Properties

Label 115.4.g.a.6.2
Level $115$
Weight $4$
Character 115.6
Analytic conductor $6.785$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(6,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 18]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.g (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78521965066\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 6.2
Character \(\chi\) \(=\) 115.6
Dual form 115.4.g.a.96.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.61506 + 3.53648i) q^{2} +(0.822656 + 0.241553i) q^{3} +(-4.65942 - 5.37726i) q^{4} +(4.20627 - 2.70320i) q^{5} +(-2.18289 + 2.51919i) q^{6} +(3.70179 - 25.7465i) q^{7} +(-3.30086 + 0.969220i) q^{8} +(-22.0954 - 14.1999i) q^{9} +O(q^{10})\) \(q+(-1.61506 + 3.53648i) q^{2} +(0.822656 + 0.241553i) q^{3} +(-4.65942 - 5.37726i) q^{4} +(4.20627 - 2.70320i) q^{5} +(-2.18289 + 2.51919i) q^{6} +(3.70179 - 25.7465i) q^{7} +(-3.30086 + 0.969220i) q^{8} +(-22.0954 - 14.1999i) q^{9} +(2.76647 + 19.2412i) q^{10} +(-12.8654 - 28.1712i) q^{11} +(-2.53420 - 5.54913i) q^{12} +(-8.23617 - 57.2839i) q^{13} +(85.0736 + 54.6735i) q^{14} +(4.11328 - 1.20777i) q^{15} +(10.0042 - 69.5805i) q^{16} +(-20.2039 + 23.3166i) q^{17} +(85.9030 - 55.2065i) q^{18} +(68.6786 + 79.2594i) q^{19} +(-34.1346 - 10.0228i) q^{20} +(9.26447 - 20.2864i) q^{21} +120.405 q^{22} +(-94.4871 + 56.9138i) q^{23} -2.94959 q^{24} +(10.3854 - 22.7408i) q^{25} +(215.885 + 63.3896i) q^{26} +(-29.9065 - 34.5140i) q^{27} +(-155.694 + 100.058i) q^{28} +(-17.5076 + 20.2049i) q^{29} +(-2.37193 + 16.4972i) q^{30} +(177.358 - 52.0771i) q^{31} +(206.760 + 132.877i) q^{32} +(-3.77891 - 26.2829i) q^{33} +(-49.8282 - 109.109i) q^{34} +(-54.0274 - 118.304i) q^{35} +(26.5955 + 184.976i) q^{36} +(5.54591 + 3.56414i) q^{37} +(-391.219 + 114.872i) q^{38} +(7.06158 - 49.1144i) q^{39} +(-11.2643 + 12.9997i) q^{40} +(342.602 - 220.177i) q^{41} +(56.7797 + 65.5273i) q^{42} +(-449.985 - 132.127i) q^{43} +(-91.5387 + 200.442i) q^{44} -131.324 q^{45} +(-48.6725 - 426.071i) q^{46} -465.255 q^{47} +(25.0374 - 54.8242i) q^{48} +(-320.075 - 93.9826i) q^{49} +(63.6495 + 73.4554i) q^{50} +(-22.2531 + 14.3012i) q^{51} +(-269.654 + 311.198i) q^{52} +(12.5164 - 87.0534i) q^{53} +(170.359 - 50.0219i) q^{54} +(-130.268 - 83.7179i) q^{55} +(12.7350 + 88.5736i) q^{56} +(37.3535 + 81.7927i) q^{57} +(-43.1783 - 94.5474i) q^{58} +(85.5536 + 595.038i) q^{59} +(-25.6600 - 16.4907i) q^{60} +(-115.787 + 33.9981i) q^{61} +(-102.274 + 711.332i) q^{62} +(-447.390 + 516.316i) q^{63} +(-330.752 + 212.561i) q^{64} +(-189.494 - 218.687i) q^{65} +(99.0521 + 29.0843i) q^{66} +(409.645 - 896.997i) q^{67} +219.518 q^{68} +(-91.4781 + 23.9967i) q^{69} +505.636 q^{70} +(223.817 - 490.090i) q^{71} +(86.6968 + 25.4565i) q^{72} +(309.575 + 357.269i) q^{73} +(-21.5615 + 13.8567i) q^{74} +(14.0367 - 16.1992i) q^{75} +(106.195 - 738.605i) q^{76} +(-772.936 + 226.954i) q^{77} +(162.287 + 104.296i) q^{78} +(-150.897 - 1049.51i) q^{79} +(-146.010 - 319.717i) q^{80} +(278.327 + 609.450i) q^{81} +(225.330 + 1567.21i) q^{82} +(941.688 + 605.186i) q^{83} +(-152.252 + 44.7052i) q^{84} +(-21.9537 + 152.691i) q^{85} +(1194.02 - 1377.97i) q^{86} +(-19.2833 + 12.3926i) q^{87} +(69.7708 + 80.5199i) q^{88} +(857.849 + 251.887i) q^{89} +(212.097 - 464.427i) q^{90} -1505.35 q^{91} +(746.295 + 242.896i) q^{92} +158.484 q^{93} +(751.414 - 1645.37i) q^{94} +(503.135 + 147.734i) q^{95} +(137.996 + 159.255i) q^{96} +(-259.373 + 166.689i) q^{97} +(849.308 - 980.154i) q^{98} +(-115.762 + 805.141i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9} - 10 q^{10} + 2 q^{11} - 57 q^{12} + 34 q^{13} - 154 q^{14} + 30 q^{15} + 16 q^{16} + 252 q^{17} - 33 q^{18} - 160 q^{19} - 200 q^{20} - 684 q^{21} - 704 q^{22} + 127 q^{23} - 3090 q^{24} - 275 q^{25} - 567 q^{26} + 384 q^{27} - 188 q^{28} + 340 q^{29} - 15 q^{30} + 582 q^{31} - 1364 q^{32} + 1760 q^{33} + 1819 q^{34} + 665 q^{35} + 2794 q^{36} + 312 q^{37} + 3123 q^{38} - 1560 q^{39} - 1205 q^{40} + 1324 q^{41} + 1454 q^{42} - 1740 q^{43} - 369 q^{44} + 3730 q^{45} - 4322 q^{46} - 2858 q^{47} - 2686 q^{48} + 2015 q^{49} - 325 q^{50} - 1426 q^{51} + 1717 q^{52} + 882 q^{53} + 2541 q^{54} + 450 q^{55} + 7755 q^{56} + 3688 q^{57} + 6622 q^{58} + 2605 q^{59} + 1530 q^{60} - 104 q^{61} - 9360 q^{62} - 7618 q^{63} + 3483 q^{64} + 170 q^{65} - 1766 q^{66} - 166 q^{67} - 5018 q^{68} - 1194 q^{69} - 770 q^{70} - 1222 q^{71} + 3303 q^{72} - 922 q^{73} + 1245 q^{74} + 150 q^{75} + 1360 q^{76} - 3093 q^{77} - 1600 q^{78} + 2448 q^{79} + 2115 q^{80} - 1371 q^{81} + 6609 q^{82} + 6704 q^{83} + 3894 q^{84} - 720 q^{85} - 5074 q^{86} - 6324 q^{87} + 1918 q^{88} - 5380 q^{89} - 165 q^{90} + 7828 q^{91} - 16225 q^{92} - 24948 q^{93} - 16490 q^{94} + 685 q^{95} + 675 q^{96} - 4400 q^{97} + 8790 q^{98} - 3626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61506 + 3.53648i −0.571009 + 1.25034i 0.375249 + 0.926924i \(0.377557\pi\)
−0.946258 + 0.323412i \(0.895170\pi\)
\(3\) 0.822656 + 0.241553i 0.158320 + 0.0464870i 0.359932 0.932978i \(-0.382800\pi\)
−0.201612 + 0.979465i \(0.564618\pi\)
\(4\) −4.65942 5.37726i −0.582427 0.672157i
\(5\) 4.20627 2.70320i 0.376220 0.241782i
\(6\) −2.18289 + 2.51919i −0.148527 + 0.171409i
\(7\) 3.70179 25.7465i 0.199878 1.39018i −0.604756 0.796411i \(-0.706729\pi\)
0.804634 0.593772i \(-0.202362\pi\)
\(8\) −3.30086 + 0.969220i −0.145879 + 0.0428339i
\(9\) −22.0954 14.1999i −0.818349 0.525921i
\(10\) 2.76647 + 19.2412i 0.0874835 + 0.608461i
\(11\) −12.8654 28.1712i −0.352641 0.772176i −0.999951 0.00994868i \(-0.996833\pi\)
0.647310 0.762227i \(-0.275894\pi\)
\(12\) −2.53420 5.54913i −0.0609634 0.133491i
\(13\) −8.23617 57.2839i −0.175716 1.22213i −0.866540 0.499107i \(-0.833661\pi\)
0.690825 0.723022i \(-0.257248\pi\)
\(14\) 85.0736 + 54.6735i 1.62406 + 1.04372i
\(15\) 4.11328 1.20777i 0.0708029 0.0207896i
\(16\) 10.0042 69.5805i 0.156315 1.08719i
\(17\) −20.2039 + 23.3166i −0.288246 + 0.332653i −0.881343 0.472478i \(-0.843360\pi\)
0.593097 + 0.805131i \(0.297905\pi\)
\(18\) 85.9030 55.2065i 1.12486 0.722906i
\(19\) 68.6786 + 79.2594i 0.829261 + 0.957018i 0.999598 0.0283679i \(-0.00903098\pi\)
−0.170337 + 0.985386i \(0.554486\pi\)
\(20\) −34.1346 10.0228i −0.381636 0.112059i
\(21\) 9.26447 20.2864i 0.0962701 0.210802i
\(22\) 120.405 1.16684
\(23\) −94.4871 + 56.9138i −0.856606 + 0.515972i
\(24\) −2.94959 −0.0250868
\(25\) 10.3854 22.7408i 0.0830830 0.181926i
\(26\) 215.885 + 63.3896i 1.62841 + 0.478144i
\(27\) −29.9065 34.5140i −0.213167 0.246008i
\(28\) −155.694 + 100.058i −1.05084 + 0.675331i
\(29\) −17.5076 + 20.2049i −0.112106 + 0.129378i −0.809029 0.587769i \(-0.800007\pi\)
0.696923 + 0.717146i \(0.254552\pi\)
\(30\) −2.37193 + 16.4972i −0.0144351 + 0.100398i
\(31\) 177.358 52.0771i 1.02756 0.301720i 0.275844 0.961202i \(-0.411043\pi\)
0.751720 + 0.659482i \(0.229224\pi\)
\(32\) 206.760 + 132.877i 1.14220 + 0.734047i
\(33\) −3.77891 26.2829i −0.0199340 0.138644i
\(34\) −49.8282 109.109i −0.251337 0.550352i
\(35\) −54.0274 118.304i −0.260923 0.571342i
\(36\) 26.5955 + 184.976i 0.123127 + 0.856370i
\(37\) 5.54591 + 3.56414i 0.0246417 + 0.0158363i 0.552904 0.833245i \(-0.313520\pi\)
−0.528262 + 0.849081i \(0.677156\pi\)
\(38\) −391.219 + 114.872i −1.67011 + 0.490388i
\(39\) 7.06158 49.1144i 0.0289938 0.201656i
\(40\) −11.2643 + 12.9997i −0.0445261 + 0.0513858i
\(41\) 342.602 220.177i 1.30501 0.838680i 0.311264 0.950324i \(-0.399248\pi\)
0.993748 + 0.111643i \(0.0356114\pi\)
\(42\) 56.7797 + 65.5273i 0.208602 + 0.240740i
\(43\) −449.985 132.127i −1.59586 0.468587i −0.641470 0.767148i \(-0.721675\pi\)
−0.954391 + 0.298561i \(0.903493\pi\)
\(44\) −91.5387 + 200.442i −0.313636 + 0.686766i
\(45\) −131.324 −0.435038
\(46\) −48.6725 426.071i −0.156008 1.36567i
\(47\) −465.255 −1.44392 −0.721962 0.691932i \(-0.756760\pi\)
−0.721962 + 0.691932i \(0.756760\pi\)
\(48\) 25.0374 54.8242i 0.0752882 0.164858i
\(49\) −320.075 93.9826i −0.933164 0.274002i
\(50\) 63.6495 + 73.4554i 0.180028 + 0.207763i
\(51\) −22.2531 + 14.3012i −0.0610991 + 0.0392660i
\(52\) −269.654 + 311.198i −0.719121 + 0.829910i
\(53\) 12.5164 87.0534i 0.0324388 0.225617i −0.967153 0.254196i \(-0.918189\pi\)
0.999592 + 0.0285790i \(0.00909822\pi\)
\(54\) 170.359 50.0219i 0.429313 0.126058i
\(55\) −130.268 83.7179i −0.319369 0.205246i
\(56\) 12.7350 + 88.5736i 0.0303890 + 0.211360i
\(57\) 37.3535 + 81.7927i 0.0867998 + 0.190065i
\(58\) −43.1783 94.5474i −0.0977516 0.214046i
\(59\) 85.5536 + 595.038i 0.188782 + 1.31301i 0.835168 + 0.549996i \(0.185371\pi\)
−0.646386 + 0.763011i \(0.723720\pi\)
\(60\) −25.6600 16.4907i −0.0552114 0.0354822i
\(61\) −115.787 + 33.9981i −0.243033 + 0.0713608i −0.400980 0.916087i \(-0.631330\pi\)
0.157948 + 0.987447i \(0.449512\pi\)
\(62\) −102.274 + 711.332i −0.209497 + 1.45709i
\(63\) −447.390 + 516.316i −0.894697 + 1.03253i
\(64\) −330.752 + 212.561i −0.646000 + 0.415159i
\(65\) −189.494 218.687i −0.361597 0.417305i
\(66\) 99.0521 + 29.0843i 0.184734 + 0.0542429i
\(67\) 409.645 896.997i 0.746956 1.63561i −0.0248041 0.999692i \(-0.507896\pi\)
0.771760 0.635914i \(-0.219377\pi\)
\(68\) 219.518 0.391477
\(69\) −91.4781 + 23.9967i −0.159604 + 0.0418677i
\(70\) 505.636 0.863358
\(71\) 223.817 490.090i 0.374115 0.819197i −0.625137 0.780515i \(-0.714957\pi\)
0.999252 0.0386818i \(-0.0123159\pi\)
\(72\) 86.6968 + 25.4565i 0.141907 + 0.0416677i
\(73\) 309.575 + 357.269i 0.496343 + 0.572810i 0.947549 0.319609i \(-0.103552\pi\)
−0.451207 + 0.892420i \(0.649006\pi\)
\(74\) −21.5615 + 13.8567i −0.0338713 + 0.0217677i
\(75\) 14.0367 16.1992i 0.0216109 0.0249403i
\(76\) 106.195 738.605i 0.160282 1.11479i
\(77\) −772.936 + 226.954i −1.14395 + 0.335894i
\(78\) 162.287 + 104.296i 0.235582 + 0.151400i
\(79\) −150.897 1049.51i −0.214902 1.49467i −0.756476 0.654021i \(-0.773081\pi\)
0.541575 0.840653i \(-0.317828\pi\)
\(80\) −146.010 319.717i −0.204055 0.446819i
\(81\) 278.327 + 609.450i 0.381792 + 0.836009i
\(82\) 225.330 + 1567.21i 0.303458 + 2.11060i
\(83\) 941.688 + 605.186i 1.24535 + 0.800335i 0.986209 0.165505i \(-0.0529254\pi\)
0.259137 + 0.965840i \(0.416562\pi\)
\(84\) −152.252 + 44.7052i −0.197763 + 0.0580683i
\(85\) −21.9537 + 152.691i −0.0280142 + 0.194843i
\(86\) 1194.02 1377.97i 1.49714 1.72779i
\(87\) −19.2833 + 12.3926i −0.0237630 + 0.0152716i
\(88\) 69.7708 + 80.5199i 0.0845182 + 0.0975391i
\(89\) 857.849 + 251.887i 1.02171 + 0.300000i 0.749334 0.662192i \(-0.230374\pi\)
0.272372 + 0.962192i \(0.412192\pi\)
\(90\) 212.097 464.427i 0.248410 0.543943i
\(91\) −1505.35 −1.73410
\(92\) 746.295 + 242.896i 0.845725 + 0.275258i
\(93\) 158.484 0.176710
\(94\) 751.414 1645.37i 0.824494 1.80539i
\(95\) 503.135 + 147.734i 0.543374 + 0.159549i
\(96\) 137.996 + 159.255i 0.146710 + 0.169312i
\(97\) −259.373 + 166.689i −0.271498 + 0.174481i −0.669305 0.742988i \(-0.733408\pi\)
0.397807 + 0.917469i \(0.369772\pi\)
\(98\) 849.308 980.154i 0.875439 1.01031i
\(99\) −115.762 + 805.141i −0.117520 + 0.817371i
\(100\) −170.673 + 50.1141i −0.170673 + 0.0501141i
\(101\) −125.970 80.9559i −0.124104 0.0797566i 0.477116 0.878840i \(-0.341682\pi\)
−0.601220 + 0.799084i \(0.705318\pi\)
\(102\) −14.6359 101.795i −0.0142076 0.0988157i
\(103\) −102.781 225.060i −0.0983237 0.215299i 0.854078 0.520145i \(-0.174122\pi\)
−0.952402 + 0.304846i \(0.901395\pi\)
\(104\) 82.7072 + 181.103i 0.0779818 + 0.170756i
\(105\) −15.8693 110.374i −0.0147494 0.102584i
\(106\) 287.648 + 184.860i 0.263574 + 0.169389i
\(107\) 1047.07 307.448i 0.946022 0.277777i 0.227893 0.973686i \(-0.426817\pi\)
0.718130 + 0.695909i \(0.244998\pi\)
\(108\) −46.2435 + 321.630i −0.0412017 + 0.286564i
\(109\) −1385.28 + 1598.70i −1.21730 + 1.40484i −0.329795 + 0.944052i \(0.606980\pi\)
−0.887509 + 0.460791i \(0.847566\pi\)
\(110\) 506.457 325.480i 0.438989 0.282121i
\(111\) 3.70145 + 4.27170i 0.00316510 + 0.00365272i
\(112\) −1754.42 515.145i −1.48016 0.434613i
\(113\) 411.572 901.216i 0.342632 0.750259i −0.657363 0.753575i \(-0.728328\pi\)
0.999995 + 0.00331509i \(0.00105523\pi\)
\(114\) −349.587 −0.287209
\(115\) −243.589 + 494.813i −0.197520 + 0.401231i
\(116\) 190.222 0.152256
\(117\) −631.442 + 1382.66i −0.498947 + 1.09254i
\(118\) −2242.52 658.462i −1.74950 0.513698i
\(119\) 525.531 + 606.495i 0.404835 + 0.467204i
\(120\) −12.4068 + 7.97335i −0.00943815 + 0.00606553i
\(121\) 243.521 281.038i 0.182961 0.211148i
\(122\) 66.7688 464.387i 0.0495489 0.344620i
\(123\) 335.028 98.3732i 0.245597 0.0721139i
\(124\) −1106.42 711.052i −0.801285 0.514954i
\(125\) −17.7894 123.728i −0.0127290 0.0885323i
\(126\) −1103.38 2416.07i −0.780135 1.70826i
\(127\) −793.762 1738.10i −0.554606 1.21442i −0.954597 0.297899i \(-0.903714\pi\)
0.399991 0.916519i \(-0.369013\pi\)
\(128\) 62.2846 + 433.199i 0.0430097 + 0.299139i
\(129\) −338.267 217.391i −0.230874 0.148374i
\(130\) 1079.43 316.948i 0.728246 0.213832i
\(131\) 196.218 1364.73i 0.130868 0.910204i −0.813559 0.581482i \(-0.802473\pi\)
0.944427 0.328722i \(-0.106618\pi\)
\(132\) −123.722 + 142.783i −0.0815806 + 0.0941490i
\(133\) 2294.89 1474.84i 1.49618 0.961537i
\(134\) 2510.61 + 2897.40i 1.61854 + 1.86789i
\(135\) −219.093 64.3316i −0.139678 0.0410132i
\(136\) 44.0915 96.5469i 0.0278001 0.0608737i
\(137\) −1835.69 −1.14477 −0.572384 0.819986i \(-0.693981\pi\)
−0.572384 + 0.819986i \(0.693981\pi\)
\(138\) 62.8784 362.267i 0.0387867 0.223465i
\(139\) 588.059 0.358838 0.179419 0.983773i \(-0.442578\pi\)
0.179419 + 0.983773i \(0.442578\pi\)
\(140\) −384.412 + 841.745i −0.232063 + 0.508146i
\(141\) −382.745 112.384i −0.228602 0.0671237i
\(142\) 1371.72 + 1583.05i 0.810648 + 0.935538i
\(143\) −1507.79 + 969.000i −0.881734 + 0.566656i
\(144\) −1209.08 + 1395.35i −0.699699 + 0.807496i
\(145\) −19.0238 + 132.314i −0.0108955 + 0.0757797i
\(146\) −1763.46 + 517.798i −0.999621 + 0.293515i
\(147\) −240.610 154.631i −0.135001 0.0867600i
\(148\) −6.67543 46.4286i −0.00370755 0.0257865i
\(149\) 347.333 + 760.553i 0.190971 + 0.418167i 0.980762 0.195209i \(-0.0625384\pi\)
−0.789791 + 0.613376i \(0.789811\pi\)
\(150\) 34.6182 + 75.8033i 0.0188438 + 0.0412621i
\(151\) 123.532 + 859.180i 0.0665752 + 0.463041i 0.995652 + 0.0931532i \(0.0296946\pi\)
−0.929077 + 0.369887i \(0.879396\pi\)
\(152\) −303.518 195.059i −0.161964 0.104088i
\(153\) 777.507 228.297i 0.410835 0.120632i
\(154\) 445.716 3100.02i 0.233226 1.62212i
\(155\) 605.241 698.486i 0.313640 0.361960i
\(156\) −297.003 + 190.872i −0.152431 + 0.0979617i
\(157\) 976.976 + 1127.49i 0.496632 + 0.573143i 0.947625 0.319384i \(-0.103476\pi\)
−0.450994 + 0.892527i \(0.648930\pi\)
\(158\) 3955.29 + 1161.38i 1.99156 + 0.584773i
\(159\) 31.3247 68.5916i 0.0156240 0.0342117i
\(160\) 1228.88 0.607197
\(161\) 1115.56 + 2643.40i 0.546078 + 1.29397i
\(162\) −2604.82 −1.26330
\(163\) 246.846 540.517i 0.118616 0.259734i −0.841006 0.541026i \(-0.818036\pi\)
0.959622 + 0.281293i \(0.0907632\pi\)
\(164\) −2780.28 816.363i −1.32380 0.388703i
\(165\) −86.9430 100.338i −0.0410212 0.0473410i
\(166\) −3661.11 + 2352.85i −1.71179 + 1.10010i
\(167\) −905.108 + 1044.55i −0.419397 + 0.484010i −0.925653 0.378373i \(-0.876484\pi\)
0.506256 + 0.862383i \(0.331029\pi\)
\(168\) −10.9188 + 75.9418i −0.00501430 + 0.0348752i
\(169\) −1105.60 + 324.633i −0.503231 + 0.147762i
\(170\) −504.533 324.244i −0.227623 0.146285i
\(171\) −392.011 2726.50i −0.175309 1.21930i
\(172\) 1386.18 + 3035.32i 0.614509 + 1.34559i
\(173\) 917.047 + 2008.05i 0.403016 + 0.882483i 0.996955 + 0.0779727i \(0.0248447\pi\)
−0.593939 + 0.804510i \(0.702428\pi\)
\(174\) −12.6827 88.2098i −0.00552569 0.0384320i
\(175\) −547.053 351.569i −0.236304 0.151864i
\(176\) −2088.87 + 613.348i −0.894628 + 0.262687i
\(177\) −73.3524 + 510.177i −0.0311498 + 0.216651i
\(178\) −2276.27 + 2626.96i −0.958504 + 1.10617i
\(179\) 2058.08 1322.64i 0.859373 0.552285i −0.0351121 0.999383i \(-0.511179\pi\)
0.894485 + 0.447098i \(0.147542\pi\)
\(180\) 611.896 + 706.165i 0.253378 + 0.292414i
\(181\) 774.316 + 227.360i 0.317980 + 0.0933674i 0.436828 0.899545i \(-0.356102\pi\)
−0.118848 + 0.992912i \(0.537920\pi\)
\(182\) 2431.23 5323.65i 0.990190 2.16821i
\(183\) −103.465 −0.0417943
\(184\) 256.727 279.443i 0.102860 0.111961i
\(185\) 32.9622 0.0130996
\(186\) −255.961 + 560.477i −0.100903 + 0.220947i
\(187\) 916.787 + 269.193i 0.358514 + 0.105269i
\(188\) 2167.82 + 2501.80i 0.840981 + 0.970544i
\(189\) −999.324 + 642.227i −0.384604 + 0.247170i
\(190\) −1335.05 + 1540.73i −0.509762 + 0.588296i
\(191\) 25.5544 177.735i 0.00968091 0.0673322i −0.984408 0.175899i \(-0.943717\pi\)
0.994089 + 0.108566i \(0.0346260\pi\)
\(192\) −323.440 + 94.9705i −0.121574 + 0.0356974i
\(193\) 1691.43 + 1087.02i 0.630838 + 0.405415i 0.816620 0.577176i \(-0.195845\pi\)
−0.185782 + 0.982591i \(0.559482\pi\)
\(194\) −170.590 1186.48i −0.0631322 0.439094i
\(195\) −103.063 225.677i −0.0378488 0.0828773i
\(196\) 985.996 + 2159.03i 0.359328 + 0.786819i
\(197\) −481.374 3348.03i −0.174094 1.21085i −0.870123 0.492835i \(-0.835961\pi\)
0.696029 0.718014i \(-0.254949\pi\)
\(198\) −2660.41 1709.74i −0.954883 0.613666i
\(199\) −2595.69 + 762.163i −0.924641 + 0.271499i −0.709192 0.705016i \(-0.750940\pi\)
−0.215450 + 0.976515i \(0.569122\pi\)
\(200\) −12.2398 + 85.1300i −0.00432744 + 0.0300980i
\(201\) 553.669 638.968i 0.194293 0.224226i
\(202\) 489.748 314.742i 0.170587 0.109629i
\(203\) 455.396 + 525.555i 0.157451 + 0.181708i
\(204\) 180.588 + 53.0253i 0.0619787 + 0.0181986i
\(205\) 845.893 1852.25i 0.288194 0.631057i
\(206\) 961.918 0.325340
\(207\) 2895.90 + 84.1707i 0.972363 + 0.0282622i
\(208\) −4068.23 −1.35616
\(209\) 1349.26 2954.46i 0.446555 0.977819i
\(210\) 415.964 + 122.138i 0.136687 + 0.0401349i
\(211\) 1278.37 + 1475.32i 0.417093 + 0.481351i 0.924949 0.380091i \(-0.124107\pi\)
−0.507856 + 0.861442i \(0.669562\pi\)
\(212\) −526.428 + 338.314i −0.170543 + 0.109602i
\(213\) 302.507 349.112i 0.0973119 0.112304i
\(214\) −603.798 + 4199.51i −0.192873 + 1.34146i
\(215\) −2249.92 + 660.637i −0.713691 + 0.209558i
\(216\) 132.169 + 84.9399i 0.0416341 + 0.0267566i
\(217\) −684.261 4759.14i −0.214058 1.48881i
\(218\) −3416.47 7481.03i −1.06143 2.32422i
\(219\) 168.374 + 368.688i 0.0519528 + 0.113761i
\(220\) 156.799 + 1090.56i 0.0480517 + 0.334207i
\(221\) 1502.07 + 965.320i 0.457195 + 0.293821i
\(222\) −21.0848 + 6.19107i −0.00637442 + 0.00187170i
\(223\) 331.119 2302.99i 0.0994323 0.691567i −0.877743 0.479132i \(-0.840952\pi\)
0.977175 0.212435i \(-0.0681393\pi\)
\(224\) 4186.50 4831.48i 1.24876 1.44115i
\(225\) −552.386 + 354.997i −0.163670 + 0.105184i
\(226\) 2522.43 + 2911.03i 0.742430 + 0.856810i
\(227\) −3905.33 1146.71i −1.14188 0.335285i −0.344511 0.938782i \(-0.611955\pi\)
−0.797365 + 0.603497i \(0.793774\pi\)
\(228\) 265.775 581.966i 0.0771990 0.169042i
\(229\) 4434.70 1.27971 0.639854 0.768496i \(-0.278995\pi\)
0.639854 + 0.768496i \(0.278995\pi\)
\(230\) −1356.49 1660.60i −0.388887 0.476072i
\(231\) −690.682 −0.196725
\(232\) 38.2072 83.6622i 0.0108122 0.0236754i
\(233\) −3170.67 930.993i −0.891491 0.261765i −0.196260 0.980552i \(-0.562880\pi\)
−0.695231 + 0.718786i \(0.744698\pi\)
\(234\) −3869.95 4466.17i −1.08114 1.24770i
\(235\) −1956.99 + 1257.68i −0.543233 + 0.349115i
\(236\) 2801.04 3232.58i 0.772595 0.891622i
\(237\) 129.377 899.836i 0.0354596 0.246627i
\(238\) −2993.62 + 879.007i −0.815327 + 0.239401i
\(239\) −3100.49 1992.56i −0.839139 0.539282i 0.0490311 0.998797i \(-0.484387\pi\)
−0.888170 + 0.459516i \(0.848023\pi\)
\(240\) −42.8871 298.286i −0.0115348 0.0802263i
\(241\) 1527.55 + 3344.88i 0.408292 + 0.894036i 0.996362 + 0.0852251i \(0.0271609\pi\)
−0.588069 + 0.808811i \(0.700112\pi\)
\(242\) 600.586 + 1315.10i 0.159534 + 0.349330i
\(243\) 257.234 + 1789.10i 0.0679076 + 0.472308i
\(244\) 722.316 + 464.204i 0.189515 + 0.121794i
\(245\) −1600.38 + 469.913i −0.417324 + 0.122537i
\(246\) −193.195 + 1343.70i −0.0500718 + 0.348257i
\(247\) 3974.63 4586.97i 1.02389 1.18163i
\(248\) −534.961 + 343.799i −0.136976 + 0.0880291i
\(249\) 628.500 + 725.328i 0.159958 + 0.184602i
\(250\) 466.292 + 136.916i 0.117964 + 0.0346372i
\(251\) 370.266 810.770i 0.0931116 0.203886i −0.857346 0.514741i \(-0.827888\pi\)
0.950457 + 0.310855i \(0.100615\pi\)
\(252\) 4860.94 1.21512
\(253\) 2818.94 + 1929.60i 0.700495 + 0.479498i
\(254\) 7428.72 1.83512
\(255\) −54.9434 + 120.309i −0.0134929 + 0.0295453i
\(256\) −4650.51 1365.51i −1.13538 0.333377i
\(257\) 4081.97 + 4710.85i 0.990765 + 1.14340i 0.989664 + 0.143404i \(0.0458048\pi\)
0.00110025 + 0.999999i \(0.499650\pi\)
\(258\) 1315.12 845.175i 0.317348 0.203947i
\(259\) 112.294 129.594i 0.0269406 0.0310911i
\(260\) −293.007 + 2037.91i −0.0698905 + 0.486099i
\(261\) 673.745 197.829i 0.159784 0.0469169i
\(262\) 4509.43 + 2898.03i 1.06333 + 0.683363i
\(263\) 492.543 + 3425.71i 0.115481 + 0.803189i 0.962433 + 0.271519i \(0.0875260\pi\)
−0.846952 + 0.531669i \(0.821565\pi\)
\(264\) 37.9475 + 83.0935i 0.00884663 + 0.0193714i
\(265\) −182.676 400.004i −0.0423460 0.0927248i
\(266\) 1509.35 + 10497.8i 0.347911 + 2.41978i
\(267\) 644.870 + 414.433i 0.147811 + 0.0949921i
\(268\) −6732.09 + 1976.72i −1.53443 + 0.450550i
\(269\) −1032.49 + 7181.13i −0.234023 + 1.62766i 0.446394 + 0.894837i \(0.352708\pi\)
−0.680416 + 0.732826i \(0.738201\pi\)
\(270\) 581.356 670.921i 0.131038 0.151226i
\(271\) 5038.03 3237.75i 1.12929 0.725753i 0.163881 0.986480i \(-0.447599\pi\)
0.965413 + 0.260727i \(0.0839622\pi\)
\(272\) 1420.26 + 1639.06i 0.316602 + 0.365378i
\(273\) −1238.38 363.623i −0.274544 0.0806133i
\(274\) 2964.74 6491.87i 0.653673 1.43134i
\(275\) −774.247 −0.169778
\(276\) 555.272 + 380.090i 0.121099 + 0.0828940i
\(277\) 4889.35 1.06055 0.530276 0.847825i \(-0.322088\pi\)
0.530276 + 0.847825i \(0.322088\pi\)
\(278\) −949.750 + 2079.66i −0.204900 + 0.448668i
\(279\) −4658.30 1367.80i −0.999587 0.293505i
\(280\) 292.999 + 338.139i 0.0625359 + 0.0721703i
\(281\) 2945.14 1892.73i 0.625240 0.401818i −0.189304 0.981918i \(-0.560623\pi\)
0.814545 + 0.580101i \(0.196987\pi\)
\(282\) 1015.60 1172.06i 0.214461 0.247502i
\(283\) 876.922 6099.13i 0.184196 1.28111i −0.662509 0.749054i \(-0.730509\pi\)
0.846706 0.532061i \(-0.178582\pi\)
\(284\) −3678.20 + 1080.02i −0.768524 + 0.225659i
\(285\) 378.221 + 243.068i 0.0786101 + 0.0505197i
\(286\) −991.679 6897.28i −0.205032 1.42603i
\(287\) −4400.56 9635.88i −0.905076 1.98184i
\(288\) −2681.62 5871.93i −0.548667 1.20141i
\(289\) 563.729 + 3920.82i 0.114742 + 0.798050i
\(290\) −437.201 280.972i −0.0885286 0.0568939i
\(291\) −253.639 + 74.4750i −0.0510947 + 0.0150028i
\(292\) 478.685 3329.33i 0.0959347 0.667241i
\(293\) 2964.09 3420.74i 0.591003 0.682054i −0.378930 0.925425i \(-0.623708\pi\)
0.969933 + 0.243371i \(0.0782534\pi\)
\(294\) 935.447 601.176i 0.185566 0.119256i
\(295\) 1968.37 + 2271.62i 0.388485 + 0.448335i
\(296\) −21.7607 6.38953i −0.00427303 0.00125467i
\(297\) −587.542 + 1286.54i −0.114790 + 0.251355i
\(298\) −3250.65 −0.631896
\(299\) 4038.45 + 4943.84i 0.781103 + 0.956219i
\(300\) −152.510 −0.0293506
\(301\) −5067.57 + 11096.4i −0.970399 + 2.12488i
\(302\) −3237.99 950.759i −0.616971 0.181159i
\(303\) −84.0746 97.0273i −0.0159405 0.0183963i
\(304\) 6201.97 3985.77i 1.17009 0.751972i
\(305\) −395.127 + 456.001i −0.0741800 + 0.0856083i
\(306\) −448.352 + 3118.35i −0.0837600 + 0.582564i
\(307\) −2922.27 + 858.056i −0.543267 + 0.159517i −0.541840 0.840481i \(-0.682272\pi\)
−0.00142642 + 0.999999i \(0.500454\pi\)
\(308\) 4821.82 + 3098.80i 0.892042 + 0.573281i
\(309\) −30.1897 209.974i −0.00555803 0.0386569i
\(310\) 1492.68 + 3268.52i 0.273480 + 0.598837i
\(311\) −2063.61 4518.68i −0.376260 0.823894i −0.999135 0.0415732i \(-0.986763\pi\)
0.622876 0.782321i \(-0.285964\pi\)
\(312\) 24.2933 + 168.964i 0.00440814 + 0.0306593i
\(313\) 4855.53 + 3120.46i 0.876840 + 0.563511i 0.899838 0.436225i \(-0.143685\pi\)
−0.0229980 + 0.999736i \(0.507321\pi\)
\(314\) −5565.22 + 1634.10i −1.00020 + 0.293686i
\(315\) −486.136 + 3381.15i −0.0869545 + 0.604782i
\(316\) −4940.40 + 5701.52i −0.879491 + 1.01499i
\(317\) −3507.99 + 2254.45i −0.621541 + 0.399440i −0.813169 0.582027i \(-0.802260\pi\)
0.191628 + 0.981468i \(0.438623\pi\)
\(318\) 191.982 + 221.559i 0.0338547 + 0.0390704i
\(319\) 794.437 + 233.268i 0.139435 + 0.0409419i
\(320\) −816.634 + 1788.18i −0.142660 + 0.312382i
\(321\) 935.646 0.162687
\(322\) −11150.0 324.081i −1.92971 0.0560880i
\(323\) −3235.64 −0.557386
\(324\) 1980.33 4336.32i 0.339563 0.743539i
\(325\) −1388.22 407.617i −0.236937 0.0695709i
\(326\) 1512.86 + 1745.93i 0.257023 + 0.296621i
\(327\) −1525.78 + 980.562i −0.258031 + 0.165826i
\(328\) −917.483 + 1058.83i −0.154450 + 0.178244i
\(329\) −1722.28 + 11978.7i −0.288609 + 2.00732i
\(330\) 495.260 145.422i 0.0826157 0.0242582i
\(331\) 1259.78 + 809.611i 0.209196 + 0.134442i 0.641043 0.767505i \(-0.278502\pi\)
−0.431848 + 0.901946i \(0.642138\pi\)
\(332\) −1133.48 7883.52i −0.187373 1.30321i
\(333\) −71.9290 157.502i −0.0118369 0.0259192i
\(334\) −2232.23 4887.91i −0.365696 0.800762i
\(335\) −701.690 4880.36i −0.114440 0.795948i
\(336\) −1318.85 847.574i −0.214135 0.137616i
\(337\) −4231.11 + 1242.37i −0.683927 + 0.200819i −0.605196 0.796077i \(-0.706905\pi\)
−0.0787314 + 0.996896i \(0.525087\pi\)
\(338\) 637.547 4434.24i 0.102598 0.713582i
\(339\) 556.274 641.974i 0.0891229 0.102853i
\(340\) 923.351 593.402i 0.147282 0.0946521i
\(341\) −3748.85 4326.40i −0.595342 0.687061i
\(342\) 10275.3 + 3017.11i 1.62464 + 0.477037i
\(343\) 101.702 222.697i 0.0160099 0.0350569i
\(344\) 1613.40 0.252874
\(345\) −319.913 + 348.221i −0.0499233 + 0.0543408i
\(346\) −8582.53 −1.33353
\(347\) −2388.56 + 5230.22i −0.369524 + 0.809144i 0.629948 + 0.776637i \(0.283076\pi\)
−0.999472 + 0.0325064i \(0.989651\pi\)
\(348\) 156.487 + 45.9488i 0.0241052 + 0.00707791i
\(349\) −5001.84 5772.43i −0.767170 0.885362i 0.228943 0.973440i \(-0.426473\pi\)
−0.996114 + 0.0880781i \(0.971928\pi\)
\(350\) 2126.84 1366.84i 0.324813 0.208744i
\(351\) −1730.78 + 1997.43i −0.263197 + 0.303746i
\(352\) 1083.25 7534.18i 0.164027 1.14083i
\(353\) 443.178 130.129i 0.0668215 0.0196206i −0.248151 0.968721i \(-0.579823\pi\)
0.314972 + 0.949101i \(0.398005\pi\)
\(354\) −1685.77 1083.38i −0.253100 0.162658i
\(355\) −383.381 2666.47i −0.0573176 0.398653i
\(356\) −2642.62 5786.52i −0.393422 0.861475i
\(357\) 285.830 + 625.880i 0.0423746 + 0.0927874i
\(358\) 1353.60 + 9414.50i 0.199832 + 1.38986i
\(359\) −6248.61 4015.74i −0.918633 0.590370i −0.00637231 0.999980i \(-0.502028\pi\)
−0.912261 + 0.409610i \(0.865665\pi\)
\(360\) 433.484 127.282i 0.0634628 0.0186344i
\(361\) −589.155 + 4097.66i −0.0858951 + 0.597414i
\(362\) −2054.62 + 2371.16i −0.298310 + 0.344268i
\(363\) 268.219 172.374i 0.0387820 0.0249237i
\(364\) 7014.06 + 8094.65i 1.00999 + 1.16559i
\(365\) 2267.93 + 665.923i 0.325229 + 0.0954959i
\(366\) 167.102 365.903i 0.0238649 0.0522569i
\(367\) −536.685 −0.0763344 −0.0381672 0.999271i \(-0.512152\pi\)
−0.0381672 + 0.999271i \(0.512152\pi\)
\(368\) 3014.82 + 7143.83i 0.427061 + 1.01195i
\(369\) −10696.4 −1.50904
\(370\) −53.2359 + 116.570i −0.00748000 + 0.0163789i
\(371\) −2194.99 644.508i −0.307165 0.0901918i
\(372\) −738.444 852.210i −0.102921 0.118777i
\(373\) −6352.42 + 4082.46i −0.881813 + 0.566707i −0.901345 0.433103i \(-0.857419\pi\)
0.0195320 + 0.999809i \(0.493782\pi\)
\(374\) −2432.66 + 2807.44i −0.336337 + 0.388153i
\(375\) 15.2523 106.082i 0.00210034 0.0146082i
\(376\) 1535.74 450.935i 0.210638 0.0618489i
\(377\) 1301.61 + 836.493i 0.177815 + 0.114275i
\(378\) −657.258 4571.33i −0.0894330 0.622020i
\(379\) −3511.73 7689.62i −0.475951 1.04219i −0.983557 0.180599i \(-0.942196\pi\)
0.507605 0.861590i \(-0.330531\pi\)
\(380\) −1549.91 3393.84i −0.209234 0.458159i
\(381\) −233.149 1621.59i −0.0313507 0.218049i
\(382\) 587.285 + 377.425i 0.0786600 + 0.0505517i
\(383\) 5030.46 1477.08i 0.671134 0.197063i 0.0716261 0.997432i \(-0.477181\pi\)
0.599508 + 0.800369i \(0.295363\pi\)
\(384\) −53.4020 + 371.419i −0.00709676 + 0.0493591i
\(385\) −2637.67 + 3044.03i −0.349164 + 0.402957i
\(386\) −6575.97 + 4226.12i −0.867119 + 0.557264i
\(387\) 8066.41 + 9309.13i 1.05953 + 1.22276i
\(388\) 2104.85 + 618.041i 0.275407 + 0.0808667i
\(389\) 2953.75 6467.81i 0.384990 0.843010i −0.613584 0.789629i \(-0.710273\pi\)
0.998574 0.0533809i \(-0.0169998\pi\)
\(390\) 964.556 0.125236
\(391\) 581.977 3353.00i 0.0752733 0.433679i
\(392\) 1147.61 0.147865
\(393\) 491.074 1075.30i 0.0630316 0.138020i
\(394\) 12617.7 + 3704.89i 1.61338 + 0.473730i
\(395\) −3471.76 4006.62i −0.442235 0.510367i
\(396\) 4868.83 3129.01i 0.617849 0.397067i
\(397\) 6221.04 7179.46i 0.786461 0.907624i −0.211098 0.977465i \(-0.567704\pi\)
0.997558 + 0.0698411i \(0.0222492\pi\)
\(398\) 1496.81 10410.6i 0.188514 1.31114i
\(399\) 2244.15 658.943i 0.281575 0.0826778i
\(400\) −1478.42 950.122i −0.184802 0.118765i
\(401\) 954.958 + 6641.88i 0.118924 + 0.827131i 0.958745 + 0.284268i \(0.0917506\pi\)
−0.839821 + 0.542863i \(0.817340\pi\)
\(402\) 1365.49 + 2990.01i 0.169414 + 0.370966i
\(403\) −4443.93 9730.85i −0.549300 1.20280i
\(404\) 151.626 + 1054.58i 0.0186724 + 0.129870i
\(405\) 2818.18 + 1811.14i 0.345770 + 0.222213i
\(406\) −2594.11 + 761.698i −0.317102 + 0.0931095i
\(407\) 29.0560 202.089i 0.00353870 0.0246122i
\(408\) 59.5934 68.7744i 0.00723115 0.00834520i
\(409\) 1046.61 672.614i 0.126532 0.0813169i −0.475844 0.879530i \(-0.657857\pi\)
0.602376 + 0.798213i \(0.294221\pi\)
\(410\) 5184.28 + 5982.98i 0.624471 + 0.720678i
\(411\) −1510.14 443.416i −0.181240 0.0532168i
\(412\) −731.303 + 1601.33i −0.0874483 + 0.191485i
\(413\) 15636.9 1.86305
\(414\) −4974.72 + 10105.4i −0.590565 + 1.19964i
\(415\) 5596.94 0.662031
\(416\) 5908.77 12938.4i 0.696398 1.52490i
\(417\) 483.770 + 142.048i 0.0568113 + 0.0166813i
\(418\) 8269.27 + 9543.24i 0.967615 + 1.11669i
\(419\) −4702.59 + 3022.17i −0.548297 + 0.352369i −0.785276 0.619146i \(-0.787479\pi\)
0.236979 + 0.971515i \(0.423843\pi\)
\(420\) −519.565 + 599.610i −0.0603624 + 0.0696619i
\(421\) 1057.38 7354.25i 0.122408 0.851364i −0.832408 0.554164i \(-0.813038\pi\)
0.954815 0.297200i \(-0.0960529\pi\)
\(422\) −7282.08 + 2138.21i −0.840015 + 0.246651i
\(423\) 10280.0 + 6606.57i 1.18163 + 0.759391i
\(424\) 43.0591 + 299.482i 0.00493192 + 0.0343022i
\(425\) 320.412 + 701.605i 0.0365701 + 0.0800773i
\(426\) 746.061 + 1633.65i 0.0848516 + 0.185799i
\(427\) 446.714 + 3106.97i 0.0506277 + 0.352123i
\(428\) −6531.98 4197.85i −0.737699 0.474091i
\(429\) −1474.46 + 432.940i −0.165938 + 0.0487239i
\(430\) 1297.42 9023.78i 0.145505 1.01201i
\(431\) 1275.49 1471.99i 0.142548 0.164509i −0.679986 0.733225i \(-0.738014\pi\)
0.822534 + 0.568716i \(0.192560\pi\)
\(432\) −2700.69 + 1735.63i −0.300780 + 0.193300i
\(433\) −5907.15 6817.21i −0.655611 0.756615i 0.326443 0.945217i \(-0.394150\pi\)
−0.982054 + 0.188602i \(0.939604\pi\)
\(434\) 17935.7 + 5266.41i 1.98374 + 0.582479i
\(435\) −47.6109 + 104.253i −0.00524774 + 0.0114910i
\(436\) 15051.3 1.65327
\(437\) −11000.2 3580.23i −1.20414 0.391912i
\(438\) −1575.79 −0.171905
\(439\) −3757.09 + 8226.88i −0.408465 + 0.894414i 0.587876 + 0.808951i \(0.299964\pi\)
−0.996341 + 0.0854628i \(0.972763\pi\)
\(440\) 511.136 + 150.083i 0.0553806 + 0.0162612i
\(441\) 5737.66 + 6621.61i 0.619551 + 0.715000i
\(442\) −5839.76 + 3752.99i −0.628437 + 0.403872i
\(443\) 7332.40 8462.04i 0.786394 0.907548i −0.211159 0.977452i \(-0.567724\pi\)
0.997554 + 0.0699042i \(0.0222693\pi\)
\(444\) 5.72342 39.8072i 0.000611760 0.00425488i
\(445\) 4289.25 1259.44i 0.456921 0.134164i
\(446\) 7609.70 + 4890.45i 0.807914 + 0.519215i
\(447\) 102.021 + 709.573i 0.0107952 + 0.0750820i
\(448\) 4248.34 + 9302.58i 0.448025 + 0.981039i
\(449\) −2746.44 6013.86i −0.288669 0.632097i 0.708627 0.705583i \(-0.249315\pi\)
−0.997296 + 0.0734858i \(0.976588\pi\)
\(450\) −363.305 2526.84i −0.0380586 0.264703i
\(451\) −10610.4 6818.86i −1.10781 0.711946i
\(452\) −6763.76 + 1986.02i −0.703850 + 0.206669i
\(453\) −105.914 + 736.649i −0.0109852 + 0.0764035i
\(454\) 10362.7 11959.1i 1.07124 1.23628i
\(455\) −6331.90 + 4069.27i −0.652405 + 0.419275i
\(456\) −202.574 233.783i −0.0208035 0.0240085i
\(457\) 10678.9 + 3135.61i 1.09308 + 0.320957i 0.778100 0.628141i \(-0.216184\pi\)
0.314980 + 0.949098i \(0.398002\pi\)
\(458\) −7162.30 + 15683.2i −0.730726 + 1.60007i
\(459\) 1408.98 0.143280
\(460\) 3795.72 995.701i 0.384731 0.100923i
\(461\) −7489.68 −0.756679 −0.378340 0.925667i \(-0.623505\pi\)
−0.378340 + 0.925667i \(0.623505\pi\)
\(462\) 1115.49 2442.58i 0.112332 0.245973i
\(463\) 10187.0 + 2991.18i 1.02253 + 0.300242i 0.749670 0.661812i \(-0.230212\pi\)
0.272860 + 0.962054i \(0.412030\pi\)
\(464\) 1230.71 + 1420.32i 0.123135 + 0.142105i
\(465\) 666.627 428.415i 0.0664819 0.0427253i
\(466\) 8413.26 9709.41i 0.836344 0.965193i
\(467\) 285.169 1983.39i 0.0282570 0.196532i −0.970803 0.239878i \(-0.922893\pi\)
0.999060 + 0.0433458i \(0.0138017\pi\)
\(468\) 10377.1 3046.99i 1.02496 0.300955i
\(469\) −21578.1 13867.4i −2.12449 1.36533i
\(470\) −1287.12 8952.08i −0.126320 0.878572i
\(471\) 531.365 + 1163.53i 0.0519831 + 0.113827i
\(472\) −859.124 1881.22i −0.0837805 0.183454i
\(473\) 2067.02 + 14376.5i 0.200934 + 1.39753i
\(474\) 2973.30 + 1910.83i 0.288119 + 0.185163i
\(475\) 2515.67 738.669i 0.243004 0.0713525i
\(476\) 812.610 5651.83i 0.0782477 0.544225i
\(477\) −1512.70 + 1745.75i −0.145203 + 0.167573i
\(478\) 12054.1 7746.73i 1.15344 0.741270i
\(479\) −12680.2 14633.7i −1.20955 1.39589i −0.894652 0.446763i \(-0.852577\pi\)
−0.314894 0.949127i \(-0.601969\pi\)
\(480\) 1010.95 + 296.841i 0.0961316 + 0.0282268i
\(481\) 158.491 347.046i 0.0150240 0.0328980i
\(482\) −14296.2 −1.35098
\(483\) 279.200 + 2444.08i 0.0263024 + 0.230247i
\(484\) −2645.88 −0.248486
\(485\) −640.397 + 1402.27i −0.0599566 + 0.131287i
\(486\) −6742.57 1979.80i −0.629319 0.184785i
\(487\) 10878.5 + 12554.5i 1.01222 + 1.16817i 0.985699 + 0.168518i \(0.0538981\pi\)
0.0265231 + 0.999648i \(0.491556\pi\)
\(488\) 349.245 224.446i 0.0323967 0.0208201i
\(489\) 333.633 385.033i 0.0308536 0.0356069i
\(490\) 922.861 6418.64i 0.0850829 0.591765i
\(491\) −15130.3 + 4442.65i −1.39067 + 0.408338i −0.889470 0.456994i \(-0.848926\pi\)
−0.501200 + 0.865331i \(0.667108\pi\)
\(492\) −2090.01 1343.17i −0.191515 0.123079i
\(493\) −117.386 816.435i −0.0107237 0.0745850i
\(494\) 9802.48 + 21464.4i 0.892783 + 1.95492i
\(495\) 1689.54 + 3699.57i 0.153412 + 0.335926i
\(496\) −1849.23 12861.7i −0.167405 1.16433i
\(497\) −11789.6 7576.72i −1.06406 0.683827i
\(498\) −3580.18 + 1051.23i −0.322152 + 0.0945923i
\(499\) 1824.74 12691.3i 0.163700 1.13856i −0.727882 0.685702i \(-0.759495\pi\)
0.891583 0.452858i \(-0.149596\pi\)
\(500\) −582.427 + 672.157i −0.0520939 + 0.0601196i
\(501\) −996.907 + 640.673i −0.0888993 + 0.0571321i
\(502\) 2269.27 + 2618.88i 0.201758 + 0.232842i
\(503\) −16559.5 4862.31i −1.46790 0.431013i −0.552481 0.833525i \(-0.686319\pi\)
−0.915415 + 0.402512i \(0.868137\pi\)
\(504\) 976.350 2137.91i 0.0862898 0.188948i
\(505\) −748.703 −0.0659740
\(506\) −11376.7 + 6852.72i −0.999522 + 0.602056i
\(507\) −987.944 −0.0865407
\(508\) −5647.72 + 12366.8i −0.493262 + 1.08009i
\(509\) 15058.5 + 4421.58i 1.31131 + 0.385036i 0.861350 0.508012i \(-0.169620\pi\)
0.449961 + 0.893048i \(0.351438\pi\)
\(510\) −336.735 388.613i −0.0292370 0.0337413i
\(511\) 10344.4 6647.95i 0.895519 0.575515i
\(512\) 10047.1 11595.0i 0.867237 1.00084i
\(513\) 681.617 4740.75i 0.0586630 0.408010i
\(514\) −23252.5 + 6827.54i −1.99537 + 0.585895i
\(515\) −1040.71 668.823i −0.0890468 0.0572269i
\(516\) 407.160 + 2831.86i 0.0347369 + 0.241600i
\(517\) 5985.67 + 13106.8i 0.509187 + 1.11496i
\(518\) 276.947 + 606.429i 0.0234910 + 0.0514381i
\(519\) 269.362 + 1873.45i 0.0227816 + 0.158450i
\(520\) 837.448 + 538.195i 0.0706241 + 0.0453873i
\(521\) 15326.6 4500.29i 1.28881 0.378429i 0.435668 0.900108i \(-0.356512\pi\)
0.853142 + 0.521679i \(0.174694\pi\)
\(522\) −388.517 + 2702.19i −0.0325765 + 0.226574i
\(523\) 4839.34 5584.90i 0.404607 0.466942i −0.516479 0.856300i \(-0.672758\pi\)
0.921087 + 0.389358i \(0.127303\pi\)
\(524\) −8252.74 + 5303.72i −0.688021 + 0.442164i
\(525\) −365.113 421.363i −0.0303521 0.0350282i
\(526\) −12910.5 3790.86i −1.07020 0.314238i
\(527\) −2369.08 + 5187.55i −0.195823 + 0.428792i
\(528\) −1866.58 −0.153849
\(529\) 5688.64 10755.2i 0.467547 0.883968i
\(530\) 1709.64 0.140117
\(531\) 6559.12 14362.5i 0.536048 1.17378i
\(532\) −18623.4 5468.33i −1.51772 0.445643i
\(533\) −15434.3 17812.2i −1.25429 1.44752i
\(534\) −2507.14 + 1611.24i −0.203173 + 0.130571i
\(535\) 3573.17 4123.66i 0.288751 0.333236i
\(536\) −482.793 + 3357.90i −0.0389057 + 0.270595i
\(537\) 2012.58 590.946i 0.161730 0.0474883i
\(538\) −23728.4 15249.3i −1.90150 1.22202i
\(539\) 1470.28 + 10226.0i 0.117494 + 0.817191i
\(540\) 674.920 + 1477.87i 0.0537851 + 0.117773i
\(541\) −8251.03 18067.2i −0.655711 1.43581i −0.886466 0.462794i \(-0.846847\pi\)
0.230755 0.973012i \(-0.425880\pi\)
\(542\) 3313.52 + 23046.1i 0.262598 + 1.82641i
\(543\) 582.076 + 374.077i 0.0460023 + 0.0295639i
\(544\) −7275.60 + 2136.31i −0.573417 + 0.168370i
\(545\) −1505.25 + 10469.3i −0.118308 + 0.822852i
\(546\) 3286.01 3792.26i 0.257561 0.297241i
\(547\) −14408.9 + 9260.04i −1.12629 + 0.723822i −0.964782 0.263050i \(-0.915272\pi\)
−0.161507 + 0.986872i \(0.551635\pi\)
\(548\) 8553.23 + 9870.95i 0.666744 + 0.769464i
\(549\) 3041.13 + 892.956i 0.236416 + 0.0694179i
\(550\) 1250.45 2738.11i 0.0969446 0.212279i
\(551\) −2803.82 −0.216782
\(552\) 278.698 167.872i 0.0214895 0.0129441i
\(553\) −27579.9 −2.12082
\(554\) −7896.59 + 17291.1i −0.605584 + 1.32605i
\(555\) 27.1165 + 7.96213i 0.00207393 + 0.000608962i
\(556\) −2740.01 3162.15i −0.208997 0.241196i
\(557\) 8072.25 5187.72i 0.614061 0.394633i −0.196317 0.980541i \(-0.562898\pi\)
0.810378 + 0.585907i \(0.199262\pi\)
\(558\) 12360.6 14264.9i 0.937754 1.08223i
\(559\) −3862.61 + 26865.1i −0.292256 + 2.03269i
\(560\) −8772.12 + 2575.73i −0.661946 + 0.194365i
\(561\) 689.176 + 442.906i 0.0518663 + 0.0333325i
\(562\) 1937.03 + 13472.3i 0.145389 + 1.01120i
\(563\) 2368.88 + 5187.13i 0.177329 + 0.388297i 0.977336 0.211694i \(-0.0678980\pi\)
−0.800007 + 0.599991i \(0.795171\pi\)
\(564\) 1179.05 + 2581.76i 0.0880266 + 0.192751i
\(565\) −704.991 4903.32i −0.0524941 0.365105i
\(566\) 20153.2 + 12951.7i 1.49665 + 0.961836i
\(567\) 16721.5 4909.89i 1.23852 0.363661i
\(568\) −263.782 + 1834.65i −0.0194860 + 0.135528i
\(569\) −10575.9 + 12205.3i −0.779202 + 0.899247i −0.997052 0.0767351i \(-0.975550\pi\)
0.217849 + 0.975982i \(0.430096\pi\)
\(570\) −1470.46 + 945.004i −0.108054 + 0.0694419i
\(571\) −879.895 1015.45i −0.0644877 0.0744227i 0.722589 0.691278i \(-0.242952\pi\)
−0.787077 + 0.616855i \(0.788406\pi\)
\(572\) 12236.0 + 3592.81i 0.894428 + 0.262628i
\(573\) 63.9550 140.042i 0.00466276 0.0102100i
\(574\) 41184.3 2.99477
\(575\) 312.981 + 2739.78i 0.0226995 + 0.198708i
\(576\) 10326.4 0.746994
\(577\) −6175.66 + 13522.8i −0.445574 + 0.975670i 0.544968 + 0.838457i \(0.316542\pi\)
−0.990542 + 0.137213i \(0.956185\pi\)
\(578\) −14776.4 4338.73i −1.06335 0.312227i
\(579\) 1128.89 + 1302.81i 0.0810279 + 0.0935111i
\(580\) 800.125 514.209i 0.0572817 0.0368127i
\(581\) 19067.4 22005.0i 1.36153 1.57129i
\(582\) 146.261 1017.27i 0.0104171 0.0724523i
\(583\) −2613.43 + 767.371i −0.185655 + 0.0545133i
\(584\) −1368.14 879.248i −0.0969416 0.0623006i
\(585\) 1081.61 + 7522.77i 0.0764429 + 0.531672i
\(586\) 7310.22 + 16007.1i 0.515328 + 1.12841i
\(587\) −808.330 1770.00i −0.0568371 0.124456i 0.879082 0.476670i \(-0.158156\pi\)
−0.935920 + 0.352214i \(0.885429\pi\)
\(588\) 289.614 + 2014.31i 0.0203120 + 0.141273i
\(589\) 16308.3 + 10480.7i 1.14087 + 0.733193i
\(590\) −11212.6 + 3292.31i −0.782398 + 0.229733i
\(591\) 412.723 2870.55i 0.0287262 0.199795i
\(592\) 303.477 350.231i 0.0210690 0.0243149i
\(593\) 1662.49 1068.42i 0.115127 0.0739877i −0.481810 0.876276i \(-0.660020\pi\)
0.596937 + 0.802288i \(0.296384\pi\)
\(594\) −3600.91 4155.67i −0.248732 0.287052i
\(595\) 3850.00 + 1130.46i 0.265268 + 0.0778898i
\(596\) 2471.32 5411.43i 0.169848 0.371914i
\(597\) −2319.46 −0.159011
\(598\) −24006.1 + 6297.34i −1.64161 + 0.430631i
\(599\) −11667.9 −0.795887 −0.397943 0.917410i \(-0.630276\pi\)
−0.397943 + 0.917410i \(0.630276\pi\)
\(600\) −30.6326 + 67.0761i −0.00208429 + 0.00456395i
\(601\) 15258.9 + 4480.41i 1.03564 + 0.304093i 0.755004 0.655720i \(-0.227635\pi\)
0.280640 + 0.959813i \(0.409453\pi\)
\(602\) −31058.0 35842.8i −2.10270 2.42665i
\(603\) −21788.5 + 14002.6i −1.47147 + 0.945657i
\(604\) 4044.45 4667.54i 0.272461 0.314436i
\(605\) 264.611 1840.41i 0.0177817 0.123675i
\(606\) 478.921 140.624i 0.0321037 0.00942649i
\(607\) 23406.6 + 15042.5i 1.56515 + 1.00586i 0.980953 + 0.194246i \(0.0622260\pi\)
0.584195 + 0.811613i \(0.301410\pi\)
\(608\) 3668.28 + 25513.5i 0.244685 + 1.70182i
\(609\) 247.684 + 542.353i 0.0164806 + 0.0360874i
\(610\) −974.486 2133.83i −0.0646816 0.141633i
\(611\) 3831.92 + 26651.6i 0.253720 + 1.76466i
\(612\) −4850.34 3117.13i −0.320365 0.205886i
\(613\) 9064.52 2661.58i 0.597247 0.175368i 0.0308833 0.999523i \(-0.490168\pi\)
0.566364 + 0.824155i \(0.308350\pi\)
\(614\) 1685.14 11720.4i 0.110760 0.770352i
\(615\) 1143.30 1319.43i 0.0749628 0.0865117i
\(616\) 2331.39 1498.29i 0.152491 0.0979997i
\(617\) −7356.42 8489.76i −0.479997 0.553946i 0.463168 0.886270i \(-0.346713\pi\)
−0.943165 + 0.332324i \(0.892167\pi\)
\(618\) 791.327 + 232.355i 0.0515078 + 0.0151241i
\(619\) 7420.19 16247.9i 0.481813 1.05502i −0.500148 0.865940i \(-0.666721\pi\)
0.981961 0.189084i \(-0.0605518\pi\)
\(620\) −6576.01 −0.425966
\(621\) 4790.11 + 1559.03i 0.309534 + 0.100744i
\(622\) 19313.1 1.24499
\(623\) 9660.81 21154.2i 0.621271 1.36039i
\(624\) −3346.75 982.696i −0.214707 0.0630438i
\(625\) −409.288 472.343i −0.0261944 0.0302300i
\(626\) −18877.4 + 12131.8i −1.20526 + 0.774574i
\(627\) 1823.63 2104.58i 0.116155 0.134049i
\(628\) 1510.66 10506.9i 0.0959905 0.667629i
\(629\) −195.153 + 57.3021i −0.0123708 + 0.00363241i
\(630\) −11172.2 7179.97i −0.706529 0.454058i
\(631\) 2922.12 + 20323.8i 0.184355 + 1.28222i 0.846317 + 0.532679i \(0.178815\pi\)
−0.661963 + 0.749537i \(0.730276\pi\)
\(632\) 1515.30 + 3318.04i 0.0953723 + 0.208836i
\(633\) 695.291 + 1522.47i 0.0436577 + 0.0955970i
\(634\) −2307.22 16047.0i −0.144529 1.00522i
\(635\) −8037.20 5165.20i −0.502278 0.322795i
\(636\) −514.790 + 151.156i −0.0320955 + 0.00942409i
\(637\) −2747.49 + 19109.2i −0.170894 + 1.18859i
\(638\) −2108.01 + 2432.77i −0.130810 + 0.150963i
\(639\) −11904.5 + 7650.58i −0.736990 + 0.473634i
\(640\) 1433.01 + 1653.78i 0.0885074 + 0.102143i
\(641\) 12840.7 + 3770.36i 0.791226 + 0.232325i 0.652283 0.757975i \(-0.273811\pi\)
0.138943 + 0.990300i \(0.455630\pi\)
\(642\) −1511.12 + 3308.90i −0.0928960 + 0.203414i
\(643\) −43.1844 −0.00264856 −0.00132428 0.999999i \(-0.500422\pi\)
−0.00132428 + 0.999999i \(0.500422\pi\)
\(644\) 9016.38 18315.4i 0.551700 1.12069i
\(645\) −2010.49 −0.122733
\(646\) 5225.74 11442.8i 0.318273 0.696920i
\(647\) 24107.8 + 7078.70i 1.46488 + 0.430128i 0.914431 0.404741i \(-0.132638\pi\)
0.550449 + 0.834869i \(0.314457\pi\)
\(648\) −1509.41 1741.95i −0.0915049 0.105602i
\(649\) 15662.3 10065.5i 0.947300 0.608793i
\(650\) 3683.58 4251.08i 0.222280 0.256525i
\(651\) 586.676 4080.42i 0.0353205 0.245659i
\(652\) −4056.66 + 1191.14i −0.243667 + 0.0715471i
\(653\) 16119.2 + 10359.2i 0.965992 + 0.620805i 0.925650 0.378381i \(-0.123519\pi\)
0.0403418 + 0.999186i \(0.487155\pi\)
\(654\) −1003.51 6979.57i −0.0600006 0.417313i
\(655\) −2863.79 6270.82i −0.170836 0.374078i
\(656\) −11892.6 26041.1i −0.707816 1.54990i
\(657\) −1767.03 12289.9i −0.104929 0.729796i
\(658\) −39581.0 25437.1i −2.34503 1.50706i
\(659\) −19616.2 + 5759.85i −1.15954 + 0.340473i −0.804256 0.594283i \(-0.797436\pi\)
−0.355289 + 0.934756i \(0.615618\pi\)
\(660\) −134.437 + 935.030i −0.00792872 + 0.0551454i
\(661\) 9664.00 11152.9i 0.568663 0.656272i −0.396465 0.918050i \(-0.629763\pi\)
0.965128 + 0.261778i \(0.0843088\pi\)
\(662\) −4897.79 + 3147.62i −0.287550 + 0.184797i
\(663\) 1002.51 + 1156.96i 0.0587242 + 0.0677714i
\(664\) −3694.94 1084.93i −0.215951 0.0634090i
\(665\) 5666.14 12407.1i 0.330411 0.723499i
\(666\) 673.174 0.0391666
\(667\) 504.309 2905.52i 0.0292758 0.168669i
\(668\) 9834.09 0.569600
\(669\) 828.692 1814.58i 0.0478910 0.104867i
\(670\) 18392.6 + 5400.55i 1.06055 + 0.311405i
\(671\) 2447.41 + 2824.46i 0.140806 + 0.162499i
\(672\) 4611.11 2963.38i 0.264698 0.170111i
\(673\) −17199.7 + 19849.5i −0.985142 + 1.13691i 0.00543873 + 0.999985i \(0.498269\pi\)
−0.990581 + 0.136929i \(0.956277\pi\)
\(674\) 2439.88 16969.8i 0.139437 0.969808i
\(675\) −1095.47 + 321.658i −0.0624660 + 0.0183417i
\(676\) 6897.09 + 4432.49i 0.392415 + 0.252190i
\(677\) −2909.56 20236.4i −0.165175 1.14882i −0.888690 0.458508i \(-0.848384\pi\)
0.723515 0.690308i \(-0.242525\pi\)
\(678\) 1371.92 + 3004.08i 0.0777111 + 0.170164i
\(679\) 3331.51 + 7295.00i 0.188294 + 0.412307i
\(680\) −75.5254 525.290i −0.00425921 0.0296235i
\(681\) −2935.75 1886.69i −0.165196 0.106165i
\(682\) 21354.9 6270.35i 1.19900 0.352059i
\(683\) 304.814 2120.03i 0.0170767 0.118771i −0.979500 0.201444i \(-0.935437\pi\)
0.996577 + 0.0826730i \(0.0263457\pi\)
\(684\) −12834.5 + 14811.8i −0.717457 + 0.827989i
\(685\) −7721.38 + 4962.23i −0.430684 + 0.276784i
\(686\) 623.309 + 719.337i 0.0346910 + 0.0400356i
\(687\) 3648.23 + 1071.22i 0.202604 + 0.0594898i
\(688\) −13695.2 + 29988.3i −0.758902 + 1.66176i
\(689\) −5089.84 −0.281433
\(690\) −714.798 1693.76i −0.0394376 0.0934500i
\(691\) −4084.75 −0.224879 −0.112440 0.993659i \(-0.535866\pi\)
−0.112440 + 0.993659i \(0.535866\pi\)
\(692\) 6524.91 14287.6i 0.358439 0.784872i
\(693\) 20301.1 + 5960.93i 1.11281 + 0.326749i
\(694\) −14638.9 16894.2i −0.800700 0.924057i
\(695\) 2473.53 1589.64i 0.135002 0.0867606i
\(696\) 51.6403 59.5961i 0.00281239 0.00324567i
\(697\) −1788.14 + 12436.8i −0.0971743 + 0.675862i
\(698\) 28492.4 8366.12i 1.54506 0.453671i
\(699\) −2383.48 1531.77i −0.128972 0.0828855i
\(700\) 658.469 + 4579.75i 0.0355540 + 0.247283i
\(701\) 4148.07 + 9083.01i 0.223496 + 0.489388i 0.987850 0.155409i \(-0.0496695\pi\)
−0.764354 + 0.644796i \(0.776942\pi\)
\(702\) −4268.55 9346.83i −0.229496 0.502526i
\(703\) 98.3941 + 684.346i 0.00527881 + 0.0367149i
\(704\) 10243.3 + 6583.00i 0.548382 + 0.352423i
\(705\) −1913.72 + 561.920i −0.102234 + 0.0300186i
\(706\) −255.560 + 1777.46i −0.0136234 + 0.0947528i
\(707\) −2550.65 + 2943.61i −0.135682 + 0.156585i
\(708\) 3085.13 1982.70i 0.163766 0.105246i
\(709\) 3131.94 + 3614.46i 0.165899 + 0.191458i 0.832612 0.553857i \(-0.186845\pi\)
−0.666712 + 0.745315i \(0.732299\pi\)
\(710\) 10049.1 + 2950.69i 0.531178 + 0.155968i
\(711\) −11568.8 + 25332.1i −0.610216 + 1.33619i
\(712\) −3075.78 −0.161895
\(713\) −13794.2 + 15014.7i −0.724538 + 0.788649i
\(714\) −2675.05 −0.140212
\(715\) −3722.78 + 8151.75i −0.194719 + 0.426375i
\(716\) −16701.6 4904.04i −0.871745 0.255967i
\(717\) −2069.33 2388.13i −0.107783 0.124388i
\(718\) 24293.5 15612.5i 1.26271 0.811493i
\(719\) 5678.33 6553.14i 0.294528 0.339904i −0.589128 0.808040i \(-0.700529\pi\)
0.883657 + 0.468136i \(0.155074\pi\)
\(720\) −1313.79 + 9137.61i −0.0680029 + 0.472971i
\(721\) −6174.99 + 1813.14i −0.318958 + 0.0936544i
\(722\) −13539.8 8701.50i −0.697921 0.448527i
\(723\) 448.685 + 3120.67i 0.0230799 + 0.160524i
\(724\) −2385.29 5223.06i −0.122443 0.268112i
\(725\) 277.652 + 607.972i 0.0142231 + 0.0311442i
\(726\) 176.409 + 1226.95i 0.00901809 + 0.0627222i
\(727\) 4660.44 + 2995.08i 0.237753 + 0.152794i 0.654092 0.756415i \(-0.273051\pi\)
−0.416339 + 0.909209i \(0.636687\pi\)
\(728\) 4968.95 1459.02i 0.252969 0.0742785i
\(729\) 2353.91 16371.8i 0.119591 0.831775i
\(730\) −6017.86 + 6944.98i −0.305111 + 0.352117i
\(731\) 12172.2 7822.61i 0.615877 0.395800i
\(732\) 482.087 + 556.358i 0.0243422 + 0.0280923i
\(733\) −4654.65 1366.73i −0.234548 0.0688694i 0.162346 0.986734i \(-0.448094\pi\)
−0.396894 + 0.917864i \(0.629912\pi\)
\(734\) 866.777 1897.98i 0.0435876 0.0954436i
\(735\) −1430.07 −0.0717671
\(736\) −27098.7 787.636i −1.35716 0.0394465i
\(737\) −30539.7 −1.52638
\(738\) 17275.4 37827.8i 0.861673 1.88680i
\(739\) 35065.0 + 10296.0i 1.74545 + 0.512510i 0.989800 0.142466i \(-0.0455033\pi\)
0.755649 + 0.654976i \(0.227321\pi\)
\(740\) −153.585 177.246i −0.00762957 0.00880500i
\(741\) 4377.75 2813.41i 0.217032 0.139478i
\(742\) 5824.33 6721.63i 0.288164 0.332559i
\(743\) 4643.20 32294.2i 0.229263 1.59456i −0.471961 0.881620i \(-0.656454\pi\)
0.701224 0.712941i \(-0.252637\pi\)
\(744\) −523.134 + 153.606i −0.0257783 + 0.00756918i
\(745\) 3516.91 + 2260.18i 0.172952 + 0.111150i
\(746\) −4178.00 29058.6i −0.205050 1.42616i
\(747\) −12213.4 26743.7i −0.598215 1.30991i
\(748\) −2824.18 6184.08i −0.138051 0.302289i
\(749\) −4039.69 28096.6i −0.197072 1.37067i
\(750\) 350.525 + 225.269i 0.0170658 + 0.0109675i
\(751\) −20778.2 + 6101.03i −1.00960 + 0.296444i −0.744388 0.667747i \(-0.767259\pi\)
−0.265208 + 0.964191i \(0.585441\pi\)
\(752\) −4654.49 + 32372.7i −0.225707 + 1.56983i
\(753\) 500.446 577.546i 0.0242195 0.0279508i
\(754\) −5060.41 + 3252.13i −0.244416 + 0.157076i
\(755\) 2842.15 + 3280.01i 0.137002 + 0.158108i
\(756\) 8109.69 + 2381.22i 0.390141 + 0.114556i
\(757\) 5074.57 11111.8i 0.243644 0.533505i −0.747818 0.663904i \(-0.768898\pi\)
0.991462 + 0.130399i \(0.0416257\pi\)
\(758\) 32865.9 1.57486
\(759\) 1852.92 + 2268.32i 0.0886121 + 0.108478i
\(760\) −1803.97 −0.0861009
\(761\) −16018.0 + 35074.5i −0.763011 + 1.67076i −0.0215479 + 0.999768i \(0.506859\pi\)
−0.741463 + 0.670994i \(0.765868\pi\)
\(762\) 6111.28 + 1794.43i 0.290536 + 0.0853090i
\(763\) 36033.0 + 41584.3i 1.70968 + 1.97307i
\(764\) −1074.80 + 690.729i −0.0508963 + 0.0327090i
\(765\) 2653.27