\(44\) 60.0685 131.532i 0.205810 0.450662i
\(45\) 336.148 1.11355
\(46\) −166.661 + 105.729i −0.534193 + 0.338890i
\(47\) −50.7819 −0.157602 −0.0788011 0.996890i \(-0.525109\pi\)
−0.0788011 + 0.996890i \(0.525109\pi\)
\(48\) 10.4415 22.8637i 0.0313979 0.0687519i
\(49\) 263.007 + 77.2259i 0.766785 + 0.225149i
\(50\) 29.2939 + 33.8069i 0.0828556 + 0.0956205i
\(51\) −101.717 + 65.3698i −0.279280 + 0.179482i
\(52\) 248.927 287.277i 0.663846 0.766120i
\(53\) 89.7864 624.478i 0.232700 1.61846i −0.453641 0.891185i \(-0.649875\pi\)
0.686341 0.727280i \(-0.259216\pi\)
\(54\) −670.454 + 196.863i −1.68958 + 0.496105i
\(55\) −126.757 81.4615i −0.310761 0.199714i
\(56\) −27.0500 188.137i −0.0645483 0.448944i
\(57\) −455.036 996.390i −1.05739 2.31535i
\(58\) −155.645 340.815i −0.352366 0.771574i
\(59\) 4.07708 + 28.3567i 0.00899644 + 0.0625716i 0.993825 0.110958i \(-0.0353919\pi\)
−0.984829 + 0.173530i \(0.944483\pi\)
\(60\) 195.921 + 125.911i 0.421555 + 0.270917i
\(61\) 817.001 239.893i 1.71486 0.503527i 0.730984 0.682395i \(-0.239061\pi\)
0.983873 + 0.178867i \(0.0572433\pi\)
\(62\) −17.6246 + 122.582i −0.0361021 + 0.251095i
\(63\) −365.414 + 421.710i −0.730758 + 0.843340i
\(64\) 286.222 183.944i 0.559027 0.359265i
\(65\) −259.389 299.351i −0.494974 0.571230i
\(66\) 502.224 + 147.466i 0.936659 + 0.275028i
\(67\) 98.5586 215.813i 0.179714 0.393519i −0.798240 0.602340i \(-0.794235\pi\)
0.977954 + 0.208821i \(0.0669625\pi\)
\(68\) −59.7675 −0.106586
\(69\) 696.425 + 813.316i 1.21507 + 1.41901i
\(70\) −74.2563 −0.126790
\(71\) −398.456 + 872.496i −0.666028 + 1.45840i 0.210768 + 0.977536i \(0.432403\pi\)
−0.876796 + 0.480862i \(0.840324\pi\)
\(72\) −1477.21 433.749i −2.41794 0.709970i
\(73\) −82.8202 95.5796i −0.132786 0.153243i 0.685462 0.728108i \(-0.259600\pi\)
−0.818248 + 0.574865i \(0.805055\pi\)
\(74\) −101.025 + 64.9249i −0.158702 + 0.101991i
\(75\) 158.921 183.405i 0.244676 0.282371i
\(76\) 77.0568 535.941i 0.116303 0.808904i
\(77\) 239.989 70.4671i 0.355185 0.104292i
\(78\) 1157.56 + 743.916i 1.68035 + 1.07990i
\(79\) 75.1633 + 522.772i 0.107045 + 0.744512i 0.970677 + 0.240389i \(0.0772751\pi\)
−0.863632 + 0.504123i \(0.831816\pi\)
\(80\) −5.37823 11.7767i −0.00751630 0.0164584i
\(81\) 820.700 + 1797.08i 1.12579 + 2.46513i
\(82\) −64.3186 447.346i −0.0866195 0.602452i
\(83\) 299.599 + 192.540i 0.396207 + 0.254627i 0.723540 0.690282i \(-0.242514\pi\)
−0.327333 + 0.944909i \(0.606150\pi\)
\(84\) −370.938 + 108.917i −0.481817 + 0.141474i
\(85\) −8.86329 + 61.6456i −0.0113101 + 0.0786635i
\(86\) 122.759 141.672i 0.153924 0.177638i
\(87\) −1709.96 + 1098.92i −2.10721 + 1.35422i
\(88\) 451.923 + 521.547i 0.547445 + 0.631785i
\(89\) −1365.69 401.002i −1.62655 0.477597i −0.663779 0.747929i \(-0.731048\pi\)
−0.962767 + 0.270332i \(0.912867\pi\)
\(90\) −249.862 + 547.122i −0.292642 + 0.640797i
\(91\) 657.520 0.757437
\(92\) 72.2471 + 524.322i 0.0818726 + 0.594178i
\(93\) 671.854 0.749118
\(94\) 37.7467 82.6538i 0.0414178 0.0906924i
\(95\) −541.355 158.956i −0.584651 0.171669i
\(96\) −1135.14 1310.02i −1.20682 1.39275i
\(97\) −427.054 + 274.451i −0.447019 + 0.287281i −0.744719 0.667378i \(-0.767417\pi\)
0.297701 + 0.954659i \(0.403780\pi\)
\(98\) −321.191 + 370.674i −0.331073 + 0.382079i
\(99\) 288.326 2005.35i 0.292706 2.03581i
\(100\) 115.099 33.7962i 0.115099 0.0337962i
\(101\) 920.388 + 591.498i 0.906753 + 0.582735i 0.908786 0.417263i \(-0.137011\pi\)
−0.00203267 + 0.999998i \(0.500647\pi\)
\(102\) −30.7898 214.148i −0.0298887 0.207880i
\(103\) −468.102 1025.00i −0.447800 0.980546i −0.990100 0.140361i \(-0.955174\pi\)
0.542300 0.840185i \(-0.317554\pi\)
\(104\) 753.628 + 1650.21i 0.710570 + 1.55593i
\(105\) 57.3310 + 398.746i 0.0532850 + 0.370606i
\(106\) 949.675 + 610.319i 0.870195 + 0.559240i
\(107\) −611.943 + 179.683i −0.552885 + 0.162342i −0.546229 0.837636i \(-0.683937\pi\)
−0.00665652 + 0.999978i \(0.502119\pi\)
\(108\) −266.673 + 1854.75i −0.237599 + 1.65253i
\(109\) −52.9450 + 61.1017i −0.0465248 + 0.0536925i −0.778535 0.627601i \(-0.784037\pi\)
0.732010 + 0.681294i \(0.238582\pi\)
\(110\) 226.808 145.761i 0.196594 0.126343i
\(111\) 426.635 + 492.364i 0.364815 + 0.421019i
\(112\) 20.6207 + 6.05480i 0.0173971 + 0.00510825i
\(113\) 406.198 889.449i 0.338158 0.740463i −0.661799 0.749681i \(-0.730207\pi\)
0.999958 + 0.00921807i \(0.00293425\pi\)
\(114\) 1959.98 1.61025
\(115\) 551.511 + 3.23767i 0.447206 + 0.00262535i
\(116\) −1004.75 −0.804209
\(117\) 2212.46 4844.61i 1.74822 3.82807i
\(118\) −49.1845 14.4419i −0.0383712 0.0112668i
\(119\) −67.7017 78.1319i −0.0521530 0.0601877i
\(120\) −935.044 + 600.916i −0.711312 + 0.457132i
\(121\) 276.921 319.584i 0.208055 0.240109i
\(122\) −216.830 + 1508.08i −0.160909 + 1.11914i
\(123\) −2352.52 + 690.763i −1.72455 + 0.506374i
\(124\) 279.382 + 179.548i 0.202333 + 0.130031i
\(125\) −17.7894 123.728i −0.0127290 0.0885323i
\(126\) −414.769 908.217i −0.293258 0.642146i
\(127\) −360.648 789.710i −0.251987 0.551775i 0.740792 0.671735i \(-0.234451\pi\)
−0.992779 + 0.119960i \(0.961723\pi\)
\(128\) −116.665 811.426i −0.0805615 0.560317i
\(129\) −855.536 549.820i −0.583921 0.375263i
\(130\) 680.038 199.677i 0.458794 0.134714i
\(131\) −235.895 + 1640.69i −0.157330 + 1.09426i 0.746197 + 0.665726i \(0.231878\pi\)
−0.903527 + 0.428531i \(0.859031\pi\)
\(132\) 919.193 1060.81i 0.606102 0.699479i
\(133\) 787.903 506.354i 0.513683 0.330124i
\(134\) 278.003 + 320.832i 0.179222 + 0.206834i
\(135\) 1873.49 + 550.105i 1.19440 + 0.350708i
\(136\) 118.495 259.467i 0.0747120 0.163596i
\(137\) −1543.90 −0.962805 −0.481403 0.876500i \(-0.659873\pi\)
−0.481403 + 0.876500i \(0.659873\pi\)
\(138\) −1841.43 + 528.971i −1.13589 + 0.326297i
\(139\) −550.248 −0.335766 −0.167883 0.985807i \(-0.553693\pi\)
−0.167883 + 0.985807i \(0.553693\pi\)
\(140\) −82.7214 + 181.135i −0.0499374 + 0.109348i
\(141\) −472.982 138.880i −0.282498 0.0829489i
\(142\) −1123.92 1297.07i −0.664205 0.766534i
\(143\) −2008.32 + 1290.67i −1.17444 + 0.754765i
\(144\) 113.998 131.560i 0.0659709 0.0761345i
\(145\) −149.000 + 1036.32i −0.0853363 + 0.593527i
\(146\) 217.129 63.7547i 0.123080 0.0361396i
\(147\) 2238.45 + 1438.56i 1.25595 + 0.807147i
\(148\) 45.8306 + 318.758i 0.0254544 + 0.177039i
\(149\) 561.263 + 1228.99i 0.308593 + 0.675725i 0.998855 0.0478343i \(-0.0152319\pi\)
−0.690262 + 0.723560i \(0.742505\pi\)
\(150\) 180.386 + 394.991i 0.0981899 + 0.215006i
\(151\) 425.981 + 2962.76i 0.229575 + 1.59673i 0.699904 + 0.714237i \(0.253226\pi\)
−0.470329 + 0.882491i \(0.655865\pi\)
\(152\) 2173.89 + 1397.08i 1.16004 + 0.745513i
\(153\) −803.484 + 235.924i −0.424561 + 0.124662i
\(154\) −63.6924 + 442.990i −0.0333278 + 0.231800i
\(155\) 226.621 261.535i 0.117436 0.135529i
\(156\) 3104.16 1994.92i 1.59315 1.02386i
\(157\) 2478.89 + 2860.80i 1.26011 + 1.45424i 0.836091 + 0.548590i \(0.184835\pi\)
0.424018 + 0.905654i \(0.360619\pi\)
\(158\) −906.746 266.245i −0.456562 0.134059i
\(159\) 2544.11 5570.83i 1.26894 2.77859i
\(160\) −892.847 −0.441161
\(161\) −603.589 + 688.371i −0.295462 + 0.336964i
\(162\) −3535.01 −1.71442
\(163\) 355.352 778.113i 0.170757 0.373905i −0.804835 0.593499i \(-0.797746\pi\)
0.975591 + 0.219594i \(0.0704733\pi\)
\(164\) −1162.87 341.449i −0.553688 0.162577i
\(165\) −957.825 1105.39i −0.451919 0.521542i
\(166\) −536.078 + 344.516i −0.250649 + 0.161082i
\(167\) 928.967 1072.09i 0.430453 0.496769i −0.498540 0.866867i \(-0.666130\pi\)
0.928993 + 0.370098i \(0.120676\pi\)
\(168\) 262.579 1826.28i 0.120586 0.838694i
\(169\) −3913.54 + 1149.12i −1.78131 + 0.523040i
\(170\) −93.7475 60.2479i −0.0422948 0.0271812i
\(171\) −1079.64 7509.09i −0.482821 3.35810i
\(172\) −208.829 457.272i −0.0925759 0.202713i
\(173\) −4.16782 9.12625i −0.00183164 0.00401073i 0.908714 0.417419i \(-0.137065\pi\)
−0.910546 + 0.413409i \(0.864338\pi\)
\(174\) −517.604 3600.01i −0.225514 1.56848i
\(175\) 174.559 + 112.182i 0.0754024 + 0.0484582i
\(176\) −74.8691 + 21.9835i −0.0320652 + 0.00941518i
\(177\) −39.5770 + 275.264i −0.0168067 + 0.116893i
\(178\) 1667.81 1924.76i 0.702290 0.810486i
\(179\) −3221.93 + 2070.61i −1.34535 + 0.864607i −0.997341 0.0728827i \(-0.976780\pi\)
−0.348014 + 0.937489i \(0.613144\pi\)
\(180\) 1056.26 + 1218.99i 0.437382 + 0.504766i
\(181\) −3996.79 1173.56i −1.64132 0.481936i −0.674690 0.738102i \(-0.735722\pi\)
−0.966633 + 0.256166i \(0.917541\pi\)
\(182\) −488.741 + 1070.19i −0.199054 + 0.435868i
\(183\) 8265.60 3.33886
\(184\) −2419.46 725.872i −0.969374 0.290826i
\(185\) 335.571 0.133360
\(186\) −499.396 + 1093.52i −0.196868 + 0.431081i
\(187\) 360.156 + 105.751i 0.140841 + 0.0413546i
\(188\) −159.569 184.152i −0.0619030 0.0714398i
\(189\) −2726.72 + 1752.36i −1.04942 + 0.674420i
\(190\) 661.115 762.968i 0.252433 0.291324i
\(191\) −251.148 + 1746.77i −0.0951436 + 0.661738i 0.885312 + 0.464997i \(0.153945\pi\)
−0.980456 + 0.196741i \(0.936964\pi\)
\(192\) 3168.92 930.478i 1.19113 0.349747i
\(193\) −2593.21 1666.55i −0.967167 0.621560i −0.0411940 0.999151i \(-0.513116\pi\)
−0.925972 + 0.377591i \(0.876753\pi\)
\(194\) −129.269 899.086i −0.0478401 0.332735i
\(195\) −1597.27 3497.54i −0.586580 1.28443i
\(196\) 546.385 + 1196.42i 0.199120 + 0.436012i
\(197\) 158.061 + 1099.34i 0.0571642 + 0.397586i 0.998236 + 0.0593777i \(0.0189116\pi\)
−0.941071 + 0.338208i \(0.890179\pi\)
\(198\) 3049.64 + 1959.89i 1.09459 + 0.703450i
\(199\) 2929.22 860.096i 1.04345 0.306385i 0.285283 0.958443i \(-0.407913\pi\)
0.758169 + 0.652059i \(0.226094\pi\)
\(200\) −81.4764 + 566.681i −0.0288062 + 0.200352i
\(201\) 1508.19 1740.54i 0.529250 0.610787i
\(202\) −1646.87 + 1058.38i −0.573630 + 0.368650i
\(203\) −1138.13 1313.47i −0.393501 0.454124i
\(204\) −556.674 163.454i −0.191054 0.0560984i
\(205\) −524.627 + 1148.77i −0.178739 + 0.391384i
\(206\) 2016.26 0.681939
\(207\) 3040.94 + 6763.52i 1.02106 + 2.27100i
\(208\) −205.126 −0.0683794
\(209\) −1412.62 + 3093.21i −0.467527 + 1.02374i
\(210\) −691.622 203.079i −0.227269 0.0667322i
\(211\) 374.164 + 431.808i 0.122078 + 0.140886i 0.813499 0.581567i \(-0.197560\pi\)
−0.691420 + 0.722453i \(0.743015\pi\)
\(212\) 2546.70 1636.66i 0.825038 0.530220i
\(213\) −6097.34 + 7036.70i −1.96142 + 2.26360i
\(214\) 162.408 1129.57i 0.0518784 0.360822i
\(215\) −502.609 + 147.579i −0.159431 + 0.0468131i
\(216\) −7523.28 4834.92i −2.36988 1.52303i
\(217\) 81.7536 + 568.609i 0.0255751 + 0.177879i
\(218\) −60.0961 131.592i −0.0186707 0.0408832i
\(219\) −509.992 1116.73i −0.157361 0.344572i
\(220\) −102.893 715.634i −0.0315319 0.219309i
\(221\) 830.109 + 533.479i 0.252666 + 0.162379i
\(222\) −1118.50 + 328.423i −0.338149 + 0.0992896i
\(223\) 416.613 2897.60i 0.125105 0.870125i −0.826530 0.562893i \(-0.809688\pi\)
0.951635 0.307232i \(-0.0994027\pi\)
\(224\) 970.580 1120.11i 0.289507 0.334109i
\(225\) 1413.93 908.676i 0.418942 0.269237i
\(226\) 1145.76 + 1322.27i 0.337233 + 0.389187i
\(227\) 6278.49 + 1843.53i 1.83576 + 0.539029i 0.999950 0.00998500i \(-0.00317838\pi\)
0.835813 + 0.549014i \(0.184997\pi\)
\(228\) 2183.42 4781.01i 0.634211 1.38873i
\(229\) −742.751 −0.214334 −0.107167 0.994241i \(-0.534178\pi\)
−0.107167 + 0.994241i \(0.534178\pi\)
\(230\) −415.214 + 895.245i −0.119036 + 0.256655i
\(231\) 2427.97 0.691552
\(232\) 1992.00 4361.87i 0.563712 1.23436i
\(233\) −2135.89 627.153i −0.600543 0.176335i −0.0326903 0.999466i \(-0.510407\pi\)
−0.567853 + 0.823130i \(0.692226\pi\)
\(234\) 6240.66 + 7202.10i 1.74344 + 2.01204i
\(235\) −213.602 + 137.274i −0.0592931 + 0.0381053i
\(236\) −90.0198 + 103.888i −0.0248296 + 0.0286549i
\(237\) −729.625 + 5074.65i −0.199976 + 1.39086i
\(238\) 177.493 52.1165i 0.0483409 0.0141942i
\(239\) 4589.25 + 2949.33i 1.24207 + 0.798228i 0.985726 0.168359i \(-0.0538466\pi\)
0.256341 + 0.966586i \(0.417483\pi\)
\(240\) −17.8855 124.396i −0.00481043 0.0334573i
\(241\) −314.772 689.254i −0.0841338 0.184227i 0.862889 0.505393i \(-0.168653\pi\)
−0.947023 + 0.321166i \(0.895925\pi\)
\(242\) 314.324 + 688.274i 0.0834939 + 0.182826i
\(243\) 1228.71 + 8545.86i 0.324369 + 2.25604i
\(244\) 3437.15 + 2208.92i 0.901807 + 0.579556i
\(245\) 1315.04 386.130i 0.342917 0.100689i
\(246\) 624.353 4342.47i 0.161818 1.12547i
\(247\) −5853.99 + 6755.87i −1.50802 + 1.74035i
\(248\) −1333.37 + 856.903i −0.341407 + 0.219409i
\(249\) 2263.89 + 2612.67i 0.576178 + 0.664944i
\(250\) 214.605 + 63.0137i 0.0542913 + 0.0159413i
\(251\) −1095.68 + 2399.21i −0.275533 + 0.603333i −0.995920 0.0902394i \(-0.971237\pi\)
0.720387 + 0.693572i \(0.243964\pi\)
\(252\) −2677.48 −0.669307
\(253\) 492.366 3287.37i 0.122351 0.816897i
\(254\) 1553.42 0.383742
\(255\) −251.143 + 549.926i −0.0616752 + 0.135050i
\(256\) 4019.02 + 1180.09i 0.981206 + 0.288108i
\(257\) −1908.18 2202.16i −0.463148 0.534501i 0.475345 0.879799i \(-0.342323\pi\)
−0.938493 + 0.345298i \(0.887778\pi\)
\(258\) 1530.83 983.804i 0.369400 0.237399i
\(259\) −364.787 + 420.986i −0.0875164 + 0.100999i
\(260\) 270.485 1881.27i 0.0645184 0.448736i
\(261\) −13507.3 + 3966.09i −3.20337 + 0.940594i
\(262\) −2495.08 1603.49i −0.588345 0.378107i
\(263\) 766.109 + 5328.40i 0.179621 + 1.24929i 0.857642 + 0.514248i \(0.171929\pi\)
−0.678021 + 0.735043i \(0.737162\pi\)
\(264\) 2782.86 + 6093.61i 0.648762 + 1.42059i
\(265\) −1310.43 2869.43i −0.303769 0.665162i
\(266\) 238.497 + 1658.79i 0.0549745 + 0.382356i
\(267\) −11623.3 7469.85i −2.66418 1.71216i
\(268\) 1092.31 320.730i 0.248967 0.0731034i
\(269\) 608.954 4235.37i 0.138024 0.959981i −0.796641 0.604453i \(-0.793392\pi\)
0.934666 0.355528i \(-0.115699\pi\)
\(270\) −2287.95 + 2640.43i −0.515704 + 0.595154i
\(271\) 2747.82 1765.92i 0.615935 0.395837i −0.195144 0.980775i \(-0.562517\pi\)
0.811078 + 0.584937i \(0.198881\pi\)
\(272\) 21.1208 + 24.3747i 0.00470823 + 0.00543358i
\(273\) 6124.13 + 1798.21i 1.35769 + 0.398653i
\(274\) 1147.60 2512.89i 0.253025 0.554048i
\(275\) −753.380 −0.165202
\(276\) −761.024 + 5081.11i −0.165972 + 1.10814i
\(277\) 1245.44 0.270148 0.135074 0.990835i \(-0.456873\pi\)
0.135074 + 0.990835i \(0.456873\pi\)
\(278\) 409.005 895.596i 0.0882392 0.193217i
\(279\) 4464.61 + 1310.93i 0.958026 + 0.281302i
\(280\) −622.352 718.232i −0.132831 0.153295i
\(281\) 1262.82 811.567i 0.268092 0.172292i −0.399688 0.916651i \(-0.630881\pi\)
0.667779 + 0.744359i \(0.267245\pi\)
\(282\) 577.616 666.605i 0.121974 0.140765i
\(283\) 747.678 5200.22i 0.157049 1.09230i −0.746986 0.664840i \(-0.768500\pi\)
0.904035 0.427459i \(-0.140591\pi\)
\(284\) −4416.01 + 1296.66i −0.922683 + 0.270924i
\(285\) −4607.45 2961.03i −0.957620 0.615425i
\(286\) −607.918 4228.17i −0.125689 0.874184i
\(287\) −870.875 1906.95i −0.179115 0.392208i
\(288\) −4987.12 10920.3i −1.02038 2.23431i
\(289\) 677.113 + 4709.42i 0.137821 + 0.958564i
\(290\) −1575.98 1012.82i −0.319120 0.205086i
\(291\) −4728.15 + 1388.31i −0.952472 + 0.279671i
\(292\) 86.3630 600.668i 0.0173083 0.120382i
\(293\) −1136.74 + 1311.87i −0.226652 + 0.261570i −0.857673 0.514196i \(-0.828091\pi\)
0.631021 + 0.775765i \(0.282636\pi\)
\(294\) −4005.30 + 2574.05i −0.794536 + 0.510617i
\(295\) 93.8032 + 108.255i 0.0185133 + 0.0213655i
\(296\) −1474.68 433.005i −0.289574 0.0850267i
\(297\) 4888.72 10704.8i 0.955125 2.09143i
\(298\) −2417.53 −0.469946
\(299\) 3676.60 7927.15i 0.711115 1.53324i
\(300\) 1164.46 0.224100
\(301\) 361.223 790.969i 0.0691713 0.151464i
\(302\) −5138.89 1508.91i −0.979172 0.287511i
\(303\) 6954.83 + 8026.31i 1.31863 + 1.52178i
\(304\) −245.801 + 157.967i −0.0463739 + 0.0298027i
\(305\) 2788.05 3217.58i 0.523420 0.604059i
\(306\) 213.242 1483.13i 0.0398374 0.277075i
\(307\) 6879.55 2020.02i 1.27895 0.375533i 0.429433 0.903099i \(-0.358714\pi\)
0.849514 + 0.527566i \(0.176895\pi\)
\(308\) 1009.64 + 648.856i 0.186784 + 0.120039i
\(309\) −1556.69 10827.0i −0.286592 1.99329i
\(310\) 257.230 + 563.255i 0.0471280 + 0.103196i
\(311\) −1753.88 3840.47i −0.319787 0.700235i 0.679659 0.733528i \(-0.262128\pi\)
−0.999446 + 0.0332932i \(0.989400\pi\)
\(312\) 2506.22 + 17431.1i 0.454765 + 3.16296i
\(313\) −5964.26 3833.00i −1.07706 0.692185i −0.123184 0.992384i \(-0.539311\pi\)
−0.953877 + 0.300199i \(0.902947\pi\)
\(314\) −6498.88 + 1908.24i −1.16800 + 0.342957i
\(315\) −397.060 + 2761.61i −0.0710215 + 0.493966i
\(316\) −1659.57 + 1915.24i −0.295437 + 0.340952i
\(317\) 3904.34 2509.17i 0.691765 0.444570i −0.146948 0.989144i \(-0.546945\pi\)
0.838713 + 0.544574i \(0.183309\pi\)
\(318\) 7176.14 + 8281.71i 1.26547 + 1.46042i
\(319\) 6054.54 + 1777.77i 1.06266 + 0.312026i
\(320\) 706.688 1547.43i 0.123453 0.270325i
\(321\) −6191.02 −1.07648
\(322\) −671.755 1494.09i −0.116259 0.258579i
\(323\) 1405.55 0.242126
\(324\) −3937.99 + 8623.00i −0.675239 + 1.47857i
\(325\) −1900.27 557.969i −0.324332 0.0952325i
\(326\) 1002.34 + 1156.76i 0.170289 + 0.196524i
\(327\) −660.231 + 424.305i −0.111654 + 0.0717557i
\(328\) 3787.81 4371.37i 0.637644 0.735880i
\(329\) 59.9839 417.197i 0.0100517 0.0699113i
\(330\) 2511.12 737.331i 0.418886 0.122996i
\(331\) 1622.83 + 1042.93i 0.269483 + 0.173186i 0.668403 0.743800i \(-0.266978\pi\)
−0.398919 + 0.916986i \(0.630615\pi\)
\(332\) 243.194 + 1691.45i 0.0402019 + 0.279610i
\(333\) 1874.38 + 4104.31i 0.308454 + 0.675420i
\(334\) 1054.44 + 2308.90i 0.172744 + 0.378256i
\(335\) −168.823 1174.19i −0.0275337 0.191501i
\(336\) 175.502 + 112.789i 0.0284954 + 0.0183129i
\(337\) −8308.14 + 2439.49i −1.34295 + 0.394325i −0.872720 0.488221i \(-0.837646\pi\)
−0.470227 + 0.882546i \(0.655828\pi\)
\(338\) 1038.64 7223.93i 0.167144 1.16251i
\(339\) 6215.81 7173.43i 0.995860 1.14928i
\(340\) −251.398 + 161.564i −0.0401000 + 0.0257707i
\(341\) −1365.85 1576.28i −0.216906 0.250323i
\(342\) 13024.5 + 3824.33i 2.05931 + 0.604667i
\(343\) −2127.75 + 4659.13i −0.334950 + 0.733438i
\(344\) 2399.16 0.376029
\(345\) 5127.91 + 1538.45i 0.800224 + 0.240079i
\(346\) 17.9521 0.00278933
\(347\) −190.241 + 416.570i −0.0294314 + 0.0644458i −0.923777 0.382931i \(-0.874915\pi\)
0.894345 + 0.447377i \(0.147642\pi\)
\(348\) −9358.18 2747.81i −1.44153 0.423270i
\(349\) −1482.15 1710.49i −0.227328 0.262351i 0.630614 0.776096i \(-0.282803\pi\)
−0.857943 + 0.513746i \(0.828258\pi\)
\(350\) −312.342 + 200.730i −0.0477011 + 0.0306556i
\(351\) 20259.1 23380.3i 3.08078 3.55541i
\(352\) −765.828 + 5326.45i −0.115962 + 0.806536i
\(353\) −3785.22 + 1111.44i −0.570728 + 0.167581i −0.554348 0.832285i \(-0.687032\pi\)
−0.0163801 + 0.999866i \(0.505214\pi\)
\(354\) −418.608 269.023i −0.0628496 0.0403910i
\(355\) 682.524 + 4747.06i 0.102041 + 0.709712i
\(356\) −2837.15 6212.49i −0.422384 0.924891i
\(357\) −416.895 912.872i −0.0618050 0.135334i
\(358\) −975.276 6783.19i −0.143980 1.00140i
\(359\) −4249.79 2731.17i −0.624778 0.401520i 0.189595 0.981862i \(-0.439283\pi\)
−0.814373 + 0.580342i \(0.802919\pi\)
\(360\) −7386.07 + 2168.75i −1.08133 + 0.317508i
\(361\) −835.997 + 5814.49i −0.121883 + 0.847716i
\(362\) 4880.98 5632.95i 0.708670 0.817849i
\(363\) 3453.25 2219.27i 0.499308 0.320886i
\(364\) 2066.08 + 2384.39i 0.297506 + 0.343340i
\(365\) −606.735 178.153i −0.0870081 0.0255479i
\(366\) −6143.91 + 13453.3i −0.877451 + 1.92135i
\(367\) −1994.55 −0.283691 −0.141845 0.989889i \(-0.545304\pi\)
−0.141845 + 0.989889i \(0.545304\pi\)
\(368\) 188.301 214.751i 0.0266736 0.0304202i
\(369\) −16980.8 −2.39563
\(370\) −249.433 + 546.183i −0.0350471 + 0.0767424i
\(371\) 5024.32 + 1475.27i 0.703099 + 0.206449i
\(372\) 2111.13 + 2436.37i 0.294239 + 0.339570i
\(373\) −8605.42 + 5530.37i −1.19456 + 0.767699i −0.978007 0.208572i \(-0.933119\pi\)
−0.216556 + 0.976270i \(0.569482\pi\)
\(374\) −439.831 + 507.592i −0.0608105 + 0.0701790i
\(375\) 172.685 1201.05i 0.0237797 0.165392i
\(376\) 1115.81 327.633i 0.153042 0.0449372i
\(377\) 13954.9 + 8968.25i 1.90640 + 1.22517i
\(378\) −825.377 5740.63i −0.112309 0.781127i
\(379\) −586.080 1283.34i −0.0794325 0.173933i 0.865749 0.500479i \(-0.166843\pi\)
−0.945181 + 0.326546i \(0.894115\pi\)
\(380\) −1124.64 2462.61i −0.151823 0.332446i
\(381\) −1199.35 8341.66i −0.161272 1.12167i
\(382\) −2656.40 1707.17i −0.355794 0.228655i
\(383\) −830.896 + 243.973i −0.110853 + 0.0325495i −0.336689 0.941616i \(-0.609307\pi\)
0.225835 + 0.974165i \(0.427489\pi\)
\(384\) 1132.49 7876.67i 0.150501 1.04676i
\(385\) 818.971 945.142i 0.108412 0.125114i
\(386\) 4640.08 2982.00i 0.611849 0.393212i
\(387\) −4612.40 5323.00i −0.605844 0.699181i
\(388\) −2337.16 686.252i −0.305802 0.0897917i
\(389\) 2319.67 5079.37i 0.302344 0.662041i −0.696092 0.717953i \(-0.745079\pi\)
0.998436 + 0.0559116i \(0.0178065\pi\)
\(390\) 6879.94 0.893281
\(391\) −1320.53 + 379.337i −0.170798 + 0.0490637i
\(392\) −6277.22 −0.808795
\(393\) −6684.13 + 14636.2i −0.857939 + 1.87862i
\(394\) −1906.79 559.884i −0.243814 0.0715903i
\(395\) 1729.32 + 1995.74i 0.220282 + 0.254219i
\(396\) 8178.08 5255.73i 1.03779 0.666946i
\(397\) −1449.63 + 1672.96i −0.183261 + 0.211495i −0.839945 0.542671i \(-0.817413\pi\)
0.656684 + 0.754166i \(0.271959\pi\)
\(398\) −777.407 + 5406.98i −0.0979092 + 0.680974i
\(399\) 8723.30 2561.39i 1.09451 0.321379i
\(400\) −54.4570 34.9974i −0.00680713 0.00437468i
\(401\) −915.842 6369.82i −0.114052 0.793252i −0.963908 0.266236i \(-0.914220\pi\)
0.849856 0.527016i \(-0.176689\pi\)
\(402\) 1711.89 + 3748.52i 0.212391 + 0.465072i
\(403\) −2277.70 4987.47i −0.281539 0.616485i
\(404\) 747.110 + 5196.27i 0.0920053 + 0.639911i
\(405\) 8309.97 + 5340.49i 1.01957 + 0.655237i
\(406\) 2983.81 876.125i 0.364739 0.107097i
\(407\) 287.832 2001.91i 0.0350547 0.243811i
\(408\) 1813.26 2092.61i 0.220023 0.253920i
\(409\) 12709.6 8167.97i 1.53655 0.987482i 0.548020 0.836465i \(-0.315382\pi\)
0.988531 0.151016i \(-0.0482546\pi\)
\(410\) −1479.81 1707.79i −0.178250 0.205711i
\(411\) −14379.9 4222.31i −1.72581 0.506742i
\(412\) 2246.11 4918.29i 0.268587 0.588123i
\(413\) −237.779 −0.0283302
\(414\) −13268.8 77.8953i −1.57519 0.00924722i
\(415\) 1780.67 0.210625
\(416\) −5876.55 + 12867.8i −0.692600 + 1.51658i
\(417\) −5125.00 1504.84i −0.601852 0.176720i
\(418\) −3984.56 4598.43i −0.466247 0.538078i
\(419\) 790.765 508.194i 0.0921991 0.0592528i −0.493729 0.869616i \(-0.664366\pi\)
0.585928 + 0.810363i \(0.300730\pi\)
\(420\) −1265.84 + 1460.86i −0.147063 + 0.169720i
\(421\) −1846.00 + 12839.2i −0.213702 + 1.48633i 0.546949 + 0.837166i \(0.315789\pi\)
−0.760651 + 0.649162i \(0.775120\pi\)
\(422\) −980.941 + 288.030i −0.113155 + 0.0332253i
\(423\) −2872.08 1845.77i −0.330130 0.212162i
\(424\) 2056.14 + 14300.7i 0.235507 + 1.63798i
\(425\) 129.359 + 283.257i 0.0147643 + 0.0323294i
\(426\) −6920.89 15154.6i −0.787131 1.72358i
\(427\) 1005.79 + 6995.41i 0.113989 + 0.792814i
\(428\) −2574.46 1654.50i −0.290751 0.186854i
\(429\) −22235.3 + 6528.86i −2.50240 + 0.734771i
\(430\) 133.391 927.754i 0.0149597 0.104047i
\(431\) −4147.08 + 4785.99i −0.463475 + 0.534879i −0.938585 0.345047i \(-0.887863\pi\)
0.475110 + 0.879926i \(0.342408\pi\)
\(432\) 850.654 546.682i 0.0947386 0.0608848i
\(433\) 6045.75 + 6977.17i 0.670994 + 0.774368i 0.984532 0.175208i \(-0.0560597\pi\)
−0.313538 + 0.949576i \(0.601514\pi\)
\(434\) −986.249 289.589i −0.109082 0.0320293i
\(435\) −4221.93 + 9244.74i −0.465348 + 1.01897i
\(436\) −387.941 −0.0426124
\(437\) −1699.03 12330.4i −0.185985 1.34976i
\(438\) 2196.69 0.239639
\(439\) 1688.64 3697.61i 0.183586 0.401998i −0.795354 0.606145i \(-0.792715\pi\)
0.978940 + 0.204147i \(0.0654422\pi\)
\(440\) 3310.76 + 972.125i 0.358714 + 0.105328i
\(441\) 12068.0 + 13927.2i 1.30310 + 1.50386i
\(442\) −1485.33 + 954.564i −0.159842 + 0.102724i
\(443\) 8840.90 10202.9i 0.948180 1.09426i −0.0472610 0.998883i \(-0.515049\pi\)
0.995441 0.0953759i \(-0.0304053\pi\)
\(444\) −444.886 + 3094.25i −0.0475526 + 0.330736i
\(445\) −6828.44 + 2005.01i −0.727413 + 0.213588i
\(446\) 4406.53 + 2831.91i 0.467837 + 0.300661i
\(447\) 1866.50 + 12981.8i 0.197500 + 1.37364i
\(448\) 1173.10 + 2568.72i 0.123713 + 0.270894i
\(449\) −3716.11 8137.15i −0.390589 0.855270i −0.998138 0.0609881i \(-0.980575\pi\)
0.607550 0.794281i \(-0.292152\pi\)
\(450\) 427.995 + 2976.77i 0.0448353 + 0.311836i
\(451\) 6403.23 + 4115.11i 0.668551 + 0.429651i
\(452\) 4501.81 1321.85i 0.468468 0.137555i
\(453\) −4135.07 + 28760.1i −0.428880 + 2.98293i
\(454\) −7667.45 + 8848.70i −0.792623 + 0.914736i
\(455\) 2765.70 1777.41i 0.284963 0.183135i
\(456\) 16426.8 + 18957.6i 1.68697 + 1.94686i
\(457\) 8368.76 + 2457.29i 0.856617 + 0.251525i 0.680414 0.732828i \(-0.261800\pi\)
0.176204 + 0.984354i \(0.443618\pi\)
\(458\) 552.095 1208.92i 0.0563269 0.123339i
\(459\) −4864.23 −0.494646
\(460\) 1721.24 + 2010.14i 0.174463 + 0.203746i
\(461\) 1056.63 0.106751 0.0533754 0.998575i \(-0.483002\pi\)
0.0533754 + 0.998575i \(0.483002\pi\)
\(462\) −1804.73 + 3951.82i −0.181740 + 0.397955i
\(463\) 8973.51 + 2634.86i 0.900722 + 0.264476i 0.699131 0.714994i \(-0.253571\pi\)
0.201591 + 0.979470i \(0.435389\pi\)
\(464\) 355.060 + 409.761i 0.0355242 + 0.0409971i
\(465\) 2826.00 1816.16i 0.281833 0.181123i
\(466\) 2608.39 3010.25i 0.259295 0.299242i
\(467\) 223.237 1552.65i 0.0221203 0.153850i −0.975768 0.218809i \(-0.929783\pi\)
0.997888 + 0.0649594i \(0.0206918\pi\)
\(468\) 24520.3 7199.81i 2.42190 0.711135i
\(469\) 1656.59 + 1064.62i 0.163101 + 0.104818i
\(470\) −64.6572 449.701i −0.00634556 0.0441344i
\(471\) 15264.6 + 33424.7i 1.49332 + 3.26992i
\(472\) −272.535 596.769i −0.0265772 0.0581960i
\(473\) 449.306 + 3124.99i 0.0436768 + 0.303778i
\(474\) −7717.28 4959.59i −0.747819 0.480594i
\(475\) −2706.77 + 794.780i −0.261464 + 0.0767727i
\(476\) 70.5978 491.018i 0.00679799 0.0472811i
\(477\) 27776.0 32055.2i 2.66619 3.07695i
\(478\) −8211.64 + 5277.30i −0.785757 + 0.504975i
\(479\) −5395.23 6226.43i −0.514644 0.593931i 0.437638 0.899151i \(-0.355815\pi\)
−0.952282 + 0.305220i \(0.901270\pi\)
\(480\) −8315.96 2441.79i −0.790771 0.232191i
\(481\) 2208.67 4836.30i 0.209369 0.458454i
\(482\) 1355.82 0.128124
\(483\) −7504.39 + 4760.77i −0.706960 + 0.448493i
\(484\) 2029.08 0.190559
\(485\) −1054.41 + 2308.83i −0.0987179 + 0.216162i
\(486\) −14822.8 4352.35i −1.38349 0.406228i
\(487\) 757.744 + 874.483i 0.0705065 + 0.0813688i 0.789907 0.613227i \(-0.210129\pi\)
−0.719400 + 0.694596i \(0.755583\pi\)
\(488\) −16404.0 + 10542.2i −1.52167 + 0.977916i
\(489\) 5437.75 6275.50i 0.502871 0.580344i
\(490\) −349.007 + 2427.40i −0.0321766 + 0.223793i
\(491\) −1301.37 + 382.117i −0.119613 + 0.0351216i −0.340991 0.940066i \(-0.610763\pi\)
0.221378 + 0.975188i \(0.428944\pi\)
\(492\) −9897.13 6360.50i −0.906905 0.582832i
\(493\) −371.185 2581.65i −0.0339094 0.235845i
\(494\) −6644.67 14549.8i −0.605178 1.32515i
\(495\) −4208.10 9214.46i −0.382101 0.836685i
\(496\) −25.5046 177.388i −0.00230885 0.0160584i
\(497\) −6697.31 4304.10i −0.604457 0.388461i
\(498\) −5935.21 + 1742.74i −0.534063 + 0.156815i
\(499\) −1914.11 + 13312.9i −0.171718 + 1.19432i 0.703536 + 0.710659i \(0.251603\pi\)
−0.875254 + 0.483664i \(0.839306\pi\)
\(500\) 392.780 453.292i 0.0351313 0.0405437i
\(501\) 11584.4 7444.81i 1.03304 0.663892i
\(502\) −3090.57 3566.71i −0.274779 0.317112i
\(503\) 10022.7 + 2942.92i 0.888447 + 0.260872i 0.693943 0.720030i \(-0.255872\pi\)
0.194504 + 0.980902i \(0.437690\pi\)
\(504\) 5308.35 11623.7i 0.469152 1.02730i
\(505\) 5470.34 0.482033
\(506\) 4984.61 + 3244.92i 0.437931 + 0.285088i
\(507\) −39593.3 −3.46825
\(508\) 1730.51 3789.29i 0.151140 0.330950i
\(509\) 6892.18 + 2023.73i 0.600178 + 0.176228i 0.567688 0.823244i \(-0.307838\pi\)
0.0324902 + 0.999472i \(0.489656\pi\)
\(510\) −708.395 817.531i −0.0615064 0.0709822i
\(511\) 883.059 567.507i 0.0764466 0.0491293i
\(512\) −613.438 + 707.945i −0.0529500 + 0.0611075i
\(513\) 6271.32 43618.0i 0.539738 3.75396i
\(514\) 5002.65 1468.91i 0.429295 0.126052i
\(515\) −4739.74 3046.05i −0.405550 0.260631i
\(516\) −694.468 4830.13i −0.0592485 0.412083i
\(517\) 635.718 + 1392.03i 0.0540790 + 0.118417i
\(518\) −414.057 906.658i −0.0351209 0.0769040i
\(519\) −13.8602 96.4000i −0.00117225 0.00815316i
\(520\) 7630.83 + 4904.03i 0.643527 + 0.413570i
\(521\) −5650.00 + 1658.99i −0.475107 + 0.139504i −0.510515 0.859869i \(-0.670545\pi\)
0.0354076 + 0.999373i \(0.488727\pi\)
\(522\) 3584.79 24932.8i 0.300579 2.09057i
\(523\) 10827.0 12495.0i 0.905220 1.04468i −0.0935751 0.995612i \(-0.529830\pi\)
0.998795 0.0490677i \(-0.0156250\pi\)
\(524\) −6690.93 + 4300.00i −0.557814 + 0.358486i
\(525\) 1319.04 + 1522.25i 0.109653 + 0.126546i
\(526\) −9242.09 2713.72i −0.766111 0.224950i
\(527\) −358.128 + 784.191i −0.0296021 + 0.0648196i
\(528\) −757.451 −0.0624315
\(529\) 4924.07 + 11126.1i 0.404707 + 0.914447i
\(530\) 5644.41 0.462599
\(531\) −800.094 + 1751.96i −0.0653882 + 0.143180i
\(532\) 4311.99 + 1266.11i 0.351407 + 0.103182i
\(533\) 13103.3 + 15122.0i 1.06485 + 1.22891i
\(534\) 20797.8 13366.0i 1.68541 1.08315i
\(535\) −2088.28 + 2410.00i −0.168755 + 0.194754i
\(536\) −773.221 + 5377.87i −0.0623098 + 0.433374i
\(537\) −35671.8 + 10474.2i −2.86657 + 0.841702i
\(538\) 6440.94 + 4139.34i 0.516150 + 0.331709i
\(539\) −1175.57 8176.30i −0.0939436 0.653392i
\(540\) 3892.08 + 8522.46i 0.310164 + 0.679164i
\(541\) −8766.00 19194.9i −0.696635 1.52542i −0.844004 0.536337i \(-0.819808\pi\)
0.147369 0.989082i \(-0.452920\pi\)
\(542\) 831.764 + 5785.05i 0.0659176 + 0.458467i
\(543\) −34016.6 21861.1i −2.68838 1.72772i
\(544\) 2134.14 626.641i 0.168200 0.0493879i
\(545\) −57.5302 + 400.131i −0.00452169 + 0.0314491i
\(546\) −7478.93 + 8631.14i −0.586206 + 0.676518i
\(547\) −16333.6 + 10497.0i −1.27674 + 0.820508i −0.990482 0.137645i \(-0.956047\pi\)
−0.286254 + 0.958154i \(0.592410\pi\)
\(548\) −4851.31 5598.71i −0.378171 0.436432i
\(549\) 54926.6 + 16127.9i 4.26997 + 1.25378i
\(550\) 559.995 1226.22i 0.0434150 0.0950656i
\(551\) 23628.5 1.82687
\(552\) −20549.7 13377.6i −1.58451 1.03150i
\(553\) −4383.60 −0.337088
\(554\) −925.747 + 2027.10i −0.0709950 + 0.155457i
\(555\) 3125.50 + 917.730i 0.239045 + 0.0701901i
\(556\) −1729.01 1995.38i −0.131882 0.152200i
\(557\) 12876.4 8275.17i 0.979517 0.629497i 0.0501840 0.998740i \(-0.484019\pi\)
0.929333 + 0.369243i \(0.120383\pi\)
\(558\) −5452.29 + 6292.27i −0.413645 + 0.477371i
\(559\) −1181.14 + 8215.01i −0.0893683 + 0.621571i
\(560\) 103.104 30.2740i 0.00778023 0.00228448i
\(561\) 3065.27 + 1969.93i 0.230688 + 0.148254i
\(562\) 382.256 + 2658.65i 0.0286913 + 0.199552i
\(563\) −2266.66 4963.29i −0.169677 0.371541i 0.805622 0.592430i \(-0.201831\pi\)
−0.975299 + 0.220889i \(0.929104\pi\)
\(564\) −982.596 2151.59i −0.0733595 0.160635i
\(565\) −695.786 4839.29i −0.0518087 0.360337i
\(566\) 7908.23 + 5082.31i 0.587293 + 0.377430i
\(567\) −15733.3 + 4619.71i −1.16532 + 0.342169i
\(568\) 3126.00 21741.8i 0.230923 1.60610i
\(569\) −4675.53 + 5395.85i −0.344479 + 0.397550i −0.901380 0.433029i \(-0.857445\pi\)
0.556901 + 0.830579i \(0.311990\pi\)
\(570\) 8244.20 5298.23i 0.605810 0.389330i
\(571\) −13190.1 15222.2i −0.966708 1.11564i −0.993250 0.115992i \(-0.962995\pi\)
0.0265426 0.999648i \(-0.491550\pi\)
\(572\) −10991.1 3227.26i −0.803425 0.235907i
\(573\) −7116.31 + 15582.6i −0.518828 + 1.13607i
\(574\) 3751.13 0.272768
\(575\) 2328.56 1477.23i 0.168883 0.107139i
\(576\) 22873.7 1.65464
\(577\) 2545.75 5574.42i 0.183676 0.402194i −0.795287 0.606233i \(-0.792680\pi\)
0.978963 + 0.204039i \(0.0654070\pi\)
\(578\) −8168.47 2398.48i −0.587826 0.172601i
\(579\) −19595.3 22614.2i −1.40648 1.62317i
\(580\) −4226.23 + 2716.03i −0.302560 + 0.194443i
\(581\) −1935.70 + 2233.91i −0.138221 + 0.159515i
\(582\) 1254.84 8727.60i 0.0893724 0.621599i
\(583\) −18242.1 + 5356.38i −1.29590 + 0.380512i
\(584\) 2436.44 + 1565.80i 0.172638 + 0.110948i
\(585\) −3789.78 26358.5i −0.267843 1.86289i
\(586\) −1290.27 2825.30i −0.0909568 0.199168i
\(587\) 3580.29 + 7839.75i 0.251745 + 0.551245i 0.992742 0.120263i \(-0.0383739\pi\)
−0.740997 + 0.671509i \(0.765647\pi\)
\(588\) 1817.02 + 12637.7i 0.127437 + 0.886341i
\(589\) −6570.20 4222.41i −0.459627 0.295384i
\(590\) −245.923 + 72.2094i −0.0171601 + 0.00503867i
\(591\) −1534.32 + 10671.5i −0.106791 + 0.742750i
\(592\) 113.802 131.335i 0.00790074 0.00911794i
\(593\) 10843.6 6968.77i 0.750917 0.482585i −0.108350 0.994113i \(-0.534557\pi\)
0.859267 + 0.511528i \(0.170920\pi\)
\(594\) 13789.5 + 15914.0i 0.952511 + 1.09926i
\(595\) −495.978 145.632i −0.0341733 0.0100342i
\(596\) −2693.13 + 5897.12i −0.185092 + 0.405294i
\(597\) 29634.9 2.03162
\(598\) 10169.6 + 11876.5i 0.695425 + 0.812148i
\(599\) 19807.4 1.35110 0.675549 0.737315i \(-0.263907\pi\)
0.675549 + 0.737315i \(0.263907\pi\)
\(600\) −2308.65 + 5055.23i −0.157083 + 0.343965i
\(601\) −14499.3 4257.37i −0.984090 0.288955i −0.250178 0.968200i \(-0.580489\pi\)
−0.733912 + 0.679245i \(0.762307\pi\)
\(602\) 1018.90 + 1175.87i 0.0689820 + 0.0796095i
\(603\) 13418.4 8623.45i 0.906199 0.582378i
\(604\) −9405.44 + 10854.5i −0.633612 + 0.731228i
\(605\) 300.904 2092.83i 0.0202206 0.140638i
\(606\) −18233.4 + 5353.81i −1.22225 + 0.358884i
\(607\) 11913.8 + 7656.51i 0.796647 + 0.511974i 0.874520 0.484990i \(-0.161177\pi\)
−0.0778733 + 0.996963i \(0.524813\pi\)
\(608\) 2867.66 + 19945.0i 0.191281 + 1.33039i
\(609\) −7008.37 15346.2i −0.466327 1.02111i
\(610\) 3164.62 + 6929.54i 0.210052 + 0.459949i
\(611\) 572.522 + 3981.98i 0.0379080 + 0.263656i
\(612\) −3380.28 2172.37i −0.223267 0.143485i
\(613\) 22026.3 6467.50i 1.45128 0.426134i 0.541314 0.840820i \(-0.317927\pi\)
0.909964 + 0.414687i \(0.136109\pi\)
\(614\) −1825.81 + 12698.8i −0.120006 + 0.834662i
\(615\) −8028.06 + 9264.88i −0.526379 + 0.607473i
\(616\) −4818.56 + 3096.70i −0.315171 + 0.202548i
\(617\) −12955.5 14951.5i −0.845332 0.975565i 0.154591 0.987979i \(-0.450594\pi\)
−0.999923 + 0.0124137i \(0.996048\pi\)
\(618\) 18779.4 + 5514.13i 1.22236 + 0.358917i
\(619\) −6176.22 + 13524.0i −0.401039 + 0.878153i 0.596125 + 0.802892i \(0.296706\pi\)
−0.997164 + 0.0752614i \(0.976021\pi\)
\(620\) 1660.51 0.107561
\(621\) 5879.88 + 42672.3i 0.379954 + 2.75746i
\(622\) 7554.52 0.486991
\(623\) 4907.58 10746.1i 0.315599 0.691065i
\(624\) −1910.54 560.984i −0.122568 0.0359893i
\(625\) −409.288 472.343i −0.0261944 0.0302300i
\(626\) 10672.0 6858.46i 0.681371 0.437890i
\(627\) −21616.6 + 24946.8i −1.37685 + 1.58896i
\(628\) −2584.93 + 17978.6i −0.164252 + 1.14240i
\(629\) −802.105 + 235.519i −0.0508458 + 0.0149297i
\(630\) −4199.72 2699.00i −0.265589 0.170684i
\(631\) −4243.74 29515.9i −0.267735 1.86214i −0.469811 0.882767i \(-0.655678\pi\)
0.202076 0.979370i \(-0.435231\pi\)
\(632\) −5024.34 11001.8i −0.316231 0.692448i
\(633\) 2304.03 + 5045.13i 0.144672 + 0.316787i
\(634\) 1181.84 + 8219.88i 0.0740329 + 0.514910i
\(635\) −3651.73 2346.83i −0.228212 0.146663i
\(636\) 28195.9 8279.07i 1.75793 0.516173i
\(637\) 3090.36 21494.0i 0.192221 1.33693i
\(638\) −7393.95 + 8533.07i −0.458823 + 0.529510i
\(639\) −54248.2 + 34863.2i −3.35841 + 2.15832i
\(640\) −2684.18 3097.71i −0.165783 0.191324i
\(641\) −6117.12 1796.15i −0.376929 0.110676i 0.0877798 0.996140i \(-0.472023\pi\)
−0.464709 + 0.885464i \(0.653841\pi\)
\(642\) 4601.85 10076.6i 0.282898 0.619461i
\(643\) 8521.40 0.522630 0.261315 0.965254i \(-0.415844\pi\)
0.261315 + 0.965254i \(0.415844\pi\)
\(644\) −4392.89 25.7887i −0.268795 0.00157798i
\(645\) −5084.89 −0.310415
\(646\) −1044.76 + 2287.70i −0.0636307 + 0.139332i
\(647\) 26317.0 + 7727.36i 1.59911 + 0.469542i 0.955300 0.295639i \(-0.0955325\pi\)
0.643815 + 0.765181i \(0.277351\pi\)
\(648\) −29627.4 34191.8i −1.79610 2.07281i
\(649\) 726.272 466.747i 0.0439271 0.0282302i
\(650\) 2320.65 2678.18i 0.140036 0.161610i
\(651\) −793.598 + 5519.60i −0.0477781 + 0.332304i
\(652\) 3938.30 1156.39i 0.236558 0.0694597i
\(653\) −16825.7 10813.2i −1.00833 0.648015i −0.0713708 0.997450i \(-0.522737\pi\)
−0.936961 + 0.349435i \(0.886374\pi\)
\(654\) −199.852 1390.00i −0.0119493 0.0831089i
\(655\) 3442.88 + 7538.85i 0.205381 + 0.449721i
\(656\) 271.686 + 594.910i 0.0161701 + 0.0354075i
\(657\) −1210.03 8415.97i −0.0718538 0.499754i
\(658\) 634.453 + 407.738i 0.0375890 + 0.0241570i
\(659\) 26578.0 7803.99i 1.57106 0.461306i 0.623752 0.781622i \(-0.285608\pi\)
0.947311 + 0.320317i \(0.103789\pi\)
\(660\) 998.799 6946.80i 0.0589063 0.409703i
\(661\) −19643.1 + 22669.3i −1.15587 + 1.33394i −0.222533 + 0.974925i \(0.571433\pi\)
−0.933332 + 0.359014i \(0.883113\pi\)
\(662\) −2903.77 + 1866.14i −0.170481 + 0.109561i
\(663\) 6272.64 + 7239.02i 0.367435 + 0.424042i
\(664\) −7825.21 2297.69i −0.457345 0.134289i
\(665\) 1945.35 4259.72i 0.113440 0.248398i
\(666\) −8073.52 −0.469733
\(667\) −22199.3 + 6376.99i −1.28870 + 0.370192i
\(668\) 6806.78 0.394255
\(669\) 11804.8 25848.9i 0.682211 1.49383i
\(670\) 2036.63 + 598.008i 0.117436 + 0.0344822i
\(671\) −16803.7 19392.4i −0.966763 1.11570i
\(672\) 12103.3 7778.30i 0.694783 0.446510i
\(673\) 2600.04 3000.61i 0.148922 0.171865i −0.676387 0.736546i \(-0.736455\pi\)
0.825309 + 0.564681i \(0.191001\pi\)
\(674\) 2204.96 15335.8i 0.126011 0.876429i
\(675\) 9367.43 2750.53i 0.534152 0.156841i
\(676\) −16464.4 10581.0i −0.936754 0.602015i
\(677\) 2773.36 + 19289.2i 0.157443 + 1.09504i 0.903323 + 0.428960i \(0.141120\pi\)
−0.745880 + 0.666080i \(0.767971\pi\)
\(678\) 7055.36 + 15449.1i 0.399645 + 0.875101i
\(679\) −1750.31 3832.63i −0.0989257 0.216617i
\(680\) −202.972 1411.70i −0.0114465 0.0796122i
\(681\) 53436.0 + 34341.3i 3.00686 + 1.93239i
\(682\) 3580.84 1051.43i 0.201052 0.0590342i
\(683\) 975.162 6782.40i 0.0546318 0.379973i −0.944101 0.329655i \(-0.893068\pi\)
0.998733 0.0503176i \(-0.0160234\pi\)
\(684\) 23838.0 27510.5i 1.33256 1.53785i
\(685\) −6494.06 + 4173.48i −0.362227 + 0.232789i
\(686\) −6001.72 6926.35i −0.334033 0.385495i
\(687\) −6917.97 2031.30i −0.384188 0.112808i
\(688\) −112.690 + 246.758i −0.00624460 + 0.0136738i
\(689\) −49979.7 −2.76353
\(690\) −6315.64 + 7202.76i −0.348453 + 0.397398i
\(691\) 20685.6 1.13881 0.569404 0.822058i \(-0.307174\pi\)
0.569404 + 0.822058i \(0.307174\pi\)
\(692\) 19.9986 43.7908i 0.00109860 0.00240560i
\(693\) 16134.3 + 4737.47i 0.884406 + 0.259685i
\(694\) −536.611 619.282i −0.0293508 0.0338727i
\(695\) −2314.49 + 1487.43i −0.126322 + 0.0811820i
\(696\) 30482.4 35178.6i 1.66011 1.91586i
\(697\) 447.737 3114.08i 0.0243318 0.169231i
\(698\) 3885.73 1140.95i 0.210712 0.0618706i
\(699\) −18178.4 11682.6i −0.983651 0.632154i
\(700\) 141.696 + 985.514i 0.00765084 + 0.0532128i
\(701\) 1100.20 + 2409.10i 0.0592780 + 0.129801i 0.936953 0.349456i \(-0.113634\pi\)
−0.877675 + 0.479257i \(0.840906\pi\)
\(702\) 22995.5 + 50353.1i 1.23634 + 2.70720i
\(703\) −1077.79 7496.20i −0.0578232 0.402169i
\(704\) −8625.34 5543.17i −0.461761 0.296756i
\(705\) −2364.91 + 694.400i −0.126337 + 0.0370959i
\(706\) 1004.59 6987.06i 0.0535526 0.372467i
\(707\) −5946.60 + 6862.74i −0.316329 + 0.365064i
\(708\) −1122.56 + 721.426i −0.0595881 + 0.0382950i
\(709\) 19184.8 + 22140.4i 1.01622 + 1.17278i 0.984874 + 0.173272i \(0.0554340\pi\)
0.0313464 + 0.999509i \(0.490021\pi\)
\(710\) −8233.75 2417.65i −0.435221 0.127793i
\(711\) −14750.2 + 32298.5i −0.778025 + 1.70364i
\(712\) 32595.0 1.71566
\(713\) 7312.37 + 2193.81i 0.384082 + 0.115230i
\(714\) 1795.69 0.0941206
\(715\) −4958.60 + 10857.8i −0.259358 + 0.567915i
\(716\) −17632.8 5177.46i −0.920348 0.270239i
\(717\) 34678.3 + 40020.9i 1.80625 + 2.08453i
\(718\) 7604.23 4886.94i 0.395247 0.254010i
\(719\) 9886.86 11410.0i 0.512820 0.591826i −0.438998 0.898488i \(-0.644667\pi\)
0.951819 + 0.306662i \(0.0992121\pi\)
\(720\) 123.870 861.537i 0.00641163 0.0445939i
\(721\) 8973.78 2634.94i 0.463524 0.136103i
\(722\) −8842.38 5682.66i −0.455789 0.292918i
\(723\) −1046.78 7280.55i −0.0538456 0.374504i
\(724\) −8303.14 18181.3i −0.426221 0.933294i
\(725\) 2174.64 + 4761.80i 0.111399 + 0.243929i
\(726\) 1045.30 + 7270.20i 0.0534361 + 0.371656i
\(727\) −10995.5 7066.41i −0.560939 0.360493i 0.229240 0.973370i \(-0.426376\pi\)
−0.790179 + 0.612877i \(0.790012\pi\)
\(728\) −14447.5 + 4242.16i −0.735521 + 0.215968i
\(729\) −4336.02 + 30157.7i −0.220293 + 1.53217i
\(730\) 740.959 855.112i 0.0375673 0.0433550i
\(731\) 1097.79 705.508i 0.0555449 0.0356965i
\(732\) 25972.5 + 29973.9i 1.31144 + 1.51348i
\(733\) −24299.8 7135.06i −1.22447 0.359535i −0.395307 0.918549i \(-0.629362\pi\)
−0.829158 + 0.559014i \(0.811180\pi\)
\(734\) 1482.57 3246.37i 0.0745539 0.163250i
\(735\) 13304.2 0.667665
\(736\) −8077.08 17964.7i −0.404518 0.899711i
\(737\) −7149.67 −0.357343
\(738\) 12622.0 27638.4i 0.629570 1.37857i
\(739\) −1078.42 316.652i −0.0536809 0.0157621i 0.254782 0.966999i \(-0.417996\pi\)
−0.308463 + 0.951236i \(0.599815\pi\)
\(740\) 1054.44 + 1216.89i 0.0523813 + 0.0604512i
\(741\) −73000.2 + 46914.4i −3.61907 + 2.32583i
\(742\) −6135.82 + 7081.12i −0.303576 + 0.350345i
\(743\) −1432.00 + 9959.77i −0.0707065 + 0.491774i 0.923441 + 0.383741i \(0.125364\pi\)
−0.994147 + 0.108033i \(0.965545\pi\)
\(744\) −14762.4 + 4334.64i −0.727443 + 0.213596i
\(745\) 5683.04 + 3652.27i 0.279477 + 0.179609i
\(746\) −2604.85 18117.2i −0.127843 0.889164i
\(747\) 9946.16 + 21779.0i 0.487163 + 1.06674i
\(748\) 748.206 + 1638.34i 0.0365737 + 0.0800852i
\(749\) −753.346 5239.64i −0.0367512 0.255610i
\(750\) 1826.50 + 1173.82i 0.0889256 + 0.0571490i
\(751\) 9486.27 2785.42i 0.460931 0.135341i −0.0430193 0.999074i \(-0.513698\pi\)
0.503950 + 0.863733i \(0.331880\pi\)
\(752\) −18.7131 + 130.153i −0.000907443 + 0.00631140i
\(753\) −16766.6 + 19349.7i −0.811431 + 0.936442i
\(754\) −24969.7 + 16047.1i −1.20603 + 0.775066i
\(755\) 9800.73 + 11310.6i 0.472431 + 0.545214i
\(756\) −14922.7 4381.69i −0.717900 0.210794i
\(757\) 13305.4 29134.7i 0.638827 1.39884i −0.262175 0.965020i \(-0.584440\pi\)
0.901002 0.433815i \(-0.142833\pi\)
\(758\) 2524.43 0.120965
\(759\) 13576.3 29271.9i 0.649260 1.39987i
\(760\) 12920.6 0.616682
\(761\) −7298.12 + 15980.7i −0.347643 + 0.761233i 0.652351 + 0.757917i \(0.273783\pi\)
−0.999995 + 0.00331594i \(0.998945\pi\)
\(762\) 14468.6 + 4248.35i 0.687849 + 0.201971i
\(763\) −439.441 507.141i −0.0208504 0.0240626i
\(764\) −7123.55 + 4578.03i −0.337331 + 0.216790i