Properties

Label 115.4.g.a.6.4
Level $115$
Weight $4$
Character 115.6
Analytic conductor $6.785$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(6,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 18]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.g (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78521965066\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 6.4
Character \(\chi\) \(=\) 115.6
Dual form 115.4.g.a.96.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13426 + 2.48368i) q^{2} +(-4.84173 - 1.42166i) q^{3} +(0.356777 + 0.411743i) q^{4} +(4.20627 - 2.70320i) q^{5} +(9.02270 - 10.4128i) q^{6} +(-3.26809 + 22.7301i) q^{7} +(-22.3859 + 6.57308i) q^{8} +(-1.29264 - 0.830727i) q^{9} +O(q^{10})\) \(q+(-1.13426 + 2.48368i) q^{2} +(-4.84173 - 1.42166i) q^{3} +(0.356777 + 0.411743i) q^{4} +(4.20627 - 2.70320i) q^{5} +(9.02270 - 10.4128i) q^{6} +(-3.26809 + 22.7301i) q^{7} +(-22.3859 + 6.57308i) q^{8} +(-1.29264 - 0.830727i) q^{9} +(1.94290 + 13.5131i) q^{10} +(-19.7103 - 43.1595i) q^{11} +(-1.14206 - 2.50076i) q^{12} +(3.63873 + 25.3079i) q^{13} +(-52.7473 - 33.8986i) q^{14} +(-24.2086 + 7.10830i) q^{15} +(8.44563 - 58.7406i) q^{16} +(56.7638 - 65.5090i) q^{17} +(3.52944 - 2.26823i) q^{18} +(-76.3911 - 88.1600i) q^{19} +(2.61372 + 0.767459i) q^{20} +(48.1377 - 105.407i) q^{21} +129.551 q^{22} +(-87.1373 - 67.6320i) q^{23} +117.731 q^{24} +(10.3854 - 22.7408i) q^{25} +(-66.9839 - 19.6682i) q^{26} +(94.2994 + 108.827i) q^{27} +(-10.5249 + 6.76396i) q^{28} +(-32.8084 + 37.8629i) q^{29} +(9.80411 - 68.1891i) q^{30} +(-149.245 + 43.8223i) q^{31} +(-20.7046 - 13.3060i) q^{32} +(34.0737 + 236.988i) q^{33} +(98.3183 + 215.287i) q^{34} +(47.6976 + 104.443i) q^{35} +(-0.119137 - 0.828618i) q^{36} +(-229.801 - 147.684i) q^{37} +(305.608 - 89.7346i) q^{38} +(18.3615 - 127.707i) q^{39} +(-76.3925 + 88.1617i) q^{40} +(20.7001 - 13.3032i) q^{41} +(207.196 + 239.117i) q^{42} +(-287.156 - 84.3167i) q^{43} +(10.7384 - 23.5139i) q^{44} -7.68280 q^{45} +(266.812 - 139.709i) q^{46} +249.467 q^{47} +(-124.401 + 272.399i) q^{48} +(-176.870 - 51.9338i) q^{49} +(44.7011 + 51.5878i) q^{50} +(-367.966 + 236.478i) q^{51} +(-9.12213 + 10.5275i) q^{52} +(-105.968 + 737.026i) q^{53} +(-377.252 + 110.771i) q^{54} +(-199.576 - 128.259i) q^{55} +(-76.2476 - 530.314i) q^{56} +(244.531 + 535.449i) q^{57} +(-56.8261 - 124.432i) q^{58} +(56.0769 + 390.023i) q^{59} +(-11.5639 - 7.43165i) q^{60} +(37.5544 - 11.0270i) q^{61} +(60.4418 - 420.382i) q^{62} +(23.1070 - 26.6669i) q^{63} +(455.923 - 293.004i) q^{64} +(83.7179 + 96.6156i) q^{65} +(-627.249 - 184.177i) q^{66} +(-330.724 + 724.184i) q^{67} +47.2249 q^{68} +(325.745 + 451.335i) q^{69} -313.504 q^{70} +(237.653 - 520.388i) q^{71} +(34.3972 + 10.0999i) q^{72} +(128.355 + 148.130i) q^{73} +(627.454 - 403.240i) q^{74} +(-82.6128 + 95.3403i) q^{75} +(9.04465 - 62.9069i) q^{76} +(1045.43 - 306.967i) q^{77} +(296.356 + 190.457i) q^{78} +(42.7517 + 297.344i) q^{79} +(-123.263 - 269.909i) q^{80} +(-284.622 - 623.236i) q^{81} +(9.56149 + 66.5016i) q^{82} +(-972.567 - 625.031i) q^{83} +(60.5749 - 17.7864i) q^{84} +(61.6798 - 428.992i) q^{85} +(535.124 - 617.566i) q^{86} +(212.678 - 136.680i) q^{87} +(724.922 + 836.605i) q^{88} +(871.852 + 255.999i) q^{89} +(8.71427 - 19.0816i) q^{90} -587.143 q^{91} +(-3.24161 - 60.0077i) q^{92} +784.904 q^{93} +(-282.959 + 619.594i) q^{94} +(-559.636 - 164.324i) q^{95} +(81.3292 + 93.8589i) q^{96} +(-1383.09 + 888.860i) q^{97} +(329.603 - 380.382i) q^{98} +(-10.3755 + 72.1634i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9} - 10 q^{10} + 2 q^{11} - 57 q^{12} + 34 q^{13} - 154 q^{14} + 30 q^{15} + 16 q^{16} + 252 q^{17} - 33 q^{18} - 160 q^{19} - 200 q^{20} - 684 q^{21} - 704 q^{22} + 127 q^{23} - 3090 q^{24} - 275 q^{25} - 567 q^{26} + 384 q^{27} - 188 q^{28} + 340 q^{29} - 15 q^{30} + 582 q^{31} - 1364 q^{32} + 1760 q^{33} + 1819 q^{34} + 665 q^{35} + 2794 q^{36} + 312 q^{37} + 3123 q^{38} - 1560 q^{39} - 1205 q^{40} + 1324 q^{41} + 1454 q^{42} - 1740 q^{43} - 369 q^{44} + 3730 q^{45} - 4322 q^{46} - 2858 q^{47} - 2686 q^{48} + 2015 q^{49} - 325 q^{50} - 1426 q^{51} + 1717 q^{52} + 882 q^{53} + 2541 q^{54} + 450 q^{55} + 7755 q^{56} + 3688 q^{57} + 6622 q^{58} + 2605 q^{59} + 1530 q^{60} - 104 q^{61} - 9360 q^{62} - 7618 q^{63} + 3483 q^{64} + 170 q^{65} - 1766 q^{66} - 166 q^{67} - 5018 q^{68} - 1194 q^{69} - 770 q^{70} - 1222 q^{71} + 3303 q^{72} - 922 q^{73} + 1245 q^{74} + 150 q^{75} + 1360 q^{76} - 3093 q^{77} - 1600 q^{78} + 2448 q^{79} + 2115 q^{80} - 1371 q^{81} + 6609 q^{82} + 6704 q^{83} + 3894 q^{84} - 720 q^{85} - 5074 q^{86} - 6324 q^{87} + 1918 q^{88} - 5380 q^{89} - 165 q^{90} + 7828 q^{91} - 16225 q^{92} - 24948 q^{93} - 16490 q^{94} + 685 q^{95} + 675 q^{96} - 4400 q^{97} + 8790 q^{98} - 3626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.13426 + 2.48368i −0.401020 + 0.878112i 0.596145 + 0.802876i \(0.296698\pi\)
−0.997166 + 0.0752357i \(0.976029\pi\)
\(3\) −4.84173 1.42166i −0.931791 0.273598i −0.219605 0.975589i \(-0.570477\pi\)
−0.712186 + 0.701990i \(0.752295\pi\)
\(4\) 0.356777 + 0.411743i 0.0445971 + 0.0514678i
\(5\) 4.20627 2.70320i 0.376220 0.241782i
\(6\) 9.02270 10.4128i 0.613917 0.708498i
\(7\) −3.26809 + 22.7301i −0.176460 + 1.22731i 0.688413 + 0.725319i \(0.258308\pi\)
−0.864873 + 0.501990i \(0.832601\pi\)
\(8\) −22.3859 + 6.57308i −0.989324 + 0.290492i
\(9\) −1.29264 0.830727i −0.0478754 0.0307677i
\(10\) 1.94290 + 13.5131i 0.0614398 + 0.427323i
\(11\) −19.7103 43.1595i −0.540261 1.18301i −0.961183 0.275910i \(-0.911021\pi\)
0.420922 0.907097i \(-0.361707\pi\)
\(12\) −1.14206 2.50076i −0.0274737 0.0601590i
\(13\) 3.63873 + 25.3079i 0.0776309 + 0.539935i 0.991110 + 0.133048i \(0.0424765\pi\)
−0.913479 + 0.406887i \(0.866614\pi\)
\(14\) −52.7473 33.8986i −1.00695 0.647128i
\(15\) −24.2086 + 7.10830i −0.416710 + 0.122357i
\(16\) 8.44563 58.7406i 0.131963 0.917822i
\(17\) 56.7638 65.5090i 0.809838 0.934603i −0.189039 0.981970i \(-0.560537\pi\)
0.998878 + 0.0473663i \(0.0150828\pi\)
\(18\) 3.52944 2.26823i 0.0462165 0.0297015i
\(19\) −76.3911 88.1600i −0.922385 1.06449i −0.997731 0.0673316i \(-0.978551\pi\)
0.0753457 0.997157i \(-0.475994\pi\)
\(20\) 2.61372 + 0.767459i 0.0292223 + 0.00858045i
\(21\) 48.1377 105.407i 0.500214 1.09532i
\(22\) 129.551 1.25547
\(23\) −87.1373 67.6320i −0.789973 0.613141i
\(24\) 117.731 1.00132
\(25\) 10.3854 22.7408i 0.0830830 0.181926i
\(26\) −66.9839 19.6682i −0.505255 0.148356i
\(27\) 94.2994 + 108.827i 0.672146 + 0.775698i
\(28\) −10.5249 + 6.76396i −0.0710366 + 0.0456524i
\(29\) −32.8084 + 37.8629i −0.210082 + 0.242447i −0.851005 0.525158i \(-0.824006\pi\)
0.640923 + 0.767605i \(0.278552\pi\)
\(30\) 9.80411 68.1891i 0.0596659 0.414985i
\(31\) −149.245 + 43.8223i −0.864684 + 0.253894i −0.683853 0.729620i \(-0.739697\pi\)
−0.180831 + 0.983514i \(0.557879\pi\)
\(32\) −20.7046 13.3060i −0.114378 0.0735060i
\(33\) 34.0737 + 236.988i 0.179742 + 1.25013i
\(34\) 98.3183 + 215.287i 0.495925 + 1.08592i
\(35\) 47.6976 + 104.443i 0.230353 + 0.504403i
\(36\) −0.119137 0.828618i −0.000551562 0.00383620i
\(37\) −229.801 147.684i −1.02106 0.656193i −0.0808246 0.996728i \(-0.525755\pi\)
−0.940232 + 0.340535i \(0.889392\pi\)
\(38\) 305.608 89.7346i 1.30464 0.383076i
\(39\) 18.3615 127.707i 0.0753896 0.524346i
\(40\) −76.3925 + 88.1617i −0.301968 + 0.348490i
\(41\) 20.7001 13.3032i 0.0788492 0.0506733i −0.500622 0.865666i \(-0.666895\pi\)
0.579471 + 0.814993i \(0.303259\pi\)
\(42\) 207.196 + 239.117i 0.761215 + 0.878488i
\(43\) −287.156 84.3167i −1.01839 0.299027i −0.270410 0.962745i \(-0.587159\pi\)
−0.747983 + 0.663718i \(0.768978\pi\)
\(44\) 10.7384 23.5139i 0.0367927 0.0805648i
\(45\) −7.68280 −0.0254508
\(46\) 266.812 139.709i 0.855202 0.447803i
\(47\) 249.467 0.774222 0.387111 0.922033i \(-0.373473\pi\)
0.387111 + 0.922033i \(0.373473\pi\)
\(48\) −124.401 + 272.399i −0.374077 + 0.819114i
\(49\) −176.870 51.9338i −0.515657 0.151411i
\(50\) 44.7011 + 51.5878i 0.126434 + 0.145912i
\(51\) −367.966 + 236.478i −1.01031 + 0.649284i
\(52\) −9.12213 + 10.5275i −0.0243272 + 0.0280750i
\(53\) −105.968 + 737.026i −0.274639 + 1.91016i 0.122628 + 0.992453i \(0.460868\pi\)
−0.397267 + 0.917703i \(0.630041\pi\)
\(54\) −377.252 + 110.771i −0.950694 + 0.279149i
\(55\) −199.576 128.259i −0.489287 0.314446i
\(56\) −76.2476 530.314i −0.181947 1.26547i
\(57\) 244.531 + 535.449i 0.568227 + 1.24424i
\(58\) −56.8261 124.432i −0.128649 0.281702i
\(59\) 56.0769 + 390.023i 0.123739 + 0.860622i 0.953261 + 0.302148i \(0.0977038\pi\)
−0.829522 + 0.558474i \(0.811387\pi\)
\(60\) −11.5639 7.43165i −0.0248815 0.0159904i
\(61\) 37.5544 11.0270i 0.0788254 0.0231452i −0.242082 0.970256i \(-0.577830\pi\)
0.320907 + 0.947111i \(0.396012\pi\)
\(62\) 60.4418 420.382i 0.123808 0.861106i
\(63\) 23.1070 26.6669i 0.0462096 0.0533287i
\(64\) 455.923 293.004i 0.890475 0.572274i
\(65\) 83.7179 + 96.6156i 0.159753 + 0.184364i
\(66\) −627.249 184.177i −1.16983 0.343494i
\(67\) −330.724 + 724.184i −0.603050 + 1.32049i 0.324178 + 0.945996i \(0.394912\pi\)
−0.927227 + 0.374499i \(0.877815\pi\)
\(68\) 47.2249 0.0842185
\(69\) 325.745 + 451.335i 0.568335 + 0.787455i
\(70\) −313.504 −0.535299
\(71\) 237.653 520.388i 0.397243 0.869841i −0.600299 0.799775i \(-0.704952\pi\)
0.997542 0.0700655i \(-0.0223208\pi\)
\(72\) 34.3972 + 10.0999i 0.0563021 + 0.0165318i
\(73\) 128.355 + 148.130i 0.205793 + 0.237497i 0.849258 0.527978i \(-0.177050\pi\)
−0.643466 + 0.765475i \(0.722504\pi\)
\(74\) 627.454 403.240i 0.985676 0.633455i
\(75\) −82.6128 + 95.3403i −0.127191 + 0.146786i
\(76\) 9.04465 62.9069i 0.0136512 0.0949463i
\(77\) 1045.43 306.967i 1.54725 0.454314i
\(78\) 296.356 + 190.457i 0.430202 + 0.276474i
\(79\) 42.7517 + 297.344i 0.0608853 + 0.423466i 0.997353 + 0.0727125i \(0.0231655\pi\)
−0.936468 + 0.350754i \(0.885925\pi\)
\(80\) −123.263 269.909i −0.172266 0.377209i
\(81\) −284.622 623.236i −0.390428 0.854919i
\(82\) 9.56149 + 66.5016i 0.0128767 + 0.0895594i
\(83\) −972.567 625.031i −1.28618 0.826579i −0.294545 0.955638i \(-0.595168\pi\)
−0.991637 + 0.129059i \(0.958804\pi\)
\(84\) 60.5749 17.7864i 0.0786817 0.0231030i
\(85\) 61.6798 428.992i 0.0787072 0.547421i
\(86\) 535.124 617.566i 0.670976 0.774348i
\(87\) 212.678 136.680i 0.262085 0.168432i
\(88\) 724.922 + 836.605i 0.878147 + 1.01344i
\(89\) 871.852 + 255.999i 1.03838 + 0.304897i 0.756115 0.654438i \(-0.227095\pi\)
0.282269 + 0.959335i \(0.408913\pi\)
\(90\) 8.71427 19.0816i 0.0102063 0.0223486i
\(91\) −587.143 −0.676366
\(92\) −3.24161 60.0077i −0.00367350 0.0680026i
\(93\) 784.904 0.875170
\(94\) −282.959 + 619.594i −0.310479 + 0.679854i
\(95\) −559.636 164.324i −0.604394 0.177466i
\(96\) 81.3292 + 93.8589i 0.0864649 + 0.0997858i
\(97\) −1383.09 + 888.860i −1.44775 + 0.930413i −0.448420 + 0.893823i \(0.648013\pi\)
−0.999330 + 0.0365902i \(0.988350\pi\)
\(98\) 329.603 380.382i 0.339744 0.392086i
\(99\) −10.3755 + 72.1634i −0.0105331 + 0.0732596i
\(100\) 13.0686 3.83729i 0.0130686 0.00383729i
\(101\) −622.474 400.040i −0.613253 0.394113i 0.196823 0.980439i \(-0.436938\pi\)
−0.810076 + 0.586326i \(0.800574\pi\)
\(102\) −169.965 1182.14i −0.164991 1.14754i
\(103\) −445.005 974.426i −0.425706 0.932165i −0.994004 0.109343i \(-0.965125\pi\)
0.568299 0.822822i \(-0.307602\pi\)
\(104\) −247.807 542.621i −0.233649 0.511619i
\(105\) −82.4561 573.495i −0.0766371 0.533023i
\(106\) −1710.34 1099.17i −1.56720 1.00718i
\(107\) −1412.64 + 414.788i −1.27631 + 0.374758i −0.848540 0.529131i \(-0.822518\pi\)
−0.427767 + 0.903889i \(0.640700\pi\)
\(108\) −11.1650 + 77.6542i −0.00994770 + 0.0691878i
\(109\) 445.084 513.654i 0.391113 0.451369i −0.525709 0.850664i \(-0.676200\pi\)
0.916822 + 0.399296i \(0.130745\pi\)
\(110\) 544.925 350.202i 0.472332 0.303550i
\(111\) 902.678 + 1041.75i 0.771878 + 0.890794i
\(112\) 1307.58 + 383.940i 1.10317 + 0.323919i
\(113\) 971.877 2128.11i 0.809084 1.77165i 0.197786 0.980245i \(-0.436625\pi\)
0.611297 0.791401i \(-0.290648\pi\)
\(114\) −1607.24 −1.32046
\(115\) −549.346 48.9284i −0.445450 0.0396747i
\(116\) −27.2951 −0.0218473
\(117\) 16.3204 35.7367i 0.0128959 0.0282381i
\(118\) −1032.30 303.110i −0.805345 0.236470i
\(119\) 1303.51 + 1504.34i 1.00414 + 1.15884i
\(120\) 495.208 318.251i 0.376717 0.242101i
\(121\) −602.627 + 695.469i −0.452763 + 0.522516i
\(122\) −15.2089 + 105.780i −0.0112865 + 0.0784992i
\(123\) −119.137 + 34.9818i −0.0873351 + 0.0256439i
\(124\) −71.2907 45.8158i −0.0516298 0.0331805i
\(125\) −17.7894 123.728i −0.0127290 0.0885323i
\(126\) 40.0226 + 87.6373i 0.0282976 + 0.0619631i
\(127\) 64.2460 + 140.679i 0.0448890 + 0.0982933i 0.930748 0.365662i \(-0.119157\pi\)
−0.885859 + 0.463955i \(0.846430\pi\)
\(128\) 182.573 + 1269.82i 0.126073 + 0.876854i
\(129\) 1270.46 + 816.477i 0.867116 + 0.557262i
\(130\) −334.920 + 98.3412i −0.225957 + 0.0663469i
\(131\) −192.228 + 1336.98i −0.128206 + 0.891696i 0.819620 + 0.572908i \(0.194185\pi\)
−0.947826 + 0.318788i \(0.896724\pi\)
\(132\) −85.4213 + 98.5814i −0.0563255 + 0.0650031i
\(133\) 2253.54 1448.26i 1.46922 0.944212i
\(134\) −1423.51 1642.82i −0.917707 1.05909i
\(135\) 690.831 + 202.846i 0.440424 + 0.129320i
\(136\) −840.111 + 1839.59i −0.529698 + 1.15988i
\(137\) −421.788 −0.263035 −0.131517 0.991314i \(-0.541985\pi\)
−0.131517 + 0.991314i \(0.541985\pi\)
\(138\) −1490.45 + 297.116i −0.919388 + 0.183277i
\(139\) −2015.05 −1.22960 −0.614800 0.788683i \(-0.710763\pi\)
−0.614800 + 0.788683i \(0.710763\pi\)
\(140\) −25.9863 + 56.9021i −0.0156874 + 0.0343507i
\(141\) −1207.85 354.657i −0.721413 0.211826i
\(142\) 1022.92 + 1180.51i 0.604515 + 0.697648i
\(143\) 1020.56 655.872i 0.596806 0.383544i
\(144\) −59.7146 + 68.9143i −0.0345570 + 0.0398810i
\(145\) −35.6498 + 247.950i −0.0204176 + 0.142008i
\(146\) −513.495 + 150.776i −0.291076 + 0.0854677i
\(147\) 782.526 + 502.899i 0.439059 + 0.282166i
\(148\) −21.1799 147.309i −0.0117633 0.0818159i
\(149\) −315.363 690.548i −0.173393 0.379677i 0.802906 0.596106i \(-0.203286\pi\)
−0.976298 + 0.216429i \(0.930559\pi\)
\(150\) −143.090 313.324i −0.0778885 0.170552i
\(151\) 294.525 + 2048.46i 0.158729 + 1.10398i 0.900979 + 0.433862i \(0.142849\pi\)
−0.742250 + 0.670123i \(0.766241\pi\)
\(152\) 2289.56 + 1471.41i 1.22176 + 0.785180i
\(153\) −127.795 + 37.5240i −0.0675269 + 0.0198277i
\(154\) −423.384 + 2944.70i −0.221541 + 1.54085i
\(155\) −509.304 + 587.768i −0.263924 + 0.304585i
\(156\) 59.1334 38.0027i 0.0303491 0.0195042i
\(157\) 1108.89 + 1279.72i 0.563687 + 0.650530i 0.964017 0.265842i \(-0.0856498\pi\)
−0.400330 + 0.916371i \(0.631104\pi\)
\(158\) −786.998 231.084i −0.396267 0.116355i
\(159\) 1560.87 3417.83i 0.778522 1.70472i
\(160\) −123.058 −0.0608036
\(161\) 1822.05 1759.61i 0.891913 0.861347i
\(162\) 1870.75 0.907285
\(163\) 72.8879 159.602i 0.0350247 0.0766933i −0.891311 0.453392i \(-0.850214\pi\)
0.926336 + 0.376699i \(0.122941\pi\)
\(164\) 12.8628 + 3.77686i 0.00612449 + 0.00179831i
\(165\) 783.950 + 904.726i 0.369881 + 0.426866i
\(166\) 2655.51 1706.60i 1.24161 0.797937i
\(167\) −527.466 + 608.728i −0.244411 + 0.282065i −0.864679 0.502325i \(-0.832478\pi\)
0.620269 + 0.784390i \(0.287024\pi\)
\(168\) −384.755 + 2676.03i −0.176694 + 1.22893i
\(169\) 1480.76 434.789i 0.673990 0.197901i
\(170\) 995.518 + 639.780i 0.449134 + 0.288641i
\(171\) 25.5090 + 177.419i 0.0114077 + 0.0793425i
\(172\) −67.7340 148.317i −0.0300271 0.0657503i
\(173\) −898.855 1968.22i −0.395021 0.864976i −0.997751 0.0670306i \(-0.978647\pi\)
0.602730 0.797946i \(-0.294080\pi\)
\(174\) 98.2368 + 683.252i 0.0428007 + 0.297685i
\(175\) 482.960 + 310.380i 0.208619 + 0.134071i
\(176\) −2701.68 + 793.285i −1.15708 + 0.339751i
\(177\) 282.971 1968.11i 0.120166 0.835775i
\(178\) −1624.72 + 1875.03i −0.684147 + 0.789548i
\(179\) 562.106 361.244i 0.234714 0.150842i −0.417997 0.908448i \(-0.637268\pi\)
0.652711 + 0.757607i \(0.273631\pi\)
\(180\) −2.74105 3.16334i −0.00113503 0.00130990i
\(181\) 927.612 + 272.371i 0.380933 + 0.111852i 0.466592 0.884473i \(-0.345482\pi\)
−0.0856595 + 0.996324i \(0.527300\pi\)
\(182\) 665.971 1458.27i 0.271236 0.593925i
\(183\) −197.505 −0.0797812
\(184\) 2395.19 + 941.240i 0.959652 + 0.377115i
\(185\) −1365.83 −0.542797
\(186\) −890.283 + 1949.45i −0.350961 + 0.768497i
\(187\) −3946.16 1158.70i −1.54317 0.453115i
\(188\) 89.0040 + 102.716i 0.0345281 + 0.0398475i
\(189\) −2781.83 + 1787.78i −1.07063 + 0.688051i
\(190\) 1042.90 1203.57i 0.398209 0.459558i
\(191\) 369.474 2569.75i 0.139970 0.973511i −0.791883 0.610673i \(-0.790899\pi\)
0.931852 0.362837i \(-0.118192\pi\)
\(192\) −2624.01 + 770.479i −0.986310 + 0.289607i
\(193\) 1487.46 + 955.932i 0.554765 + 0.356526i 0.787789 0.615945i \(-0.211226\pi\)
−0.233024 + 0.972471i \(0.574862\pi\)
\(194\) −638.857 4443.35i −0.236429 1.64440i
\(195\) −267.985 586.805i −0.0984143 0.215497i
\(196\) −41.7199 91.3539i −0.0152041 0.0332922i
\(197\) 357.824 + 2488.72i 0.129411 + 0.900072i 0.946303 + 0.323281i \(0.104786\pi\)
−0.816892 + 0.576790i \(0.804305\pi\)
\(198\) −167.462 107.621i −0.0601061 0.0386279i
\(199\) −4795.10 + 1407.97i −1.70812 + 0.501549i −0.982455 0.186502i \(-0.940285\pi\)
−0.725663 + 0.688050i \(0.758467\pi\)
\(200\) −83.0084 + 577.336i −0.0293479 + 0.204119i
\(201\) 2630.82 3036.12i 0.923202 1.06543i
\(202\) 1699.62 1092.28i 0.592003 0.380457i
\(203\) −753.407 869.478i −0.260487 0.300618i
\(204\) −228.650 67.1377i −0.0784740 0.0230420i
\(205\) 51.1091 111.913i 0.0174128 0.0381286i
\(206\) 2924.91 0.989262
\(207\) 56.4532 + 159.811i 0.0189554 + 0.0536601i
\(208\) 1517.33 0.505808
\(209\) −2299.25 + 5034.66i −0.760969 + 1.66629i
\(210\) 1517.90 + 445.696i 0.498787 + 0.146457i
\(211\) 2783.75 + 3212.62i 0.908253 + 1.04818i 0.998633 + 0.0522728i \(0.0166465\pi\)
−0.0903795 + 0.995907i \(0.528808\pi\)
\(212\) −341.272 + 219.322i −0.110560 + 0.0710524i
\(213\) −1890.47 + 2181.72i −0.608135 + 0.701825i
\(214\) 572.095 3979.01i 0.182746 1.27103i
\(215\) −1435.78 + 421.583i −0.455439 + 0.133729i
\(216\) −2826.30 1816.36i −0.890304 0.572164i
\(217\) −508.338 3535.57i −0.159024 1.10604i
\(218\) 770.912 + 1688.06i 0.239508 + 0.524449i
\(219\) −410.871 899.683i −0.126777 0.277602i
\(220\) −18.3941 127.934i −0.00563696 0.0392059i
\(221\) 1864.44 + 1198.20i 0.567493 + 0.364706i
\(222\) −3611.23 + 1060.35i −1.09176 + 0.320568i
\(223\) 627.492 4364.30i 0.188430 1.31056i −0.647643 0.761944i \(-0.724245\pi\)
0.836073 0.548618i \(-0.184846\pi\)
\(224\) 370.111 427.131i 0.110398 0.127406i
\(225\) −32.3159 + 20.7682i −0.00957509 + 0.00615354i
\(226\) 4183.19 + 4827.65i 1.23124 + 1.42093i
\(227\) −2338.72 686.709i −0.683815 0.200786i −0.0786690 0.996901i \(-0.525067\pi\)
−0.605146 + 0.796115i \(0.706885\pi\)
\(228\) −133.224 + 291.720i −0.0386972 + 0.0847352i
\(229\) −314.612 −0.0907866 −0.0453933 0.998969i \(-0.514454\pi\)
−0.0453933 + 0.998969i \(0.514454\pi\)
\(230\) 744.622 1308.90i 0.213473 0.375245i
\(231\) −5498.11 −1.56601
\(232\) 485.568 1063.25i 0.137410 0.300886i
\(233\) 2114.77 + 620.953i 0.594606 + 0.174592i 0.565170 0.824974i \(-0.308811\pi\)
0.0294364 + 0.999567i \(0.490629\pi\)
\(234\) 70.2469 + 81.0693i 0.0196247 + 0.0226481i
\(235\) 1049.32 674.359i 0.291278 0.187193i
\(236\) −140.582 + 162.241i −0.0387760 + 0.0447498i
\(237\) 215.730 1500.44i 0.0591274 0.411240i
\(238\) −5214.80 + 1531.20i −1.42028 + 0.417031i
\(239\) 2461.29 + 1581.78i 0.666141 + 0.428103i 0.829532 0.558459i \(-0.188607\pi\)
−0.163392 + 0.986561i \(0.552243\pi\)
\(240\) 213.089 + 1482.06i 0.0573117 + 0.398612i
\(241\) −1352.75 2962.11i −0.361570 0.791727i −0.999761 0.0218494i \(-0.993045\pi\)
0.638192 0.769877i \(-0.279683\pi\)
\(242\) −1043.79 2285.57i −0.277261 0.607116i
\(243\) −61.2826 426.230i −0.0161781 0.112521i
\(244\) 17.9388 + 11.5286i 0.00470662 + 0.00302476i
\(245\) −884.352 + 259.669i −0.230609 + 0.0677129i
\(246\) 48.2485 335.576i 0.0125049 0.0869737i
\(247\) 1953.18 2254.09i 0.503149 0.580665i
\(248\) 3052.93 1962.00i 0.781699 0.502367i
\(249\) 3820.32 + 4408.89i 0.972302 + 1.12210i
\(250\) 327.477 + 96.1560i 0.0828459 + 0.0243258i
\(251\) 2408.08 5272.97i 0.605565 1.32600i −0.320001 0.947417i \(-0.603683\pi\)
0.925566 0.378586i \(-0.123589\pi\)
\(252\) 19.2239 0.00480553
\(253\) −1201.46 + 5093.85i −0.298558 + 1.26580i
\(254\) −422.273 −0.104314
\(255\) −908.518 + 1989.38i −0.223112 + 0.488547i
\(256\) 799.128 + 234.645i 0.195100 + 0.0572864i
\(257\) −1057.70 1220.65i −0.256721 0.296272i 0.612729 0.790293i \(-0.290072\pi\)
−0.869450 + 0.494022i \(0.835526\pi\)
\(258\) −3468.90 + 2229.32i −0.837070 + 0.537952i
\(259\) 4107.89 4740.76i 0.985528 1.13736i
\(260\) −9.91214 + 68.9405i −0.00236433 + 0.0164443i
\(261\) 73.8632 21.6882i 0.0175173 0.00514354i
\(262\) −3102.58 1993.91i −0.731595 0.470168i
\(263\) −1013.18 7046.85i −0.237550 1.65219i −0.664036 0.747701i \(-0.731158\pi\)
0.426486 0.904494i \(-0.359751\pi\)
\(264\) −2320.51 5081.21i −0.540975 1.18457i
\(265\) 1546.60 + 3386.58i 0.358516 + 0.785042i
\(266\) 1040.92 + 7239.76i 0.239936 + 1.66879i
\(267\) −3857.33 2478.95i −0.884137 0.568200i
\(268\) −416.172 + 122.199i −0.0948573 + 0.0278526i
\(269\) 967.484 6729.00i 0.219288 1.52518i −0.521387 0.853320i \(-0.674585\pi\)
0.740675 0.671863i \(-0.234506\pi\)
\(270\) −1287.38 + 1485.72i −0.290177 + 0.334882i
\(271\) −1231.45 + 791.404i −0.276034 + 0.177396i −0.671332 0.741157i \(-0.734278\pi\)
0.395298 + 0.918553i \(0.370641\pi\)
\(272\) −3368.63 3887.61i −0.750931 0.866621i
\(273\) 2842.78 + 834.717i 0.630231 + 0.185053i
\(274\) 478.415 1047.58i 0.105482 0.230974i
\(275\) −1186.18 −0.260107
\(276\) −69.6155 + 295.149i −0.0151825 + 0.0643692i
\(277\) 2701.71 0.586030 0.293015 0.956108i \(-0.405341\pi\)
0.293015 + 0.956108i \(0.405341\pi\)
\(278\) 2285.59 5004.74i 0.493095 1.07973i
\(279\) 229.324 + 67.3356i 0.0492089 + 0.0144490i
\(280\) −1754.26 2024.53i −0.374419 0.432103i
\(281\) −3658.31 + 2351.06i −0.776643 + 0.499118i −0.867918 0.496707i \(-0.834542\pi\)
0.0912748 + 0.995826i \(0.470906\pi\)
\(282\) 2250.86 2597.63i 0.475308 0.548535i
\(283\) −1079.12 + 7505.43i −0.226668 + 1.57651i 0.485333 + 0.874329i \(0.338698\pi\)
−0.712001 + 0.702179i \(0.752211\pi\)
\(284\) 299.055 87.8105i 0.0624847 0.0183472i
\(285\) 2475.99 + 1591.22i 0.514614 + 0.330723i
\(286\) 471.400 + 3278.66i 0.0974631 + 0.677871i
\(287\) 234.732 + 513.992i 0.0482780 + 0.105714i
\(288\) 15.7098 + 34.3997i 0.00321427 + 0.00703827i
\(289\) −370.098 2574.09i −0.0753303 0.523934i
\(290\) −575.390 369.781i −0.116511 0.0748768i
\(291\) 7960.22 2337.33i 1.60356 0.470848i
\(292\) −15.1972 + 105.699i −0.00304571 + 0.0211834i
\(293\) 1353.06 1561.51i 0.269783 0.311347i −0.604651 0.796491i \(-0.706687\pi\)
0.874434 + 0.485144i \(0.161233\pi\)
\(294\) −2136.62 + 1373.12i −0.423845 + 0.272389i
\(295\) 1290.19 + 1488.96i 0.254636 + 0.293865i
\(296\) 6115.04 + 1795.54i 1.20077 + 0.352579i
\(297\) 2838.27 6214.93i 0.554521 1.21423i
\(298\) 2072.80 0.402933
\(299\) 1394.56 2451.36i 0.269730 0.474133i
\(300\) −68.7300 −0.0132271
\(301\) 2854.98 6251.53i 0.546705 1.19712i
\(302\) −5421.79 1591.98i −1.03308 0.303338i
\(303\) 2445.13 + 2821.83i 0.463594 + 0.535016i
\(304\) −5823.74 + 3742.69i −1.09873 + 0.706112i
\(305\) 128.156 147.900i 0.0240596 0.0277662i
\(306\) 51.7549 359.964i 0.00966874 0.0672475i
\(307\) 2216.38 650.787i 0.412037 0.120985i −0.0691431 0.997607i \(-0.522027\pi\)
0.481180 + 0.876622i \(0.340208\pi\)
\(308\) 499.378 + 320.931i 0.0923855 + 0.0593725i
\(309\) 769.293 + 5350.55i 0.141630 + 0.985055i
\(310\) −882.144 1931.63i −0.161621 0.353900i
\(311\) 2707.95 + 5929.59i 0.493743 + 1.08115i 0.978453 + 0.206471i \(0.0661979\pi\)
−0.484710 + 0.874675i \(0.661075\pi\)
\(312\) 428.391 + 2979.52i 0.0777335 + 0.540648i
\(313\) −4766.49 3063.24i −0.860760 0.553177i 0.0341533 0.999417i \(-0.489127\pi\)
−0.894914 + 0.446240i \(0.852763\pi\)
\(314\) −4436.19 + 1302.58i −0.797288 + 0.234105i
\(315\) 25.1081 174.631i 0.00449105 0.0312360i
\(316\) −107.177 + 123.688i −0.0190796 + 0.0220190i
\(317\) −6555.03 + 4212.66i −1.16141 + 0.746393i −0.971879 0.235482i \(-0.924333\pi\)
−0.189531 + 0.981875i \(0.560697\pi\)
\(318\) 6718.35 + 7753.39i 1.18474 + 1.36726i
\(319\) 2280.81 + 669.706i 0.400316 + 0.117543i
\(320\) 1125.69 2464.91i 0.196649 0.430602i
\(321\) 7429.29 1.29178
\(322\) 2303.63 + 6521.24i 0.398684 + 1.12862i
\(323\) −10111.5 −1.74186
\(324\) 155.066 339.547i 0.0265888 0.0582214i
\(325\) 613.312 + 180.085i 0.104678 + 0.0307363i
\(326\) 313.727 + 362.060i 0.0532997 + 0.0615112i
\(327\) −2885.22 + 1854.22i −0.487929 + 0.313573i
\(328\) −375.947 + 433.866i −0.0632872 + 0.0730374i
\(329\) −815.280 + 5670.40i −0.136620 + 0.950210i
\(330\) −3136.25 + 920.885i −0.523166 + 0.153615i
\(331\) −5532.54 3555.55i −0.918719 0.590425i −0.00643344 0.999979i \(-0.502048\pi\)
−0.912286 + 0.409554i \(0.865684\pi\)
\(332\) −89.6377 623.444i −0.0148178 0.103060i
\(333\) 174.364 + 381.804i 0.0286940 + 0.0628311i
\(334\) −913.602 2000.51i −0.149671 0.327734i
\(335\) 566.504 + 3940.13i 0.0923924 + 0.642603i
\(336\) −5785.11 3717.86i −0.939296 0.603649i
\(337\) 3486.28 1023.66i 0.563530 0.165467i 0.0124539 0.999922i \(-0.496036\pi\)
0.551076 + 0.834455i \(0.314218\pi\)
\(338\) −599.682 + 4170.88i −0.0965042 + 0.671201i
\(339\) −7731.01 + 8922.06i −1.23862 + 1.42944i
\(340\) 198.640 127.658i 0.0316847 0.0203625i
\(341\) 4833.01 + 5577.59i 0.767514 + 0.885758i
\(342\) −469.585 137.883i −0.0742464 0.0218007i
\(343\) −1513.57 + 3314.25i −0.238265 + 0.521727i
\(344\) 6982.46 1.09439
\(345\) 2590.22 + 1017.88i 0.404212 + 0.158843i
\(346\) 5907.95 0.917958
\(347\) −3917.32 + 8577.74i −0.606031 + 1.32702i 0.319225 + 0.947679i \(0.396578\pi\)
−0.925256 + 0.379344i \(0.876150\pi\)
\(348\) 132.155 + 38.8043i 0.0203571 + 0.00597738i
\(349\) −1514.40 1747.71i −0.232275 0.268059i 0.627632 0.778510i \(-0.284024\pi\)
−0.859907 + 0.510450i \(0.829479\pi\)
\(350\) −1318.68 + 847.466i −0.201390 + 0.129426i
\(351\) −2411.06 + 2782.51i −0.366647 + 0.423133i
\(352\) −166.188 + 1155.86i −0.0251644 + 0.175022i
\(353\) −4290.05 + 1259.67i −0.646846 + 0.189931i −0.588668 0.808375i \(-0.700347\pi\)
−0.0581781 + 0.998306i \(0.518529\pi\)
\(354\) 4567.18 + 2935.15i 0.685715 + 0.440682i
\(355\) −407.082 2831.32i −0.0608610 0.423298i
\(356\) 205.651 + 450.313i 0.0306166 + 0.0670409i
\(357\) −4172.61 9136.74i −0.618594 1.35453i
\(358\) 259.640 + 1805.83i 0.0383307 + 0.266596i
\(359\) 7127.40 + 4580.50i 1.04783 + 0.673398i 0.946911 0.321497i \(-0.104186\pi\)
0.100917 + 0.994895i \(0.467822\pi\)
\(360\) 171.986 50.4997i 0.0251791 0.00739324i
\(361\) −960.452 + 6680.09i −0.140028 + 0.973916i
\(362\) −1728.63 + 1994.95i −0.250980 + 0.289647i
\(363\) 3906.48 2510.54i 0.564840 0.363000i
\(364\) −209.479 241.752i −0.0301640 0.0348111i
\(365\) 940.323 + 276.104i 0.134846 + 0.0395943i
\(366\) 224.021 490.538i 0.0319939 0.0700569i
\(367\) 7381.32 1.04987 0.524934 0.851143i \(-0.324090\pi\)
0.524934 + 0.851143i \(0.324090\pi\)
\(368\) −4708.68 + 4547.31i −0.667002 + 0.644143i
\(369\) −37.8090 −0.00533404
\(370\) 1549.20 3392.27i 0.217673 0.476637i
\(371\) −16406.3 4817.34i −2.29589 0.674134i
\(372\) 280.036 + 323.179i 0.0390301 + 0.0450431i
\(373\) 4763.75 3061.48i 0.661281 0.424979i −0.166492 0.986043i \(-0.553244\pi\)
0.827773 + 0.561064i \(0.189608\pi\)
\(374\) 7353.80 8486.73i 1.01673 1.17337i
\(375\) −89.7674 + 624.346i −0.0123615 + 0.0859763i
\(376\) −5584.52 + 1639.76i −0.765957 + 0.224905i
\(377\) −1077.61 692.540i −0.147215 0.0946090i
\(378\) −1284.94 8936.97i −0.174842 1.21605i
\(379\) −577.092 1263.66i −0.0782144 0.171266i 0.866485 0.499203i \(-0.166374\pi\)
−0.944699 + 0.327937i \(0.893647\pi\)
\(380\) −132.006 289.053i −0.0178204 0.0390213i
\(381\) −111.064 772.466i −0.0149343 0.103870i
\(382\) 5963.35 + 3832.41i 0.798721 + 0.513307i
\(383\) 11805.1 3466.30i 1.57497 0.462453i 0.626527 0.779400i \(-0.284476\pi\)
0.948443 + 0.316947i \(0.102658\pi\)
\(384\) 921.285 6407.68i 0.122433 0.851538i
\(385\) 3567.58 4117.21i 0.472262 0.545019i
\(386\) −4061.39 + 2610.09i −0.535542 + 0.344172i
\(387\) 301.145 + 347.539i 0.0395557 + 0.0456497i
\(388\) −859.437 252.354i −0.112452 0.0330188i
\(389\) 447.007 978.809i 0.0582626 0.127577i −0.878261 0.478181i \(-0.841296\pi\)
0.936524 + 0.350604i \(0.114024\pi\)
\(390\) 1761.40 0.228697
\(391\) −9376.75 + 1869.22i −1.21279 + 0.241766i
\(392\) 4300.76 0.554136
\(393\) 2831.44 6199.99i 0.363428 0.795797i
\(394\) −6587.05 1934.13i −0.842260 0.247310i
\(395\) 983.607 + 1135.14i 0.125293 + 0.144596i
\(396\) −33.4145 + 21.4742i −0.00424026 + 0.00272505i
\(397\) 7319.23 8446.84i 0.925294 1.06785i −0.0722210 0.997389i \(-0.523009\pi\)
0.997515 0.0704573i \(-0.0224459\pi\)
\(398\) 1941.94 13506.5i 0.244574 1.70105i
\(399\) −12969.9 + 3808.32i −1.62734 + 0.477831i
\(400\) −1248.10 802.104i −0.156012 0.100263i
\(401\) 527.387 + 3668.06i 0.0656769 + 0.456793i 0.995949 + 0.0899221i \(0.0286618\pi\)
−0.930272 + 0.366871i \(0.880429\pi\)
\(402\) 4556.73 + 9977.84i 0.565346 + 1.23793i
\(403\) −1652.11 3617.62i −0.204212 0.447163i
\(404\) −57.3710 399.024i −0.00706514 0.0491391i
\(405\) −2881.93 1852.11i −0.353591 0.227239i
\(406\) 3014.06 885.008i 0.368437 0.108183i
\(407\) −1844.53 + 12829.0i −0.224644 + 1.56243i
\(408\) 6682.86 7712.43i 0.810908 0.935838i
\(409\) −9357.73 + 6013.85i −1.13132 + 0.727055i −0.965835 0.259157i \(-0.916555\pi\)
−0.165485 + 0.986212i \(0.552919\pi\)
\(410\) 219.986 + 253.877i 0.0264983 + 0.0305807i
\(411\) 2042.18 + 599.638i 0.245093 + 0.0719659i
\(412\) 242.445 530.880i 0.0289913 0.0634820i
\(413\) −9048.53 −1.07808
\(414\) −460.951 41.0553i −0.0547210 0.00487382i
\(415\) −5780.46 −0.683739
\(416\) 261.409 572.406i 0.0308092 0.0674628i
\(417\) 9756.33 + 2864.72i 1.14573 + 0.336417i
\(418\) −9896.52 11421.2i −1.15803 1.33643i
\(419\) 1548.26 995.004i 0.180519 0.116012i −0.447261 0.894404i \(-0.647600\pi\)
0.627779 + 0.778391i \(0.283964\pi\)
\(420\) 206.714 238.561i 0.0240157 0.0277156i
\(421\) −165.116 + 1148.41i −0.0191146 + 0.132945i −0.997144 0.0755210i \(-0.975938\pi\)
0.978030 + 0.208466i \(0.0668471\pi\)
\(422\) −11136.6 + 3270.00i −1.28465 + 0.377207i
\(423\) −322.470 207.239i −0.0370662 0.0238210i
\(424\) −2472.34 17195.5i −0.283178 1.96954i
\(425\) −900.212 1971.19i −0.102745 0.224981i
\(426\) −3274.40 7169.93i −0.372406 0.815456i
\(427\) 127.913 + 889.652i 0.0144968 + 0.100827i
\(428\) −674.783 433.656i −0.0762076 0.0489756i
\(429\) −5873.68 + 1724.67i −0.661035 + 0.194097i
\(430\) 581.468 4044.20i 0.0652114 0.453555i
\(431\) 9768.32 11273.2i 1.09170 1.25989i 0.128326 0.991732i \(-0.459039\pi\)
0.963375 0.268158i \(-0.0864151\pi\)
\(432\) 7189.00 4620.09i 0.800651 0.514547i
\(433\) 7601.36 + 8772.43i 0.843644 + 0.973617i 0.999901 0.0140995i \(-0.00448815\pi\)
−0.156257 + 0.987716i \(0.549943\pi\)
\(434\) 9357.79 + 2747.70i 1.03500 + 0.303902i
\(435\) 525.106 1149.82i 0.0578780 0.126735i
\(436\) 370.289 0.0406735
\(437\) 694.076 + 12848.5i 0.0759775 + 1.40647i
\(438\) 2700.55 0.294606
\(439\) −195.316 + 427.683i −0.0212345 + 0.0464970i −0.919952 0.392031i \(-0.871773\pi\)
0.898718 + 0.438528i \(0.144500\pi\)
\(440\) 5310.73 + 1559.37i 0.575407 + 0.168955i
\(441\) 185.486 + 214.063i 0.0200288 + 0.0231144i
\(442\) −5090.71 + 3271.60i −0.547829 + 0.352068i
\(443\) 8140.49 9394.62i 0.873061 1.00757i −0.126816 0.991926i \(-0.540476\pi\)
0.999878 0.0156403i \(-0.00497867\pi\)
\(444\) −106.876 + 743.342i −0.0114237 + 0.0794537i
\(445\) 4359.26 1279.99i 0.464379 0.136354i
\(446\) 10127.8 + 6508.73i 1.07526 + 0.691025i
\(447\) 545.176 + 3791.78i 0.0576867 + 0.401220i
\(448\) 5170.01 + 11320.7i 0.545223 + 1.19387i
\(449\) 1966.23 + 4305.44i 0.206664 + 0.452531i 0.984374 0.176093i \(-0.0563459\pi\)
−0.777710 + 0.628624i \(0.783619\pi\)
\(450\) −14.9269 103.819i −0.00156369 0.0108757i
\(451\) −982.163 631.198i −0.102546 0.0659023i
\(452\) 1222.98 359.099i 0.127266 0.0373686i
\(453\) 1486.21 10336.8i 0.154146 1.07211i
\(454\) 4358.27 5029.71i 0.450536 0.519947i
\(455\) −2469.68 + 1587.17i −0.254462 + 0.163533i
\(456\) −8993.59 10379.2i −0.923604 1.06590i
\(457\) −3345.11 982.214i −0.342402 0.100538i 0.106010 0.994365i \(-0.466192\pi\)
−0.448413 + 0.893827i \(0.648010\pi\)
\(458\) 356.851 781.394i 0.0364073 0.0797208i
\(459\) 12482.0 1.26930
\(460\) −175.848 243.646i −0.0178238 0.0246957i
\(461\) −13653.3 −1.37939 −0.689693 0.724102i \(-0.742254\pi\)
−0.689693 + 0.724102i \(0.742254\pi\)
\(462\) 6236.27 13655.5i 0.628003 1.37514i
\(463\) −2702.08 793.401i −0.271223 0.0796382i 0.143293 0.989680i \(-0.454231\pi\)
−0.414516 + 0.910042i \(0.636049\pi\)
\(464\) 1947.01 + 2246.96i 0.194801 + 0.224812i
\(465\) 3301.52 2121.76i 0.329256 0.211600i
\(466\) −3940.94 + 4548.09i −0.391761 + 0.452116i
\(467\) 1261.83 8776.22i 0.125033 0.869625i −0.826688 0.562661i \(-0.809778\pi\)
0.951721 0.306964i \(-0.0993132\pi\)
\(468\) 20.5371 6.03023i 0.00202848 0.000595615i
\(469\) −15379.9 9884.08i −1.51424 0.973144i
\(470\) 484.688 + 3371.08i 0.0475680 + 0.330843i
\(471\) −3549.60 7772.54i −0.347255 0.760381i
\(472\) −3818.98 8362.41i −0.372421 0.815489i
\(473\) 2020.87 + 14055.4i 0.196447 + 1.36632i
\(474\) 3481.91 + 2237.69i 0.337404 + 0.216836i
\(475\) −2798.18 + 821.619i −0.270293 + 0.0793652i
\(476\) −154.335 + 1073.43i −0.0148612 + 0.103362i
\(477\) 749.246 864.676i 0.0719195 0.0829996i
\(478\) −6720.35 + 4318.91i −0.643058 + 0.413268i
\(479\) −4065.54 4691.88i −0.387806 0.447552i 0.527957 0.849271i \(-0.322958\pi\)
−0.915763 + 0.401719i \(0.868413\pi\)
\(480\) 595.812 + 174.946i 0.0566562 + 0.0166358i
\(481\) 2901.40 6353.17i 0.275036 0.602245i
\(482\) 8891.28 0.840222
\(483\) −11323.5 + 5929.22i −1.06674 + 0.558569i
\(484\) −501.358 −0.0470847
\(485\) −3414.89 + 7477.57i −0.319716 + 0.700080i
\(486\) 1128.13 + 331.248i 0.105294 + 0.0309171i
\(487\) −2273.28 2623.51i −0.211524 0.244112i 0.640066 0.768320i \(-0.278907\pi\)
−0.851590 + 0.524208i \(0.824361\pi\)
\(488\) −768.206 + 493.696i −0.0712603 + 0.0457962i
\(489\) −579.803 + 669.129i −0.0536188 + 0.0618794i
\(490\) 358.148 2490.98i 0.0330194 0.229655i
\(491\) −6157.83 + 1808.10i −0.565986 + 0.166188i −0.552193 0.833716i \(-0.686209\pi\)
−0.0137930 + 0.999905i \(0.504391\pi\)
\(492\) −56.9088 36.5731i −0.00521473 0.00335130i
\(493\) 618.030 + 4298.49i 0.0564598 + 0.392686i
\(494\) 3383.02 + 7407.78i 0.308116 + 0.674680i
\(495\) 151.430 + 331.586i 0.0137501 + 0.0301084i
\(496\) 1313.68 + 9136.86i 0.118923 + 0.827131i
\(497\) 11051.8 + 7102.56i 0.997466 + 0.641033i
\(498\) −15283.5 + 4487.63i −1.37524 + 0.403807i
\(499\) −1112.32 + 7736.34i −0.0997879 + 0.694040i 0.877103 + 0.480302i \(0.159473\pi\)
−0.976891 + 0.213738i \(0.931436\pi\)
\(500\) 44.5971 51.4678i 0.00398889 0.00460342i
\(501\) 3419.25 2197.42i 0.304912 0.195955i
\(502\) 10365.0 + 11961.8i 0.921535 + 1.06351i
\(503\) −10465.3 3072.90i −0.927688 0.272394i −0.217219 0.976123i \(-0.569699\pi\)
−0.710468 + 0.703729i \(0.751517\pi\)
\(504\) −341.986 + 748.844i −0.0302247 + 0.0661829i
\(505\) −3699.68 −0.326007
\(506\) −11288.7 8761.78i −0.991787 0.769780i
\(507\) −7787.54 −0.682163
\(508\) −35.0021 + 76.6439i −0.00305702 + 0.00669394i
\(509\) 17282.1 + 5074.50i 1.50495 + 0.441892i 0.927276 0.374378i \(-0.122144\pi\)
0.577670 + 0.816270i \(0.303962\pi\)
\(510\) −3910.47 4512.93i −0.339527 0.391835i
\(511\) −3786.48 + 2433.43i −0.327797 + 0.210662i
\(512\) −8210.05 + 9474.90i −0.708665 + 0.817843i
\(513\) 2390.58 16626.9i 0.205744 1.43098i
\(514\) 4231.39 1242.45i 0.363110 0.106619i
\(515\) −4505.88 2895.75i −0.385540 0.247771i
\(516\) 117.094 + 814.404i 0.00998984 + 0.0694809i
\(517\) −4917.06 10766.9i −0.418282 0.915910i
\(518\) 7115.10 + 15579.9i 0.603513 + 1.32151i
\(519\) 1553.88 + 10807.4i 0.131421 + 0.914054i
\(520\) −2509.16 1612.54i −0.211604 0.135989i
\(521\) −15733.3 + 4619.71i −1.32301 + 0.388470i −0.865577 0.500775i \(-0.833048\pi\)
−0.457431 + 0.889245i \(0.651230\pi\)
\(522\) −29.9134 + 208.052i −0.00250819 + 0.0174448i
\(523\) −1522.29 + 1756.81i −0.127275 + 0.146883i −0.815810 0.578320i \(-0.803709\pi\)
0.688535 + 0.725203i \(0.258254\pi\)
\(524\) −619.073 + 397.854i −0.0516113 + 0.0331686i
\(525\) −1897.11 2189.38i −0.157708 0.182004i
\(526\) 18651.3 + 5476.52i 1.54607 + 0.453968i
\(527\) −5600.97 + 12264.4i −0.462964 + 1.01375i
\(528\) 14208.6 1.17112
\(529\) 3018.82 + 11786.5i 0.248116 + 0.968730i
\(530\) −10165.4 −0.833127
\(531\) 251.516 550.743i 0.0205553 0.0450098i
\(532\) 1400.32 + 411.171i 0.114120 + 0.0335085i
\(533\) 411.997 + 475.470i 0.0334814 + 0.0386396i
\(534\) 10532.1 6768.58i 0.853501 0.548512i
\(535\) −4820.68 + 5563.36i −0.389563 + 0.449579i
\(536\) 2643.41 18385.3i 0.213019 1.48158i
\(537\) −3235.13 + 949.920i −0.259974 + 0.0763354i
\(538\) 15615.3 + 10035.3i 1.25134 + 0.804189i
\(539\) 1244.73 + 8657.27i 0.0994697 + 0.691827i
\(540\) 162.952 + 356.816i 0.0129858 + 0.0284350i
\(541\) −6248.81 13683.0i −0.496594 1.08739i −0.977561 0.210651i \(-0.932442\pi\)
0.480967 0.876739i \(-0.340286\pi\)
\(542\) −568.812 3956.18i −0.0450786 0.313528i
\(543\) −4104.02 2637.50i −0.324347 0.208445i
\(544\) −2046.93 + 601.034i −0.161326 + 0.0473697i
\(545\) 483.630 3363.72i 0.0380118 0.264378i
\(546\) −5297.61 + 6113.77i −0.415233 + 0.479204i
\(547\) 5186.77 3333.33i 0.405430 0.260554i −0.321995 0.946741i \(-0.604353\pi\)
0.727425 + 0.686187i \(0.240717\pi\)
\(548\) −150.484 173.668i −0.0117306 0.0135378i
\(549\) −57.7046 16.9436i −0.00448592 0.00131719i
\(550\) 1345.43 2946.09i 0.104308 0.228403i
\(551\) 5844.27 0.451859
\(552\) −10258.8 7962.38i −0.791017 0.613951i
\(553\) −6898.38 −0.530468
\(554\) −3064.44 + 6710.18i −0.235010 + 0.514600i
\(555\) 6612.96 + 1941.74i 0.505774 + 0.148509i
\(556\) −718.924 829.683i −0.0548367 0.0632849i
\(557\) 2792.26 1794.47i 0.212409 0.136507i −0.430111 0.902776i \(-0.641525\pi\)
0.642520 + 0.766269i \(0.277889\pi\)
\(558\) −427.352 + 493.191i −0.0324216 + 0.0374165i
\(559\) 1089.00 7574.13i 0.0823964 0.573080i
\(560\) 6537.89 1919.70i 0.493351 0.144861i
\(561\) 17459.0 + 11220.2i 1.31394 + 0.844416i
\(562\) −1689.79 11752.8i −0.126832 0.882136i
\(563\) 4042.05 + 8850.85i 0.302579 + 0.662555i 0.998453 0.0556087i \(-0.0177099\pi\)
−0.695874 + 0.718164i \(0.744983\pi\)
\(564\) −284.906 623.856i −0.0212707 0.0465764i
\(565\) −1664.75 11578.6i −0.123959 0.862151i
\(566\) −17417.1 11193.3i −1.29345 0.831251i
\(567\) 15096.4 4432.70i 1.11815 0.328317i
\(568\) −1899.52 + 13211.4i −0.140321 + 0.975951i
\(569\) −3982.47 + 4596.01i −0.293416 + 0.338620i −0.883248 0.468906i \(-0.844648\pi\)
0.589832 + 0.807526i \(0.299194\pi\)
\(570\) −6760.49 + 4344.71i −0.496782 + 0.319263i
\(571\) −9218.18 10638.3i −0.675602 0.779686i 0.309640 0.950854i \(-0.399792\pi\)
−0.985242 + 0.171168i \(0.945246\pi\)
\(572\) 634.161 + 186.207i 0.0463560 + 0.0136113i
\(573\) −5442.20 + 11916.8i −0.396773 + 0.868813i
\(574\) −1542.84 −0.112189
\(575\) −2442.96 + 1279.19i −0.177180 + 0.0927754i
\(576\) −832.750 −0.0602394
\(577\) −8770.36 + 19204.4i −0.632781 + 1.38560i 0.273067 + 0.961995i \(0.411962\pi\)
−0.905848 + 0.423603i \(0.860765\pi\)
\(578\) 6812.98 + 2000.47i 0.490281 + 0.143960i
\(579\) −5842.86 6743.02i −0.419380 0.483990i
\(580\) −114.810 + 73.7842i −0.00821938 + 0.00528228i
\(581\) 17385.4 20063.9i 1.24143 1.43268i
\(582\) −3223.76 + 22421.7i −0.229603 + 1.59693i
\(583\) 33898.3 9953.44i 2.40810 0.707083i
\(584\) −3847.01 2472.33i −0.272587 0.175181i
\(585\) −27.9556 194.436i −0.00197577 0.0137418i
\(586\) 2343.58 + 5131.72i 0.165209 + 0.361757i
\(587\) −3465.68 7588.79i −0.243687 0.533599i 0.747782 0.663944i \(-0.231119\pi\)
−0.991469 + 0.130345i \(0.958392\pi\)
\(588\) 72.1224 + 501.622i 0.00505829 + 0.0351812i
\(589\) 15264.4 + 9809.81i 1.06784 + 0.686259i
\(590\) −5161.49 + 1515.55i −0.360161 + 0.105753i
\(591\) 1805.63 12558.4i 0.125674 0.874085i
\(592\) −10615.9 + 12251.4i −0.737010 + 0.850555i
\(593\) −596.124 + 383.106i −0.0412814 + 0.0265300i −0.561119 0.827735i \(-0.689629\pi\)
0.519837 + 0.854265i \(0.325993\pi\)
\(594\) 12216.6 + 14098.7i 0.843858 + 0.973864i
\(595\) 9549.46 + 2803.97i 0.657966 + 0.193196i
\(596\) 171.814 376.220i 0.0118083 0.0258567i
\(597\) 25218.2 1.72883
\(598\) 4506.59 + 6244.09i 0.308174 + 0.426990i
\(599\) 6804.52 0.464149 0.232075 0.972698i \(-0.425449\pi\)
0.232075 + 0.972698i \(0.425449\pi\)
\(600\) 1222.68 2677.29i 0.0831928 0.182167i
\(601\) 6065.57 + 1781.01i 0.411680 + 0.120880i 0.481013 0.876713i \(-0.340269\pi\)
−0.0693331 + 0.997594i \(0.522087\pi\)
\(602\) 12288.5 + 14181.7i 0.831963 + 0.960137i
\(603\) 1029.11 661.366i 0.0694998 0.0446648i
\(604\) −738.361 + 852.114i −0.0497408 + 0.0574040i
\(605\) −654.817 + 4554.35i −0.0440035 + 0.306051i
\(606\) −9781.92 + 2872.23i −0.655715 + 0.192535i
\(607\) 7289.93 + 4684.95i 0.487461 + 0.313272i 0.761184 0.648536i \(-0.224619\pi\)
−0.273722 + 0.961809i \(0.588255\pi\)
\(608\) 408.585 + 2841.77i 0.0272538 + 0.189555i
\(609\) 2411.69 + 5280.86i 0.160471 + 0.351382i
\(610\) 221.973 + 486.053i 0.0147335 + 0.0322618i
\(611\) 907.741 + 6313.48i 0.0601036 + 0.418029i
\(612\) −61.0446 39.2310i −0.00403200 0.00259121i
\(613\) −9912.49 + 2910.57i −0.653118 + 0.191773i −0.591472 0.806325i \(-0.701453\pi\)
−0.0616459 + 0.998098i \(0.519635\pi\)
\(614\) −897.597 + 6242.92i −0.0589968 + 0.410332i
\(615\) −406.559 + 469.194i −0.0266570 + 0.0307638i
\(616\) −21385.2 + 13743.4i −1.39876 + 0.898927i
\(617\) −10207.7 11780.3i −0.666039 0.768650i 0.317712 0.948187i \(-0.397086\pi\)
−0.983751 + 0.179537i \(0.942540\pi\)
\(618\) −14161.6 4158.22i −0.921785 0.270661i
\(619\) 8288.12 18148.4i 0.538171 1.17843i −0.423920 0.905700i \(-0.639346\pi\)
0.962091 0.272730i \(-0.0879265\pi\)
\(620\) −423.717 −0.0274466
\(621\) −856.788 15860.6i −0.0553651 1.02490i
\(622\) −17798.7 −1.14737
\(623\) −8668.17 + 18980.7i −0.557437 + 1.22062i
\(624\) −7346.52 2157.13i −0.471308 0.138388i
\(625\) −409.288 472.343i −0.0261944 0.0302300i
\(626\) 13014.5 8363.92i 0.830934 0.534009i
\(627\) 18289.9 21107.7i 1.16496 1.34443i
\(628\) −131.292 + 913.153i −0.00834252 + 0.0580235i
\(629\) −22719.0 + 6670.91i −1.44017 + 0.422872i
\(630\) 405.247 + 260.437i 0.0256277 + 0.0164699i
\(631\) 3119.78 + 21698.5i 0.196825 + 1.36895i 0.813425 + 0.581670i \(0.197600\pi\)
−0.616600 + 0.787276i \(0.711491\pi\)
\(632\) −2911.50 6375.30i −0.183249 0.401259i
\(633\) −8910.92 19512.2i −0.559522 1.22518i
\(634\) −3027.80 21058.8i −0.189668 1.31917i
\(635\) 650.520 + 418.064i 0.0406537 + 0.0261265i
\(636\) 1964.15 576.726i 0.122458 0.0359570i
\(637\) 670.753 4665.19i 0.0417209 0.290175i
\(638\) −4250.36 + 4905.17i −0.263751 + 0.304385i
\(639\) −739.500 + 475.248i −0.0457812 + 0.0294218i
\(640\) 4200.53 + 4847.67i 0.259438 + 0.299408i
\(641\) 6011.23 + 1765.06i 0.370404 + 0.108761i 0.461637 0.887069i \(-0.347262\pi\)
−0.0912323 + 0.995830i \(0.529081\pi\)
\(642\) −8426.73 + 18452.0i −0.518032 + 1.13433i
\(643\) 3690.87 0.226367 0.113183 0.993574i \(-0.463895\pi\)
0.113183 + 0.993574i \(0.463895\pi\)
\(644\) 1374.57 + 122.429i 0.0841084 + 0.00749125i
\(645\) 7551.01 0.460962
\(646\) 11469.1 25113.7i 0.698520 1.52955i
\(647\) −5360.65 1574.03i −0.325732 0.0956436i 0.114778 0.993391i \(-0.463384\pi\)
−0.440510 + 0.897748i \(0.645202\pi\)
\(648\) 10468.1 + 12080.8i 0.634607 + 0.732376i
\(649\) 15727.9 10107.7i 0.951271 0.611345i
\(650\) −1142.92 + 1319.01i −0.0689680 + 0.0795933i
\(651\) −2565.14 + 17840.9i −0.154433 + 1.07410i
\(652\) 91.7198 26.9314i 0.00550924 0.00161766i
\(653\) −13521.9 8689.98i −0.810340 0.520774i 0.0686351 0.997642i \(-0.478136\pi\)
−0.878975 + 0.476868i \(0.841772\pi\)
\(654\) −1332.70 9269.11i −0.0796828 0.554206i
\(655\) 2805.56 + 6143.31i 0.167362 + 0.366472i
\(656\) −606.611 1328.29i −0.0361039 0.0790565i
\(657\) −42.8613 298.107i −0.00254517 0.0177021i
\(658\) −13158.7 8456.58i −0.779604 0.501021i
\(659\) −6576.44 + 1931.02i −0.388743 + 0.114145i −0.470263 0.882526i \(-0.655841\pi\)
0.0815197 + 0.996672i \(0.474023\pi\)
\(660\) −92.8191 + 645.571i −0.00547421 + 0.0380740i
\(661\) 5233.37 6039.64i 0.307950 0.355393i −0.580587 0.814198i \(-0.697177\pi\)
0.888537 + 0.458805i \(0.151722\pi\)
\(662\) 15106.2 9708.14i 0.886884 0.569966i
\(663\) −7323.68 8451.98i −0.429002 0.495095i
\(664\) 25880.1 + 7599.09i 1.51257 + 0.444129i
\(665\) 5564.04 12183.5i 0.324457 0.710463i
\(666\) −1146.05 −0.0666796
\(667\) 5419.58 1080.38i 0.314613 0.0627171i
\(668\) −438.827 −0.0254173
\(669\) −9242.70 + 20238.7i −0.534145 + 1.16962i
\(670\) −10428.6 3062.10i −0.601329 0.176566i
\(671\) −1216.13 1403.48i −0.0699672 0.0807465i
\(672\) −2399.21 + 1541.88i −0.137726 + 0.0885109i
\(673\) 16908.7 19513.7i 0.968474 1.11768i −0.0245417 0.999699i \(-0.507813\pi\)
0.993016 0.117980i \(-0.0376419\pi\)
\(674\) −1411.88 + 9819.88i −0.0806881 + 0.561198i
\(675\) 3454.16 1014.23i 0.196964 0.0578338i
\(676\) 707.321 + 454.568i 0.0402436 + 0.0258630i
\(677\) −1252.37 8710.43i −0.0710968 0.494489i −0.993993 0.109441i \(-0.965094\pi\)
0.922897 0.385048i \(-0.125815\pi\)
\(678\) −13390.6 29321.2i −0.758498 1.66088i
\(679\) −15683.8 34342.7i −0.886434 1.94102i
\(680\) 1439.05 + 10008.8i 0.0811543 + 0.564440i
\(681\) 10347.2 + 6649.71i 0.582238 + 0.374181i
\(682\) −19334.8 + 5677.21i −1.08558 + 0.318756i
\(683\) 932.636 6486.63i 0.0522494 0.363403i −0.946876 0.321598i \(-0.895780\pi\)
0.999126 0.0418048i \(-0.0133108\pi\)
\(684\) −63.9500 + 73.8022i −0.00357484 + 0.00412558i
\(685\) −1774.15 + 1140.18i −0.0989589 + 0.0635970i
\(686\) −6514.74 7518.41i −0.362586 0.418447i
\(687\) 1523.26 + 447.271i 0.0845941 + 0.0248391i
\(688\) −7378.03 + 16155.6i −0.408844 + 0.895244i
\(689\) −19038.2 −1.05268
\(690\) −5466.07 + 5278.74i −0.301579 + 0.291244i
\(691\) −20490.1 −1.12805 −0.564024 0.825758i \(-0.690748\pi\)
−0.564024 + 0.825758i \(0.690748\pi\)
\(692\) 489.709 1072.31i 0.0269016 0.0589063i
\(693\) −1606.37 471.674i −0.0880535 0.0258548i
\(694\) −16861.1 19458.7i −0.922244 1.06433i
\(695\) −8475.85 + 5447.10i −0.462600 + 0.297295i
\(696\) −3862.56 + 4457.64i −0.210359 + 0.242768i
\(697\) 303.542 2111.18i 0.0164957 0.114730i
\(698\) 6058.46 1778.92i 0.328533 0.0964660i
\(699\) −9356.36 6012.97i −0.506281 0.325367i
\(700\) 44.5125 + 309.592i 0.00240345 + 0.0167164i
\(701\) 421.064 + 922.001i 0.0226867 + 0.0496769i 0.920636 0.390422i \(-0.127671\pi\)
−0.897949 + 0.440099i \(0.854943\pi\)
\(702\) −4176.10 9144.39i −0.224525 0.491642i
\(703\) 4534.92 + 31541.0i 0.243297 + 1.69217i
\(704\) −21632.3 13902.2i −1.15809 0.744261i
\(705\) −6039.25 + 1773.28i −0.322626 + 0.0947315i
\(706\) 1737.40 12083.9i 0.0926176 0.644169i
\(707\) 11127.2 12841.5i 0.591914 0.683105i
\(708\) 911.312 585.665i 0.0483746 0.0310885i
\(709\) −6216.52 7174.25i −0.329290 0.380021i 0.566829 0.823836i \(-0.308170\pi\)
−0.896118 + 0.443815i \(0.853625\pi\)
\(710\) 7493.81 + 2200.38i 0.396109 + 0.116308i
\(711\) 191.750 419.873i 0.0101142 0.0221469i
\(712\) −21199.9 −1.11587
\(713\) 15968.6 + 6275.18i 0.838750 + 0.329604i
\(714\) 27425.5 1.43750
\(715\) 2519.78 5517.54i 0.131796 0.288594i
\(716\) 349.286 + 102.560i 0.0182311 + 0.00535312i
\(717\) −9668.15 11157.6i −0.503576 0.581157i
\(718\) −19460.8 + 12506.7i −1.01152 + 0.650064i
\(719\) 6919.05 7985.00i 0.358883 0.414173i −0.547382 0.836883i \(-0.684376\pi\)
0.906265 + 0.422710i \(0.138921\pi\)
\(720\) −64.8861 + 451.293i −0.00335856 + 0.0233593i
\(721\) 23603.1 6930.49i 1.21918 0.357982i
\(722\) −15501.8 9962.39i −0.799053 0.513520i
\(723\) 2338.54 + 16264.9i 0.120292 + 0.836649i
\(724\) 218.804 + 479.113i 0.0112317 + 0.0245941i
\(725\) 520.306 + 1139.31i 0.0266533 + 0.0583627i
\(726\) 1804.42 + 12550.0i 0.0922429 + 0.641563i
\(727\) 10498.9 + 6747.24i 0.535602 + 0.344211i 0.780317 0.625385i \(-0.215058\pi\)
−0.244715 + 0.969595i \(0.578694\pi\)
\(728\) 13143.7 3859.34i 0.669145 0.196479i
\(729\) −2941.94 + 20461.6i −0.149466 + 1.03956i
\(730\) −1752.32 + 2022.28i −0.0888442 + 0.102532i
\(731\) −21823.6 + 14025.2i −1.10421 + 0.709630i
\(732\) −70.4651 81.3211i −0.00355801 0.00410617i
\(733\) −13786.5 4048.07i −0.694699 0.203982i −0.0847260 0.996404i \(-0.527001\pi\)
−0.609973 + 0.792422i \(0.708820\pi\)
\(734\) −8372.31 + 18332.8i −0.421019 + 0.921902i
\(735\) 4650.95 0.233405
\(736\) 904.227 + 2559.74i 0.0452857 + 0.128197i
\(737\) 37774.1 1.88796
\(738\) 42.8852 93.9054i 0.00213906 0.00468388i
\(739\) 21395.7 + 6282.33i 1.06502 + 0.312719i 0.766872 0.641800i \(-0.221812\pi\)
0.298151 + 0.954519i \(0.403630\pi\)
\(740\) −487.295 562.369i −0.0242072 0.0279366i
\(741\) −12661.3 + 8136.93i −0.627699 + 0.403397i
\(742\) 30573.7 35283.9i 1.51266 1.74571i
\(743\) 5664.17 39395.2i 0.279675 1.94518i −0.0440544 0.999029i \(-0.514027\pi\)
0.323729 0.946150i \(-0.395063\pi\)
\(744\) −17570.8 + 5159.24i −0.865827 + 0.254230i
\(745\) −3193.19 2052.14i −0.157033 0.100919i
\(746\) 2200.40 + 15304.1i 0.107992 + 0.751104i
\(747\) 737.946 + 1615.88i 0.0361446 + 0.0791457i
\(748\) −930.815 2038.20i −0.0455000 0.0996310i
\(749\) −4811.53 33464.9i −0.234726 1.63255i
\(750\) −1448.85 931.122i −0.0705396 0.0453330i
\(751\) 36807.5 10807.6i 1.78845 0.525135i 0.792089 0.610406i \(-0.208994\pi\)
0.996358 + 0.0852707i \(0.0271755\pi\)
\(752\) 2106.90 14653.8i 0.102169 0.710598i
\(753\) −19155.6 + 22106.8i −0.927053 + 1.06988i
\(754\) 2942.33 1890.92i 0.142113 0.0913307i
\(755\) 6776.27 + 7820.23i 0.326641 + 0.376963i
\(756\) −1728.60 507.562i −0.0831594 0.0244178i
\(757\) −12968.7 + 28397.5i −0.622663 + 1.36344i 0.290903 + 0.956753i \(0.406044\pi\)
−0.913566 + 0.406690i \(0.866683\pi\)
\(758\) 3793.08 0.181756
\(759\) 13058.9 22955.0i 0.624515 1.09778i
\(760\) 13608.0 0.649494
\(761\) −3597.55 + 7877.53i −0.171368 + 0.375243i −0.975756 0.218861i \(-0.929766\pi\)
0.804388 + 0.594104i \(0.202493\pi\)
\(762\) 2044.53 + 600.328i 0.0971988 + 0.0285401i
\(763\) 10220.8 + 11795.5i 0.484953 + 0.559666i
\(764\) 1189.90 764.699i 0.0563467 0.0362118i