Properties

Label 115.4.g.a.6.3
Level $115$
Weight $4$
Character 115.6
Analytic conductor $6.785$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(6,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 18]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.g (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78521965066\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 6.3
Character \(\chi\) \(=\) 115.6
Dual form 115.4.g.a.96.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.54534 + 3.38383i) q^{2} +(4.29324 + 1.26061i) q^{3} +(-3.82332 - 4.41235i) q^{4} +(4.20627 - 2.70320i) q^{5} +(-10.9002 + 12.5795i) q^{6} +(-1.59229 + 11.0746i) q^{7} +(-7.71551 + 2.26548i) q^{8} +(-5.87108 - 3.77311i) q^{9} +O(q^{10})\) \(q+(-1.54534 + 3.38383i) q^{2} +(4.29324 + 1.26061i) q^{3} +(-3.82332 - 4.41235i) q^{4} +(4.20627 - 2.70320i) q^{5} +(-10.9002 + 12.5795i) q^{6} +(-1.59229 + 11.0746i) q^{7} +(-7.71551 + 2.26548i) q^{8} +(-5.87108 - 3.77311i) q^{9} +(2.64705 + 18.4107i) q^{10} +(16.8650 + 36.9291i) q^{11} +(-10.8522 - 23.7630i) q^{12} +(10.1224 + 70.4026i) q^{13} +(-35.0139 - 22.5021i) q^{14} +(21.4662 - 6.30304i) q^{15} +(10.9042 - 75.8405i) q^{16} +(-55.9075 + 64.5207i) q^{17} +(21.8404 - 14.0360i) q^{18} +(-5.60580 - 6.46943i) q^{19} +(-28.0094 - 8.22430i) q^{20} +(-20.7968 + 45.5386i) q^{21} -151.024 q^{22} +(79.7668 - 76.1856i) q^{23} -35.9804 q^{24} +(10.3854 - 22.7408i) q^{25} +(-253.873 - 74.5438i) q^{26} +(-99.5640 - 114.903i) q^{27} +(54.9528 - 35.3160i) q^{28} +(160.537 - 185.270i) q^{29} +(-11.8442 + 82.3783i) q^{30} +(-260.087 + 76.3684i) q^{31} +(185.663 + 119.318i) q^{32} +(25.8521 + 179.806i) q^{33} +(-131.931 - 288.888i) q^{34} +(23.2393 + 50.8870i) q^{35} +(5.79873 + 40.3311i) q^{36} +(301.945 + 194.048i) q^{37} +(30.5543 - 8.97156i) q^{38} +(-45.2924 + 315.015i) q^{39} +(-26.3294 + 30.3858i) q^{40} +(36.0852 - 23.1905i) q^{41} +(-121.957 - 140.746i) q^{42} +(319.198 + 93.7251i) q^{43} +(98.4639 - 215.606i) q^{44} -34.8948 q^{45} +(134.532 + 387.650i) q^{46} +27.2797 q^{47} +(142.420 - 311.855i) q^{48} +(208.995 + 61.3664i) q^{49} +(60.9020 + 70.2847i) q^{50} +(-321.360 + 206.525i) q^{51} +(271.940 - 313.835i) q^{52} +(100.461 - 698.725i) q^{53} +(542.672 - 159.343i) q^{54} +(170.765 + 109.744i) q^{55} +(-12.8039 - 89.0534i) q^{56} +(-15.9116 - 34.8415i) q^{57} +(378.837 + 829.537i) q^{58} +(49.5248 + 344.452i) q^{59} +(-109.883 - 70.6178i) q^{60} +(-147.816 + 43.4027i) q^{61} +(143.506 - 998.105i) q^{62} +(51.1341 - 59.0119i) q^{63} +(-175.007 + 112.470i) q^{64} +(232.890 + 268.769i) q^{65} +(-648.382 - 190.382i) q^{66} +(106.610 - 233.444i) q^{67} +498.440 q^{68} +(438.498 - 226.528i) q^{69} -208.105 q^{70} +(15.8496 - 34.7058i) q^{71} +(53.8462 + 15.8107i) q^{72} +(690.690 + 797.099i) q^{73} +(-1123.23 + 721.859i) q^{74} +(73.2542 - 84.5398i) q^{75} +(-7.11264 + 49.4695i) q^{76} +(-435.829 + 127.971i) q^{77} +(-995.966 - 640.068i) q^{78} +(-9.65990 - 67.1861i) q^{79} +(-159.146 - 348.482i) q^{80} +(-204.327 - 447.414i) q^{81} +(22.7088 + 157.943i) q^{82} +(-668.821 - 429.825i) q^{83} +(280.445 - 82.3462i) q^{84} +(-60.7493 + 422.521i) q^{85} +(-810.420 + 935.275i) q^{86} +(922.779 - 593.034i) q^{87} +(-213.784 - 246.720i) q^{88} +(-622.552 - 182.798i) q^{89} +(53.9244 - 118.078i) q^{90} -795.798 q^{91} +(-641.132 - 60.6768i) q^{92} -1212.89 q^{93} +(-42.1565 + 92.3098i) q^{94} +(-41.0677 - 12.0586i) q^{95} +(646.681 + 746.309i) q^{96} +(-571.497 + 367.279i) q^{97} +(-530.622 + 612.370i) q^{98} +(40.3222 - 280.447i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9} - 10 q^{10} + 2 q^{11} - 57 q^{12} + 34 q^{13} - 154 q^{14} + 30 q^{15} + 16 q^{16} + 252 q^{17} - 33 q^{18} - 160 q^{19} - 200 q^{20} - 684 q^{21} - 704 q^{22} + 127 q^{23} - 3090 q^{24} - 275 q^{25} - 567 q^{26} + 384 q^{27} - 188 q^{28} + 340 q^{29} - 15 q^{30} + 582 q^{31} - 1364 q^{32} + 1760 q^{33} + 1819 q^{34} + 665 q^{35} + 2794 q^{36} + 312 q^{37} + 3123 q^{38} - 1560 q^{39} - 1205 q^{40} + 1324 q^{41} + 1454 q^{42} - 1740 q^{43} - 369 q^{44} + 3730 q^{45} - 4322 q^{46} - 2858 q^{47} - 2686 q^{48} + 2015 q^{49} - 325 q^{50} - 1426 q^{51} + 1717 q^{52} + 882 q^{53} + 2541 q^{54} + 450 q^{55} + 7755 q^{56} + 3688 q^{57} + 6622 q^{58} + 2605 q^{59} + 1530 q^{60} - 104 q^{61} - 9360 q^{62} - 7618 q^{63} + 3483 q^{64} + 170 q^{65} - 1766 q^{66} - 166 q^{67} - 5018 q^{68} - 1194 q^{69} - 770 q^{70} - 1222 q^{71} + 3303 q^{72} - 922 q^{73} + 1245 q^{74} + 150 q^{75} + 1360 q^{76} - 3093 q^{77} - 1600 q^{78} + 2448 q^{79} + 2115 q^{80} - 1371 q^{81} + 6609 q^{82} + 6704 q^{83} + 3894 q^{84} - 720 q^{85} - 5074 q^{86} - 6324 q^{87} + 1918 q^{88} - 5380 q^{89} - 165 q^{90} + 7828 q^{91} - 16225 q^{92} - 24948 q^{93} - 16490 q^{94} + 685 q^{95} + 675 q^{96} - 4400 q^{97} + 8790 q^{98} - 3626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.54534 + 3.38383i −0.546361 + 1.19636i 0.412099 + 0.911139i \(0.364796\pi\)
−0.958461 + 0.285225i \(0.907932\pi\)
\(3\) 4.29324 + 1.26061i 0.826234 + 0.242604i 0.667399 0.744701i \(-0.267408\pi\)
0.158836 + 0.987305i \(0.449226\pi\)
\(4\) −3.82332 4.41235i −0.477915 0.551544i
\(5\) 4.20627 2.70320i 0.376220 0.241782i
\(6\) −10.9002 + 12.5795i −0.741665 + 0.855927i
\(7\) −1.59229 + 11.0746i −0.0859754 + 0.597972i 0.900598 + 0.434653i \(0.143129\pi\)
−0.986573 + 0.163319i \(0.947780\pi\)
\(8\) −7.71551 + 2.26548i −0.340980 + 0.100121i
\(9\) −5.87108 3.77311i −0.217447 0.139745i
\(10\) 2.64705 + 18.4107i 0.0837072 + 0.582196i
\(11\) 16.8650 + 36.9291i 0.462270 + 1.01223i 0.986964 + 0.160940i \(0.0514526\pi\)
−0.524694 + 0.851291i \(0.675820\pi\)
\(12\) −10.8522 23.7630i −0.261063 0.571649i
\(13\) 10.1224 + 70.4026i 0.215957 + 1.50201i 0.752754 + 0.658301i \(0.228725\pi\)
−0.536798 + 0.843711i \(0.680366\pi\)
\(14\) −35.0139 22.5021i −0.668418 0.429566i
\(15\) 21.4662 6.30304i 0.369503 0.108496i
\(16\) 10.9042 75.8405i 0.170378 1.18501i
\(17\) −55.9075 + 64.5207i −0.797621 + 0.920504i −0.998248 0.0591637i \(-0.981157\pi\)
0.200627 + 0.979668i \(0.435702\pi\)
\(18\) 21.8404 14.0360i 0.285990 0.183795i
\(19\) −5.60580 6.46943i −0.0676873 0.0781153i 0.720896 0.693043i \(-0.243731\pi\)
−0.788583 + 0.614928i \(0.789185\pi\)
\(20\) −28.0094 8.22430i −0.313155 0.0919505i
\(21\) −20.7968 + 45.5386i −0.216106 + 0.473207i
\(22\) −151.024 −1.46356
\(23\) 79.7668 76.1856i 0.723154 0.690687i
\(24\) −35.9804 −0.306019
\(25\) 10.3854 22.7408i 0.0830830 0.181926i
\(26\) −253.873 74.5438i −1.91494 0.562278i
\(27\) −99.5640 114.903i −0.709670 0.819003i
\(28\) 54.9528 35.3160i 0.370897 0.238361i
\(29\) 160.537 185.270i 1.02797 1.18634i 0.0456801 0.998956i \(-0.485455\pi\)
0.982287 0.187381i \(-0.0600000\pi\)
\(30\) −11.8442 + 82.3783i −0.0720816 + 0.501338i
\(31\) −260.087 + 76.3684i −1.50687 + 0.442457i −0.927881 0.372877i \(-0.878371\pi\)
−0.578990 + 0.815334i \(0.696553\pi\)
\(32\) 185.663 + 119.318i 1.02565 + 0.659146i
\(33\) 25.8521 + 179.806i 0.136372 + 0.948489i
\(34\) −131.931 288.888i −0.665469 1.45717i
\(35\) 23.2393 + 50.8870i 0.112233 + 0.245756i
\(36\) 5.79873 + 40.3311i 0.0268460 + 0.186718i
\(37\) 301.945 + 194.048i 1.34161 + 0.862199i 0.997064 0.0765720i \(-0.0243975\pi\)
0.344543 + 0.938771i \(0.388034\pi\)
\(38\) 30.5543 8.97156i 0.130436 0.0382995i
\(39\) −45.2924 + 315.015i −0.185964 + 1.29341i
\(40\) −26.3294 + 30.3858i −0.104076 + 0.120110i
\(41\) 36.0852 23.1905i 0.137453 0.0883354i −0.470107 0.882609i \(-0.655785\pi\)
0.607560 + 0.794274i \(0.292148\pi\)
\(42\) −121.957 140.746i −0.448056 0.517084i
\(43\) 319.198 + 93.7251i 1.13203 + 0.332394i 0.793505 0.608564i \(-0.208254\pi\)
0.338525 + 0.940958i \(0.390072\pi\)
\(44\) 98.4639 215.606i 0.337364 0.738723i
\(45\) −34.8948 −0.115596
\(46\) 134.532 + 387.650i 0.431210 + 1.24252i
\(47\) 27.2797 0.0846628 0.0423314 0.999104i \(-0.486521\pi\)
0.0423314 + 0.999104i \(0.486521\pi\)
\(48\) 142.420 311.855i 0.428260 0.937759i
\(49\) 208.995 + 61.3664i 0.609314 + 0.178911i
\(50\) 60.9020 + 70.2847i 0.172257 + 0.198795i
\(51\) −321.360 + 206.525i −0.882340 + 0.567046i
\(52\) 271.940 313.835i 0.725217 0.836945i
\(53\) 100.461 698.725i 0.260367 1.81089i −0.269710 0.962942i \(-0.586928\pi\)
0.530077 0.847950i \(-0.322163\pi\)
\(54\) 542.672 159.343i 1.36756 0.401553i
\(55\) 170.765 + 109.744i 0.418655 + 0.269053i
\(56\) −12.8039 89.0534i −0.0305536 0.212505i
\(57\) −15.9116 34.8415i −0.0369744 0.0809627i
\(58\) 378.837 + 829.537i 0.857650 + 1.87799i
\(59\) 49.5248 + 344.452i 0.109281 + 0.760066i 0.968600 + 0.248625i \(0.0799788\pi\)
−0.859319 + 0.511440i \(0.829112\pi\)
\(60\) −109.883 70.6178i −0.236432 0.151945i
\(61\) −147.816 + 43.4027i −0.310261 + 0.0911007i −0.433156 0.901319i \(-0.642600\pi\)
0.122896 + 0.992420i \(0.460782\pi\)
\(62\) 143.506 998.105i 0.293956 2.04451i
\(63\) 51.1341 59.0119i 0.102259 0.118013i
\(64\) −175.007 + 112.470i −0.341811 + 0.219669i
\(65\) 232.890 + 268.769i 0.444407 + 0.512873i
\(66\) −648.382 190.382i −1.20925 0.355067i
\(67\) 106.610 233.444i 0.194396 0.425668i −0.787184 0.616718i \(-0.788462\pi\)
0.981580 + 0.191050i \(0.0611892\pi\)
\(68\) 498.440 0.888894
\(69\) 438.498 226.528i 0.765058 0.395229i
\(70\) −208.105 −0.355334
\(71\) 15.8496 34.7058i 0.0264930 0.0580115i −0.895923 0.444210i \(-0.853485\pi\)
0.922416 + 0.386198i \(0.126212\pi\)
\(72\) 53.8462 + 15.8107i 0.0881367 + 0.0258793i
\(73\) 690.690 + 797.099i 1.10739 + 1.27799i 0.957230 + 0.289330i \(0.0934324\pi\)
0.150157 + 0.988662i \(0.452022\pi\)
\(74\) −1123.23 + 721.859i −1.76451 + 1.13398i
\(75\) 73.2542 84.5398i 0.112782 0.130158i
\(76\) −7.11264 + 49.4695i −0.0107352 + 0.0746650i
\(77\) −435.829 + 127.971i −0.645030 + 0.189398i
\(78\) −995.966 640.068i −1.44578 0.929147i
\(79\) −9.65990 67.1861i −0.0137573 0.0956838i 0.981786 0.189990i \(-0.0608457\pi\)
−0.995543 + 0.0943066i \(0.969937\pi\)
\(80\) −159.146 348.482i −0.222414 0.487018i
\(81\) −204.327 447.414i −0.280284 0.613736i
\(82\) 22.7088 + 157.943i 0.0305826 + 0.212706i
\(83\) −668.821 429.825i −0.884489 0.568427i 0.0176632 0.999844i \(-0.494377\pi\)
−0.902153 + 0.431417i \(0.858014\pi\)
\(84\) 280.445 82.3462i 0.364275 0.106961i
\(85\) −60.7493 + 422.521i −0.0775199 + 0.539162i
\(86\) −810.420 + 935.275i −1.01616 + 1.17271i
\(87\) 922.779 593.034i 1.13715 0.730803i
\(88\) −213.784 246.720i −0.258971 0.298868i
\(89\) −622.552 182.798i −0.741465 0.217714i −0.110880 0.993834i \(-0.535367\pi\)
−0.630585 + 0.776120i \(0.717185\pi\)
\(90\) 53.9244 118.078i 0.0631571 0.138295i
\(91\) −795.798 −0.916728
\(92\) −641.132 60.6768i −0.726551 0.0687608i
\(93\) −1212.89 −1.35237
\(94\) −42.1565 + 92.3098i −0.0462565 + 0.101288i
\(95\) −41.0677 12.0586i −0.0443522 0.0130230i
\(96\) 646.681 + 746.309i 0.687517 + 0.793436i
\(97\) −571.497 + 367.279i −0.598214 + 0.384449i −0.804421 0.594060i \(-0.797524\pi\)
0.206207 + 0.978508i \(0.433888\pi\)
\(98\) −530.622 + 612.370i −0.546948 + 0.631212i
\(99\) 40.3222 280.447i 0.0409347 0.284707i
\(100\) −140.047 + 41.1215i −0.140047 + 0.0411215i
\(101\) 368.315 + 236.702i 0.362859 + 0.233195i 0.709347 0.704859i \(-0.248990\pi\)
−0.346489 + 0.938054i \(0.612626\pi\)
\(102\) −202.235 1406.58i −0.196317 1.36541i
\(103\) −29.1591 63.8495i −0.0278945 0.0610803i 0.895172 0.445721i \(-0.147053\pi\)
−0.923066 + 0.384641i \(0.874325\pi\)
\(104\) −237.595 520.260i −0.224020 0.490535i
\(105\) 35.6233 + 247.766i 0.0331093 + 0.230281i
\(106\) 2209.12 + 1419.71i 2.02423 + 1.30089i
\(107\) 1209.23 355.063i 1.09253 0.320796i 0.314651 0.949208i \(-0.398113\pi\)
0.777881 + 0.628411i \(0.216294\pi\)
\(108\) −126.327 + 878.623i −0.112554 + 0.782829i
\(109\) 206.684 238.526i 0.181622 0.209603i −0.657637 0.753335i \(-0.728444\pi\)
0.839259 + 0.543732i \(0.182989\pi\)
\(110\) −635.247 + 408.248i −0.550622 + 0.353863i
\(111\) 1051.70 + 1213.73i 0.899309 + 1.03786i
\(112\) 822.540 + 241.520i 0.693953 + 0.203763i
\(113\) 769.006 1683.89i 0.640195 1.40183i −0.259686 0.965693i \(-0.583619\pi\)
0.899880 0.436137i \(-0.143654\pi\)
\(114\) 142.487 0.117062
\(115\) 129.575 536.083i 0.105069 0.434696i
\(116\) −1431.26 −1.14560
\(117\) 206.208 451.532i 0.162939 0.356787i
\(118\) −1242.10 364.714i −0.969022 0.284531i
\(119\) −625.520 721.888i −0.481860 0.556096i
\(120\) −151.343 + 97.2624i −0.115131 + 0.0739900i
\(121\) −207.712 + 239.712i −0.156057 + 0.180099i
\(122\) 81.5591 567.256i 0.0605247 0.420958i
\(123\) 184.156 54.0732i 0.134999 0.0396392i
\(124\) 1331.36 + 855.614i 0.964191 + 0.619648i
\(125\) −17.7894 123.728i −0.0127290 0.0885323i
\(126\) 120.666 + 264.223i 0.0853161 + 0.186816i
\(127\) 966.658 + 2116.69i 0.675410 + 1.47894i 0.867435 + 0.497551i \(0.165767\pi\)
−0.192025 + 0.981390i \(0.561505\pi\)
\(128\) 141.134 + 981.610i 0.0974580 + 0.677835i
\(129\) 1252.24 + 804.768i 0.854682 + 0.549271i
\(130\) −1269.36 + 372.719i −0.856389 + 0.251458i
\(131\) 56.5310 393.182i 0.0377033 0.262232i −0.962247 0.272177i \(-0.912256\pi\)
0.999951 + 0.00994455i \(0.00316550\pi\)
\(132\) 694.524 801.523i 0.457959 0.528513i
\(133\) 80.5724 51.7807i 0.0525302 0.0337591i
\(134\) 625.186 + 721.503i 0.403044 + 0.465137i
\(135\) −729.399 214.171i −0.465012 0.136540i
\(136\) 285.185 624.467i 0.179812 0.393732i
\(137\) −544.617 −0.339633 −0.169817 0.985476i \(-0.554318\pi\)
−0.169817 + 0.985476i \(0.554318\pi\)
\(138\) 88.9031 + 1833.87i 0.0548401 + 1.13123i
\(139\) 773.695 0.472115 0.236058 0.971739i \(-0.424145\pi\)
0.236058 + 0.971739i \(0.424145\pi\)
\(140\) 135.680 297.097i 0.0819074 0.179352i
\(141\) 117.118 + 34.3890i 0.0699513 + 0.0205396i
\(142\) 92.9453 + 107.265i 0.0549282 + 0.0633905i
\(143\) −2429.19 + 1561.15i −1.42055 + 0.912934i
\(144\) −350.174 + 404.122i −0.202647 + 0.233867i
\(145\) 174.441 1213.26i 0.0999069 0.694868i
\(146\) −3764.60 + 1105.39i −2.13398 + 0.626592i
\(147\) 819.906 + 526.921i 0.460032 + 0.295645i
\(148\) −298.224 2074.20i −0.165634 1.15201i
\(149\) −1423.77 3117.63i −0.782818 1.71413i −0.696150 0.717896i \(-0.745105\pi\)
−0.0866682 0.996237i \(-0.527622\pi\)
\(150\) 172.865 + 378.522i 0.0940960 + 0.206042i
\(151\) −93.6415 651.291i −0.0504665 0.351002i −0.999372 0.0354410i \(-0.988716\pi\)
0.948905 0.315561i \(-0.102193\pi\)
\(152\) 57.9079 + 37.2152i 0.0309010 + 0.0198589i
\(153\) 571.681 167.861i 0.302076 0.0886976i
\(154\) 240.473 1672.53i 0.125830 0.875170i
\(155\) −887.556 + 1024.29i −0.459937 + 0.530795i
\(156\) 1563.13 1004.56i 0.802245 0.515572i
\(157\) 1108.59 + 1279.38i 0.563537 + 0.650356i 0.963983 0.265964i \(-0.0856902\pi\)
−0.400446 + 0.916320i \(0.631145\pi\)
\(158\) 242.274 + 71.1380i 0.121989 + 0.0358192i
\(159\) 1312.12 2873.15i 0.654454 1.43305i
\(160\) 1103.49 0.545240
\(161\) 716.714 + 1004.69i 0.350838 + 0.491808i
\(162\) 1829.73 0.887388
\(163\) 710.367 1555.49i 0.341351 0.747454i −0.658636 0.752461i \(-0.728866\pi\)
0.999987 + 0.00500689i \(0.00159375\pi\)
\(164\) −240.290 70.5555i −0.114412 0.0335943i
\(165\) 594.792 + 686.427i 0.280633 + 0.323868i
\(166\) 2488.01 1598.95i 1.16330 0.747605i
\(167\) −1596.93 + 1842.96i −0.739967 + 0.853967i −0.993556 0.113345i \(-0.963844\pi\)
0.253589 + 0.967312i \(0.418389\pi\)
\(168\) 57.2911 398.468i 0.0263101 0.182991i
\(169\) −2746.06 + 806.315i −1.24991 + 0.367007i
\(170\) −1335.86 858.504i −0.602681 0.387319i
\(171\) 8.50216 + 59.1338i 0.00380220 + 0.0264449i
\(172\) −806.850 1766.76i −0.357685 0.783220i
\(173\) −682.301 1494.03i −0.299852 0.656584i 0.698399 0.715709i \(-0.253896\pi\)
−0.998251 + 0.0591249i \(0.981169\pi\)
\(174\) 580.715 + 4038.96i 0.253011 + 1.75973i
\(175\) 235.309 + 151.224i 0.101644 + 0.0653225i
\(176\) 2984.62 876.363i 1.27826 0.375332i
\(177\) −221.598 + 1541.25i −0.0941035 + 0.654505i
\(178\) 1580.61 1824.12i 0.665573 0.768112i
\(179\) 2389.38 1535.56i 0.997712 0.641191i 0.0635273 0.997980i \(-0.479765\pi\)
0.934185 + 0.356789i \(0.116129\pi\)
\(180\) 133.414 + 153.968i 0.0552450 + 0.0637562i
\(181\) −771.437 226.514i −0.316798 0.0930203i 0.119468 0.992838i \(-0.461881\pi\)
−0.436266 + 0.899818i \(0.643699\pi\)
\(182\) 1229.78 2692.84i 0.500865 1.09674i
\(183\) −689.323 −0.278449
\(184\) −442.845 + 768.521i −0.177429 + 0.307914i
\(185\) 1794.61 0.713203
\(186\) 1874.32 4104.20i 0.738883 1.61793i
\(187\) −3325.57 976.475i −1.30048 0.381855i
\(188\) −104.299 120.368i −0.0404617 0.0466953i
\(189\) 1431.04 919.673i 0.550755 0.353949i
\(190\) 104.268 120.331i 0.0398125 0.0459461i
\(191\) −489.575 + 3405.07i −0.185468 + 1.28996i 0.658098 + 0.752932i \(0.271361\pi\)
−0.843566 + 0.537026i \(0.819548\pi\)
\(192\) −893.130 + 262.247i −0.335709 + 0.0985730i
\(193\) −2645.25 1700.00i −0.986577 0.634034i −0.0553471 0.998467i \(-0.517627\pi\)
−0.931230 + 0.364433i \(0.881263\pi\)
\(194\) −359.650 2501.42i −0.133100 0.925729i
\(195\) 661.039 + 1447.47i 0.242759 + 0.531568i
\(196\) −528.285 1156.78i −0.192524 0.421568i
\(197\) 550.352 + 3827.78i 0.199040 + 1.38436i 0.807077 + 0.590447i \(0.201048\pi\)
−0.608036 + 0.793909i \(0.708043\pi\)
\(198\) 886.673 + 569.830i 0.318248 + 0.204525i
\(199\) −4572.72 + 1342.67i −1.62890 + 0.478289i −0.963392 0.268098i \(-0.913605\pi\)
−0.665512 + 0.746387i \(0.731787\pi\)
\(200\) −28.6097 + 198.985i −0.0101150 + 0.0703517i
\(201\) 751.986 867.838i 0.263886 0.304540i
\(202\) −1370.13 + 880.530i −0.477238 + 0.306702i
\(203\) 1796.17 + 2072.89i 0.621017 + 0.716691i
\(204\) 2139.92 + 628.338i 0.734434 + 0.215649i
\(205\) 89.0951 195.091i 0.0303545 0.0664671i
\(206\) 261.116 0.0883148
\(207\) −755.774 + 146.323i −0.253768 + 0.0491310i
\(208\) 5449.74 1.81669
\(209\) 144.369 316.124i 0.0477809 0.104626i
\(210\) −893.447 262.340i −0.293589 0.0862055i
\(211\) −1082.66 1249.46i −0.353239 0.407660i 0.551124 0.834423i \(-0.314199\pi\)
−0.904363 + 0.426763i \(0.859654\pi\)
\(212\) −3467.12 + 2228.18i −1.12322 + 0.721849i
\(213\) 111.797 129.020i 0.0359632 0.0415038i
\(214\) −667.207 + 4640.53i −0.213128 + 1.48234i
\(215\) 1595.99 468.625i 0.506259 0.148651i
\(216\) 1028.50 + 660.975i 0.323983 + 0.208211i
\(217\) −431.616 3001.96i −0.135023 0.939107i
\(218\) 487.734 + 1067.99i 0.151530 + 0.331804i
\(219\) 1960.47 + 4292.83i 0.604914 + 1.32458i
\(220\) −168.661 1173.06i −0.0516870 0.359491i
\(221\) −5108.34 3282.93i −1.55486 0.999248i
\(222\) −5732.30 + 1683.15i −1.73300 + 0.508856i
\(223\) −599.812 + 4171.79i −0.180118 + 1.25275i 0.676361 + 0.736570i \(0.263556\pi\)
−0.856480 + 0.516181i \(0.827353\pi\)
\(224\) −1617.03 + 1866.15i −0.482332 + 0.556640i
\(225\) −146.777 + 94.3278i −0.0434895 + 0.0279490i
\(226\) 4509.61 + 5204.37i 1.32732 + 1.53181i
\(227\) 2888.59 + 848.166i 0.844592 + 0.247995i 0.675274 0.737567i \(-0.264025\pi\)
0.169318 + 0.985562i \(0.445844\pi\)
\(228\) −92.8979 + 203.418i −0.0269838 + 0.0590864i
\(229\) 1632.50 0.471087 0.235543 0.971864i \(-0.424313\pi\)
0.235543 + 0.971864i \(0.424313\pi\)
\(230\) 1613.78 + 1266.89i 0.462649 + 0.363202i
\(231\) −2032.44 −0.578894
\(232\) −818.903 + 1793.15i −0.231740 + 0.507439i
\(233\) −4792.31 1407.15i −1.34745 0.395646i −0.473125 0.880995i \(-0.656874\pi\)
−0.874320 + 0.485350i \(0.838692\pi\)
\(234\) 1209.24 + 1395.54i 0.337824 + 0.389869i
\(235\) 114.746 73.7426i 0.0318519 0.0204699i
\(236\) 1330.50 1535.47i 0.366983 0.423520i
\(237\) 43.2231 300.623i 0.0118466 0.0823948i
\(238\) 3409.39 1001.09i 0.928562 0.272650i
\(239\) −1597.48 1026.64i −0.432354 0.277857i 0.306309 0.951932i \(-0.400906\pi\)
−0.738663 + 0.674075i \(0.764542\pi\)
\(240\) −243.954 1696.74i −0.0656131 0.456349i
\(241\) −1842.82 4035.22i −0.492559 1.07855i −0.978817 0.204739i \(-0.934366\pi\)
0.486257 0.873816i \(-0.338362\pi\)
\(242\) −490.159 1073.30i −0.130201 0.285100i
\(243\) 270.997 + 1884.82i 0.0715410 + 0.497579i
\(244\) 756.656 + 486.273i 0.198524 + 0.127584i
\(245\) 1044.97 306.832i 0.272494 0.0800114i
\(246\) −101.610 + 706.715i −0.0263351 + 0.183165i
\(247\) 398.721 460.149i 0.102713 0.118537i
\(248\) 1833.69 1178.44i 0.469514 0.301739i
\(249\) −2329.57 2688.46i −0.592893 0.684235i
\(250\) 446.164 + 131.006i 0.112872 + 0.0331421i
\(251\) 824.894 1806.27i 0.207438 0.454225i −0.777105 0.629371i \(-0.783313\pi\)
0.984542 + 0.175146i \(0.0560398\pi\)
\(252\) −455.884 −0.113960
\(253\) 4158.73 + 1660.85i 1.03343 + 0.412714i
\(254\) −8656.32 −2.13837
\(255\) −793.445 + 1737.40i −0.194853 + 0.426668i
\(256\) −5136.54 1508.22i −1.25404 0.368219i
\(257\) 1262.39 + 1456.88i 0.306404 + 0.353609i 0.887979 0.459884i \(-0.152109\pi\)
−0.581575 + 0.813493i \(0.697563\pi\)
\(258\) −4658.34 + 2993.74i −1.12409 + 0.722410i
\(259\) −2629.79 + 3034.94i −0.630916 + 0.728116i
\(260\) 295.491 2055.18i 0.0704829 0.490220i
\(261\) −1641.57 + 482.009i −0.389313 + 0.114313i
\(262\) 1243.10 + 798.891i 0.293126 + 0.188380i
\(263\) 115.412 + 802.706i 0.0270593 + 0.188201i 0.998868 0.0475695i \(-0.0151476\pi\)
−0.971809 + 0.235771i \(0.924238\pi\)
\(264\) −606.808 1328.72i −0.141464 0.309762i
\(265\) −1466.23 3210.59i −0.339886 0.744245i
\(266\) 50.7052 + 352.662i 0.0116877 + 0.0812899i
\(267\) −2442.33 1569.59i −0.559806 0.359765i
\(268\) −1437.64 + 422.131i −0.327680 + 0.0962154i
\(269\) 383.813 2669.48i 0.0869945 0.605060i −0.898958 0.438035i \(-0.855675\pi\)
0.985953 0.167025i \(-0.0534162\pi\)
\(270\) 1851.89 2137.19i 0.417416 0.481724i
\(271\) 3674.64 2361.55i 0.823685 0.529350i −0.0595804 0.998224i \(-0.518976\pi\)
0.883265 + 0.468873i \(0.155340\pi\)
\(272\) 4283.65 + 4943.60i 0.954907 + 1.10202i
\(273\) −3416.55 1003.19i −0.757432 0.222402i
\(274\) 841.619 1842.89i 0.185562 0.406325i
\(275\) 1014.95 0.222558
\(276\) −2676.04 1068.72i −0.583619 0.233077i
\(277\) −4560.64 −0.989251 −0.494625 0.869106i \(-0.664695\pi\)
−0.494625 + 0.869106i \(0.664695\pi\)
\(278\) −1195.62 + 2618.05i −0.257945 + 0.564821i
\(279\) 1815.14 + 532.972i 0.389496 + 0.114366i
\(280\) −294.586 339.971i −0.0628746 0.0725612i
\(281\) 612.430 393.585i 0.130016 0.0835563i −0.474016 0.880516i \(-0.657196\pi\)
0.604032 + 0.796960i \(0.293560\pi\)
\(282\) −297.354 + 343.165i −0.0627915 + 0.0724652i
\(283\) 173.834 1209.04i 0.0365136 0.253958i −0.963386 0.268118i \(-0.913598\pi\)
0.999900 + 0.0141601i \(0.00450744\pi\)
\(284\) −213.732 + 62.7574i −0.0446573 + 0.0131126i
\(285\) −161.112 103.541i −0.0334859 0.0215201i
\(286\) −1528.72 10632.5i −0.316066 2.19829i
\(287\) 199.368 + 436.555i 0.0410046 + 0.0897874i
\(288\) −639.839 1401.05i −0.130913 0.286659i
\(289\) −338.079 2351.39i −0.0688131 0.478606i
\(290\) 3835.90 + 2465.18i 0.776730 + 0.499174i
\(291\) −2916.57 + 856.382i −0.587534 + 0.172515i
\(292\) 876.348 6095.14i 0.175632 1.22154i
\(293\) 2376.39 2742.49i 0.473822 0.546820i −0.467649 0.883914i \(-0.654899\pi\)
0.941471 + 0.337094i \(0.109444\pi\)
\(294\) −3050.05 + 1960.15i −0.605042 + 0.388837i
\(295\) 1139.44 + 1314.98i 0.224884 + 0.259530i
\(296\) −2769.27 813.131i −0.543786 0.159670i
\(297\) 2564.12 5614.64i 0.500961 1.09695i
\(298\) 12749.7 2.47843
\(299\) 6171.10 + 4844.61i 1.19359 + 0.937027i
\(300\) −653.094 −0.125688
\(301\) −1546.22 + 3385.75i −0.296089 + 0.648344i
\(302\) 2348.56 + 689.601i 0.447499 + 0.131398i
\(303\) 1282.88 + 1480.52i 0.243232 + 0.280705i
\(304\) −551.772 + 354.602i −0.104100 + 0.0669008i
\(305\) −504.427 + 582.140i −0.0946997 + 0.109289i
\(306\) −315.431 + 2193.87i −0.0589281 + 0.409854i
\(307\) −7453.85 + 2188.65i −1.38571 + 0.406882i −0.887754 0.460319i \(-0.847735\pi\)
−0.497959 + 0.867201i \(0.665917\pi\)
\(308\) 2230.97 + 1433.75i 0.412731 + 0.265246i
\(309\) −44.6977 310.879i −0.00822900 0.0572340i
\(310\) −2094.46 4586.22i −0.383733 0.840258i
\(311\) 1147.90 + 2513.54i 0.209297 + 0.458296i 0.984945 0.172870i \(-0.0553041\pi\)
−0.775648 + 0.631166i \(0.782577\pi\)
\(312\) −364.207 2533.11i −0.0660870 0.459645i
\(313\) −4068.16 2614.45i −0.734652 0.472132i 0.119054 0.992888i \(-0.462014\pi\)
−0.853706 + 0.520755i \(0.825650\pi\)
\(314\) −6042.37 + 1774.20i −1.08596 + 0.318866i
\(315\) 55.5625 386.446i 0.00993839 0.0691230i
\(316\) −259.516 + 299.497i −0.0461990 + 0.0533165i
\(317\) −578.120 + 371.535i −0.102430 + 0.0658281i −0.590853 0.806779i \(-0.701209\pi\)
0.488423 + 0.872607i \(0.337572\pi\)
\(318\) 7694.57 + 8880.00i 1.35689 + 1.56593i
\(319\) 9549.31 + 2803.93i 1.67605 + 0.492132i
\(320\) −432.097 + 946.161i −0.0754843 + 0.165288i
\(321\) 5639.12 0.980514
\(322\) −4507.28 + 872.638i −0.780065 + 0.151026i
\(323\) 730.819 0.125894
\(324\) −1192.94 + 2612.17i −0.204550 + 0.447903i
\(325\) 1706.14 + 500.967i 0.291198 + 0.0855035i
\(326\) 4165.74 + 4807.52i 0.707727 + 0.816760i
\(327\) 1188.03 763.503i 0.200913 0.129119i
\(328\) −225.878 + 260.677i −0.0380244 + 0.0438825i
\(329\) −43.4371 + 302.112i −0.00727892 + 0.0506260i
\(330\) −3241.91 + 951.910i −0.540791 + 0.158791i
\(331\) 5905.09 + 3794.97i 0.980584 + 0.630183i 0.929621 0.368518i \(-0.120135\pi\)
0.0509628 + 0.998701i \(0.483771\pi\)
\(332\) 660.580 + 4594.43i 0.109199 + 0.759495i
\(333\) −1040.58 2278.55i −0.171241 0.374965i
\(334\) −3768.45 8251.76i −0.617367 1.35184i
\(335\) −182.616 1270.12i −0.0297832 0.207146i
\(336\) 3226.90 + 2073.80i 0.523934 + 0.336712i
\(337\) 10191.0 2992.36i 1.64730 0.483692i 0.679139 0.734010i \(-0.262354\pi\)
0.968164 + 0.250319i \(0.0805353\pi\)
\(338\) 1515.17 10538.2i 0.243829 1.69587i
\(339\) 5424.25 6259.92i 0.869041 1.00293i
\(340\) 2096.57 1347.39i 0.334420 0.214918i
\(341\) −7206.57 8316.83i −1.14445 1.32077i
\(342\) −213.238 62.6122i −0.0337151 0.00989965i
\(343\) −2606.60 + 5707.67i −0.410331 + 0.898499i
\(344\) −2675.11 −0.419280
\(345\) 1232.09 2138.19i 0.192271 0.333670i
\(346\) 6109.93 0.949341
\(347\) −1672.27 + 3661.77i −0.258710 + 0.566496i −0.993763 0.111514i \(-0.964430\pi\)
0.735053 + 0.678010i \(0.237157\pi\)
\(348\) −6144.75 1804.26i −0.946533 0.277927i
\(349\) 4883.14 + 5635.44i 0.748964 + 0.864350i 0.994467 0.105046i \(-0.0334988\pi\)
−0.245504 + 0.969396i \(0.578953\pi\)
\(350\) −875.347 + 562.552i −0.133684 + 0.0859133i
\(351\) 7081.64 8172.65i 1.07690 1.24280i
\(352\) −1275.12 + 8868.65i −0.193080 + 1.34290i
\(353\) −6846.04 + 2010.18i −1.03223 + 0.303091i −0.753618 0.657312i \(-0.771693\pi\)
−0.278614 + 0.960403i \(0.589875\pi\)
\(354\) −4872.87 3131.61i −0.731611 0.470178i
\(355\) −27.1491 188.826i −0.00405895 0.0282306i
\(356\) 1573.65 + 3445.81i 0.234279 + 0.512999i
\(357\) −1775.49 3887.77i −0.263218 0.576367i
\(358\) 1503.66 + 10458.2i 0.221986 + 1.54395i
\(359\) 402.547 + 258.701i 0.0591800 + 0.0380327i 0.569896 0.821717i \(-0.306983\pi\)
−0.510716 + 0.859749i \(0.670620\pi\)
\(360\) 269.231 79.0534i 0.0394159 0.0115736i
\(361\) 965.709 6716.65i 0.140794 0.979247i
\(362\) 1958.62 2260.37i 0.284372 0.328183i
\(363\) −1193.94 + 767.299i −0.172633 + 0.110944i
\(364\) 3042.59 + 3511.34i 0.438119 + 0.505616i
\(365\) 5059.95 + 1485.74i 0.725616 + 0.213060i
\(366\) 1065.24 2332.55i 0.152134 0.333127i
\(367\) −9342.01 −1.32874 −0.664372 0.747402i \(-0.731301\pi\)
−0.664372 + 0.747402i \(0.731301\pi\)
\(368\) −4908.16 6880.30i −0.695260 0.974621i
\(369\) −299.359 −0.0422331
\(370\) −2773.29 + 6072.67i −0.389667 + 0.853251i
\(371\) 7578.13 + 2225.14i 1.06048 + 0.311384i
\(372\) 4637.26 + 5351.68i 0.646319 + 0.745892i
\(373\) −613.218 + 394.092i −0.0851240 + 0.0547059i −0.582510 0.812823i \(-0.697929\pi\)
0.497386 + 0.867529i \(0.334293\pi\)
\(374\) 8443.37 9744.16i 1.16737 1.34722i
\(375\) 79.5982 553.618i 0.0109612 0.0762366i
\(376\) −210.477 + 61.8015i −0.0288684 + 0.00847652i
\(377\) 14668.5 + 9426.88i 2.00389 + 1.28782i
\(378\) 900.569 + 6263.60i 0.122540 + 0.852287i
\(379\) 2769.98 + 6065.40i 0.375420 + 0.822055i 0.999182 + 0.0404406i \(0.0128762\pi\)
−0.623762 + 0.781614i \(0.714397\pi\)
\(380\) 103.808 + 227.309i 0.0140138 + 0.0306860i
\(381\) 1481.78 + 10306.0i 0.199249 + 1.38581i
\(382\) −10765.6 6918.63i −1.44193 0.926670i
\(383\) −5749.48 + 1688.20i −0.767062 + 0.225230i −0.641777 0.766891i \(-0.721803\pi\)
−0.125285 + 0.992121i \(0.539984\pi\)
\(384\) −631.503 + 4392.20i −0.0839226 + 0.583694i
\(385\) −1487.28 + 1716.41i −0.196880 + 0.227212i
\(386\) 9840.32 6323.99i 1.29756 0.833893i
\(387\) −1520.40 1754.64i −0.199706 0.230474i
\(388\) 3805.58 + 1117.42i 0.497936 + 0.146207i
\(389\) 3281.03 7184.45i 0.427647 0.936416i −0.566056 0.824367i \(-0.691531\pi\)
0.993703 0.112049i \(-0.0357415\pi\)
\(390\) −5919.53 −0.768583
\(391\) 455.987 + 9405.96i 0.0589776 + 1.21657i
\(392\) −1751.53 −0.225677
\(393\) 738.349 1616.76i 0.0947705 0.207518i
\(394\) −13803.0 4052.94i −1.76494 0.518233i
\(395\) −222.250 256.490i −0.0283104 0.0326719i
\(396\) −1391.59 + 894.324i −0.176592 + 0.113489i
\(397\) 6201.76 7157.21i 0.784024 0.904812i −0.213369 0.976972i \(-0.568444\pi\)
0.997393 + 0.0721599i \(0.0229892\pi\)
\(398\) 2523.05 17548.2i 0.317761 2.21008i
\(399\) 411.192 120.737i 0.0515923 0.0151489i
\(400\) −1611.43 1035.60i −0.201429 0.129450i
\(401\) −1290.41 8974.97i −0.160698 1.11768i −0.897323 0.441375i \(-0.854491\pi\)
0.736625 0.676302i \(-0.236418\pi\)
\(402\) 1774.54 + 3885.70i 0.220164 + 0.482092i
\(403\) −8009.23 17537.8i −0.989995 2.16779i
\(404\) −363.777 2530.12i −0.0447985 0.311580i
\(405\) −2068.90 1329.60i −0.253839 0.163132i
\(406\) −9790.00 + 2874.60i −1.19672 + 0.351390i
\(407\) −2073.74 + 14423.2i −0.252559 + 1.75659i
\(408\) 2011.57 2321.48i 0.244088 0.281692i
\(409\) −1738.86 + 1117.50i −0.210223 + 0.135102i −0.641516 0.767110i \(-0.721694\pi\)
0.431293 + 0.902212i \(0.358058\pi\)
\(410\) 522.472 + 602.965i 0.0629343 + 0.0726301i
\(411\) −2338.17 686.549i −0.280617 0.0823965i
\(412\) −170.242 + 372.777i −0.0203573 + 0.0445762i
\(413\) −3893.53 −0.463894
\(414\) 672.799 2783.53i 0.0798703 0.330442i
\(415\) −3975.14 −0.470198
\(416\) −6520.96 + 14278.9i −0.768549 + 1.68289i
\(417\) 3321.66 + 975.327i 0.390078 + 0.114537i
\(418\) 846.609 + 977.039i 0.0990646 + 0.114327i
\(419\) 4403.97 2830.26i 0.513480 0.329994i −0.258108 0.966116i \(-0.583099\pi\)
0.771588 + 0.636122i \(0.219463\pi\)
\(420\) 957.029 1104.47i 0.111186 0.128316i
\(421\) −470.833 + 3274.71i −0.0545059 + 0.379097i 0.944250 + 0.329230i \(0.106789\pi\)
−0.998756 + 0.0498675i \(0.984120\pi\)
\(422\) 5901.04 1732.70i 0.680706 0.199873i
\(423\) −160.161 102.929i −0.0184097 0.0118312i
\(424\) 807.834 + 5618.61i 0.0925280 + 0.643547i
\(425\) 886.632 + 1941.45i 0.101195 + 0.221587i
\(426\) 263.818 + 577.680i 0.0300047 + 0.0657012i
\(427\) −245.302 1706.11i −0.0278009 0.193360i
\(428\) −6189.95 3978.04i −0.699071 0.449266i
\(429\) −12397.1 + 3640.11i −1.39519 + 0.409665i
\(430\) −880.606 + 6124.75i −0.0987595 + 0.686887i
\(431\) −2390.36 + 2758.63i −0.267146 + 0.308302i −0.873434 0.486942i \(-0.838112\pi\)
0.606289 + 0.795245i \(0.292658\pi\)
\(432\) −9799.97 + 6298.06i −1.09144 + 0.701424i
\(433\) −6181.64 7134.00i −0.686076 0.791774i 0.300725 0.953711i \(-0.402771\pi\)
−0.986801 + 0.161937i \(0.948226\pi\)
\(434\) 10825.1 + 3178.54i 1.19729 + 0.351555i
\(435\) 2278.36 4988.92i 0.251124 0.549886i
\(436\) −1842.68 −0.202405
\(437\) −940.035 88.9650i −0.102902 0.00973861i
\(438\) −17555.8 −1.91518
\(439\) −2823.39 + 6182.35i −0.306954 + 0.672136i −0.998751 0.0499561i \(-0.984092\pi\)
0.691797 + 0.722092i \(0.256819\pi\)
\(440\) −1566.16 459.867i −0.169691 0.0498257i
\(441\) −995.482 1148.85i −0.107492 0.124052i
\(442\) 19003.0 12212.5i 2.04498 1.31423i
\(443\) −7271.08 + 8391.27i −0.779818 + 0.899958i −0.997096 0.0761517i \(-0.975737\pi\)
0.217278 + 0.976110i \(0.430282\pi\)
\(444\) 1334.40 9280.97i 0.142630 0.992016i
\(445\) −3112.76 + 913.989i −0.331593 + 0.0973646i
\(446\) −13189.7 8476.50i −1.40034 0.899941i
\(447\) −2182.49 15179.5i −0.230935 1.60619i
\(448\) −966.902 2117.22i −0.101968 0.223280i
\(449\) 3591.06 + 7863.33i 0.377445 + 0.826488i 0.999068 + 0.0431718i \(0.0137463\pi\)
−0.621623 + 0.783317i \(0.713526\pi\)
\(450\) −92.3684 642.437i −0.00967620 0.0672994i
\(451\) 1464.98 + 941.485i 0.152956 + 0.0982989i
\(452\) −10370.1 + 3044.92i −1.07913 + 0.316861i
\(453\) 418.998 2914.19i 0.0434574 0.302253i
\(454\) −7333.91 + 8463.78i −0.758144 + 0.874945i
\(455\) −3347.34 + 2151.20i −0.344892 + 0.221648i
\(456\) 201.699 + 232.773i 0.0207136 + 0.0239048i
\(457\) −6086.32 1787.11i −0.622989 0.182926i −0.0450220 0.998986i \(-0.514336\pi\)
−0.577967 + 0.816060i \(0.696154\pi\)
\(458\) −2522.78 + 5524.11i −0.257383 + 0.563591i
\(459\) 12980.0 1.31994
\(460\) −2860.80 + 1477.89i −0.289968 + 0.149798i
\(461\) 3493.89 0.352986 0.176493 0.984302i \(-0.443525\pi\)
0.176493 + 0.984302i \(0.443525\pi\)
\(462\) 3140.81 6877.42i 0.316285 0.692568i
\(463\) 974.893 + 286.254i 0.0978555 + 0.0287330i 0.330294 0.943878i \(-0.392852\pi\)
−0.232438 + 0.972611i \(0.574670\pi\)
\(464\) −12300.4 14195.5i −1.23068 1.42028i
\(465\) −5101.72 + 3278.68i −0.508789 + 0.326979i
\(466\) 12167.3 14041.8i 1.20953 1.39587i
\(467\) 1758.69 12232.0i 0.174266 1.21205i −0.695478 0.718548i \(-0.744807\pi\)
0.869744 0.493503i \(-0.164284\pi\)
\(468\) −2780.71 + 816.492i −0.274655 + 0.0806460i
\(469\) 2415.55 + 1552.38i 0.237824 + 0.152840i
\(470\) 72.2108 + 502.237i 0.00708689 + 0.0492904i
\(471\) 3146.65 + 6890.20i 0.307834 + 0.674063i
\(472\) −1162.46 2545.43i −0.113361 0.248226i
\(473\) 1922.08 + 13368.4i 0.186844 + 1.29953i
\(474\) 950.463 + 610.825i 0.0921017 + 0.0591902i
\(475\) −205.338 + 60.2928i −0.0198349 + 0.00582405i
\(476\) −793.660 + 5520.02i −0.0764230 + 0.531533i
\(477\) −3226.18 + 3723.21i −0.309679 + 0.357388i
\(478\) 5942.64 3819.10i 0.568640 0.365443i
\(479\) 1001.26 + 1155.52i 0.0955090 + 0.110223i 0.801492 0.598006i \(-0.204040\pi\)
−0.705983 + 0.708229i \(0.749495\pi\)
\(480\) 4737.54 + 1391.07i 0.450496 + 0.132278i
\(481\) −10605.1 + 23221.9i −1.00530 + 2.20131i
\(482\) 16502.3 1.55946
\(483\) 1810.50 + 5216.89i 0.170560 + 0.491463i
\(484\) 1851.84 0.173915
\(485\) −1411.04 + 3089.75i −0.132107 + 0.289275i
\(486\) −6796.71 1995.69i −0.634372 0.186268i
\(487\) 8658.38 + 9992.30i 0.805644 + 0.929762i 0.998677 0.0514298i \(-0.0163778\pi\)
−0.193033 + 0.981192i \(0.561832\pi\)
\(488\) 1042.15 669.747i 0.0966717 0.0621271i
\(489\) 5010.63 5782.58i 0.463372 0.534759i
\(490\) −576.576 + 4010.17i −0.0531572 + 0.369717i
\(491\) −1361.84 + 399.871i −0.125171 + 0.0367534i −0.343718 0.939073i \(-0.611686\pi\)
0.218547 + 0.975826i \(0.429868\pi\)
\(492\) −942.679 605.823i −0.0863806 0.0555135i
\(493\) 2978.51 + 20716.0i 0.272100 + 1.89250i
\(494\) 940.903 + 2060.29i 0.0856948 + 0.187645i
\(495\) −588.499 1288.63i −0.0534365 0.117010i
\(496\) 2955.77 + 20557.9i 0.267577 + 1.86104i
\(497\) 359.115 + 230.789i 0.0324115 + 0.0208296i
\(498\) 12697.3 3728.26i 1.14253 0.335476i
\(499\) 1272.33 8849.23i 0.114143 0.793880i −0.849673 0.527310i \(-0.823201\pi\)
0.963816 0.266570i \(-0.0858902\pi\)
\(500\) −477.915 + 551.544i −0.0427461 + 0.0493316i
\(501\) −9179.27 + 5899.16i −0.818562 + 0.526058i
\(502\) 4837.35 + 5582.60i 0.430083 + 0.496342i
\(503\) 16868.3 + 4952.97i 1.49526 + 0.439049i 0.924217 0.381867i \(-0.124719\pi\)
0.571048 + 0.820917i \(0.306537\pi\)
\(504\) −260.835 + 571.150i −0.0230526 + 0.0504783i
\(505\) 2189.09 0.192897
\(506\) −12046.7 + 11505.8i −1.05838 + 1.01086i
\(507\) −12805.9 −1.12176
\(508\) 5643.71 12358.0i 0.492912 1.07933i
\(509\) 14549.0 + 4271.96i 1.26694 + 0.372006i 0.845072 0.534652i \(-0.179557\pi\)
0.421865 + 0.906659i \(0.361376\pi\)
\(510\) −4652.92 5369.76i −0.403990 0.466229i
\(511\) −9927.33 + 6379.91i −0.859411 + 0.552310i
\(512\) 7845.86 9054.61i 0.677229 0.781564i
\(513\) −185.222 + 1288.25i −0.0159410 + 0.110872i
\(514\) −6880.65 + 2020.34i −0.590452 + 0.173372i
\(515\) −295.249 189.745i −0.0252626 0.0162353i
\(516\) −1236.81 8602.23i −0.105519 0.733899i
\(517\) 460.071 + 1007.41i 0.0391371 + 0.0856984i
\(518\) −6205.79 13588.8i −0.526383 1.15262i
\(519\) −1045.89 7274.34i −0.0884578 0.615238i
\(520\) −2405.75 1546.08i −0.202883 0.130385i
\(521\) 17623.3 5174.66i 1.48194 0.435137i 0.561980 0.827151i \(-0.310040\pi\)
0.919959 + 0.392014i \(0.128222\pi\)
\(522\) 905.755 6299.67i 0.0759461 0.528216i
\(523\) −1585.02 + 1829.21i −0.132520 + 0.152937i −0.818131 0.575032i \(-0.804990\pi\)
0.685611 + 0.727968i \(0.259535\pi\)
\(524\) −1950.99 + 1253.83i −0.162652 + 0.104530i
\(525\) 819.602 + 945.872i 0.0681341 + 0.0786309i
\(526\) −2894.57 849.922i −0.239942 0.0704532i
\(527\) 9613.47 21050.6i 0.794629 1.73999i
\(528\) 13918.4 1.14720
\(529\) 558.494 12154.2i 0.0459024 0.998946i
\(530\) 13129.9 1.07609
\(531\) 1008.89 2209.17i 0.0824525 0.180546i
\(532\) −536.529 157.539i −0.0437246 0.0128387i
\(533\) 1997.94 + 2305.75i 0.162365 + 0.187379i
\(534\) 9085.46 5838.87i 0.736266 0.473170i
\(535\) 4126.55 4762.29i 0.333470 0.384844i
\(536\) −293.691 + 2042.67i −0.0236670 + 0.164608i
\(537\) 12193.9 3580.46i 0.979900 0.287724i
\(538\) 8439.94 + 5424.02i 0.676341 + 0.434658i
\(539\) 1258.48 + 8752.93i 0.100569 + 0.699472i
\(540\) 1843.73 + 4037.21i 0.146929 + 0.321729i
\(541\) −7201.93 15770.0i −0.572339 1.25325i −0.945543 0.325498i \(-0.894468\pi\)
0.373204 0.927749i \(-0.378259\pi\)
\(542\) 2312.50 + 16083.8i 0.183266 + 1.27464i
\(543\) −3026.42 1944.96i −0.239182 0.153713i
\(544\) −18078.4 + 5308.31i −1.42483 + 0.418367i
\(545\) 224.584 1562.02i 0.0176516 0.122770i
\(546\) 8674.36 10010.7i 0.679905 0.784653i
\(547\) −9800.77 + 6298.57i −0.766089 + 0.492336i −0.864390 0.502821i \(-0.832295\pi\)
0.0983014 + 0.995157i \(0.468659\pi\)
\(548\) 2082.25 + 2403.04i 0.162316 + 0.187323i
\(549\) 1031.60 + 302.906i 0.0801962 + 0.0235477i
\(550\) −1568.44 + 3434.40i −0.121597 + 0.266261i
\(551\) −2098.53 −0.162251
\(552\) −2870.04 + 2741.19i −0.221299 + 0.211364i
\(553\) 759.440 0.0583990
\(554\) 7047.76 15432.4i 0.540488 1.18350i
\(555\) 7704.71 + 2262.31i 0.589273 + 0.173026i
\(556\) −2958.09 3413.82i −0.225631 0.260392i
\(557\) −3971.35 + 2552.23i −0.302103 + 0.194150i −0.682906 0.730506i \(-0.739284\pi\)
0.380803 + 0.924656i \(0.375648\pi\)
\(558\) −4608.50 + 5318.49i −0.349629 + 0.403494i
\(559\) −3367.45 + 23421.1i −0.254790 + 1.77211i
\(560\) 4112.70 1207.60i 0.310345 0.0911256i
\(561\) −13046.5 8384.48i −0.981861 0.631004i
\(562\) 385.410 + 2680.58i 0.0289280 + 0.201199i
\(563\) −2190.08 4795.62i −0.163945 0.358990i 0.809774 0.586742i \(-0.199590\pi\)
−0.973719 + 0.227752i \(0.926862\pi\)
\(564\) −296.045 648.247i −0.0221024 0.0483974i
\(565\) −1317.25 9161.66i −0.0980833 0.682184i
\(566\) 3822.55 + 2456.61i 0.283876 + 0.182436i
\(567\) 5280.27 1550.43i 0.391094 0.114836i
\(568\) −43.6625 + 303.680i −0.00322542 + 0.0224333i
\(569\) 6962.62 8035.29i 0.512984 0.592015i −0.438876 0.898548i \(-0.644623\pi\)
0.951860 + 0.306532i \(0.0991687\pi\)
\(570\) 599.337 385.171i 0.0440412 0.0283035i
\(571\) −2960.81 3416.95i −0.216998 0.250429i 0.636805 0.771025i \(-0.280255\pi\)
−0.853804 + 0.520595i \(0.825710\pi\)
\(572\) 16175.9 + 4749.67i 1.18243 + 0.347192i
\(573\) −6394.32 + 14001.6i −0.466189 + 1.02081i
\(574\) −1785.32 −0.129822
\(575\) −904.114 2605.18i −0.0655725 0.188945i
\(576\) 1451.85 0.105024
\(577\) 3669.85 8035.85i 0.264780 0.579787i −0.729812 0.683648i \(-0.760392\pi\)
0.994592 + 0.103861i \(0.0331197\pi\)
\(578\) 8479.14 + 2489.70i 0.610183 + 0.179166i
\(579\) −9213.66 10633.1i −0.661324 0.763209i
\(580\) −6020.28 + 3869.00i −0.430997 + 0.276985i
\(581\) 5825.09 6722.51i 0.415948 0.480029i
\(582\) 1609.25 11192.6i 0.114614 0.797160i
\(583\) 27497.6 8074.01i 1.95340 0.573570i
\(584\) −7134.84 4585.28i −0.505551 0.324898i
\(585\) −353.218 2456.68i −0.0249637 0.173626i
\(586\) 5607.80 + 12279.4i 0.395318 + 0.865625i
\(587\) −10296.9 22547.1i −0.724018 1.58538i −0.808186 0.588927i \(-0.799551\pi\)
0.0841680 0.996452i \(-0.473177\pi\)
\(588\) −809.803 5632.30i −0.0567954 0.395021i
\(589\) 1952.06 + 1254.51i 0.136559 + 0.0877609i
\(590\) −6210.50 + 1823.57i −0.433360 + 0.127246i
\(591\) −2462.54 + 17127.4i −0.171397 + 1.19209i
\(592\) 18009.2 20783.7i 1.25029 1.44291i
\(593\) 11975.0 7695.85i 0.829263 0.532935i −0.0557805 0.998443i \(-0.517765\pi\)
0.885044 + 0.465508i \(0.154128\pi\)
\(594\) 15036.5 + 17353.1i 1.03865 + 1.19866i
\(595\) −4582.52 1345.55i −0.315739 0.0927094i
\(596\) −8312.52 + 18201.9i −0.571299 + 1.25097i
\(597\) −21324.4 −1.46189
\(598\) −25929.8 + 13395.3i −1.77316 + 0.916014i
\(599\) −22188.2 −1.51350 −0.756748 0.653707i \(-0.773213\pi\)
−0.756748 + 0.653707i \(0.773213\pi\)
\(600\) −373.670 + 818.223i −0.0254250 + 0.0556730i
\(601\) 12008.2 + 3525.92i 0.815015 + 0.239310i 0.662568 0.749002i \(-0.269467\pi\)
0.152447 + 0.988312i \(0.451285\pi\)
\(602\) −9067.37 10464.3i −0.613884 0.708460i
\(603\) −1506.73 + 968.317i −0.101756 + 0.0653945i
\(604\) −2515.70 + 2903.27i −0.169474 + 0.195584i
\(605\) −225.701 + 1569.78i −0.0151670 + 0.105489i
\(606\) −6992.31 + 2053.13i −0.468718 + 0.137628i
\(607\) −24271.5 15598.4i −1.62298 1.04303i −0.954025 0.299727i \(-0.903105\pi\)
−0.668957 0.743301i \(-0.733259\pi\)
\(608\) −268.866 1870.01i −0.0179342 0.124735i
\(609\) 5098.28 + 11163.7i 0.339233 + 0.742816i
\(610\) −1190.35 2606.50i −0.0790095 0.173007i
\(611\) 276.135 + 1920.56i 0.0182835 + 0.127165i
\(612\) −2926.38 1880.67i −0.193288 0.124218i
\(613\) 4722.74 1386.72i 0.311174 0.0913690i −0.122417 0.992479i \(-0.539064\pi\)
0.433591 + 0.901110i \(0.357246\pi\)
\(614\) 4112.74 28604.8i 0.270321 1.88012i
\(615\) 628.440 725.259i 0.0412051 0.0475533i
\(616\) 3072.72 1974.72i 0.200980 0.129162i
\(617\) 10009.1 + 11551.1i 0.653082 + 0.753697i 0.981631 0.190790i \(-0.0611050\pi\)
−0.328549 + 0.944487i \(0.606560\pi\)
\(618\) 1121.03 + 329.166i 0.0729687 + 0.0214255i
\(619\) 7485.99 16392.0i 0.486086 1.06438i −0.494659 0.869087i \(-0.664707\pi\)
0.980745 0.195293i \(-0.0625657\pi\)
\(620\) 7912.96 0.512568
\(621\) −16695.9 1580.10i −1.07888 0.102105i
\(622\) −10279.3 −0.662640
\(623\) 3015.69 6603.45i 0.193934 0.424657i
\(624\) 23397.0 + 6869.99i 1.50101 + 0.440737i
\(625\) −409.288 472.343i −0.0261944 0.0302300i
\(626\) 15133.6 9725.75i 0.966228 0.620957i
\(627\) 1018.32 1175.20i 0.0648608 0.0748534i
\(628\) 1406.58 9783.00i 0.0893770 0.621631i
\(629\) −29401.1 + 8632.95i −1.86375 + 0.547247i
\(630\) 1221.80 + 785.205i 0.0772664 + 0.0496561i
\(631\) 901.315 + 6268.79i 0.0568634 + 0.395494i 0.998299 + 0.0583009i \(0.0185683\pi\)
−0.941436 + 0.337193i \(0.890523\pi\)
\(632\) 226.739 + 496.490i 0.0142709 + 0.0312489i
\(633\) −3073.05 6729.04i −0.192958 0.422520i
\(634\) −363.818 2530.41i −0.0227903 0.158510i
\(635\) 9787.86 + 6290.27i 0.611684 + 0.393105i
\(636\) −17694.0 + 5195.43i −1.10317 + 0.323919i
\(637\) −2204.83 + 15334.9i −0.137141 + 0.953835i
\(638\) −24245.0 + 27980.2i −1.50450 + 1.73628i
\(639\) −224.003 + 143.958i −0.0138676 + 0.00891219i
\(640\) 3247.14 + 3747.40i 0.200554 + 0.231452i
\(641\) −17100.1 5021.05i −1.05369 0.309391i −0.291381 0.956607i \(-0.594115\pi\)
−0.762306 + 0.647216i \(0.775933\pi\)
\(642\) −8714.37 + 19081.8i −0.535715 + 1.17305i
\(643\) 10064.2 0.617254 0.308627 0.951183i \(-0.400130\pi\)
0.308627 + 0.951183i \(0.400130\pi\)
\(644\) 1692.84 7003.66i 0.103583 0.428545i
\(645\) 7442.73 0.454352
\(646\) −1129.36 + 2472.96i −0.0687837 + 0.150615i
\(647\) 7364.69 + 2162.47i 0.447505 + 0.131399i 0.497718 0.867339i \(-0.334172\pi\)
−0.0502123 + 0.998739i \(0.515990\pi\)
\(648\) 2590.09 + 2989.12i 0.157019 + 0.181210i
\(649\) −11885.1 + 7638.08i −0.718845 + 0.461974i
\(650\) −4331.75 + 4999.10i −0.261393 + 0.301663i
\(651\) 1931.26 13432.2i 0.116271 0.808680i
\(652\) −9579.31 + 2812.74i −0.575391 + 0.168950i
\(653\) 23216.3 + 14920.2i 1.39131 + 0.894139i 0.999663 0.0259767i \(-0.00826957\pi\)
0.391646 + 0.920116i \(0.371906\pi\)
\(654\) 747.644 + 5199.98i 0.0447021 + 0.310910i
\(655\) −825.066 1806.64i −0.0492183 0.107773i
\(656\) −1365.30 2989.59i −0.0812592 0.177933i
\(657\) −1047.55 7285.88i −0.0622053 0.432647i
\(658\) −955.169 613.850i −0.0565902 0.0363683i
\(659\) −1141.40 + 335.144i −0.0674696 + 0.0198109i −0.315293 0.948994i \(-0.602103\pi\)
0.247824 + 0.968805i \(0.420285\pi\)
\(660\) 754.673 5248.86i 0.0445085 0.309563i
\(661\) 2979.91 3439.00i 0.175348 0.202363i −0.661272 0.750147i \(-0.729983\pi\)
0.836620 + 0.547784i \(0.184528\pi\)
\(662\) −21966.9 + 14117.3i −1.28968 + 0.828827i
\(663\) −17792.8 20534.0i −1.04226 1.20283i
\(664\) 6134.05 + 1801.12i 0.358505 + 0.105267i
\(665\) 198.935 435.607i 0.0116006 0.0254017i
\(666\) 9318.25 0.542155
\(667\) −1309.36 27009.1i −0.0760098 1.56791i
\(668\) 14237.4 0.824642
\(669\) −7834.13 + 17154.3i −0.452743 + 0.991368i
\(670\) 4580.07 + 1344.83i 0.264095 + 0.0775452i
\(671\) −4095.73 4726.73i −0.235639 0.271942i
\(672\) −9294.78 + 5973.39i −0.533562 + 0.342900i
\(673\) 22531.8 26003.1i 1.29054 1.48937i 0.516419 0.856336i \(-0.327265\pi\)
0.774126 0.633032i \(-0.218190\pi\)
\(674\) −5623.01 + 39108.9i −0.321351 + 2.23504i
\(675\) −3647.00 + 1070.85i −0.207960 + 0.0610625i
\(676\) 14056.8 + 9033.76i 0.799772 + 0.513982i
\(677\) 3574.17 + 24858.9i 0.202905 + 1.41123i 0.795607 + 0.605813i \(0.207152\pi\)
−0.592702 + 0.805422i \(0.701939\pi\)
\(678\) 12800.2 + 28028.4i 0.725055 + 1.58765i
\(679\) −3157.48 6913.91i −0.178458 0.390768i
\(680\) −488.499 3397.59i −0.0275487 0.191605i
\(681\) 11332.2 + 7282.76i 0.637666 + 0.409803i
\(682\) 39279.3 11533.5i 2.20540 0.647564i
\(683\) −1887.37 + 13127.0i −0.105737 + 0.735416i 0.866119 + 0.499838i \(0.166607\pi\)
−0.971856 + 0.235577i \(0.924302\pi\)
\(684\) 228.413 263.602i 0.0127684 0.0147355i
\(685\) −2290.80 + 1472.21i −0.127777 + 0.0821172i
\(686\) −15285.7 17640.6i −0.850743 0.981809i
\(687\) 7008.73 + 2057.95i 0.389228 + 0.114288i
\(688\) 10588.8 23186.2i 0.586763 1.28483i
\(689\) 50208.9 2.77621
\(690\) 5331.27 + 7473.41i 0.294142 + 0.412330i
\(691\) −25495.8 −1.40363 −0.701814 0.712360i \(-0.747626\pi\)
−0.701814 + 0.712360i \(0.747626\pi\)
\(692\) −3983.53 + 8722.71i −0.218831 + 0.479173i
\(693\) 3041.63 + 893.104i 0.166727 + 0.0489556i
\(694\) −9806.56 11317.4i −0.536386 0.619023i
\(695\) 3254.37 2091.46i 0.177619 0.114149i
\(696\) −5776.20 + 6666.09i −0.314578 + 0.363042i
\(697\) −521.162 + 3624.76i −0.0283220 + 0.196984i
\(698\) −26615.5 + 7815.01i −1.44328 + 0.423786i
\(699\) −18800.7 12082.5i −1.01732 0.653792i
\(700\) −232.409 1616.44i −0.0125489 0.0872796i
\(701\) −4569.47 10005.8i −0.246201 0.539104i 0.745676 0.666309i \(-0.232127\pi\)
−0.991876 + 0.127205i \(0.959399\pi\)
\(702\) 16711.3 + 36592.6i 0.898471 + 1.96738i
\(703\) −437.260 3041.21i −0.0234588 0.163160i
\(704\) −7104.92 4566.06i −0.380365 0.244446i
\(705\) 585.591 171.945i 0.0312832 0.00918557i
\(706\) 3777.38 26272.2i 0.201365 1.40052i
\(707\) −3207.84 + 3702.05i −0.170641 + 0.196930i
\(708\) 7647.77 4914.92i 0.405961 0.260896i
\(709\) −19832.4 22887.8i −1.05052 1.21237i −0.976591 0.215103i \(-0.930991\pi\)
−0.0739302 0.997263i \(-0.523554\pi\)
\(710\) 680.911 + 199.934i 0.0359917 + 0.0105681i
\(711\) −196.787 + 430.902i −0.0103798 + 0.0227287i
\(712\) 5217.43 0.274623
\(713\) −14928.1 + 25906.6i −0.784100 + 1.36074i
\(714\) 15899.3 0.833356
\(715\) −5997.73 + 13133.2i −0.313710 + 0.686928i
\(716\) −15910.8 4671.83i −0.830467 0.243847i
\(717\) −5564.19 6421.42i −0.289817 0.334466i
\(718\) −1497.47 + 962.368i −0.0778346 + 0.0500213i
\(719\) −7105.21 + 8199.85i −0.368539 + 0.425317i −0.909482 0.415742i \(-0.863522\pi\)
0.540943 + 0.841059i \(0.318067\pi\)
\(720\) −380.501 + 2646.44i −0.0196950 + 0.136982i
\(721\) 753.536 221.258i 0.0389226 0.0114287i
\(722\) 21235.6 + 13647.3i 1.09461 + 0.703464i
\(723\) −2824.85 19647.3i −0.145307 1.01064i
\(724\) 1949.99 + 4269.89i 0.100098 + 0.219184i
\(725\) −2545.95 5574.85i −0.130420 0.285579i
\(726\) −751.361 5225.83i −0.0384099 0.267147i
\(727\) −7056.20 4534.74i −0.359972 0.231340i 0.348136 0.937444i \(-0.386815\pi\)
−0.708108 + 0.706104i \(0.750451\pi\)
\(728\) 6139.98 1802.86i 0.312586 0.0917836i
\(729\) −3102.55 + 21578.7i −0.157626 + 1.09631i
\(730\) −12846.8 + 14826.0i −0.651346 + 0.751693i
\(731\) −23892.8 + 15355.0i −1.20890 + 0.776913i
\(732\) 2635.50 + 3041.53i 0.133075 + 0.153577i
\(733\) −26176.1 7685.99i −1.31901 0.387297i −0.454875 0.890555i \(-0.650316\pi\)
−0.864136 + 0.503259i \(0.832134\pi\)
\(734\) 14436.6 31611.7i 0.725974 1.58966i
\(735\) 4873.12 0.244555
\(736\) 23900.1 4627.20i 1.19697 0.231740i
\(737\) 10418.9 0.520738
\(738\) 462.613 1012.98i 0.0230745 0.0505262i
\(739\) 21970.5 + 6451.12i 1.09364 + 0.321121i 0.778321 0.627866i \(-0.216071\pi\)
0.315316 + 0.948987i \(0.397890\pi\)
\(740\) −6861.39 7918.47i −0.340851 0.393363i
\(741\) 2291.87 1472.90i 0.113622 0.0730205i
\(742\) −19240.3 + 22204.5i −0.951932 + 1.09859i
\(743\) 3083.95 21449.4i 0.152274 1.05909i −0.760123 0.649779i \(-0.774861\pi\)
0.912397 0.409307i \(-0.134229\pi\)
\(744\) 9358.03 2747.77i 0.461132 0.135401i
\(745\) −14416.3 9264.82i −0.708958 0.455620i
\(746\) −385.906 2684.03i −0.0189397 0.131728i
\(747\) 2304.92 + 5047.07i 0.112895 + 0.247206i
\(748\) 8406.17 + 18407.0i 0.410909 + 0.899766i
\(749\) 2006.73 + 13957.1i 0.0978963 + 0.680884i
\(750\) 1750.34 + 1124.88i 0.0852179 + 0.0547662i
\(751\) 24264.8 7124.80i 1.17901 0.346189i 0.367218 0.930135i \(-0.380310\pi\)
0.811792 + 0.583946i \(0.198492\pi\)
\(752\) 297.464 2068.91i 0.0144247 0.100326i
\(753\) 5818.46 6714.86i 0.281589 0.324971i
\(754\) −54566.8 + 35068.0i −2.63555 + 1.69377i
\(755\) −2154.45 2486.37i −0.103852 0.119852i
\(756\) −9529.24 2798.04i −0.458433 0.134608i
\(757\) −4587.87 + 10046.0i −0.220276 + 0.482337i −0.987217 0.159380i \(-0.949050\pi\)
0.766941 + 0.641717i \(0.221778\pi\)
\(758\) −24804.8 −1.18859
\(759\) 15760.7 + 12373.0i 0.753727 + 0.591713i
\(760\) 344.176 0.0164271
\(761\) 8842.06 19361.4i 0.421189 0.922274i −0.573487 0.819215i \(-0.694410\pi\)
0.994675 0.103059i \(-0.0328632\pi\)
\(762\) −37163.7 10912.2i −1.76679 0.518778i
\(763\) 2312.48 + 2668.75i 0.109722 + 0.126625i
\(764\) 16896.2 10858.5i 0.800106 0.514197i
\(765\)