Properties

Label 115.4.g.a.6.11
Level $115$
Weight $4$
Character 115.6
Analytic conductor $6.785$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(6,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 18]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.g (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78521965066\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 6.11
Character \(\chi\) \(=\) 115.6
Dual form 115.4.g.a.96.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.10300 - 4.60492i) q^{2} +(-0.871970 - 0.256034i) q^{3} +(-11.5438 - 13.3223i) q^{4} +(4.20627 - 2.70320i) q^{5} +(-3.01277 + 3.47692i) q^{6} +(1.35658 - 9.43524i) q^{7} +(-46.7662 + 13.7318i) q^{8} +(-22.0191 - 14.1508i) q^{9} +O(q^{10})\) \(q+(2.10300 - 4.60492i) q^{2} +(-0.871970 - 0.256034i) q^{3} +(-11.5438 - 13.3223i) q^{4} +(4.20627 - 2.70320i) q^{5} +(-3.01277 + 3.47692i) q^{6} +(1.35658 - 9.43524i) q^{7} +(-46.7662 + 13.7318i) q^{8} +(-22.0191 - 14.1508i) q^{9} +(-3.60228 - 25.0544i) q^{10} +(0.553380 + 1.21173i) q^{11} +(6.65493 + 14.5723i) q^{12} +(5.90684 + 41.0829i) q^{13} +(-40.5957 - 26.0892i) q^{14} +(-4.35985 + 1.28017i) q^{15} +(-15.0456 + 104.644i) q^{16} +(9.34884 - 10.7891i) q^{17} +(-111.469 + 71.6370i) q^{18} +(-3.15281 - 3.63853i) q^{19} +(-84.5694 - 24.8318i) q^{20} +(-3.59864 + 7.87992i) q^{21} +6.74370 q^{22} +(76.0429 - 79.9029i) q^{23} +44.2945 q^{24} +(10.3854 - 22.7408i) q^{25} +(201.606 + 59.1968i) q^{26} +(31.6453 + 36.5206i) q^{27} +(-141.359 + 90.8461i) q^{28} +(149.195 - 172.180i) q^{29} +(-3.27368 + 22.7690i) q^{30} +(128.425 - 37.7088i) q^{31} +(122.214 + 78.5423i) q^{32} +(-0.172287 - 1.19828i) q^{33} +(-30.0226 - 65.7403i) q^{34} +(-19.7992 - 43.3543i) q^{35} +(65.6634 + 456.699i) q^{36} +(-87.5208 - 56.2462i) q^{37} +(-23.3855 + 6.86661i) q^{38} +(5.36803 - 37.3354i) q^{39} +(-159.591 + 184.178i) q^{40} +(-60.8847 + 39.1282i) q^{41} +(28.7185 + 33.1429i) q^{42} +(-391.109 - 114.840i) q^{43} +(9.75495 - 21.3604i) q^{44} -130.871 q^{45} +(-208.029 - 518.208i) q^{46} +300.953 q^{47} +(39.9118 - 87.3947i) q^{48} +(241.923 + 71.0349i) q^{49} +(-82.8792 - 95.6477i) q^{50} +(-10.9143 + 7.01419i) q^{51} +(479.132 - 552.948i) q^{52} +(32.8270 - 228.317i) q^{53} +(234.725 - 68.9214i) q^{54} +(5.60323 + 3.60098i) q^{55} +(66.1205 + 459.878i) q^{56} +(1.81757 + 3.97992i) q^{57} +(-479.119 - 1049.12i) q^{58} +(83.3086 + 579.424i) q^{59} +(67.3842 + 43.3052i) q^{60} +(456.855 - 134.145i) q^{61} +(96.4302 - 670.687i) q^{62} +(-163.387 + 188.558i) q^{63} +(-92.8048 + 59.6420i) q^{64} +(135.901 + 156.838i) q^{65} +(-5.88030 - 1.72661i) q^{66} +(230.888 - 505.573i) q^{67} -251.658 q^{68} +(-86.7650 + 50.2034i) q^{69} -241.281 q^{70} +(-86.9387 + 190.369i) q^{71} +(1224.06 + 359.417i) q^{72} +(-189.879 - 219.132i) q^{73} +(-443.066 + 284.741i) q^{74} +(-14.8781 + 17.1703i) q^{75} +(-12.0781 + 84.0053i) q^{76} +(12.1837 - 3.57746i) q^{77} +(-160.638 - 103.236i) q^{78} +(144.682 + 1006.28i) q^{79} +(219.590 + 480.834i) q^{80} +(275.331 + 602.891i) q^{81} +(52.1420 + 362.656i) q^{82} +(1052.24 + 676.234i) q^{83} +(146.521 - 43.0224i) q^{84} +(10.1585 - 70.6538i) q^{85} +(-1351.33 + 1559.52i) q^{86} +(-174.177 + 111.937i) q^{87} +(-42.5187 - 49.0692i) q^{88} +(690.778 + 202.831i) q^{89} +(-275.221 + 602.649i) q^{90} +395.640 q^{91} +(-1942.32 - 90.6804i) q^{92} -121.637 q^{93} +(632.903 - 1385.86i) q^{94} +(-23.0972 - 6.78196i) q^{95} +(-86.4577 - 99.7775i) q^{96} +(-455.825 + 292.941i) q^{97} +(835.874 - 964.649i) q^{98} +(4.96208 - 34.5120i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9} - 10 q^{10} + 2 q^{11} - 57 q^{12} + 34 q^{13} - 154 q^{14} + 30 q^{15} + 16 q^{16} + 252 q^{17} - 33 q^{18} - 160 q^{19} - 200 q^{20} - 684 q^{21} - 704 q^{22} + 127 q^{23} - 3090 q^{24} - 275 q^{25} - 567 q^{26} + 384 q^{27} - 188 q^{28} + 340 q^{29} - 15 q^{30} + 582 q^{31} - 1364 q^{32} + 1760 q^{33} + 1819 q^{34} + 665 q^{35} + 2794 q^{36} + 312 q^{37} + 3123 q^{38} - 1560 q^{39} - 1205 q^{40} + 1324 q^{41} + 1454 q^{42} - 1740 q^{43} - 369 q^{44} + 3730 q^{45} - 4322 q^{46} - 2858 q^{47} - 2686 q^{48} + 2015 q^{49} - 325 q^{50} - 1426 q^{51} + 1717 q^{52} + 882 q^{53} + 2541 q^{54} + 450 q^{55} + 7755 q^{56} + 3688 q^{57} + 6622 q^{58} + 2605 q^{59} + 1530 q^{60} - 104 q^{61} - 9360 q^{62} - 7618 q^{63} + 3483 q^{64} + 170 q^{65} - 1766 q^{66} - 166 q^{67} - 5018 q^{68} - 1194 q^{69} - 770 q^{70} - 1222 q^{71} + 3303 q^{72} - 922 q^{73} + 1245 q^{74} + 150 q^{75} + 1360 q^{76} - 3093 q^{77} - 1600 q^{78} + 2448 q^{79} + 2115 q^{80} - 1371 q^{81} + 6609 q^{82} + 6704 q^{83} + 3894 q^{84} - 720 q^{85} - 5074 q^{86} - 6324 q^{87} + 1918 q^{88} - 5380 q^{89} - 165 q^{90} + 7828 q^{91} - 16225 q^{92} - 24948 q^{93} - 16490 q^{94} + 685 q^{95} + 675 q^{96} - 4400 q^{97} + 8790 q^{98} - 3626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{9}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.10300 4.60492i 0.743522 1.62809i −0.0341499 0.999417i \(-0.510872\pi\)
0.777672 0.628670i \(-0.216400\pi\)
\(3\) −0.871970 0.256034i −0.167811 0.0492737i 0.196748 0.980454i \(-0.436962\pi\)
−0.364559 + 0.931180i \(0.618780\pi\)
\(4\) −11.5438 13.3223i −1.44298 1.66529i
\(5\) 4.20627 2.70320i 0.376220 0.241782i
\(6\) −3.01277 + 3.47692i −0.204993 + 0.236574i
\(7\) 1.35658 9.43524i 0.0732486 0.509455i −0.919859 0.392249i \(-0.871697\pi\)
0.993108 0.117206i \(-0.0373938\pi\)
\(8\) −46.7662 + 13.7318i −2.06679 + 0.606865i
\(9\) −22.0191 14.1508i −0.815521 0.524104i
\(10\) −3.60228 25.0544i −0.113914 0.792289i
\(11\) 0.553380 + 1.21173i 0.0151682 + 0.0332138i 0.917064 0.398739i \(-0.130552\pi\)
−0.901896 + 0.431953i \(0.857825\pi\)
\(12\) 6.65493 + 14.5723i 0.160093 + 0.350554i
\(13\) 5.90684 + 41.0829i 0.126020 + 0.876489i 0.950528 + 0.310639i \(0.100543\pi\)
−0.824508 + 0.565850i \(0.808548\pi\)
\(14\) −40.5957 26.0892i −0.774975 0.498046i
\(15\) −4.35985 + 1.28017i −0.0750472 + 0.0220359i
\(16\) −15.0456 + 104.644i −0.235088 + 1.63507i
\(17\) 9.34884 10.7891i 0.133378 0.153927i −0.685131 0.728419i \(-0.740255\pi\)
0.818510 + 0.574493i \(0.194801\pi\)
\(18\) −111.469 + 71.6370i −1.45964 + 0.938056i
\(19\) −3.15281 3.63853i −0.0380686 0.0439335i 0.736396 0.676551i \(-0.236526\pi\)
−0.774465 + 0.632617i \(0.781981\pi\)
\(20\) −84.5694 24.8318i −0.945515 0.277628i
\(21\) −3.59864 + 7.87992i −0.0373946 + 0.0818828i
\(22\) 6.74370 0.0653528
\(23\) 76.0429 79.9029i 0.689393 0.724387i
\(24\) 44.2945 0.376732
\(25\) 10.3854 22.7408i 0.0830830 0.181926i
\(26\) 201.606 + 59.1968i 1.52070 + 0.446517i
\(27\) 31.6453 + 36.5206i 0.225561 + 0.260311i
\(28\) −141.359 + 90.8461i −0.954085 + 0.613153i
\(29\) 149.195 172.180i 0.955336 1.10252i −0.0393149 0.999227i \(-0.512518\pi\)
0.994651 0.103290i \(-0.0329370\pi\)
\(30\) −3.27368 + 22.7690i −0.0199230 + 0.138568i
\(31\) 128.425 37.7088i 0.744056 0.218474i 0.112335 0.993670i \(-0.464167\pi\)
0.631721 + 0.775196i \(0.282349\pi\)
\(32\) 122.214 + 78.5423i 0.675144 + 0.433889i
\(33\) −0.172287 1.19828i −0.000908825 0.00632102i
\(34\) −30.0226 65.7403i −0.151436 0.331599i
\(35\) −19.7992 43.3543i −0.0956194 0.209377i
\(36\) 65.6634 + 456.699i 0.303997 + 2.11435i
\(37\) −87.5208 56.2462i −0.388874 0.249914i 0.331565 0.943432i \(-0.392423\pi\)
−0.720439 + 0.693518i \(0.756060\pi\)
\(38\) −23.3855 + 6.86661i −0.0998324 + 0.0293134i
\(39\) 5.36803 37.3354i 0.0220403 0.153294i
\(40\) −159.591 + 184.178i −0.630839 + 0.728027i
\(41\) −60.8847 + 39.1282i −0.231917 + 0.149044i −0.651439 0.758701i \(-0.725834\pi\)
0.419522 + 0.907745i \(0.362198\pi\)
\(42\) 28.7185 + 33.1429i 0.105509 + 0.121763i
\(43\) −391.109 114.840i −1.38706 0.407277i −0.498839 0.866695i \(-0.666240\pi\)
−0.888220 + 0.459418i \(0.848058\pi\)
\(44\) 9.75495 21.3604i 0.0334230 0.0731862i
\(45\) −130.871 −0.433534
\(46\) −208.029 518.208i −0.666786 1.66099i
\(47\) 300.953 0.934010 0.467005 0.884255i \(-0.345333\pi\)
0.467005 + 0.884255i \(0.345333\pi\)
\(48\) 39.9118 87.3947i 0.120016 0.262799i
\(49\) 241.923 + 71.0349i 0.705314 + 0.207099i
\(50\) −82.8792 95.6477i −0.234418 0.270533i
\(51\) −10.9143 + 7.01419i −0.0299668 + 0.0192585i
\(52\) 479.132 552.948i 1.27776 1.47462i
\(53\) 32.8270 228.317i 0.0850781 0.591731i −0.902030 0.431674i \(-0.857923\pi\)
0.987108 0.160057i \(-0.0511679\pi\)
\(54\) 234.725 68.9214i 0.591518 0.173685i
\(55\) 5.60323 + 3.60098i 0.0137371 + 0.00882828i
\(56\) 66.1205 + 459.878i 0.157781 + 1.09739i
\(57\) 1.81757 + 3.97992i 0.00422355 + 0.00924829i
\(58\) −479.119 1049.12i −1.08468 2.37512i
\(59\) 83.3086 + 579.424i 0.183828 + 1.27855i 0.847608 + 0.530624i \(0.178042\pi\)
−0.663780 + 0.747928i \(0.731049\pi\)
\(60\) 67.3842 + 43.3052i 0.144988 + 0.0931780i
\(61\) 456.855 134.145i 0.958922 0.281565i 0.235425 0.971892i \(-0.424352\pi\)
0.723497 + 0.690327i \(0.242534\pi\)
\(62\) 96.4302 670.687i 0.197527 1.37383i
\(63\) −163.387 + 188.558i −0.326743 + 0.377081i
\(64\) −92.8048 + 59.6420i −0.181259 + 0.116488i
\(65\) 135.901 + 156.838i 0.259330 + 0.299283i
\(66\) −5.88030 1.72661i −0.0109669 0.00322017i
\(67\) 230.888 505.573i 0.421006 0.921875i −0.573695 0.819069i \(-0.694491\pi\)
0.994701 0.102806i \(-0.0327821\pi\)
\(68\) −251.658 −0.448794
\(69\) −86.7650 + 50.2034i −0.151381 + 0.0875910i
\(70\) −241.281 −0.411980
\(71\) −86.9387 + 190.369i −0.145320 + 0.318206i −0.968270 0.249908i \(-0.919600\pi\)
0.822950 + 0.568114i \(0.192327\pi\)
\(72\) 1224.06 + 359.417i 2.00357 + 0.588302i
\(73\) −189.879 219.132i −0.304433 0.351335i 0.582833 0.812592i \(-0.301944\pi\)
−0.887267 + 0.461257i \(0.847399\pi\)
\(74\) −443.066 + 284.741i −0.696018 + 0.447304i
\(75\) −14.8781 + 17.1703i −0.0229064 + 0.0264354i
\(76\) −12.0781 + 84.0053i −0.0182297 + 0.126790i
\(77\) 12.1837 3.57746i 0.0180320 0.00529466i
\(78\) −160.638 103.236i −0.233188 0.149861i
\(79\) 144.682 + 1006.28i 0.206050 + 1.43311i 0.785883 + 0.618375i \(0.212209\pi\)
−0.579833 + 0.814736i \(0.696882\pi\)
\(80\) 219.590 + 480.834i 0.306886 + 0.671986i
\(81\) 275.331 + 602.891i 0.377683 + 0.827011i
\(82\) 52.1420 + 362.656i 0.0702210 + 0.488398i
\(83\) 1052.24 + 676.234i 1.39155 + 0.894293i 0.999669 0.0257249i \(-0.00818940\pi\)
0.391877 + 0.920017i \(0.371826\pi\)
\(84\) 146.521 43.0224i 0.190318 0.0558824i
\(85\) 10.1585 70.6538i 0.0129629 0.0901586i
\(86\) −1351.33 + 1559.52i −1.69439 + 1.95543i
\(87\) −174.177 + 111.937i −0.214641 + 0.137941i
\(88\) −42.5187 49.0692i −0.0515058 0.0594409i
\(89\) 690.778 + 202.831i 0.822723 + 0.241573i 0.665888 0.746052i \(-0.268053\pi\)
0.156835 + 0.987625i \(0.449871\pi\)
\(90\) −275.221 + 602.649i −0.322342 + 0.705831i
\(91\) 395.640 0.455762
\(92\) −1942.32 90.6804i −2.20109 0.102762i
\(93\) −121.637 −0.135626
\(94\) 632.903 1385.86i 0.694457 1.52065i
\(95\) −23.0972 6.78196i −0.0249445 0.00732437i
\(96\) −86.4577 99.7775i −0.0919172 0.106078i
\(97\) −455.825 + 292.941i −0.477134 + 0.306636i −0.757013 0.653400i \(-0.773342\pi\)
0.279879 + 0.960035i \(0.409706\pi\)
\(98\) 835.874 964.649i 0.861592 0.994330i
\(99\) 4.96208 34.5120i 0.00503745 0.0350362i
\(100\) −422.847 + 124.159i −0.422847 + 0.124159i
\(101\) −1458.90 937.580i −1.43729 0.923690i −0.999699 0.0245162i \(-0.992195\pi\)
−0.437591 0.899174i \(-0.644168\pi\)
\(102\) 9.34708 + 65.0103i 0.00907351 + 0.0631077i
\(103\) 607.242 + 1329.67i 0.580906 + 1.27201i 0.940784 + 0.339008i \(0.110091\pi\)
−0.359877 + 0.933000i \(0.617181\pi\)
\(104\) −840.382 1840.18i −0.792368 1.73504i
\(105\) 6.16419 + 42.8729i 0.00572917 + 0.0398473i
\(106\) −982.348 631.316i −0.900132 0.578480i
\(107\) −1146.61 + 336.675i −1.03595 + 0.304183i −0.755129 0.655577i \(-0.772426\pi\)
−0.280823 + 0.959760i \(0.590607\pi\)
\(108\) 121.230 843.176i 0.108013 0.751247i
\(109\) 440.343 508.183i 0.386947 0.446560i −0.528540 0.848908i \(-0.677260\pi\)
0.915487 + 0.402348i \(0.131806\pi\)
\(110\) 28.3658 18.2296i 0.0245870 0.0158011i
\(111\) 61.9146 + 71.4533i 0.0529430 + 0.0610995i
\(112\) 966.935 + 283.918i 0.815775 + 0.239533i
\(113\) −518.918 + 1136.27i −0.431997 + 0.945942i 0.561001 + 0.827815i \(0.310416\pi\)
−0.992998 + 0.118127i \(0.962311\pi\)
\(114\) 22.1496 0.0181973
\(115\) 103.863 541.653i 0.0842198 0.439212i
\(116\) −4016.11 −3.21454
\(117\) 451.293 988.194i 0.356599 0.780843i
\(118\) 2843.40 + 834.898i 2.21827 + 0.651344i
\(119\) −89.1156 102.845i −0.0686489 0.0792250i
\(120\) 186.314 119.737i 0.141734 0.0910871i
\(121\) 870.458 1004.56i 0.653988 0.754742i
\(122\) 343.039 2385.89i 0.254568 1.77056i
\(123\) 63.1078 18.5301i 0.0462621 0.0135838i
\(124\) −1984.88 1275.61i −1.43748 0.923812i
\(125\) −17.7894 123.728i −0.0127290 0.0885323i
\(126\) 524.695 + 1148.92i 0.370981 + 0.812334i
\(127\) −227.408 497.953i −0.158891 0.347923i 0.813397 0.581709i \(-0.197616\pi\)
−0.972288 + 0.233786i \(0.924888\pi\)
\(128\) 244.878 + 1703.17i 0.169097 + 1.17609i
\(129\) 311.632 + 200.274i 0.212695 + 0.136691i
\(130\) 1008.03 295.984i 0.680077 0.199689i
\(131\) −380.652 + 2647.50i −0.253876 + 1.76575i 0.320590 + 0.947218i \(0.396119\pi\)
−0.574466 + 0.818529i \(0.694790\pi\)
\(132\) −13.9750 + 16.1280i −0.00921490 + 0.0106346i
\(133\) −38.6075 + 24.8115i −0.0251706 + 0.0161762i
\(134\) −1842.57 2126.44i −1.18786 1.37087i
\(135\) 231.831 + 68.0718i 0.147799 + 0.0433977i
\(136\) −289.055 + 632.943i −0.182252 + 0.399076i
\(137\) −1478.52 −0.922032 −0.461016 0.887392i \(-0.652515\pi\)
−0.461016 + 0.887392i \(0.652515\pi\)
\(138\) 48.7163 + 505.124i 0.0300508 + 0.311587i
\(139\) −895.364 −0.546358 −0.273179 0.961963i \(-0.588075\pi\)
−0.273179 + 0.961963i \(0.588075\pi\)
\(140\) −349.019 + 764.246i −0.210697 + 0.461361i
\(141\) −262.422 77.0540i −0.156737 0.0460221i
\(142\) 693.804 + 800.692i 0.410019 + 0.473187i
\(143\) −46.5128 + 29.8920i −0.0272000 + 0.0174804i
\(144\) 1812.09 2091.27i 1.04866 1.21022i
\(145\) 162.115 1127.54i 0.0928480 0.645772i
\(146\) −1408.40 + 413.544i −0.798357 + 0.234419i
\(147\) −192.762 123.881i −0.108155 0.0695068i
\(148\) 260.997 + 1815.28i 0.144958 + 1.00821i
\(149\) 1439.50 + 3152.07i 0.791467 + 1.73307i 0.672403 + 0.740185i \(0.265262\pi\)
0.119064 + 0.992887i \(0.462011\pi\)
\(150\) 47.7792 + 104.622i 0.0260077 + 0.0569489i
\(151\) −14.7216 102.391i −0.00793398 0.0551820i 0.985470 0.169851i \(-0.0543285\pi\)
−0.993404 + 0.114669i \(0.963419\pi\)
\(152\) 197.408 + 126.867i 0.105342 + 0.0676989i
\(153\) −358.528 + 105.273i −0.189446 + 0.0556264i
\(154\) 9.14838 63.6284i 0.00478700 0.0332943i
\(155\) 438.253 505.771i 0.227105 0.262094i
\(156\) −559.362 + 359.480i −0.287082 + 0.184496i
\(157\) −1209.14 1395.42i −0.614649 0.709343i 0.360033 0.932940i \(-0.382765\pi\)
−0.974682 + 0.223597i \(0.928220\pi\)
\(158\) 4938.13 + 1449.96i 2.48643 + 0.730082i
\(159\) −87.0810 + 190.681i −0.0434338 + 0.0951068i
\(160\) 726.381 0.358909
\(161\) −650.744 825.878i −0.318546 0.404275i
\(162\) 3355.29 1.62726
\(163\) 2.32810 5.09783i 0.00111872 0.00244965i −0.909072 0.416639i \(-0.863208\pi\)
0.910191 + 0.414190i \(0.135935\pi\)
\(164\) 1224.12 + 359.434i 0.582852 + 0.171141i
\(165\) −3.96388 4.57456i −0.00187023 0.00215836i
\(166\) 5326.86 3423.37i 2.49063 1.60063i
\(167\) 1451.25 1674.83i 0.672463 0.776063i −0.312297 0.949985i \(-0.601098\pi\)
0.984760 + 0.173921i \(0.0556439\pi\)
\(168\) 60.0891 417.929i 0.0275951 0.191928i
\(169\) 455.089 133.626i 0.207141 0.0608221i
\(170\) −303.992 195.364i −0.137148 0.0881396i
\(171\) 17.9337 + 124.732i 0.00802004 + 0.0557806i
\(172\) 2984.97 + 6536.16i 1.32326 + 2.89755i
\(173\) −480.896 1053.02i −0.211340 0.462770i 0.774041 0.633136i \(-0.218233\pi\)
−0.985381 + 0.170365i \(0.945505\pi\)
\(174\) 149.166 + 1037.48i 0.0649901 + 0.452016i
\(175\) −200.476 128.838i −0.0865976 0.0556529i
\(176\) −135.127 + 39.6769i −0.0578727 + 0.0169930i
\(177\) 75.7093 526.570i 0.0321506 0.223613i
\(178\) 2386.72 2754.43i 1.00501 1.15985i
\(179\) 535.970 344.447i 0.223800 0.143828i −0.423936 0.905692i \(-0.639352\pi\)
0.647737 + 0.761864i \(0.275716\pi\)
\(180\) 1510.75 + 1743.50i 0.625581 + 0.721959i
\(181\) 691.043 + 202.909i 0.283784 + 0.0833264i 0.420527 0.907280i \(-0.361845\pi\)
−0.136743 + 0.990607i \(0.543663\pi\)
\(182\) 832.031 1821.89i 0.338870 0.742021i
\(183\) −432.709 −0.174791
\(184\) −2459.03 + 4780.96i −0.985227 + 1.91553i
\(185\) −520.181 −0.206727
\(186\) −255.803 + 560.130i −0.100841 + 0.220810i
\(187\) 18.2470 + 5.35781i 0.00713559 + 0.00209520i
\(188\) −3474.15 4009.38i −1.34776 1.55539i
\(189\) 387.510 249.038i 0.149139 0.0958456i
\(190\) −79.8039 + 92.0986i −0.0304715 + 0.0351660i
\(191\) 132.204 919.496i 0.0500833 0.348337i −0.949336 0.314263i \(-0.898243\pi\)
0.999419 0.0340743i \(-0.0108483\pi\)
\(192\) 96.1934 28.2449i 0.0361571 0.0106167i
\(193\) −621.497 399.412i −0.231795 0.148965i 0.419588 0.907715i \(-0.362174\pi\)
−0.651383 + 0.758749i \(0.725811\pi\)
\(194\) 390.372 + 2715.09i 0.144469 + 1.00481i
\(195\) −78.3460 171.554i −0.0287717 0.0630011i
\(196\) −1846.37 4042.98i −0.672875 1.47339i
\(197\) −737.037 5126.21i −0.266557 1.85394i −0.480365 0.877069i \(-0.659496\pi\)
0.213808 0.976876i \(-0.431413\pi\)
\(198\) −148.490 95.4287i −0.0532966 0.0342516i
\(199\) 393.620 115.577i 0.140216 0.0411711i −0.210871 0.977514i \(-0.567630\pi\)
0.351087 + 0.936343i \(0.385812\pi\)
\(200\) −173.412 + 1206.11i −0.0613105 + 0.426424i
\(201\) −330.771 + 381.730i −0.116074 + 0.133956i
\(202\) −7385.56 + 4746.41i −2.57251 + 1.65325i
\(203\) −1422.16 1641.26i −0.491706 0.567459i
\(204\) 219.438 + 64.4328i 0.0753124 + 0.0221137i
\(205\) −150.326 + 329.167i −0.0512156 + 0.112147i
\(206\) 7400.08 2.50286
\(207\) −2805.08 + 683.320i −0.941869 + 0.229440i
\(208\) −4387.97 −1.46275
\(209\) 2.66423 5.83385i 0.000881764 0.00193079i
\(210\) 210.390 + 61.7760i 0.0691346 + 0.0202998i
\(211\) −1223.23 1411.68i −0.399103 0.460589i 0.520256 0.854011i \(-0.325837\pi\)
−0.919358 + 0.393422i \(0.871291\pi\)
\(212\) −3420.66 + 2198.32i −1.10817 + 0.712177i
\(213\) 124.549 143.737i 0.0400655 0.0462380i
\(214\) −860.955 + 5988.07i −0.275017 + 1.91279i
\(215\) −1955.54 + 574.200i −0.620312 + 0.182140i
\(216\) −1981.42 1273.38i −0.624160 0.401124i
\(217\) −181.573 1262.87i −0.0568019 0.395066i
\(218\) −1414.10 3096.45i −0.439335 0.962010i
\(219\) 109.464 + 239.692i 0.0337756 + 0.0739583i
\(220\) −16.7095 116.217i −0.00512069 0.0356152i
\(221\) 498.472 + 320.348i 0.151723 + 0.0975066i
\(222\) 459.244 134.846i 0.138840 0.0407670i
\(223\) 3.58195 24.9130i 0.00107563 0.00748116i −0.989277 0.146054i \(-0.953343\pi\)
0.990352 + 0.138573i \(0.0442516\pi\)
\(224\) 906.859 1046.57i 0.270500 0.312174i
\(225\) −550.477 + 353.770i −0.163104 + 0.104821i
\(226\) 4141.16 + 4779.16i 1.21888 + 1.40666i
\(227\) 848.495 + 249.141i 0.248091 + 0.0728460i 0.403414 0.915018i \(-0.367824\pi\)
−0.155323 + 0.987864i \(0.549642\pi\)
\(228\) 32.0399 70.1577i 0.00930657 0.0203785i
\(229\) 3672.44 1.05975 0.529873 0.848077i \(-0.322240\pi\)
0.529873 + 0.848077i \(0.322240\pi\)
\(230\) −2275.85 1617.38i −0.652456 0.463681i
\(231\) −11.5398 −0.00328684
\(232\) −4612.92 + 10100.9i −1.30540 + 2.85843i
\(233\) −3125.07 917.602i −0.878669 0.258000i −0.188871 0.982002i \(-0.560483\pi\)
−0.689798 + 0.724002i \(0.742301\pi\)
\(234\) −3601.49 4156.34i −1.00614 1.16115i
\(235\) 1265.89 813.536i 0.351393 0.225827i
\(236\) 6757.56 7798.64i 1.86390 2.15105i
\(237\) 131.484 914.493i 0.0360372 0.250644i
\(238\) −661.003 + 194.088i −0.180027 + 0.0528607i
\(239\) 5343.05 + 3433.77i 1.44608 + 0.929339i 0.999400 + 0.0346447i \(0.0110299\pi\)
0.446680 + 0.894694i \(0.352606\pi\)
\(240\) −68.3659 475.495i −0.0183875 0.127888i
\(241\) −2405.42 5267.14i −0.642934 1.40783i −0.897605 0.440800i \(-0.854695\pi\)
0.254672 0.967028i \(-0.418033\pi\)
\(242\) −2795.36 6120.98i −0.742531 1.62592i
\(243\) −271.404 1887.66i −0.0716485 0.498326i
\(244\) −7060.98 4537.81i −1.85259 1.19059i
\(245\) 1209.61 355.175i 0.315426 0.0926174i
\(246\) 47.3858 329.575i 0.0122813 0.0854185i
\(247\) 130.859 151.019i 0.0337098 0.0389032i
\(248\) −5488.11 + 3526.99i −1.40522 + 0.903082i
\(249\) −744.384 859.064i −0.189451 0.218639i
\(250\) −607.168 178.280i −0.153603 0.0451018i
\(251\) −2602.87 + 5699.48i −0.654547 + 1.43326i 0.232970 + 0.972484i \(0.425156\pi\)
−0.887517 + 0.460775i \(0.847572\pi\)
\(252\) 4398.14 1.09943
\(253\) 138.902 + 47.9271i 0.0345165 + 0.0119097i
\(254\) −2771.28 −0.684588
\(255\) −26.9477 + 59.0071i −0.00661776 + 0.0144909i
\(256\) 7511.14 + 2205.47i 1.83378 + 0.538445i
\(257\) −1502.96 1734.51i −0.364793 0.420994i 0.543446 0.839444i \(-0.317119\pi\)
−0.908240 + 0.418450i \(0.862574\pi\)
\(258\) 1577.61 1013.87i 0.380689 0.244654i
\(259\) −649.426 + 749.477i −0.155804 + 0.179808i
\(260\) 520.626 3621.04i 0.124184 0.863720i
\(261\) −5721.61 + 1680.02i −1.35693 + 0.398431i
\(262\) 11391.0 + 7320.56i 2.68603 + 1.72620i
\(263\) 401.297 + 2791.08i 0.0940877 + 0.654394i 0.981222 + 0.192883i \(0.0617836\pi\)
−0.887134 + 0.461512i \(0.847307\pi\)
\(264\) 24.5117 + 53.6731i 0.00571436 + 0.0125127i
\(265\) −479.108 1049.10i −0.111062 0.243192i
\(266\) 33.0637 + 229.963i 0.00762130 + 0.0530073i
\(267\) −550.406 353.725i −0.126158 0.0810771i
\(268\) −9400.73 + 2760.30i −2.14269 + 0.629151i
\(269\) 985.045 6851.14i 0.223269 1.55287i −0.502286 0.864702i \(-0.667507\pi\)
0.725554 0.688165i \(-0.241583\pi\)
\(270\) 801.006 924.410i 0.180547 0.208362i
\(271\) 2385.43 1533.02i 0.534704 0.343633i −0.245261 0.969457i \(-0.578874\pi\)
0.779964 + 0.625824i \(0.215237\pi\)
\(272\) 988.365 + 1140.63i 0.220325 + 0.254269i
\(273\) −344.987 101.297i −0.0764818 0.0224571i
\(274\) −3109.32 + 6808.47i −0.685551 + 1.50115i
\(275\) 33.3028 0.00730268
\(276\) 1670.43 + 576.369i 0.364304 + 0.125701i
\(277\) 7402.87 1.60576 0.802880 0.596141i \(-0.203300\pi\)
0.802880 + 0.596141i \(0.203300\pi\)
\(278\) −1882.95 + 4123.09i −0.406230 + 0.889519i
\(279\) −3361.40 986.995i −0.721296 0.211792i
\(280\) 1521.26 + 1755.63i 0.324689 + 0.374711i
\(281\) 3950.06 2538.55i 0.838580 0.538923i −0.0494137 0.998778i \(-0.515735\pi\)
0.887994 + 0.459856i \(0.152099\pi\)
\(282\) −906.700 + 1046.39i −0.191465 + 0.220963i
\(283\) −654.578 + 4552.69i −0.137493 + 0.956287i 0.797928 + 0.602753i \(0.205929\pi\)
−0.935421 + 0.353535i \(0.884980\pi\)
\(284\) 3539.76 1039.37i 0.739599 0.217166i
\(285\) 18.4037 + 11.8273i 0.00382506 + 0.00245821i
\(286\) 39.8339 + 277.051i 0.00823576 + 0.0572810i
\(287\) 286.589 + 627.542i 0.0589436 + 0.129068i
\(288\) −1579.61 3458.86i −0.323192 0.707691i
\(289\) 670.188 + 4661.26i 0.136411 + 0.948761i
\(290\) −4851.30 3117.74i −0.982338 0.631310i
\(291\) 472.469 138.729i 0.0951773 0.0279466i
\(292\) −727.410 + 5059.25i −0.145782 + 1.01394i
\(293\) −5325.50 + 6145.96i −1.06184 + 1.22543i −0.0884972 + 0.996076i \(0.528206\pi\)
−0.973343 + 0.229353i \(0.926339\pi\)
\(294\) −975.839 + 627.134i −0.193579 + 0.124405i
\(295\) 1916.72 + 2212.01i 0.378290 + 0.436570i
\(296\) 4865.37 + 1428.60i 0.955386 + 0.280527i
\(297\) −26.7414 + 58.5554i −0.00522455 + 0.0114402i
\(298\) 17542.3 3.41006
\(299\) 3731.82 + 2652.09i 0.721795 + 0.512958i
\(300\) 400.499 0.0770760
\(301\) −1614.11 + 3534.41i −0.309089 + 0.676812i
\(302\) −502.464 147.537i −0.0957402 0.0281119i
\(303\) 1032.07 + 1191.07i 0.195679 + 0.225826i
\(304\) 428.188 275.180i 0.0807838 0.0519166i
\(305\) 1559.03 1799.22i 0.292688 0.337780i
\(306\) −269.208 + 1872.38i −0.0502928 + 0.349794i
\(307\) 517.813 152.044i 0.0962643 0.0282657i −0.233246 0.972418i \(-0.574935\pi\)
0.329510 + 0.944152i \(0.393116\pi\)
\(308\) −188.307 121.017i −0.0348369 0.0223883i
\(309\) −189.056 1314.91i −0.0348058 0.242080i
\(310\) −1407.39 3081.76i −0.257853 0.564620i
\(311\) 3798.28 + 8317.06i 0.692542 + 1.51645i 0.848786 + 0.528736i \(0.177334\pi\)
−0.156245 + 0.987718i \(0.549939\pi\)
\(312\) 261.640 + 1819.75i 0.0474758 + 0.330202i
\(313\) −6970.99 4479.98i −1.25886 0.809021i −0.270733 0.962654i \(-0.587266\pi\)
−0.988128 + 0.153633i \(0.950903\pi\)
\(314\) −8968.63 + 2633.43i −1.61188 + 0.473290i
\(315\) −177.537 + 1234.79i −0.0317557 + 0.220866i
\(316\) 11735.8 13543.9i 2.08922 2.41108i
\(317\) −8951.59 + 5752.84i −1.58603 + 1.01928i −0.612570 + 0.790416i \(0.709864\pi\)
−0.973459 + 0.228863i \(0.926499\pi\)
\(318\) 694.940 + 802.003i 0.122548 + 0.141428i
\(319\) 291.197 + 85.5033i 0.0511095 + 0.0150071i
\(320\) −229.137 + 501.741i −0.0400286 + 0.0876505i
\(321\) 1086.01 0.188832
\(322\) −5171.62 + 1259.81i −0.895041 + 0.218032i
\(323\) −68.7317 −0.0118400
\(324\) 4853.52 10627.7i 0.832222 1.82231i
\(325\) 995.604 + 292.336i 0.169927 + 0.0498950i
\(326\) −18.5791 21.4415i −0.00315645 0.00364274i
\(327\) −514.078 + 330.378i −0.0869375 + 0.0558713i
\(328\) 2310.04 2665.93i 0.388874 0.448785i
\(329\) 408.267 2839.56i 0.0684149 0.475836i
\(330\) −29.4015 + 8.63307i −0.00490455 + 0.00144010i
\(331\) −1430.28 919.188i −0.237509 0.152638i 0.416472 0.909148i \(-0.363266\pi\)
−0.653982 + 0.756510i \(0.726903\pi\)
\(332\) −3137.90 21824.6i −0.518719 3.60777i
\(333\) 1131.20 + 2476.98i 0.186154 + 0.407620i
\(334\) −4660.50 10205.1i −0.763507 1.67185i
\(335\) −395.493 2750.71i −0.0645017 0.448619i
\(336\) −770.446 495.136i −0.125093 0.0803924i
\(337\) 1922.09 564.377i 0.310692 0.0912273i −0.122670 0.992448i \(-0.539146\pi\)
0.433361 + 0.901220i \(0.357327\pi\)
\(338\) 341.713 2376.66i 0.0549903 0.382466i
\(339\) 743.405 857.935i 0.119104 0.137453i
\(340\) −1058.54 + 680.282i −0.168845 + 0.108510i
\(341\) 116.761 + 134.749i 0.0185424 + 0.0213990i
\(342\) 612.095 + 179.727i 0.0967787 + 0.0284168i
\(343\) 2356.65 5160.34i 0.370982 0.812338i
\(344\) 19867.6 3.11392
\(345\) −229.247 + 445.712i −0.0357746 + 0.0695546i
\(346\) −5860.38 −0.910566
\(347\) −3678.72 + 8055.28i −0.569119 + 1.24620i 0.378146 + 0.925746i \(0.376562\pi\)
−0.947265 + 0.320451i \(0.896166\pi\)
\(348\) 3501.93 + 1028.26i 0.539434 + 0.158392i
\(349\) −2474.58 2855.82i −0.379545 0.438018i 0.533548 0.845770i \(-0.320858\pi\)
−0.913093 + 0.407752i \(0.866313\pi\)
\(350\) −1014.89 + 652.231i −0.154995 + 0.0996092i
\(351\) −1313.45 + 1515.80i −0.199734 + 0.230506i
\(352\) −27.5414 + 191.555i −0.00417035 + 0.0290054i
\(353\) 6483.58 1903.75i 0.977582 0.287044i 0.246356 0.969179i \(-0.420767\pi\)
0.731226 + 0.682136i \(0.238949\pi\)
\(354\) −2265.60 1456.01i −0.340156 0.218605i
\(355\) 148.919 + 1035.76i 0.0222643 + 0.154851i
\(356\) −5272.06 11544.2i −0.784884 1.71866i
\(357\) 51.3744 + 112.494i 0.00761631 + 0.0166774i
\(358\) −459.008 3192.47i −0.0677635 0.471305i
\(359\) 6732.45 + 4326.68i 0.989763 + 0.636082i 0.932080 0.362253i \(-0.117992\pi\)
0.0576834 + 0.998335i \(0.481629\pi\)
\(360\) 6120.31 1797.09i 0.896025 0.263097i
\(361\) 972.839 6766.24i 0.141834 0.986476i
\(362\) 2387.64 2755.49i 0.346662 0.400069i
\(363\) −1016.21 + 653.081i −0.146935 + 0.0944294i
\(364\) −4567.21 5270.84i −0.657656 0.758976i
\(365\) −1391.04 408.446i −0.199480 0.0585727i
\(366\) −909.987 + 1992.59i −0.129961 + 0.284575i
\(367\) −8712.97 −1.23927 −0.619637 0.784889i \(-0.712720\pi\)
−0.619637 + 0.784889i \(0.712720\pi\)
\(368\) 7217.29 + 9159.66i 1.02236 + 1.29750i
\(369\) 1894.32 0.267247
\(370\) −1093.94 + 2395.39i −0.153706 + 0.336569i
\(371\) −2109.69 619.462i −0.295229 0.0866869i
\(372\) 1404.16 + 1620.49i 0.195705 + 0.225856i
\(373\) 5408.62 3475.91i 0.750798 0.482508i −0.108429 0.994104i \(-0.534582\pi\)
0.859226 + 0.511596i \(0.170945\pi\)
\(374\) 63.0458 72.7587i 0.00871663 0.0100595i
\(375\) −16.1667 + 112.442i −0.00222625 + 0.0154839i
\(376\) −14074.4 + 4132.62i −1.93040 + 0.566817i
\(377\) 7954.92 + 5112.32i 1.08674 + 0.698403i
\(378\) −331.866 2308.18i −0.0451570 0.314074i
\(379\) 1476.37 + 3232.79i 0.200095 + 0.438146i 0.982905 0.184115i \(-0.0589417\pi\)
−0.782810 + 0.622260i \(0.786214\pi\)
\(380\) 176.280 + 385.998i 0.0237972 + 0.0521087i
\(381\) 70.7999 + 492.424i 0.00952019 + 0.0662144i
\(382\) −3956.19 2542.49i −0.529885 0.340537i
\(383\) −11277.6 + 3311.40i −1.50459 + 0.441788i −0.927165 0.374654i \(-0.877762\pi\)
−0.577428 + 0.816442i \(0.695943\pi\)
\(384\) 222.541 1547.81i 0.0295742 0.205693i
\(385\) 41.5773 47.9828i 0.00550383 0.00635176i
\(386\) −3146.27 + 2021.98i −0.414873 + 0.266623i
\(387\) 6986.78 + 8063.17i 0.917720 + 1.05911i
\(388\) 9164.62 + 2690.98i 1.19913 + 0.352097i
\(389\) −4803.72 + 10518.7i −0.626114 + 1.37100i 0.284874 + 0.958565i \(0.408048\pi\)
−0.910988 + 0.412433i \(0.864679\pi\)
\(390\) −954.754 −0.123964
\(391\) −151.170 1567.44i −0.0195525 0.202733i
\(392\) −12289.2 −1.58342
\(393\) 1009.77 2211.08i 0.129608 0.283802i
\(394\) −25155.8 7386.40i −3.21657 0.944471i
\(395\) 3328.76 + 3841.59i 0.424021 + 0.489346i
\(396\) −517.061 + 332.295i −0.0656144 + 0.0421678i
\(397\) 1538.02 1774.97i 0.194436 0.224391i −0.650157 0.759800i \(-0.725297\pi\)
0.844593 + 0.535409i \(0.179842\pi\)
\(398\) 295.558 2055.65i 0.0372235 0.258895i
\(399\) 40.0171 11.7501i 0.00502096 0.00147429i
\(400\) 2223.44 + 1428.92i 0.277931 + 0.178615i
\(401\) 368.454 + 2562.65i 0.0458845 + 0.319134i 0.999817 + 0.0191135i \(0.00608439\pi\)
−0.953933 + 0.300020i \(0.903007\pi\)
\(402\) 1062.23 + 2325.95i 0.131789 + 0.288577i
\(403\) 2307.77 + 5053.32i 0.285256 + 0.624624i
\(404\) 4350.62 + 30259.2i 0.535771 + 3.72637i
\(405\) 2787.85 + 1791.64i 0.342048 + 0.219821i
\(406\) −10548.7 + 3097.38i −1.28947 + 0.378621i
\(407\) 19.7231 137.177i 0.00240206 0.0167067i
\(408\) 414.102 477.899i 0.0502478 0.0579891i
\(409\) 10889.2 6998.08i 1.31647 0.846046i 0.321571 0.946886i \(-0.395789\pi\)
0.994903 + 0.100839i \(0.0321528\pi\)
\(410\) 1199.66 + 1384.48i 0.144504 + 0.166767i
\(411\) 1289.22 + 378.550i 0.154727 + 0.0454319i
\(412\) 10704.4 23439.4i 1.28002 2.80286i
\(413\) 5580.02 0.664830
\(414\) −2752.45 + 14354.2i −0.326753 + 1.70404i
\(415\) 6254.00 0.739751
\(416\) −2504.85 + 5484.85i −0.295217 + 0.646435i
\(417\) 780.731 + 229.243i 0.0916848 + 0.0269211i
\(418\) −21.2616 24.5372i −0.00248789 0.00287118i
\(419\) −789.889 + 507.631i −0.0920969 + 0.0591871i −0.585879 0.810399i \(-0.699251\pi\)
0.493782 + 0.869586i \(0.335614\pi\)
\(420\) 500.007 577.039i 0.0580901 0.0670396i
\(421\) 523.510 3641.09i 0.0606041 0.421511i −0.936822 0.349807i \(-0.886247\pi\)
0.997426 0.0717039i \(-0.0228437\pi\)
\(422\) −9073.14 + 2664.12i −1.04662 + 0.307315i
\(423\) −6626.70 4258.72i −0.761704 0.489518i
\(424\) 1600.01 + 11128.3i 0.183262 + 1.27462i
\(425\) −148.262 324.649i −0.0169218 0.0370537i
\(426\) −399.972 875.817i −0.0454899 0.0996091i
\(427\) −645.926 4492.51i −0.0732050 0.509152i
\(428\) 17721.6 + 11388.9i 2.00141 + 1.28623i
\(429\) 48.2112 14.1561i 0.00542577 0.00159315i
\(430\) −1468.36 + 10212.7i −0.164676 + 1.14535i
\(431\) −1565.18 + 1806.31i −0.174923 + 0.201872i −0.836441 0.548058i \(-0.815367\pi\)
0.661517 + 0.749930i \(0.269913\pi\)
\(432\) −4297.80 + 2762.03i −0.478653 + 0.307612i
\(433\) −2330.18 2689.18i −0.258618 0.298461i 0.611561 0.791198i \(-0.290542\pi\)
−0.870178 + 0.492737i \(0.835997\pi\)
\(434\) −6197.27 1819.68i −0.685435 0.201262i
\(435\) −430.047 + 941.673i −0.0474005 + 0.103793i
\(436\) −11853.4 −1.30201
\(437\) −530.478 24.7663i −0.0580691 0.00271106i
\(438\) 1333.96 0.145524
\(439\) 3630.33 7949.32i 0.394684 0.864237i −0.603098 0.797667i \(-0.706067\pi\)
0.997782 0.0665702i \(-0.0212056\pi\)
\(440\) −311.489 91.4615i −0.0337492 0.00990967i
\(441\) −4321.71 4987.52i −0.466657 0.538551i
\(442\) 2523.46 1621.73i 0.271559 0.174520i
\(443\) 3217.35 3713.02i 0.345058 0.398219i −0.556520 0.830834i \(-0.687864\pi\)
0.901579 + 0.432615i \(0.142409\pi\)
\(444\) 237.190 1649.69i 0.0253525 0.176331i
\(445\) 3453.89 1014.15i 0.367933 0.108035i
\(446\) −107.190 68.8866i −0.0113802 0.00731362i
\(447\) −448.167 3117.07i −0.0474219 0.329827i
\(448\) 436.839 + 956.545i 0.0460686 + 0.100876i
\(449\) 2272.37 + 4975.81i 0.238842 + 0.522991i 0.990656 0.136384i \(-0.0435482\pi\)
−0.751814 + 0.659375i \(0.770821\pi\)
\(450\) 471.432 + 3278.88i 0.0493856 + 0.343484i
\(451\) −81.1053 52.1232i −0.00846807 0.00544210i
\(452\) 21128.1 6203.76i 2.19863 0.645576i
\(453\) −13.3788 + 93.0514i −0.00138762 + 0.00965108i
\(454\) 2931.66 3383.32i 0.303061 0.349751i
\(455\) 1664.17 1069.50i 0.171467 0.110195i
\(456\) −139.652 161.167i −0.0143417 0.0165512i
\(457\) 6142.02 + 1803.46i 0.628691 + 0.184600i 0.580529 0.814239i \(-0.302846\pi\)
0.0481613 + 0.998840i \(0.484664\pi\)
\(458\) 7723.14 16911.3i 0.787945 1.72536i
\(459\) 689.873 0.0701536
\(460\) −8415.04 + 4869.06i −0.852942 + 0.493524i
\(461\) −7507.40 −0.758470 −0.379235 0.925300i \(-0.623813\pi\)
−0.379235 + 0.925300i \(0.623813\pi\)
\(462\) −24.2681 + 53.1398i −0.00244384 + 0.00535127i
\(463\) −10334.3 3034.44i −1.03732 0.304584i −0.281634 0.959522i \(-0.590876\pi\)
−0.755682 + 0.654938i \(0.772695\pi\)
\(464\) 15772.9 + 18202.9i 1.57810 + 1.82123i
\(465\) −511.638 + 328.810i −0.0510251 + 0.0327918i
\(466\) −10797.5 + 12461.0i −1.07336 + 1.23872i
\(467\) 1768.35 12299.1i 0.175223 1.21871i −0.692411 0.721503i \(-0.743452\pi\)
0.867635 0.497202i \(-0.165639\pi\)
\(468\) −18374.7 + 5395.29i −1.81489 + 0.532901i
\(469\) −4456.99 2864.33i −0.438815 0.282010i
\(470\) −1084.11 7540.18i −0.106397 0.740006i
\(471\) 697.059 + 1526.35i 0.0681928 + 0.149321i
\(472\) −11852.5 25953.4i −1.15584 2.53094i
\(473\) −77.2765 537.470i −0.00751200 0.0522471i
\(474\) −3934.66 2528.65i −0.381276 0.245031i
\(475\) −115.486 + 33.9098i −0.0111555 + 0.00327556i
\(476\) −341.394 + 2374.45i −0.0328735 + 0.228640i
\(477\) −3953.69 + 4562.80i −0.379511 + 0.437980i
\(478\) 27048.7 17383.1i 2.58824 1.66336i
\(479\) −4177.92 4821.58i −0.398526 0.459924i 0.520650 0.853770i \(-0.325690\pi\)
−0.919176 + 0.393846i \(0.871144\pi\)
\(480\) −633.383 185.978i −0.0602288 0.0176848i
\(481\) 1793.79 3927.85i 0.170041 0.372338i
\(482\) −29313.4 −2.77010
\(483\) 355.977 + 886.753i 0.0335353 + 0.0835376i
\(484\) −23431.5 −2.20055
\(485\) −1125.44 + 2464.38i −0.105369 + 0.230725i
\(486\) −9263.28 2719.94i −0.864590 0.253867i
\(487\) 11002.0 + 12697.0i 1.02371 + 1.18143i 0.983253 + 0.182246i \(0.0583366\pi\)
0.0404590 + 0.999181i \(0.487118\pi\)
\(488\) −19523.3 + 12546.9i −1.81102 + 1.16387i
\(489\) −3.33525 + 3.84909i −0.000308436 + 0.000355954i
\(490\) 908.263 6317.11i 0.0837371 0.582404i
\(491\) 328.106 96.3407i 0.0301573 0.00885498i −0.266619 0.963802i \(-0.585907\pi\)
0.296776 + 0.954947i \(0.404088\pi\)
\(492\) −975.370 626.832i −0.0893761 0.0574386i
\(493\) −462.875 3219.36i −0.0422857 0.294103i
\(494\) −420.235 920.186i −0.0382738 0.0838079i
\(495\) −72.4212 158.580i −0.00657594 0.0143993i
\(496\) 2013.80 + 14006.3i 0.182303 + 1.26794i
\(497\) 1678.24 + 1078.54i 0.151467 + 0.0973422i
\(498\) −5521.36 + 1621.22i −0.496824 + 0.145881i
\(499\) 2859.66 19889.4i 0.256545 1.78431i −0.300451 0.953797i \(-0.597137\pi\)
0.556996 0.830515i \(-0.311954\pi\)
\(500\) −1442.98 + 1665.29i −0.129064 + 0.148948i
\(501\) −1694.26 + 1088.84i −0.151086 + 0.0970970i
\(502\) 20771.9 + 23972.0i 1.84680 + 2.13132i
\(503\) 14214.9 + 4173.86i 1.26006 + 0.369986i 0.842516 0.538671i \(-0.181074\pi\)
0.417542 + 0.908658i \(0.362892\pi\)
\(504\) 5051.73 11061.7i 0.446472 0.977637i
\(505\) −8671.01 −0.764069
\(506\) 512.811 538.841i 0.0450538 0.0473407i
\(507\) −431.037 −0.0377574
\(508\) −4008.73 + 8777.89i −0.350115 + 0.766645i
\(509\) 3977.30 + 1167.84i 0.346347 + 0.101697i 0.450280 0.892888i \(-0.351324\pi\)
−0.103932 + 0.994584i \(0.533142\pi\)
\(510\) 215.053 + 248.184i 0.0186719 + 0.0215486i
\(511\) −2325.15 + 1494.28i −0.201289 + 0.129360i
\(512\) 16937.5 19546.9i 1.46199 1.68723i
\(513\) 33.1100 230.285i 0.00284959 0.0198193i
\(514\) −11148.0 + 3273.34i −0.956647 + 0.280897i
\(515\) 6148.61 + 3951.47i 0.526097 + 0.338102i
\(516\) −929.324 6463.59i −0.0792853 0.551441i
\(517\) 166.541 + 364.674i 0.0141673 + 0.0310220i
\(518\) 2085.54 + 4566.71i 0.176899 + 0.387354i
\(519\) 149.720 + 1041.32i 0.0126627 + 0.0880714i
\(520\) −8509.25 5468.56i −0.717607 0.461178i
\(521\) −6857.14 + 2013.44i −0.576615 + 0.169310i −0.557021 0.830498i \(-0.688056\pi\)
−0.0195944 + 0.999808i \(0.506238\pi\)
\(522\) −4296.19 + 29880.6i −0.360228 + 2.50544i
\(523\) −5659.37 + 6531.26i −0.473168 + 0.546065i −0.941290 0.337598i \(-0.890385\pi\)
0.468122 + 0.883664i \(0.344931\pi\)
\(524\) 39664.9 25491.1i 3.30681 2.12516i
\(525\) 141.822 + 163.672i 0.0117898 + 0.0136061i
\(526\) 13696.7 + 4021.70i 1.13537 + 0.333374i
\(527\) 793.775 1738.12i 0.0656117 0.143670i
\(528\) 127.985 0.0105490
\(529\) −601.948 12152.1i −0.0494738 0.998775i
\(530\) −5838.59 −0.478514
\(531\) 6364.93 13937.3i 0.520178 1.13903i
\(532\) 776.225 + 227.920i 0.0632587 + 0.0185744i
\(533\) −1967.14 2270.20i −0.159862 0.184490i
\(534\) −2786.38 + 1790.70i −0.225802 + 0.145114i
\(535\) −3912.84 + 4515.66i −0.316200 + 0.364914i
\(536\) −3855.30 + 26814.2i −0.310679 + 2.16082i
\(537\) −555.540 + 163.121i −0.0446430 + 0.0131084i
\(538\) −29477.4 18944.0i −2.36220 1.51809i
\(539\) 47.7998 + 332.455i 0.00381982 + 0.0265675i
\(540\) −1769.35 3874.34i −0.141001 0.308750i
\(541\) 2247.97 + 4922.38i 0.178647 + 0.391182i 0.977678 0.210107i \(-0.0673813\pi\)
−0.799032 + 0.601289i \(0.794654\pi\)
\(542\) −2042.90 14208.7i −0.161901 1.12604i
\(543\) −550.618 353.861i −0.0435161 0.0279661i
\(544\) 1989.96 584.306i 0.156836 0.0460513i
\(545\) 478.478 3327.89i 0.0376069 0.261562i
\(546\) −1191.97 + 1375.61i −0.0934280 + 0.107822i
\(547\) −855.778 + 549.975i −0.0668929 + 0.0429894i −0.573660 0.819094i \(-0.694477\pi\)
0.506767 + 0.862083i \(0.330840\pi\)
\(548\) 17067.8 + 19697.3i 1.33047 + 1.53545i
\(549\) −11957.8 3511.12i −0.929590 0.272952i
\(550\) 70.0358 153.357i 0.00542971 0.0118894i
\(551\) −1096.86 −0.0848058
\(552\) 3368.28 3539.26i 0.259717 0.272900i
\(553\) 9690.80 0.745198
\(554\) 15568.2 34089.7i 1.19392 2.61432i
\(555\) 453.582 + 133.184i 0.0346910 + 0.0101862i
\(556\) 10335.9 + 11928.3i 0.788384 + 0.909844i
\(557\) −12919.7 + 8302.96i −0.982807 + 0.631611i −0.930219 0.367005i \(-0.880383\pi\)
−0.0525875 + 0.998616i \(0.516747\pi\)
\(558\) −11614.1 + 13403.3i −0.881115 + 1.01686i
\(559\) 2407.75 16746.2i 0.182177 1.26707i
\(560\) 4834.67 1419.59i 0.364825 0.107122i
\(561\) −14.5391 9.34370i −0.00109419 0.000703193i
\(562\) −3382.86 23528.3i −0.253910 1.76598i
\(563\) −5295.40 11595.3i −0.396402 0.868000i −0.997622 0.0689166i \(-0.978046\pi\)
0.601220 0.799083i \(-0.294682\pi\)
\(564\) 2002.82 + 4385.56i 0.149528 + 0.327421i
\(565\) 888.867 + 6182.21i 0.0661857 + 0.460332i
\(566\) 19588.2 + 12588.6i 1.45469 + 0.934872i
\(567\) 6061.93 1779.94i 0.448989 0.131835i
\(568\) 1451.68 10096.7i 0.107238 0.745856i
\(569\) −300.053 + 346.280i −0.0221070 + 0.0255128i −0.766695 0.642011i \(-0.778100\pi\)
0.744588 + 0.667524i \(0.232646\pi\)
\(570\) 93.1670 59.8748i 0.00684620 0.00439979i
\(571\) 6402.30 + 7388.65i 0.469226 + 0.541515i 0.940196 0.340634i \(-0.110642\pi\)
−0.470970 + 0.882149i \(0.656096\pi\)
\(572\) 935.167 + 274.590i 0.0683589 + 0.0200720i
\(573\) −350.700 + 767.925i −0.0255684 + 0.0559870i
\(574\) 3492.48 0.253960
\(575\) −1027.32 2559.10i −0.0745083 0.185603i
\(576\) 2887.46 0.208873
\(577\) 2915.97 6385.09i 0.210387 0.460684i −0.774791 0.632217i \(-0.782145\pi\)
0.985178 + 0.171534i \(0.0548722\pi\)
\(578\) 22874.2 + 6716.46i 1.64609 + 0.483335i
\(579\) 439.664 + 507.399i 0.0315575 + 0.0364193i
\(580\) −16892.8 + 10856.4i −1.20937 + 0.777218i
\(581\) 7807.87 9010.77i 0.557531 0.643425i
\(582\) 354.763 2467.43i 0.0252670 0.175736i
\(583\) 294.825 86.5685i 0.0209441 0.00614974i
\(584\) 11889.0 + 7640.58i 0.842413 + 0.541386i
\(585\) −773.031 5376.55i −0.0546340 0.379988i
\(586\) 17102.2 + 37448.5i 1.20560 + 2.63990i
\(587\) 8953.43 + 19605.3i 0.629553 + 1.37853i 0.908363 + 0.418182i \(0.137333\pi\)
−0.278810 + 0.960346i \(0.589940\pi\)
\(588\) 574.839 + 3998.09i 0.0403163 + 0.280406i
\(589\) −542.102 348.388i −0.0379235 0.0243720i
\(590\) 14217.0 4174.49i 0.992042 0.291290i
\(591\) −669.806 + 4658.61i −0.0466196 + 0.324246i
\(592\) 7202.66 8312.31i 0.500047 0.577084i
\(593\) −7235.60 + 4650.04i −0.501063 + 0.322014i −0.766641 0.642075i \(-0.778074\pi\)
0.265578 + 0.964089i \(0.414437\pi\)
\(594\) 213.406 + 246.284i 0.0147410 + 0.0170120i
\(595\) −652.855 191.695i −0.0449823 0.0132080i
\(596\) 25375.5 55564.5i 1.74399 3.81881i
\(597\) −372.817 −0.0255584
\(598\) 20060.7 11607.4i 1.37181 0.793749i
\(599\) −9582.78 −0.653659 −0.326830 0.945083i \(-0.605980\pi\)
−0.326830 + 0.945083i \(0.605980\pi\)
\(600\) 460.015 1007.29i 0.0313001 0.0685375i
\(601\) −7946.70 2333.36i −0.539355 0.158369i 0.000698035 1.00000i \(-0.499778\pi\)
−0.540053 + 0.841631i \(0.681596\pi\)
\(602\) 12881.2 + 14865.7i 0.872093 + 1.00645i
\(603\) −12238.2 + 7865.01i −0.826497 + 0.531157i
\(604\) −1194.14 + 1378.12i −0.0804454 + 0.0928389i
\(605\) 945.843 6578.48i 0.0635603 0.442071i
\(606\) 7655.23 2247.78i 0.513156 0.150676i
\(607\) −7427.92 4773.63i −0.496688 0.319202i 0.268202 0.963363i \(-0.413571\pi\)
−0.764890 + 0.644161i \(0.777207\pi\)
\(608\) −99.5390 692.309i −0.00663954 0.0461790i
\(609\) 819.865 + 1795.25i 0.0545527 + 0.119454i
\(610\) −5006.63 10963.0i −0.332316 0.727669i
\(611\) 1777.68 + 12364.0i 0.117704 + 0.818649i
\(612\) 5541.27 + 3561.16i 0.366001 + 0.235214i
\(613\) −26059.3 + 7651.69i −1.71700 + 0.504158i −0.984317 0.176408i \(-0.943552\pi\)
−0.732687 + 0.680566i \(0.761734\pi\)
\(614\) 388.811 2704.24i 0.0255556 0.177743i
\(615\) 215.357 248.536i 0.0141204 0.0162958i
\(616\) −520.660 + 334.608i −0.0340552 + 0.0218859i
\(617\) 19840.9 + 22897.7i 1.29460 + 1.49404i 0.761821 + 0.647788i \(0.224306\pi\)
0.532776 + 0.846256i \(0.321149\pi\)
\(618\) −6452.65 1894.67i −0.420006 0.123325i
\(619\) −6696.16 + 14662.5i −0.434800 + 0.952080i 0.557723 + 0.830027i \(0.311675\pi\)
−0.992524 + 0.122053i \(0.961052\pi\)
\(620\) −11797.2 −0.764170
\(621\) 5324.50 + 248.583i 0.344066 + 0.0160633i
\(622\) 46287.2 2.98384
\(623\) 2850.85 6242.50i 0.183334 0.401445i
\(624\) 3826.18 + 1123.47i 0.245465 + 0.0720749i
\(625\) −409.288 472.343i −0.0261944 0.0302300i
\(626\) −35290.0 + 22679.5i −2.25315 + 1.44801i
\(627\) −3.81679 + 4.40481i −0.000243107 + 0.000280560i
\(628\) −4632.11 + 32217.1i −0.294334 + 2.04713i
\(629\) −1425.07 + 418.437i −0.0903357 + 0.0265249i
\(630\) 5312.78 + 3414.31i 0.335978 + 0.215920i
\(631\) −1738.05 12088.4i −0.109652 0.762649i −0.968247 0.249994i \(-0.919571\pi\)
0.858595 0.512655i \(-0.171338\pi\)
\(632\) −20584.3 45073.3i −1.29557 2.83690i
\(633\) 705.182 + 1544.13i 0.0442788 + 0.0969570i
\(634\) 7666.20 + 53319.6i 0.480227 + 3.34005i
\(635\) −2302.61 1479.80i −0.143899 0.0924786i
\(636\) 3545.56 1041.07i 0.221054 0.0649074i
\(637\) −1489.33 + 10358.5i −0.0926362 + 0.644299i
\(638\) 1006.12 1161.13i 0.0624339 0.0720526i
\(639\) 4608.18 2961.50i 0.285285 0.183341i
\(640\) 5634.03 + 6502.02i 0.347976 + 0.401586i
\(641\) −366.219 107.532i −0.0225660 0.00662596i 0.270430 0.962740i \(-0.412834\pi\)
−0.292996 + 0.956114i \(0.594652\pi\)
\(642\) 2283.87 5000.99i 0.140401 0.307435i
\(643\) −20261.9 −1.24269 −0.621346 0.783537i \(-0.713414\pi\)
−0.621346 + 0.783537i \(0.713414\pi\)
\(644\) −3490.51 + 18203.2i −0.213579 + 1.11383i
\(645\) 1852.19 0.113070
\(646\) −144.543 + 316.504i −0.00880334 + 0.0192766i
\(647\) −4807.13 1411.50i −0.292098 0.0857678i 0.132400 0.991196i \(-0.457732\pi\)
−0.424499 + 0.905428i \(0.639550\pi\)
\(648\) −21154.9 24414.1i −1.28248 1.48006i
\(649\) −656.006 + 421.589i −0.0396772 + 0.0254990i
\(650\) 3439.94 3969.90i 0.207578 0.239557i
\(651\) −165.011 + 1147.67i −0.00993438 + 0.0690951i
\(652\) −94.7901 + 27.8329i −0.00569366 + 0.00167181i
\(653\) −1309.20 841.371i −0.0784577 0.0504217i 0.500824 0.865549i \(-0.333030\pi\)
−0.579282 + 0.815128i \(0.696667\pi\)
\(654\) 440.260 + 3062.07i 0.0263234 + 0.183083i
\(655\) 5555.60 + 12165.1i 0.331412 + 0.725692i
\(656\) −3178.50 6959.95i −0.189176 0.414239i
\(657\) 1080.06 + 7512.02i 0.0641360 + 0.446076i
\(658\) −12217.4 7851.63i −0.723834 0.465180i
\(659\) −12697.2 + 3728.22i −0.750548 + 0.220381i −0.634564 0.772870i \(-0.718820\pi\)
−0.115984 + 0.993251i \(0.537002\pi\)
\(660\) −15.1853 + 105.616i −0.000895585 + 0.00622893i
\(661\) −20695.5 + 23883.9i −1.21780 + 1.40541i −0.330758 + 0.943716i \(0.607304\pi\)
−0.887038 + 0.461696i \(0.847241\pi\)
\(662\) −7240.68 + 4653.30i −0.425101 + 0.273196i
\(663\) −352.633 406.960i −0.0206563 0.0238386i
\(664\) −58495.1 17175.7i −3.41875 1.00384i
\(665\) −95.3227 + 208.728i −0.00555858 + 0.0121716i
\(666\) 13785.2 0.802051
\(667\) −2412.47 25014.1i −0.140047 1.45210i
\(668\) −39065.7 −2.26272
\(669\) −9.50192 + 20.8063i −0.000549126 + 0.00120242i
\(670\) −13498.5 3963.53i −0.778350 0.228544i
\(671\) 415.362 + 479.353i 0.0238970 + 0.0275786i
\(672\) −1058.71 + 680.392i −0.0607748 + 0.0390576i
\(673\) 5638.25 6506.89i 0.322940 0.372693i −0.570946 0.820988i \(-0.693423\pi\)
0.893886 + 0.448295i \(0.147969\pi\)
\(674\) 1443.24 10038.0i 0.0824802 0.573662i
\(675\) 1159.16 340.359i 0.0660977 0.0194080i
\(676\) −7033.68 4520.27i −0.400187 0.257184i
\(677\) 448.492 + 3119.33i 0.0254608 + 0.177084i 0.998584 0.0532024i \(-0.0169429\pi\)
−0.973123 + 0.230286i \(0.926034\pi\)
\(678\) −2387.35 5227.56i −0.135229 0.296111i
\(679\) 2145.60 + 4698.22i 0.121268 + 0.265539i
\(680\) 495.130 + 3443.70i 0.0279226 + 0.194206i
\(681\) −676.074 434.487i −0.0380429 0.0244487i
\(682\) 866.056 254.297i 0.0486261 0.0142779i
\(683\) 4768.19 33163.5i 0.267130 1.85793i −0.208151 0.978097i \(-0.566744\pi\)
0.475281 0.879834i \(-0.342347\pi\)
\(684\) 1454.69 1678.80i 0.0813180 0.0938459i
\(685\) −6219.05 + 3996.74i −0.346887 + 0.222931i
\(686\) −18806.9 21704.4i −1.04672 1.20798i
\(687\) −3202.26 940.269i −0.177837 0.0522176i
\(688\) 17901.8 39199.5i 0.992007 2.17219i
\(689\) 9573.84 0.529368
\(690\) 1570.37 + 1993.00i 0.0866418 + 0.109960i
\(691\) 29516.4 1.62497 0.812486 0.582981i \(-0.198114\pi\)
0.812486 + 0.582981i \(0.198114\pi\)
\(692\) −8477.20 + 18562.5i −0.465686 + 1.01971i
\(693\) −318.897 93.6368i −0.0174804 0.00513271i
\(694\) 29357.6 + 33880.5i 1.60576 + 1.85315i
\(695\) −3766.14 + 2420.35i −0.205551 + 0.132100i
\(696\) 6608.50 7626.62i 0.359906 0.415354i
\(697\) −147.042 + 1022.70i −0.00799081 + 0.0555773i
\(698\) −18354.8 + 5389.47i −0.995331 + 0.292256i
\(699\) 2490.03 + 1600.24i 0.134737 + 0.0865905i
\(700\) 597.844 + 4158.09i 0.0322805 + 0.224516i
\(701\) −3464.87 7587.00i −0.186685 0.408783i 0.793029 0.609184i \(-0.208503\pi\)
−0.979714 + 0.200401i \(0.935776\pi\)
\(702\) 4217.97 + 9236.07i 0.226777 + 0.496571i
\(703\) 71.2825 + 495.781i 0.00382428 + 0.0265985i
\(704\) −123.627 79.4500i −0.00661840 0.00425339i
\(705\) −1312.11 + 385.270i −0.0700948 + 0.0205817i
\(706\) 4868.33 33860.0i 0.259521 1.80501i
\(707\) −10825.4 + 12493.2i −0.575858 + 0.664576i
\(708\) −7889.10 + 5070.02i −0.418772 + 0.269128i
\(709\) 1687.19 + 1947.12i 0.0893705 + 0.103139i 0.798673 0.601765i \(-0.205536\pi\)
−0.709303 + 0.704904i \(0.750990\pi\)
\(710\) 5082.76 + 1492.43i 0.268665 + 0.0788873i
\(711\) 11054.0 24204.8i 0.583060 1.27672i
\(712\) −35090.3 −1.84700
\(713\) 6752.73 13129.0i 0.354687 0.689599i
\(714\) 626.068 0.0328151
\(715\) −114.841 + 251.467i −0.00600674 + 0.0131529i
\(716\) −10776.0 3164.11i −0.562454 0.165151i
\(717\) −3779.82 4362.14i −0.196876 0.227207i
\(718\) 34082.4 21903.4i 1.77151 1.13848i
\(719\) −3349.90 + 3865.99i −0.173756 + 0.200525i −0.835947 0.548810i \(-0.815081\pi\)
0.662192 + 0.749335i \(0.269627\pi\)
\(720\) 1969.03 13694.9i 0.101918 0.708859i
\(721\) 13369.6 3925.66i 0.690581 0.202773i
\(722\) −29112.2 18709.2i −1.50061 0.964385i
\(723\) 748.893 + 5208.66i 0.0385223 + 0.267928i
\(724\) −5274.08 11548.6i −0.270732 0.592820i
\(725\) −2366.06 5180.96i −0.121205 0.265401i
\(726\) 870.293 + 6053.02i 0.0444898 + 0.309433i
\(727\) 3185.37 + 2047.11i 0.162502 + 0.104433i 0.619364 0.785104i \(-0.287390\pi\)
−0.456862 + 0.889537i \(0.651027\pi\)
\(728\) −18502.6 + 5432.85i −0.941966 + 0.276586i
\(729\) 2300.11 15997.6i 0.116857 0.812762i
\(730\) −4806.22 + 5546.67i −0.243680 + 0.281221i
\(731\) −4895.44 + 3146.11i −0.247694 + 0.159183i
\(732\) 4995.13 + 5764.68i 0.252220 + 0.291078i
\(733\) 8173.05 + 2399.82i 0.411840 + 0.120927i 0.481088 0.876672i \(-0.340242\pi\)
−0.0692481 + 0.997599i \(0.522060\pi\)
\(734\) −18323.4 + 40122.6i −0.921427 + 2.01764i
\(735\) −1145.68 −0.0574955
\(736\) 15569.3 3792.68i 0.779744 0.189946i
\(737\) 740.389 0.0370048
\(738\) 3983.75 8723.20i 0.198704 0.435102i
\(739\) −28901.1 8486.13i −1.43863 0.422419i −0.532862 0.846202i \(-0.678884\pi\)
−0.905764 + 0.423783i \(0.860702\pi\)
\(740\) 6004.89 + 6930.01i 0.298303 + 0.344260i
\(741\) −152.771 + 98.1797i −0.00757378 + 0.00486737i
\(742\) −7289.26 + 8412.25i −0.360643 + 0.416204i
\(743\) −1532.69 + 10660.1i −0.0756781 + 0.526353i 0.916354 + 0.400369i \(0.131118\pi\)
−0.992032 + 0.125984i \(0.959791\pi\)
\(744\) 5688.50 1670.29i 0.280310 0.0823064i
\(745\) 14575.6 + 9367.18i 0.716791 + 0.460654i
\(746\) −4631.98 32216.1i −0.227331 1.58112i
\(747\) −13600.1 29780.1i −0.666133 1.45863i
\(748\) −139.262 304.942i −0.00680740 0.0149061i
\(749\) 1621.14 + 11275.3i 0.0790855 + 0.550052i
\(750\) 483.786 + 310.911i 0.0235538 + 0.0151371i
\(751\) −29582.1 + 8686.09i −1.43737 + 0.422050i −0.905345 0.424677i \(-0.860388\pi\)
−0.532027 + 0.846728i \(0.678569\pi\)
\(752\) −4528.01 + 31493.0i −0.219574 + 1.52717i
\(753\) 3728.88 4303.36i 0.180462 0.208264i
\(754\) 40271.0 25880.6i 1.94507 1.25002i
\(755\) −338.708 390.890i −0.0163269 0.0188423i
\(756\) −7791.11 2287.68i −0.374815 0.110056i
\(757\) −13123.9 + 28737.4i −0.630116 + 1.37976i 0.277812 + 0.960635i \(0.410391\pi\)
−0.907928 + 0.419126i \(0.862337\pi\)
\(758\) 17991.6 0.862114
\(759\) −108.847 77.3545i −0.00520540 0.00369933i
\(760\) 1173.30 0.0560000
\(761\) −2036.43 + 4459.15i −0.0970044 + 0.212410i −0.951913 0.306369i \(-0.900886\pi\)
0.854908 + 0.518779i \(0.173613\pi\)
\(762\) 2416.47 + 709.539i 0.114881 + 0.0337322i
\(763\) −4197.46 4844.13i −0.199159 0.229842i
\(764\) −13775.9 + 8853.26i −0.652351 + 0.419241i