Properties

Label 115.4.g.a.36.9
Level $115$
Weight $4$
Character 115.36
Analytic conductor $6.785$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(6,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 18]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.g (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78521965066\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 36.9
Character \(\chi\) \(=\) 115.36
Dual form 115.4.g.a.16.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.11818 + 2.44451i) q^{2} +(-0.807164 - 0.518733i) q^{3} +(-0.350419 + 2.43722i) q^{4} +(2.07708 - 4.54816i) q^{5} +(-0.441670 - 3.07188i) q^{6} +(31.6351 + 9.28890i) q^{7} +(15.0685 - 9.68396i) q^{8} +(-10.8338 - 23.7227i) q^{9} +O(q^{10})\) \(q+(2.11818 + 2.44451i) q^{2} +(-0.807164 - 0.518733i) q^{3} +(-0.350419 + 2.43722i) q^{4} +(2.07708 - 4.54816i) q^{5} +(-0.441670 - 3.07188i) q^{6} +(31.6351 + 9.28890i) q^{7} +(15.0685 - 9.68396i) q^{8} +(-10.8338 - 23.7227i) q^{9} +(15.5176 - 4.55638i) q^{10} +(-43.6869 + 50.4173i) q^{11} +(1.54711 - 1.78546i) q^{12} +(74.3430 - 21.8291i) q^{13} +(44.3019 + 97.0077i) q^{14} +(-4.03582 + 2.59366i) q^{15} +(74.4906 + 21.8724i) q^{16} +(7.85142 + 54.6078i) q^{17} +(35.0423 - 76.7320i) q^{18} +(2.28138 - 15.8673i) q^{19} +(10.3570 + 6.65605i) q^{20} +(-20.7162 - 23.9078i) q^{21} -215.782 q^{22} +(-107.980 + 22.5249i) q^{23} -17.1862 q^{24} +(-16.3715 - 18.8937i) q^{25} +(210.833 + 135.494i) q^{26} +(-7.24788 + 50.4101i) q^{27} +(-33.7246 + 73.8466i) q^{28} +(-35.9668 - 250.154i) q^{29} +(-14.8888 - 4.37175i) q^{30} +(-70.7442 + 45.4645i) q^{31} +(44.7898 + 98.0759i) q^{32} +(61.4156 - 18.0332i) q^{33} +(-116.859 + 134.862i) q^{34} +(107.956 - 124.588i) q^{35} +(61.6137 - 18.0914i) q^{36} +(41.4347 + 90.7294i) q^{37} +(43.6202 - 28.0330i) q^{38} +(-71.3304 - 20.9445i) q^{39} +(-12.7457 - 88.6484i) q^{40} +(48.6556 - 106.541i) q^{41} +(14.5621 - 101.282i) q^{42} +(-215.405 - 138.432i) q^{43} +(-107.569 - 124.142i) q^{44} -130.397 q^{45} +(-283.782 - 216.245i) q^{46} -255.532 q^{47} +(-48.7802 - 56.2954i) q^{48} +(625.945 + 402.270i) q^{49} +(11.5081 - 80.0406i) q^{50} +(21.9895 - 48.1503i) q^{51} +(27.1510 + 188.839i) q^{52} +(-121.070 - 35.5492i) q^{53} +(-138.580 + 89.0600i) q^{54} +(138.565 + 303.415i) q^{55} +(566.648 - 166.383i) q^{56} +(-10.0724 + 11.6241i) q^{57} +(535.320 - 617.792i) q^{58} +(-652.592 + 191.618i) q^{59} +(-4.90710 - 10.7450i) q^{60} +(-189.119 + 121.540i) q^{61} +(-260.987 - 76.6327i) q^{62} +(-122.370 - 851.102i) q^{63} +(113.133 - 247.726i) q^{64} +(55.1338 - 383.464i) q^{65} +(174.171 + 111.933i) q^{66} +(133.508 + 154.077i) q^{67} -135.843 q^{68} +(98.8417 + 37.8313i) q^{69} +533.225 q^{70} +(273.764 + 315.941i) q^{71} +(-392.978 - 252.552i) q^{72} +(-16.3078 + 113.423i) q^{73} +(-134.023 + 293.468i) q^{74} +(3.41370 + 23.7428i) q^{75} +(37.8728 + 11.1204i) q^{76} +(-1850.36 + 1189.15i) q^{77} +(-99.8914 - 218.732i) q^{78} +(-1044.42 + 306.669i) q^{79} +(254.202 - 293.365i) q^{80} +(-429.117 + 495.227i) q^{81} +(363.501 - 106.733i) q^{82} +(121.099 + 265.170i) q^{83} +(65.5280 - 42.1123i) q^{84} +(264.673 + 77.7151i) q^{85} +(-117.867 - 819.782i) q^{86} +(-100.732 + 220.573i) q^{87} +(-170.058 + 1182.78i) q^{88} +(-450.737 - 289.671i) q^{89} +(-276.204 - 318.756i) q^{90} +2554.61 q^{91} +(-17.0599 - 271.064i) q^{92} +80.6860 q^{93} +(-541.261 - 624.649i) q^{94} +(-67.4286 - 43.3338i) q^{95} +(14.7225 - 102.397i) q^{96} +(122.812 - 268.921i) q^{97} +(342.509 + 2382.21i) q^{98} +(1669.33 + 490.159i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9} - 10 q^{10} + 2 q^{11} - 57 q^{12} + 34 q^{13} - 154 q^{14} + 30 q^{15} + 16 q^{16} + 252 q^{17} - 33 q^{18} - 160 q^{19} - 200 q^{20} - 684 q^{21} - 704 q^{22} + 127 q^{23} - 3090 q^{24} - 275 q^{25} - 567 q^{26} + 384 q^{27} - 188 q^{28} + 340 q^{29} - 15 q^{30} + 582 q^{31} - 1364 q^{32} + 1760 q^{33} + 1819 q^{34} + 665 q^{35} + 2794 q^{36} + 312 q^{37} + 3123 q^{38} - 1560 q^{39} - 1205 q^{40} + 1324 q^{41} + 1454 q^{42} - 1740 q^{43} - 369 q^{44} + 3730 q^{45} - 4322 q^{46} - 2858 q^{47} - 2686 q^{48} + 2015 q^{49} - 325 q^{50} - 1426 q^{51} + 1717 q^{52} + 882 q^{53} + 2541 q^{54} + 450 q^{55} + 7755 q^{56} + 3688 q^{57} + 6622 q^{58} + 2605 q^{59} + 1530 q^{60} - 104 q^{61} - 9360 q^{62} - 7618 q^{63} + 3483 q^{64} + 170 q^{65} - 1766 q^{66} - 166 q^{67} - 5018 q^{68} - 1194 q^{69} - 770 q^{70} - 1222 q^{71} + 3303 q^{72} - 922 q^{73} + 1245 q^{74} + 150 q^{75} + 1360 q^{76} - 3093 q^{77} - 1600 q^{78} + 2448 q^{79} + 2115 q^{80} - 1371 q^{81} + 6609 q^{82} + 6704 q^{83} + 3894 q^{84} - 720 q^{85} - 5074 q^{86} - 6324 q^{87} + 1918 q^{88} - 5380 q^{89} - 165 q^{90} + 7828 q^{91} - 16225 q^{92} - 24948 q^{93} - 16490 q^{94} + 685 q^{95} + 675 q^{96} - 4400 q^{97} + 8790 q^{98} - 3626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.11818 + 2.44451i 0.748889 + 0.864263i 0.994460 0.105115i \(-0.0335211\pi\)
−0.245572 + 0.969378i \(0.578976\pi\)
\(3\) −0.807164 0.518733i −0.155339 0.0998301i 0.460662 0.887575i \(-0.347612\pi\)
−0.616001 + 0.787745i \(0.711248\pi\)
\(4\) −0.350419 + 2.43722i −0.0438024 + 0.304652i
\(5\) 2.07708 4.54816i 0.185779 0.406800i
\(6\) −0.441670 3.07188i −0.0300519 0.209015i
\(7\) 31.6351 + 9.28890i 1.70813 + 0.501553i 0.982458 0.186484i \(-0.0597091\pi\)
0.725676 + 0.688037i \(0.241527\pi\)
\(8\) 15.0685 9.68396i 0.665941 0.427974i
\(9\) −10.8338 23.7227i −0.401251 0.878617i
\(10\) 15.5176 4.55638i 0.490710 0.144085i
\(11\) −43.6869 + 50.4173i −1.19746 + 1.38195i −0.292603 + 0.956234i \(0.594522\pi\)
−0.904859 + 0.425711i \(0.860024\pi\)
\(12\) 1.54711 1.78546i 0.0372177 0.0429515i
\(13\) 74.3430 21.8291i 1.58608 0.465715i 0.634450 0.772964i \(-0.281227\pi\)
0.951629 + 0.307249i \(0.0994086\pi\)
\(14\) 44.3019 + 97.0077i 0.845728 + 1.85189i
\(15\) −4.03582 + 2.59366i −0.0694696 + 0.0446454i
\(16\) 74.4906 + 21.8724i 1.16392 + 0.341757i
\(17\) 7.85142 + 54.6078i 0.112015 + 0.779079i 0.965955 + 0.258709i \(0.0832970\pi\)
−0.853941 + 0.520370i \(0.825794\pi\)
\(18\) 35.0423 76.7320i 0.458864 1.00477i
\(19\) 2.28138 15.8673i 0.0275466 0.191590i −0.971402 0.237442i \(-0.923691\pi\)
0.998948 + 0.0458515i \(0.0146001\pi\)
\(20\) 10.3570 + 6.65605i 0.115795 + 0.0744169i
\(21\) −20.7162 23.9078i −0.215269 0.248434i
\(22\) −215.782 −2.09113
\(23\) −107.980 + 22.5249i −0.978928 + 0.204207i
\(24\) −17.1862 −0.146171
\(25\) −16.3715 18.8937i −0.130972 0.151150i
\(26\) 210.833 + 135.494i 1.59030 + 1.02202i
\(27\) −7.24788 + 50.4101i −0.0516613 + 0.359312i
\(28\) −33.7246 + 73.8466i −0.227620 + 0.498418i
\(29\) −35.9668 250.154i −0.230305 1.60181i −0.696787 0.717279i \(-0.745388\pi\)
0.466481 0.884531i \(-0.345522\pi\)
\(30\) −14.8888 4.37175i −0.0906104 0.0266056i
\(31\) −70.7442 + 45.4645i −0.409872 + 0.263409i −0.729289 0.684205i \(-0.760149\pi\)
0.319417 + 0.947614i \(0.396513\pi\)
\(32\) 44.7898 + 98.0759i 0.247431 + 0.541798i
\(33\) 61.4156 18.0332i 0.323972 0.0951268i
\(34\) −116.859 + 134.862i −0.589443 + 0.680254i
\(35\) 107.956 124.588i 0.521368 0.601690i
\(36\) 61.6137 18.0914i 0.285249 0.0837566i
\(37\) 41.4347 + 90.7294i 0.184103 + 0.403130i 0.979070 0.203523i \(-0.0652390\pi\)
−0.794967 + 0.606653i \(0.792512\pi\)
\(38\) 43.6202 28.0330i 0.186214 0.119672i
\(39\) −71.3304 20.9445i −0.292872 0.0859949i
\(40\) −12.7457 88.6484i −0.0503819 0.350414i
\(41\) 48.6556 106.541i 0.185335 0.405827i −0.794044 0.607861i \(-0.792028\pi\)
0.979378 + 0.202034i \(0.0647552\pi\)
\(42\) 14.5621 101.282i 0.0534997 0.372099i
\(43\) −215.405 138.432i −0.763928 0.490947i 0.0997364 0.995014i \(-0.468200\pi\)
−0.863664 + 0.504067i \(0.831836\pi\)
\(44\) −107.569 124.142i −0.368561 0.425342i
\(45\) −130.397 −0.431965
\(46\) −283.782 216.245i −0.909597 0.693123i
\(47\) −255.532 −0.793045 −0.396523 0.918025i \(-0.629783\pi\)
−0.396523 + 0.918025i \(0.629783\pi\)
\(48\) −48.7802 56.2954i −0.146684 0.169282i
\(49\) 625.945 + 402.270i 1.82491 + 1.17280i
\(50\) 11.5081 80.0406i 0.0325498 0.226389i
\(51\) 21.9895 48.1503i 0.0603754 0.132204i
\(52\) 27.1510 + 188.839i 0.0724071 + 0.503602i
\(53\) −121.070 35.5492i −0.313777 0.0921333i 0.121052 0.992646i \(-0.461373\pi\)
−0.434829 + 0.900513i \(0.643191\pi\)
\(54\) −138.580 + 89.0600i −0.349229 + 0.224436i
\(55\) 138.565 + 303.415i 0.339711 + 0.743864i
\(56\) 566.648 166.383i 1.35217 0.397033i
\(57\) −10.0724 + 11.6241i −0.0234055 + 0.0270114i
\(58\) 535.320 617.792i 1.21191 1.39862i
\(59\) −652.592 + 191.618i −1.44000 + 0.422823i −0.906223 0.422799i \(-0.861047\pi\)
−0.533781 + 0.845623i \(0.679229\pi\)
\(60\) −4.90710 10.7450i −0.0105584 0.0231197i
\(61\) −189.119 + 121.540i −0.396955 + 0.255108i −0.723856 0.689951i \(-0.757632\pi\)
0.326901 + 0.945059i \(0.393996\pi\)
\(62\) −260.987 76.6327i −0.534603 0.156974i
\(63\) −122.370 851.102i −0.244717 1.70204i
\(64\) 113.133 247.726i 0.220963 0.483841i
\(65\) 55.1338 383.464i 0.105208 0.731737i
\(66\) 174.171 + 111.933i 0.324834 + 0.208758i
\(67\) 133.508 + 154.077i 0.243442 + 0.280947i 0.864301 0.502975i \(-0.167761\pi\)
−0.620859 + 0.783923i \(0.713216\pi\)
\(68\) −135.843 −0.242255
\(69\) 98.8417 + 37.8313i 0.172451 + 0.0660052i
\(70\) 533.225 0.910465
\(71\) 273.764 + 315.941i 0.457603 + 0.528102i 0.936922 0.349539i \(-0.113662\pi\)
−0.479319 + 0.877641i \(0.659116\pi\)
\(72\) −392.978 252.552i −0.643235 0.413382i
\(73\) −16.3078 + 113.423i −0.0261463 + 0.181852i −0.998709 0.0507873i \(-0.983827\pi\)
0.972563 + 0.232639i \(0.0747360\pi\)
\(74\) −134.023 + 293.468i −0.210538 + 0.461014i
\(75\) 3.41370 + 23.7428i 0.00525573 + 0.0365544i
\(76\) 37.8728 + 11.1204i 0.0571619 + 0.0167843i
\(77\) −1850.36 + 1189.15i −2.73855 + 1.75996i
\(78\) −99.8914 218.732i −0.145006 0.317519i
\(79\) −1044.42 + 306.669i −1.48742 + 0.436746i −0.921718 0.387862i \(-0.873214\pi\)
−0.565704 + 0.824608i \(0.691396\pi\)
\(80\) 254.202 293.365i 0.355258 0.409990i
\(81\) −429.117 + 495.227i −0.588637 + 0.679324i
\(82\) 363.501 106.733i 0.489536 0.143741i
\(83\) 121.099 + 265.170i 0.160149 + 0.350677i 0.972648 0.232286i \(-0.0746205\pi\)
−0.812499 + 0.582963i \(0.801893\pi\)
\(84\) 65.5280 42.1123i 0.0851153 0.0547003i
\(85\) 264.673 + 77.7151i 0.337739 + 0.0991692i
\(86\) −117.867 819.782i −0.147790 1.02790i
\(87\) −100.732 + 220.573i −0.124134 + 0.271815i
\(88\) −170.058 + 1182.78i −0.206002 + 1.43278i
\(89\) −450.737 289.671i −0.536832 0.345001i 0.243967 0.969784i \(-0.421551\pi\)
−0.780799 + 0.624783i \(0.785188\pi\)
\(90\) −276.204 318.756i −0.323494 0.373332i
\(91\) 2554.61 2.94282
\(92\) −17.0599 271.064i −0.0193329 0.307178i
\(93\) 80.6860 0.0899651
\(94\) −541.261 624.649i −0.593903 0.685400i
\(95\) −67.4286 43.3338i −0.0728214 0.0467995i
\(96\) 14.7225 102.397i 0.0156522 0.108863i
\(97\) 122.812 268.921i 0.128553 0.281492i −0.834401 0.551158i \(-0.814186\pi\)
0.962954 + 0.269666i \(0.0869133\pi\)
\(98\) 342.509 + 2382.21i 0.353048 + 2.45550i
\(99\) 1669.33 + 490.159i 1.69468 + 0.497604i
\(100\) 51.7851 33.2803i 0.0517851 0.0332803i
\(101\) −88.7561 194.349i −0.0874412 0.191470i 0.860860 0.508843i \(-0.169927\pi\)
−0.948301 + 0.317373i \(0.897199\pi\)
\(102\) 164.281 48.2373i 0.159473 0.0468256i
\(103\) −174.315 + 201.171i −0.166755 + 0.192446i −0.832977 0.553308i \(-0.813365\pi\)
0.666221 + 0.745754i \(0.267911\pi\)
\(104\) 908.847 1048.87i 0.856921 0.988940i
\(105\) −151.766 + 44.5624i −0.141055 + 0.0414176i
\(106\) −169.546 371.255i −0.155357 0.340184i
\(107\) 1248.35 802.267i 1.12788 0.724842i 0.162761 0.986666i \(-0.447960\pi\)
0.965116 + 0.261823i \(0.0843238\pi\)
\(108\) −120.321 35.3294i −0.107202 0.0314775i
\(109\) 120.961 + 841.301i 0.106293 + 0.739284i 0.971357 + 0.237623i \(0.0763684\pi\)
−0.865064 + 0.501661i \(0.832723\pi\)
\(110\) −448.195 + 981.411i −0.388489 + 0.850671i
\(111\) 13.6197 94.7270i 0.0116462 0.0810008i
\(112\) 2153.35 + 1383.87i 1.81672 + 1.16753i
\(113\) 628.595 + 725.437i 0.523303 + 0.603923i 0.954455 0.298356i \(-0.0964382\pi\)
−0.431152 + 0.902279i \(0.641893\pi\)
\(114\) −49.7503 −0.0408732
\(115\) −121.835 + 537.895i −0.0987930 + 0.436165i
\(116\) 622.284 0.498083
\(117\) −1323.26 1527.12i −1.04560 1.20669i
\(118\) −1850.72 1189.38i −1.44383 0.927895i
\(119\) −258.866 + 1800.45i −0.199414 + 1.38695i
\(120\) −35.6969 + 78.1654i −0.0271556 + 0.0594624i
\(121\) −443.944 3087.70i −0.333542 2.31983i
\(122\) −697.693 204.861i −0.517755 0.152027i
\(123\) −94.5392 + 60.7567i −0.0693034 + 0.0445386i
\(124\) −86.0169 188.351i −0.0622947 0.136406i
\(125\) −119.937 + 35.2166i −0.0858197 + 0.0251989i
\(126\) 1821.32 2101.92i 1.28775 1.48614i
\(127\) −1189.27 + 1372.49i −0.830951 + 0.958968i −0.999643 0.0267006i \(-0.991500\pi\)
0.168693 + 0.985669i \(0.446045\pi\)
\(128\) 1672.82 491.184i 1.15514 0.339179i
\(129\) 102.058 + 223.475i 0.0696563 + 0.152526i
\(130\) 1054.16 677.470i 0.711202 0.457062i
\(131\) 893.722 + 262.421i 0.596068 + 0.175021i 0.565831 0.824521i \(-0.308556\pi\)
0.0302371 + 0.999543i \(0.490374\pi\)
\(132\) 22.4298 + 156.002i 0.0147899 + 0.102866i
\(133\) 219.562 480.773i 0.143146 0.313446i
\(134\) −93.8475 + 652.724i −0.0605014 + 0.420797i
\(135\) 214.219 + 137.670i 0.136571 + 0.0877686i
\(136\) 647.129 + 746.827i 0.408021 + 0.470882i
\(137\) −490.412 −0.305830 −0.152915 0.988239i \(-0.548866\pi\)
−0.152915 + 0.988239i \(0.548866\pi\)
\(138\) 116.885 + 321.753i 0.0721010 + 0.198474i
\(139\) 1210.77 0.738822 0.369411 0.929266i \(-0.379560\pi\)
0.369411 + 0.929266i \(0.379560\pi\)
\(140\) 265.818 + 306.770i 0.160469 + 0.185191i
\(141\) 206.256 + 132.553i 0.123191 + 0.0791698i
\(142\) −192.438 + 1338.44i −0.113726 + 0.790979i
\(143\) −2147.25 + 4701.82i −1.25568 + 2.74955i
\(144\) −288.143 2004.08i −0.166749 1.15977i
\(145\) −1212.45 356.007i −0.694402 0.203895i
\(146\) −311.806 + 200.386i −0.176748 + 0.113589i
\(147\) −296.569 649.396i −0.166399 0.364362i
\(148\) −235.647 + 69.1922i −0.130879 + 0.0384295i
\(149\) 119.076 137.421i 0.0654705 0.0755569i −0.722070 0.691821i \(-0.756809\pi\)
0.787540 + 0.616264i \(0.211354\pi\)
\(150\) −50.8086 + 58.6362i −0.0276567 + 0.0319175i
\(151\) 1383.36 406.192i 0.745540 0.218910i 0.113169 0.993576i \(-0.463900\pi\)
0.632371 + 0.774665i \(0.282082\pi\)
\(152\) −119.282 261.190i −0.0636514 0.139377i
\(153\) 1210.38 777.866i 0.639566 0.411024i
\(154\) −6826.28 2004.38i −3.57193 1.04881i
\(155\) 59.8389 + 416.189i 0.0310089 + 0.215672i
\(156\) 76.0419 166.508i 0.0390271 0.0854574i
\(157\) 220.377 1532.76i 0.112026 0.779155i −0.853919 0.520406i \(-0.825781\pi\)
0.965945 0.258749i \(-0.0833102\pi\)
\(158\) −2961.92 1903.51i −1.49138 0.958450i
\(159\) 79.2824 + 91.4968i 0.0395441 + 0.0456363i
\(160\) 539.097 0.266371
\(161\) −3625.18 290.436i −1.77456 0.142171i
\(162\) −2119.53 −1.02794
\(163\) 1209.06 + 1395.33i 0.580985 + 0.670493i 0.967816 0.251658i \(-0.0809757\pi\)
−0.386831 + 0.922151i \(0.626430\pi\)
\(164\) 242.614 + 155.918i 0.115518 + 0.0742389i
\(165\) 45.5467 316.784i 0.0214897 0.149464i
\(166\) −391.700 + 857.704i −0.183144 + 0.401029i
\(167\) −574.070 3992.74i −0.266005 1.85011i −0.485173 0.874418i \(-0.661243\pi\)
0.219168 0.975687i \(-0.429666\pi\)
\(168\) −543.685 159.640i −0.249680 0.0733127i
\(169\) 3202.13 2057.89i 1.45750 0.936680i
\(170\) 370.650 + 811.610i 0.167221 + 0.366162i
\(171\) −401.132 + 117.783i −0.179388 + 0.0526730i
\(172\) 412.872 476.479i 0.183030 0.211228i
\(173\) 455.491 525.664i 0.200175 0.231015i −0.646783 0.762674i \(-0.723886\pi\)
0.846958 + 0.531660i \(0.178431\pi\)
\(174\) −752.559 + 220.971i −0.327882 + 0.0962747i
\(175\) −342.412 749.778i −0.147908 0.323874i
\(176\) −4357.01 + 2800.08i −1.86603 + 1.19923i
\(177\) 626.147 + 183.853i 0.265899 + 0.0780750i
\(178\) −246.638 1715.40i −0.103856 0.722332i
\(179\) −104.685 + 229.228i −0.0437124 + 0.0957167i −0.930228 0.366981i \(-0.880391\pi\)
0.886516 + 0.462698i \(0.153119\pi\)
\(180\) 45.6936 317.806i 0.0189211 0.131599i
\(181\) −950.291 610.715i −0.390246 0.250796i 0.330774 0.943710i \(-0.392690\pi\)
−0.721020 + 0.692914i \(0.756327\pi\)
\(182\) 5411.12 + 6244.77i 2.20384 + 2.54337i
\(183\) 215.697 0.0871299
\(184\) −1408.97 + 1385.09i −0.564513 + 0.554946i
\(185\) 498.715 0.198196
\(186\) 170.907 + 197.238i 0.0673738 + 0.0777535i
\(187\) −3096.19 1989.80i −1.21078 0.778120i
\(188\) 89.5433 622.787i 0.0347373 0.241603i
\(189\) −697.542 + 1527.40i −0.268459 + 0.587842i
\(190\) −36.8961 256.618i −0.0140880 0.0979844i
\(191\) −125.141 36.7448i −0.0474078 0.0139202i 0.257943 0.966160i \(-0.416955\pi\)
−0.305350 + 0.952240i \(0.598774\pi\)
\(192\) −219.821 + 141.270i −0.0826259 + 0.0531005i
\(193\) −1097.31 2402.77i −0.409253 0.896140i −0.996248 0.0865486i \(-0.972416\pi\)
0.586994 0.809591i \(-0.300311\pi\)
\(194\) 917.515 269.407i 0.339556 0.0997025i
\(195\) −243.417 + 280.919i −0.0893922 + 0.103164i
\(196\) −1199.76 + 1384.60i −0.437232 + 0.504593i
\(197\) 882.559 259.143i 0.319186 0.0937216i −0.118215 0.992988i \(-0.537717\pi\)
0.437401 + 0.899266i \(0.355899\pi\)
\(198\) 2337.73 + 5118.92i 0.839068 + 1.83730i
\(199\) 2639.60 1696.37i 0.940283 0.604283i 0.0218077 0.999762i \(-0.493058\pi\)
0.918475 + 0.395479i \(0.129421\pi\)
\(200\) −429.661 126.160i −0.151908 0.0446042i
\(201\) −27.8384 193.620i −0.00976900 0.0679449i
\(202\) 287.086 628.630i 0.0999964 0.218962i
\(203\) 1185.85 8247.74i 0.410000 2.85162i
\(204\) 109.647 + 70.4660i 0.0376316 + 0.0241843i
\(205\) −383.504 442.587i −0.130659 0.150788i
\(206\) −860.993 −0.291205
\(207\) 1704.18 + 2317.54i 0.572216 + 0.778164i
\(208\) 6015.31 2.00522
\(209\) 700.323 + 808.216i 0.231782 + 0.267490i
\(210\) −430.400 276.601i −0.141430 0.0908919i
\(211\) 483.510 3362.89i 0.157754 1.09721i −0.745004 0.667060i \(-0.767553\pi\)
0.902759 0.430147i \(-0.141538\pi\)
\(212\) 129.066 282.616i 0.0418128 0.0915573i
\(213\) −57.0837 397.026i −0.0183630 0.127717i
\(214\) 4605.38 + 1352.26i 1.47111 + 0.431956i
\(215\) −1077.02 + 692.161i −0.341639 + 0.219558i
\(216\) 378.954 + 829.794i 0.119373 + 0.261391i
\(217\) −2660.31 + 781.138i −0.832229 + 0.244365i
\(218\) −1800.35 + 2077.71i −0.559335 + 0.645507i
\(219\) 71.9993 83.0916i 0.0222158 0.0256384i
\(220\) −788.046 + 231.391i −0.241500 + 0.0709109i
\(221\) 1775.74 + 3888.32i 0.540493 + 1.18351i
\(222\) 260.410 167.355i 0.0787277 0.0505952i
\(223\) −4641.13 1362.76i −1.39369 0.409224i −0.503178 0.864183i \(-0.667836\pi\)
−0.890513 + 0.454958i \(0.849654\pi\)
\(224\) 505.911 + 3518.69i 0.150904 + 1.04956i
\(225\) −270.844 + 593.066i −0.0802502 + 0.175723i
\(226\) −441.860 + 3073.21i −0.130054 + 0.904543i
\(227\) 3370.84 + 2166.31i 0.985596 + 0.633404i 0.930967 0.365102i \(-0.118966\pi\)
0.0546290 + 0.998507i \(0.482602\pi\)
\(228\) −24.8010 28.6219i −0.00720388 0.00831373i
\(229\) 4616.72 1.33223 0.666117 0.745848i \(-0.267955\pi\)
0.666117 + 0.745848i \(0.267955\pi\)
\(230\) −1572.96 + 841.530i −0.450946 + 0.241256i
\(231\) 2110.40 0.601099
\(232\) −2964.45 3421.16i −0.838904 0.968146i
\(233\) 3228.90 + 2075.09i 0.907864 + 0.583449i 0.909113 0.416550i \(-0.136761\pi\)
−0.00124851 + 0.999999i \(0.500397\pi\)
\(234\) 930.163 6469.43i 0.259858 1.80735i
\(235\) −530.759 + 1162.20i −0.147331 + 0.322611i
\(236\) −238.335 1657.66i −0.0657385 0.457222i
\(237\) 1002.10 + 294.242i 0.274655 + 0.0806459i
\(238\) −4949.55 + 3180.88i −1.34803 + 0.866327i
\(239\) 1527.52 + 3344.81i 0.413419 + 0.905261i 0.995732 + 0.0922964i \(0.0294207\pi\)
−0.582313 + 0.812965i \(0.697852\pi\)
\(240\) −357.360 + 104.930i −0.0961147 + 0.0282218i
\(241\) −1417.69 + 1636.10i −0.378926 + 0.437304i −0.912892 0.408202i \(-0.866156\pi\)
0.533965 + 0.845506i \(0.320701\pi\)
\(242\) 6607.54 7625.51i 1.75516 2.02556i
\(243\) 1922.63 564.534i 0.507558 0.149032i
\(244\) −229.948 503.516i −0.0603316 0.132108i
\(245\) 3129.72 2011.35i 0.816125 0.524492i
\(246\) −348.771 102.408i −0.0903936 0.0265419i
\(247\) −176.765 1229.43i −0.0455355 0.316706i
\(248\) −625.734 + 1370.17i −0.160218 + 0.350829i
\(249\) 39.8055 276.854i 0.0101308 0.0704614i
\(250\) −340.134 218.591i −0.0860479 0.0552996i
\(251\) 1708.10 + 1971.26i 0.429540 + 0.495716i 0.928720 0.370783i \(-0.120911\pi\)
−0.499179 + 0.866499i \(0.666365\pi\)
\(252\) 2117.20 0.529251
\(253\) 3581.65 6428.09i 0.890026 1.59735i
\(254\) −5874.15 −1.45109
\(255\) −173.321 200.023i −0.0425639 0.0491214i
\(256\) 2911.19 + 1870.91i 0.710741 + 0.456765i
\(257\) −238.982 + 1662.15i −0.0580049 + 0.403433i 0.940047 + 0.341045i \(0.110781\pi\)
−0.998052 + 0.0623883i \(0.980128\pi\)
\(258\) −330.110 + 722.840i −0.0796579 + 0.174426i
\(259\) 468.015 + 3255.12i 0.112282 + 0.780938i
\(260\) 915.267 + 268.747i 0.218317 + 0.0641037i
\(261\) −5544.67 + 3563.34i −1.31497 + 0.845078i
\(262\) 1251.57 + 2740.56i 0.295124 + 0.646231i
\(263\) 219.611 64.4836i 0.0514897 0.0151188i −0.255886 0.966707i \(-0.582367\pi\)
0.307376 + 0.951588i \(0.400549\pi\)
\(264\) 750.809 866.480i 0.175035 0.202001i
\(265\) −413.154 + 476.805i −0.0957731 + 0.110528i
\(266\) 1640.32 481.643i 0.378100 0.111020i
\(267\) 213.557 + 467.624i 0.0489493 + 0.107184i
\(268\) −422.303 + 271.398i −0.0962547 + 0.0618591i
\(269\) −7802.96 2291.16i −1.76861 0.519310i −0.774975 0.631992i \(-0.782238\pi\)
−0.993631 + 0.112682i \(0.964056\pi\)
\(270\) 117.218 + 815.269i 0.0264210 + 0.183762i
\(271\) −414.043 + 906.628i −0.0928094 + 0.203224i −0.950343 0.311203i \(-0.899268\pi\)
0.857534 + 0.514427i \(0.171995\pi\)
\(272\) −609.549 + 4239.50i −0.135880 + 0.945065i
\(273\) −2061.99 1325.16i −0.457133 0.293782i
\(274\) −1038.78 1198.81i −0.229033 0.264318i
\(275\) 1667.79 0.365715
\(276\) −126.839 + 227.642i −0.0276624 + 0.0496466i
\(277\) 6282.89 1.36282 0.681412 0.731900i \(-0.261366\pi\)
0.681412 + 0.731900i \(0.261366\pi\)
\(278\) 2564.63 + 2959.74i 0.553295 + 0.638537i
\(279\) 1844.97 + 1185.69i 0.395897 + 0.254427i
\(280\) 420.234 2922.79i 0.0896921 0.623822i
\(281\) −2232.21 + 4887.85i −0.473887 + 1.03767i 0.510212 + 0.860049i \(0.329567\pi\)
−0.984099 + 0.177620i \(0.943160\pi\)
\(282\) 112.861 + 784.964i 0.0238325 + 0.165759i
\(283\) −1245.05 365.579i −0.261521 0.0767895i 0.148343 0.988936i \(-0.452606\pi\)
−0.409865 + 0.912146i \(0.634424\pi\)
\(284\) −865.949 + 556.512i −0.180932 + 0.116278i
\(285\) 31.9473 + 69.9549i 0.00663998 + 0.0145395i
\(286\) −16041.9 + 4710.32i −3.31670 + 0.973870i
\(287\) 2528.87 2918.47i 0.520120 0.600251i
\(288\) 1841.38 2125.06i 0.376751 0.434794i
\(289\) 1793.62 526.653i 0.365076 0.107196i
\(290\) −1697.92 3717.92i −0.343811 0.752841i
\(291\) −238.627 + 153.356i −0.0480707 + 0.0308932i
\(292\) −270.722 79.4912i −0.0542563 0.0159311i
\(293\) −994.122 6914.27i −0.198216 1.37862i −0.809458 0.587178i \(-0.800239\pi\)
0.611242 0.791444i \(-0.290670\pi\)
\(294\) 959.266 2100.50i 0.190291 0.416679i
\(295\) −483.972 + 3366.10i −0.0955184 + 0.664345i
\(296\) 1502.98 + 965.907i 0.295132 + 0.189670i
\(297\) −2224.91 2567.68i −0.434687 0.501656i
\(298\) 588.151 0.114331
\(299\) −7535.84 + 4031.66i −1.45755 + 0.779790i
\(300\) −59.0626 −0.0113666
\(301\) −5528.46 6380.19i −1.05866 1.22175i
\(302\) 3923.15 + 2521.25i 0.747522 + 0.480404i
\(303\) −29.1743 + 202.912i −0.00553143 + 0.0384719i
\(304\) 516.999 1132.07i 0.0975392 0.213581i
\(305\) 159.967 + 1112.59i 0.0300317 + 0.208875i
\(306\) 4465.30 + 1311.13i 0.834197 + 0.244942i
\(307\) −4321.05 + 2776.97i −0.803308 + 0.516255i −0.876694 0.481049i \(-0.840256\pi\)
0.0733857 + 0.997304i \(0.476620\pi\)
\(308\) −2249.83 4926.43i −0.416220 0.911395i
\(309\) 245.055 71.9546i 0.0451155 0.0132471i
\(310\) −890.627 + 1027.84i −0.163175 + 0.188314i
\(311\) −1568.30 + 1809.91i −0.285949 + 0.330002i −0.880492 0.474061i \(-0.842787\pi\)
0.594543 + 0.804064i \(0.297333\pi\)
\(312\) −1277.67 + 375.158i −0.231839 + 0.0680741i
\(313\) −588.970 1289.66i −0.106360 0.232895i 0.848968 0.528445i \(-0.177225\pi\)
−0.955327 + 0.295549i \(0.904497\pi\)
\(314\) 4213.63 2707.94i 0.757289 0.486680i
\(315\) −4125.12 1211.24i −0.737855 0.216654i
\(316\) −381.435 2652.94i −0.0679032 0.472277i
\(317\) −586.167 + 1283.53i −0.103856 + 0.227413i −0.954425 0.298450i \(-0.903530\pi\)
0.850569 + 0.525863i \(0.176258\pi\)
\(318\) −55.7303 + 387.613i −0.00982767 + 0.0683530i
\(319\) 14183.4 + 9115.11i 2.48940 + 1.59984i
\(320\) −891.714 1029.09i −0.155776 0.179775i
\(321\) −1423.79 −0.247564
\(322\) −6968.80 9476.97i −1.20607 1.64016i
\(323\) 884.394 0.152350
\(324\) −1056.61 1219.39i −0.181174 0.209086i
\(325\) −1629.54 1047.24i −0.278125 0.178740i
\(326\) −849.887 + 5911.09i −0.144389 + 1.00425i
\(327\) 338.775 741.814i 0.0572914 0.125451i
\(328\) −298.569 2076.59i −0.0502613 0.349575i
\(329\) −8083.77 2373.61i −1.35463 0.397755i
\(330\) 870.857 559.666i 0.145270 0.0933593i
\(331\) −2446.72 5357.57i −0.406296 0.889664i −0.996593 0.0824780i \(-0.973717\pi\)
0.590297 0.807186i \(-0.299011\pi\)
\(332\) −688.713 + 202.224i −0.113849 + 0.0334292i
\(333\) 1703.45 1965.88i 0.280326 0.323513i
\(334\) 8544.30 9860.65i 1.39977 1.61542i
\(335\) 978.073 287.188i 0.159516 0.0468381i
\(336\) −1020.24 2234.02i −0.165651 0.362726i
\(337\) 481.591 309.499i 0.0778454 0.0500282i −0.501139 0.865367i \(-0.667086\pi\)
0.578985 + 0.815339i \(0.303449\pi\)
\(338\) 11813.2 + 3468.67i 1.90104 + 0.558197i
\(339\) −131.071 911.619i −0.0209994 0.146054i
\(340\) −282.155 + 617.834i −0.0450059 + 0.0985493i
\(341\) 798.391 5552.93i 0.126790 0.881842i
\(342\) −1137.59 731.084i −0.179865 0.115592i
\(343\) 8659.40 + 9993.48i 1.36316 + 1.57317i
\(344\) −4586.40 −0.718844
\(345\) 377.365 370.970i 0.0588888 0.0578908i
\(346\) 2249.80 0.349566
\(347\) 7945.87 + 9170.03i 1.22927 + 1.41865i 0.875428 + 0.483349i \(0.160580\pi\)
0.353843 + 0.935305i \(0.384875\pi\)
\(348\) −502.285 322.799i −0.0773716 0.0497237i
\(349\) 744.988 5181.51i 0.114265 0.794727i −0.849426 0.527707i \(-0.823052\pi\)
0.963691 0.267020i \(-0.0860390\pi\)
\(350\) 1107.55 2425.19i 0.169146 0.370377i
\(351\) 561.577 + 3905.85i 0.0853981 + 0.593957i
\(352\) −6901.45 2026.45i −1.04502 0.306847i
\(353\) −8358.31 + 5371.56i −1.26025 + 0.809912i −0.988318 0.152404i \(-0.951298\pi\)
−0.271930 + 0.962317i \(0.587662\pi\)
\(354\) 876.860 + 1920.05i 0.131651 + 0.288276i
\(355\) 2005.58 588.891i 0.299845 0.0880424i
\(356\) 863.940 997.039i 0.128620 0.148435i
\(357\) 1142.90 1318.98i 0.169436 0.195540i
\(358\) −782.090 + 229.642i −0.115460 + 0.0339022i
\(359\) −2213.87 4847.70i −0.325470 0.712679i 0.674196 0.738553i \(-0.264490\pi\)
−0.999665 + 0.0258738i \(0.991763\pi\)
\(360\) −1964.89 + 1262.76i −0.287664 + 0.184870i
\(361\) 6334.59 + 1860.00i 0.923545 + 0.271177i
\(362\) −519.988 3616.60i −0.0754971 0.525094i
\(363\) −1243.35 + 2722.57i −0.179777 + 0.393657i
\(364\) −895.186 + 6226.15i −0.128902 + 0.896536i
\(365\) 481.994 + 309.759i 0.0691197 + 0.0444206i
\(366\) 456.884 + 527.273i 0.0652506 + 0.0753032i
\(367\) 2685.34 0.381944 0.190972 0.981595i \(-0.438836\pi\)
0.190972 + 0.981595i \(0.438836\pi\)
\(368\) −8536.16 683.885i −1.20918 0.0968749i
\(369\) −3054.56 −0.430932
\(370\) 1056.37 + 1219.11i 0.148427 + 0.171294i
\(371\) −3499.83 2249.21i −0.489763 0.314752i
\(372\) −28.2740 + 196.650i −0.00394069 + 0.0274081i
\(373\) 3226.04 7064.05i 0.447824 0.980597i −0.542272 0.840203i \(-0.682436\pi\)
0.990096 0.140394i \(-0.0448370\pi\)
\(374\) −1694.20 11783.4i −0.234237 1.62916i
\(375\) 115.076 + 33.7895i 0.0158467 + 0.00465302i
\(376\) −3850.49 + 2474.56i −0.528122 + 0.339403i
\(377\) −8134.51 17812.1i −1.11127 2.43334i
\(378\) −5211.26 + 1530.16i −0.709096 + 0.208209i
\(379\) −3152.05 + 3637.65i −0.427202 + 0.493018i −0.928018 0.372536i \(-0.878488\pi\)
0.500815 + 0.865554i \(0.333034\pi\)
\(380\) 129.242 149.153i 0.0174473 0.0201353i
\(381\) 1671.89 490.912i 0.224813 0.0660110i
\(382\) −175.248 383.740i −0.0234725 0.0513975i
\(383\) −7439.28 + 4780.94i −0.992505 + 0.637844i −0.932809 0.360372i \(-0.882650\pi\)
−0.0596967 + 0.998217i \(0.519013\pi\)
\(384\) −1605.03 471.280i −0.213298 0.0626300i
\(385\) 1565.13 + 10885.7i 0.207185 + 1.44100i
\(386\) 3549.29 7771.86i 0.468016 1.02481i
\(387\) −950.334 + 6609.72i −0.124827 + 0.868193i
\(388\) 612.383 + 393.555i 0.0801264 + 0.0514941i
\(389\) 6800.52 + 7848.22i 0.886375 + 1.02293i 0.999569 + 0.0293587i \(0.00934651\pi\)
−0.113194 + 0.993573i \(0.536108\pi\)
\(390\) −1202.31 −0.156106
\(391\) −2077.83 5719.69i −0.268748 0.739788i
\(392\) 13327.6 1.71721
\(393\) −585.254 675.419i −0.0751200 0.0866931i
\(394\) 2502.89 + 1608.51i 0.320035 + 0.205674i
\(395\) −774.557 + 5387.16i −0.0986637 + 0.686221i
\(396\) −1779.59 + 3896.76i −0.225828 + 0.494493i
\(397\) 1012.32 + 7040.85i 0.127977 + 0.890102i 0.948113 + 0.317933i \(0.102989\pi\)
−0.820136 + 0.572169i \(0.806102\pi\)
\(398\) 9737.92 + 2859.31i 1.22643 + 0.360111i
\(399\) −426.615 + 274.169i −0.0535275 + 0.0344000i
\(400\) −806.273 1765.49i −0.100784 0.220686i
\(401\) 10744.2 3154.77i 1.33800 0.392872i 0.467044 0.884234i \(-0.345319\pi\)
0.870955 + 0.491362i \(0.163501\pi\)
\(402\) 414.339 478.173i 0.0514064 0.0593261i
\(403\) −4266.88 + 4924.24i −0.527416 + 0.608670i
\(404\) 504.773 148.215i 0.0621618 0.0182524i
\(405\) 1361.06 + 2980.31i 0.166992 + 0.365662i
\(406\) 22673.5 14571.4i 2.77159 1.78119i
\(407\) −6384.49 1874.65i −0.777561 0.228313i
\(408\) −134.936 938.499i −0.0163733 0.113879i
\(409\) −6039.85 + 13225.4i −0.730199 + 1.59891i 0.0688352 + 0.997628i \(0.478072\pi\)
−0.799034 + 0.601285i \(0.794656\pi\)
\(410\) 269.578 1874.95i 0.0324719 0.225847i
\(411\) 395.843 + 254.393i 0.0475072 + 0.0305310i
\(412\) −429.214 495.339i −0.0513248 0.0592320i
\(413\) −22424.7 −2.67179
\(414\) −2055.48 + 9074.83i −0.244013 + 1.07730i
\(415\) 1457.57 0.172408
\(416\) 5470.71 + 6313.53i 0.644768 + 0.744102i
\(417\) −977.290 628.066i −0.114768 0.0737567i
\(418\) −492.281 + 3423.89i −0.0576034 + 0.400641i
\(419\) 3839.29 8406.88i 0.447641 0.980198i −0.542491 0.840062i \(-0.682519\pi\)
0.990132 0.140136i \(-0.0447540\pi\)
\(420\) −55.4268 385.502i −0.00643941 0.0447871i
\(421\) −114.307 33.5636i −0.0132327 0.00388548i 0.275109 0.961413i \(-0.411286\pi\)
−0.288342 + 0.957527i \(0.593104\pi\)
\(422\) 9244.75 5941.24i 1.06642 0.685344i
\(423\) 2768.37 + 6061.89i 0.318210 + 0.696783i
\(424\) −2168.60 + 636.758i −0.248388 + 0.0729332i
\(425\) 903.207 1042.36i 0.103087 0.118969i
\(426\) 849.620 980.513i 0.0966296 0.111516i
\(427\) −7111.78 + 2088.21i −0.806003 + 0.236664i
\(428\) 1517.86 + 3323.64i 0.171421 + 0.375360i
\(429\) 4172.17 2681.29i 0.469543 0.301757i
\(430\) −3973.32 1166.67i −0.445606 0.130842i
\(431\) −408.984 2844.55i −0.0457078 0.317905i −0.999829 0.0184845i \(-0.994116\pi\)
0.954121 0.299420i \(-0.0967932\pi\)
\(432\) −1642.49 + 3596.55i −0.182927 + 0.400554i
\(433\) −2427.59 + 16884.2i −0.269428 + 1.87391i 0.184440 + 0.982844i \(0.440953\pi\)
−0.453868 + 0.891069i \(0.649956\pi\)
\(434\) −7544.51 4848.56i −0.834442 0.536264i
\(435\) 793.971 + 916.292i 0.0875127 + 0.100995i
\(436\) −2092.82 −0.229881
\(437\) 111.068 + 1764.74i 0.0121581 + 0.193178i
\(438\) 355.625 0.0387955
\(439\) 5366.65 + 6193.44i 0.583454 + 0.673342i 0.968344 0.249621i \(-0.0803060\pi\)
−0.384890 + 0.922963i \(0.625761\pi\)
\(440\) 5026.24 + 3230.17i 0.544583 + 0.349982i
\(441\) 2761.58 19207.2i 0.298194 2.07399i
\(442\) −5743.70 + 12576.9i −0.618099 + 1.35345i
\(443\) −1828.82 12719.7i −0.196140 1.36418i −0.815355 0.578961i \(-0.803458\pi\)
0.619215 0.785221i \(-0.287451\pi\)
\(444\) 226.098 + 66.3884i 0.0241670 + 0.00709606i
\(445\) −2253.69 + 1448.36i −0.240079 + 0.154289i
\(446\) −6499.46 14231.8i −0.690041 1.51098i
\(447\) −167.399 + 49.1527i −0.0177130 + 0.00520099i
\(448\) 5880.07 6785.97i 0.620106 0.715640i
\(449\) −4669.04 + 5388.36i −0.490747 + 0.566353i −0.946065 0.323976i \(-0.894980\pi\)
0.455318 + 0.890329i \(0.349526\pi\)
\(450\) −2023.45 + 594.139i −0.211970 + 0.0622399i
\(451\) 3245.90 + 7107.52i 0.338899 + 0.742084i
\(452\) −1988.32 + 1277.82i −0.206909 + 0.132972i
\(453\) −1327.31 389.732i −0.137665 0.0404221i
\(454\) 1844.48 + 12828.7i 0.190674 + 1.32616i
\(455\) 5306.12 11618.8i 0.546714 1.19714i
\(456\) −39.2082 + 272.699i −0.00402651 + 0.0280050i
\(457\) −7804.58 5015.70i −0.798868 0.513401i 0.0763783 0.997079i \(-0.475664\pi\)
−0.875246 + 0.483678i \(0.839301\pi\)
\(458\) 9779.03 + 11285.6i 0.997694 + 1.15140i
\(459\) −2809.69 −0.285720
\(460\) −1268.28 485.428i −0.128551 0.0492026i
\(461\) −14700.0 −1.48513 −0.742565 0.669774i \(-0.766391\pi\)
−0.742565 + 0.669774i \(0.766391\pi\)
\(462\) 4470.19 + 5158.87i 0.450156 + 0.519508i
\(463\) −1770.24 1137.66i −0.177689 0.114194i 0.448773 0.893646i \(-0.351861\pi\)
−0.626462 + 0.779452i \(0.715498\pi\)
\(464\) 2792.29 19420.8i 0.279373 1.94308i
\(465\) 167.591 366.973i 0.0167136 0.0365978i
\(466\) 1766.82 + 12288.5i 0.175636 + 1.22157i
\(467\) 9362.20 + 2748.99i 0.927690 + 0.272394i 0.710469 0.703728i \(-0.248483\pi\)
0.217220 + 0.976123i \(0.430301\pi\)
\(468\) 4185.63 2689.94i 0.413420 0.265689i
\(469\) 2792.34 + 6114.38i 0.274922 + 0.601995i
\(470\) −3965.24 + 1164.30i −0.389155 + 0.114266i
\(471\) −972.971 + 1122.87i −0.0951850 + 0.109849i
\(472\) −7977.98 + 9207.08i −0.778001 + 0.897861i
\(473\) 16389.7 4812.46i 1.59324 0.467817i
\(474\) 1403.34 + 3072.89i 0.135986 + 0.297769i
\(475\) −337.143 + 216.669i −0.0325667 + 0.0209294i
\(476\) −4297.39 1261.83i −0.413804 0.121504i
\(477\) 468.318 + 3257.22i 0.0449535 + 0.312658i
\(478\) −4940.84 + 10818.9i −0.472780 + 1.03524i
\(479\) 1726.60 12008.8i 0.164698 1.14550i −0.724933 0.688820i \(-0.758129\pi\)
0.889631 0.456681i \(-0.150962\pi\)
\(480\) −435.139 279.647i −0.0413777 0.0265918i
\(481\) 5060.92 + 5840.61i 0.479746 + 0.553657i
\(482\) −7002.36 −0.661719
\(483\) 2775.46 + 2114.93i 0.261465 + 0.199239i
\(484\) 7680.97 0.721353
\(485\) −968.004 1117.14i −0.0906285 0.104591i
\(486\) 5452.47 + 3504.09i 0.508908 + 0.327055i
\(487\) 1989.96 13840.5i 0.185161 1.28782i −0.659166 0.751997i \(-0.729091\pi\)
0.844327 0.535828i \(-0.180000\pi\)
\(488\) −1672.77 + 3662.85i −0.155169 + 0.339773i
\(489\) −252.106 1753.43i −0.0233141 0.162153i
\(490\) 11546.1 + 3390.23i 1.06449 + 0.312561i
\(491\) 6266.15 4027.01i 0.575942 0.370135i −0.220008 0.975498i \(-0.570608\pi\)
0.795950 + 0.605363i \(0.206972\pi\)
\(492\) −114.949 251.703i −0.0105331 0.0230643i
\(493\) 13378.0 3928.13i 1.22214 0.358852i
\(494\) 2630.92 3036.24i 0.239617 0.276532i
\(495\) 5696.64 6574.27i 0.517262 0.596952i
\(496\) −6264.20 + 1839.33i −0.567078 + 0.166509i
\(497\) 5725.81 + 12537.8i 0.516776 + 1.13158i
\(498\) 761.085 489.120i 0.0684840 0.0440120i
\(499\) 9330.43 + 2739.66i 0.837049 + 0.245780i 0.672042 0.740513i \(-0.265417\pi\)
0.165006 + 0.986292i \(0.447236\pi\)
\(500\) −43.8024 304.652i −0.00391781 0.0272489i
\(501\) −1607.80 + 3520.58i −0.143375 + 0.313948i
\(502\) −1200.68 + 8350.95i −0.106751 + 0.742472i
\(503\) −464.191 298.318i −0.0411476 0.0264440i 0.519905 0.854224i \(-0.325967\pi\)
−0.561053 + 0.827780i \(0.689604\pi\)
\(504\) −10086.0 11639.8i −0.891399 1.02873i
\(505\) −1068.28 −0.0941346
\(506\) 23300.1 4860.47i 2.04707 0.427024i
\(507\) −3652.14 −0.319915
\(508\) −2928.32 3379.46i −0.255754 0.295156i
\(509\) −7582.88 4873.22i −0.660324 0.424365i 0.167102 0.985940i \(-0.446559\pi\)
−0.827426 + 0.561575i \(0.810196\pi\)
\(510\) 121.833 847.370i 0.0105782 0.0735729i
\(511\) −1569.47 + 3436.67i −0.135870 + 0.297513i
\(512\) −391.970 2726.21i −0.0338336 0.235318i
\(513\) 783.339 + 230.009i 0.0674177 + 0.0197956i
\(514\) −4569.35 + 2936.54i −0.392112 + 0.251995i
\(515\) 552.890 + 1210.66i 0.0473073 + 0.103588i
\(516\) −580.420 + 170.427i −0.0495186 + 0.0145400i
\(517\) 11163.4 12883.2i 0.949642 1.09595i
\(518\) −6965.81 + 8038.97i −0.590850 + 0.681877i
\(519\) −640.335 + 188.019i −0.0541572 + 0.0159020i
\(520\) −2882.67 6312.16i −0.243102 0.532320i
\(521\) 2617.53 1682.19i 0.220108 0.141455i −0.425941 0.904751i \(-0.640057\pi\)
0.646048 + 0.763296i \(0.276420\pi\)
\(522\) −20455.2 6006.19i −1.71513 0.503609i
\(523\) −1804.61 12551.3i −0.150880 1.04939i −0.914750 0.404021i \(-0.867612\pi\)
0.763870 0.645370i \(-0.223297\pi\)
\(524\) −952.754 + 2086.24i −0.0794299 + 0.173927i
\(525\) −112.552 + 782.814i −0.00935649 + 0.0650758i
\(526\) 622.806 + 400.253i 0.0516267 + 0.0331784i
\(527\) −3038.16 3506.23i −0.251128 0.289817i
\(528\) 4969.32 0.409587
\(529\) 11152.3 4864.47i 0.916599 0.399808i
\(530\) −2040.69 −0.167249
\(531\) 11615.7 + 13405.3i 0.949303 + 1.09555i
\(532\) 1094.81 + 703.593i 0.0892220 + 0.0573395i
\(533\) 1291.51 8982.67i 0.104956 0.729986i
\(534\) −690.759 + 1512.55i −0.0559777 + 0.122574i
\(535\) −1055.92 7344.08i −0.0853296 0.593480i
\(536\) 3503.85 + 1028.82i 0.282357 + 0.0829074i
\(537\) 203.406 130.721i 0.0163456 0.0105047i
\(538\) −10927.3 23927.5i −0.875669 1.91745i
\(539\) −47627.0 + 13984.5i −3.80601 + 1.11754i
\(540\) −410.599 + 473.856i −0.0327210 + 0.0377621i
\(541\) 5614.82 6479.85i 0.446211 0.514955i −0.487432 0.873161i \(-0.662066\pi\)
0.933642 + 0.358207i \(0.116612\pi\)
\(542\) −3093.28 + 908.268i −0.245143 + 0.0719805i
\(543\) 450.243 + 985.894i 0.0355834 + 0.0779167i
\(544\) −5004.05 + 3215.91i −0.394388 + 0.253458i
\(545\) 4077.61 + 1197.30i 0.320488 + 0.0941037i
\(546\) −1128.30 7847.48i −0.0884371 0.615093i
\(547\) −5086.00 + 11136.8i −0.397554 + 0.870521i 0.599959 + 0.800031i \(0.295184\pi\)
−0.997512 + 0.0704900i \(0.977544\pi\)
\(548\) 171.850 1195.24i 0.0133961 0.0931719i
\(549\) 4932.12 + 3169.68i 0.383420 + 0.246409i
\(550\) 3532.68 + 4076.93i 0.273880 + 0.316074i
\(551\) −4051.34 −0.313236
\(552\) 1855.76 387.116i 0.143091 0.0298492i
\(553\) −35888.9 −2.75977
\(554\) 13308.3 + 15358.6i 1.02060 + 1.17784i
\(555\) −402.545 258.700i −0.0307875 0.0197859i
\(556\) −424.277 + 2950.91i −0.0323622 + 0.225084i
\(557\) −1112.71 + 2436.50i −0.0846447 + 0.185346i −0.947221 0.320581i \(-0.896122\pi\)
0.862577 + 0.505926i \(0.168849\pi\)
\(558\) 1009.54 + 7021.52i 0.0765902 + 0.532697i
\(559\) −19035.7 5589.38i −1.44029 0.422908i
\(560\) 10766.7 6919.36i 0.812460 0.522136i
\(561\) 1466.96 + 3212.19i 0.110401 + 0.241744i
\(562\) −16676.6 + 4896.69i −1.25171 + 0.367535i
\(563\) 16647.2 19211.8i 1.24617 1.43816i 0.390528 0.920591i \(-0.372293\pi\)
0.855643 0.517566i \(-0.173162\pi\)
\(564\) −395.336 + 456.242i −0.0295153 + 0.0340625i
\(565\) 4605.04 1352.16i 0.342895 0.100683i
\(566\) −1743.57 3817.89i −0.129484 0.283530i
\(567\) −18175.3 + 11680.5i −1.34619 + 0.865143i
\(568\) 7184.78 + 2109.64i 0.530751 + 0.155843i
\(569\) 1167.68 + 8121.38i 0.0860309 + 0.598358i 0.986540 + 0.163521i \(0.0522851\pi\)
−0.900509 + 0.434837i \(0.856806\pi\)
\(570\) −103.335 + 226.272i −0.00759338 + 0.0166272i
\(571\) 2178.10 15149.0i 0.159633 1.11028i −0.739676 0.672963i \(-0.765021\pi\)
0.899310 0.437312i \(-0.144070\pi\)
\(572\) −10706.9 6880.92i −0.782656 0.502982i
\(573\) 81.9487 + 94.5738i 0.00597462 + 0.00689508i
\(574\) 12490.8 0.908287
\(575\) 2193.37 + 1671.37i 0.159078 + 0.121219i
\(576\) −7102.39 −0.513772
\(577\) −3995.38 4610.92i −0.288267 0.332678i 0.593084 0.805141i \(-0.297910\pi\)
−0.881350 + 0.472463i \(0.843365\pi\)
\(578\) 5086.60 + 3268.96i 0.366046 + 0.235244i
\(579\) −360.687 + 2508.63i −0.0258889 + 0.180061i
\(580\) 1292.53 2830.25i 0.0925335 0.202620i
\(581\) 1367.84 + 9513.55i 0.0976724 + 0.679326i
\(582\) −880.335 258.490i −0.0626994 0.0184102i
\(583\) 7081.45 4550.97i 0.503059 0.323297i
\(584\) 852.650 + 1867.04i 0.0604159 + 0.132292i
\(585\) −9694.10 + 2846.44i −0.685131 + 0.201173i
\(586\) 14796.3 17075.8i 1.04305 1.20374i
\(587\) 12916.5 14906.4i 0.908211 1.04813i −0.0904244 0.995903i \(-0.528822\pi\)
0.998635 0.0522278i \(-0.0166322\pi\)
\(588\) 1686.64 495.243i 0.118293 0.0347338i
\(589\) 560.007 + 1226.24i 0.0391760 + 0.0857835i
\(590\) −9253.59 + 5946.92i −0.645702 + 0.414967i
\(591\) −846.796 248.642i −0.0589383 0.0173058i
\(592\) 1102.03 + 7664.77i 0.0765085 + 0.532129i
\(593\) −4071.00 + 8914.25i −0.281916 + 0.617309i −0.996623 0.0821144i \(-0.973833\pi\)
0.714707 + 0.699424i \(0.246560\pi\)
\(594\) 1563.96 10877.6i 0.108031 0.751369i
\(595\) 7651.07 + 4917.05i 0.527165 + 0.338789i
\(596\) 293.199 + 338.370i 0.0201508 + 0.0232553i
\(597\) −3010.55 −0.206388
\(598\) −25817.7 9881.62i −1.76549 0.675735i
\(599\) 11643.9 0.794251 0.397126 0.917764i \(-0.370008\pi\)
0.397126 + 0.917764i \(0.370008\pi\)
\(600\) 281.363 + 324.711i 0.0191444 + 0.0220938i
\(601\) −5161.32 3316.98i −0.350307 0.225129i 0.353639 0.935382i \(-0.384944\pi\)
−0.703946 + 0.710253i \(0.748581\pi\)
\(602\) 3886.14 27028.7i 0.263102 1.82991i
\(603\) 2208.71 4836.40i 0.149164 0.326623i
\(604\) 505.222 + 3513.90i 0.0340351 + 0.236719i
\(605\) −14965.4 4394.25i −1.00567 0.295292i
\(606\) −557.816 + 358.487i −0.0373923 + 0.0240306i
\(607\) 1353.16 + 2963.00i 0.0904826 + 0.198129i 0.949463 0.313880i \(-0.101629\pi\)
−0.858980 + 0.512009i \(0.828902\pi\)
\(608\) 1658.39 486.946i 0.110619 0.0324807i
\(609\) −5235.55 + 6042.14i −0.348366 + 0.402036i
\(610\) −2380.90 + 2747.71i −0.158033 + 0.182379i
\(611\) −18997.0 + 5578.02i −1.25783 + 0.369333i
\(612\) 1471.69 + 3222.55i 0.0972050 + 0.212849i
\(613\) 3966.61 2549.18i 0.261354 0.167962i −0.403402 0.915023i \(-0.632172\pi\)
0.664755 + 0.747061i \(0.268536\pi\)
\(614\) −15941.1 4680.72i −1.04777 0.307653i
\(615\) 79.9660 + 556.176i 0.00524316 + 0.0364669i
\(616\) −16366.5 + 35837.6i −1.07049 + 2.34405i
\(617\) −2434.46 + 16932.1i −0.158846 + 1.10480i 0.741919 + 0.670489i \(0.233916\pi\)
−0.900765 + 0.434307i \(0.856993\pi\)
\(618\) 694.963 + 446.625i 0.0452354 + 0.0290710i
\(619\) 2498.03 + 2882.89i 0.162204 + 0.187194i 0.831034 0.556222i \(-0.187750\pi\)
−0.668829 + 0.743416i \(0.733204\pi\)
\(620\) −1035.31 −0.0670632
\(621\) −352.858 5606.53i −0.0228015 0.362290i
\(622\) −7746.28 −0.499353
\(623\) −11568.4 13350.6i −0.743945 0.858558i
\(624\) −4855.34 3120.34i −0.311489 0.200182i
\(625\) −88.9468 + 618.638i −0.00569259 + 0.0395929i
\(626\) 1905.05 4171.48i 0.121631 0.266335i
\(627\) −146.027 1015.64i −0.00930107 0.0646904i
\(628\) 3658.44 + 1074.21i 0.232464 + 0.0682577i
\(629\) −4629.22 + 2975.02i −0.293448 + 0.188588i
\(630\) −5776.84 12649.5i −0.365325 0.799950i
\(631\) −1559.95 + 458.043i −0.0984164 + 0.0288977i −0.330570 0.943781i \(-0.607241\pi\)
0.232154 + 0.972679i \(0.425423\pi\)
\(632\) −12768.1 + 14735.2i −0.803619 + 0.927426i
\(633\) −2134.71 + 2463.59i −0.134040 + 0.154690i
\(634\) −4379.19 + 1285.85i −0.274322 + 0.0805481i
\(635\) 3772.11 + 8259.76i 0.235735 + 0.516187i
\(636\) −250.780 + 161.166i −0.0156353 + 0.0100482i
\(637\) 55315.8 + 16242.2i 3.44064 + 1.01026i
\(638\) 7760.98 + 53978.8i 0.481599 + 3.34959i
\(639\) 4529.05 9917.24i 0.280386 0.613959i
\(640\) 1240.59 8628.48i 0.0766227 0.532923i
\(641\) −584.336 375.530i −0.0360061 0.0231397i 0.522514 0.852631i \(-0.324994\pi\)
−0.558520 + 0.829491i \(0.688631\pi\)
\(642\) −3015.83 3480.46i −0.185398 0.213960i
\(643\) −6693.73 −0.410536 −0.205268 0.978706i \(-0.565807\pi\)
−0.205268 + 0.978706i \(0.565807\pi\)
\(644\) 1978.19 8733.59i 0.121043 0.534397i
\(645\) 1228.38 0.0749883
\(646\) 1873.30 + 2161.91i 0.114093 + 0.131670i
\(647\) 6670.53 + 4286.89i 0.405326 + 0.260487i 0.727381 0.686234i \(-0.240737\pi\)
−0.322055 + 0.946721i \(0.604374\pi\)
\(648\) −1670.40 + 11617.9i −0.101265 + 0.704311i
\(649\) 18848.8 41273.2i 1.14003 2.49632i
\(650\) −891.664 6201.66i −0.0538061 0.374230i
\(651\) 2552.51 + 749.484i 0.153672 + 0.0451223i
\(652\) −3824.39 + 2457.79i −0.229716 + 0.147629i
\(653\) −4259.41 9326.81i −0.255258 0.558938i 0.738008 0.674792i \(-0.235767\pi\)
−0.993266 + 0.115854i \(0.963039\pi\)
\(654\) 2530.95 743.155i 0.151327 0.0444337i
\(655\) 3049.86 3519.73i 0.181936 0.209965i
\(656\) 5954.69 6872.08i 0.354408 0.409009i
\(657\) 2867.37 841.936i 0.170269 0.0499955i
\(658\) −11320.5 24788.5i −0.670700 1.46863i
\(659\) 3477.02 2234.55i 0.205532 0.132087i −0.433826 0.900997i \(-0.642837\pi\)
0.639358 + 0.768909i \(0.279200\pi\)
\(660\) 756.112 + 222.015i 0.0445934 + 0.0130938i
\(661\) 1911.05 + 13291.6i 0.112453 + 0.782125i 0.965521 + 0.260326i \(0.0838299\pi\)
−0.853068 + 0.521799i \(0.825261\pi\)
\(662\) 7914.03 17329.3i 0.464634 1.01741i
\(663\) 583.688 4059.64i 0.0341909 0.237803i
\(664\) 4392.68 + 2823.00i 0.256730 + 0.164991i
\(665\) −1730.59 1997.20i −0.100916 0.116464i
\(666\) 8413.82 0.489533
\(667\) 9518.38 + 26201.5i 0.552554 + 1.52103i
\(668\) 9932.35 0.575291
\(669\) 3039.24 + 3507.47i 0.175641 + 0.202701i
\(670\) 2773.76 + 1782.59i 0.159940 + 0.102787i
\(671\) 2134.33 14844.6i 0.122794 0.854052i
\(672\) 1416.90 3102.59i 0.0813367 0.178103i
\(673\) −779.192 5419.40i −0.0446295 0.310405i −0.999893 0.0146480i \(-0.995337\pi\)
0.955263 0.295757i \(-0.0955719\pi\)
\(674\) 1776.67 + 521.677i 0.101535 + 0.0298134i
\(675\) 1071.09 688.350i 0.0610762 0.0392513i
\(676\) 3893.43 + 8525.42i 0.221520 + 0.485061i
\(677\) 10362.3 3042.64i 0.588264 0.172730i 0.0259638 0.999663i \(-0.491735\pi\)
0.562301 + 0.826933i \(0.309916\pi\)
\(678\) 1950.83 2251.37i 0.110503 0.127527i
\(679\) 6383.14 7366.54i 0.360770 0.416350i
\(680\) 4740.83 1392.03i 0.267356 0.0785029i
\(681\) −1597.08 3497.13i −0.0898684 0.196784i
\(682\) 15265.3 9810.42i 0.857095 0.550822i
\(683\) 13215.5 + 3880.42i 0.740376 + 0.217394i 0.630108 0.776508i \(-0.283011\pi\)
0.110269 + 0.993902i \(0.464829\pi\)
\(684\) −146.498 1018.92i −0.00818934 0.0569581i
\(685\) −1018.62 + 2230.47i −0.0568169 + 0.124412i
\(686\) −6086.98 + 42335.9i −0.338779 + 2.35626i
\(687\) −3726.45 2394.84i −0.206947 0.132997i
\(688\) −13017.8 15023.3i −0.721364 0.832499i
\(689\) −9776.68 −0.540583
\(690\) 1706.16 + 136.691i 0.0941341 + 0.00754167i
\(691\) 15843.5 0.872235 0.436118 0.899890i \(-0.356353\pi\)
0.436118 + 0.899890i \(0.356353\pi\)
\(692\) 1121.55 + 1294.33i 0.0616110 + 0.0711029i
\(693\) 48256.3 + 31012.4i 2.64517 + 1.69995i
\(694\) −5585.42 + 38847.5i −0.305504 + 2.12483i
\(695\) 2514.86 5506.78i 0.137258 0.300553i
\(696\) 618.130 + 4299.19i 0.0336640 + 0.234138i
\(697\) 6199.98 + 1820.48i 0.336931 + 0.0989319i
\(698\) 14244.2 9154.22i 0.772425 0.496407i
\(699\) −1529.84 3349.87i −0.0827807 0.181264i
\(700\) 1947.36 571.797i 0.105148 0.0308742i
\(701\) −3553.92 + 4101.44i −0.191483 + 0.220983i −0.843370 0.537333i \(-0.819432\pi\)
0.651887 + 0.758316i \(0.273977\pi\)
\(702\) −8358.36 + 9646.06i −0.449382 + 0.518614i
\(703\) 1534.16 450.471i 0.0823073 0.0241676i
\(704\) 7547.28 + 16526.2i 0.404047 + 0.884739i
\(705\) 1031.28 662.763i 0.0550925 0.0354058i
\(706\) −30835.2 9054.02i −1.64376 0.482652i
\(707\) −1002.52 6972.69i −0.0533291 0.370912i
\(708\) −667.505 + 1461.63i −0.0354328 + 0.0775869i
\(709\) −3460.38 + 24067.5i −0.183297 + 1.27486i 0.665604 + 0.746305i \(0.268174\pi\)
−0.848901 + 0.528552i \(0.822735\pi\)
\(710\) 5687.71 + 3655.27i 0.300642 + 0.193211i
\(711\) 18590.0 + 21454.0i 0.980562 + 1.13163i
\(712\) −9597.11 −0.505150
\(713\) 6614.85 6502.75i 0.347445 0.341557i
\(714\) 5645.12 0.295887
\(715\) 16924.6 + 19532.1i 0.885238 + 1.02162i
\(716\) −521.995 335.466i −0.0272456 0.0175097i
\(717\) 502.100 3492.18i 0.0261524 0.181894i
\(718\) 7160.86 15680.1i 0.372202 0.815009i
\(719\) 4181.86 + 29085.5i 0.216908 + 1.50863i 0.749355 + 0.662168i \(0.230364\pi\)
−0.532447 + 0.846463i \(0.678727\pi\)
\(720\) −9713.36 2852.10i −0.502771 0.147627i
\(721\) −7383.13 + 4744.85i −0.381362 + 0.245087i
\(722\) 8871.00 + 19424.8i 0.457264 + 1.00127i
\(723\) 1993.00 585.198i 0.102518 0.0301020i
\(724\) 1821.45 2102.06i 0.0934994 0.107904i
\(725\) −4137.52 + 4774.95i −0.211950 + 0.244603i
\(726\) −9288.97 + 2727.49i −0.474857 + 0.139431i
\(727\) −12656.4 27713.6i −0.645665 1.41381i −0.895298 0.445468i \(-0.853037\pi\)
0.249633 0.968340i \(-0.419690\pi\)
\(728\) 38494.3 24738.8i 1.95974 1.25945i
\(729\) 15131.1 + 4442.91i 0.768742 + 0.225723i
\(730\) 263.741 + 1834.36i 0.0133719 + 0.0930037i
\(731\) 5868.25 12849.7i 0.296915 0.650154i
\(732\) −75.5844 + 525.701i −0.00381650 + 0.0265444i
\(733\) −18646.8 11983.6i −0.939614 0.603853i −0.0213284 0.999773i \(-0.506790\pi\)
−0.918285 + 0.395920i \(0.870426\pi\)
\(734\) 5688.02 + 6564.33i 0.286034 + 0.330100i
\(735\) −3569.55 −0.179136
\(736\) −7045.54 9581.33i −0.352856 0.479854i
\(737\) −13600.7 −0.679767
\(738\) −6470.09 7466.88i −0.322720 0.372439i
\(739\) −31268.5 20095.1i −1.55647 1.00028i −0.983542 0.180678i \(-0.942171\pi\)
−0.572928 0.819605i \(-0.694193\pi\)
\(740\) −174.759 + 1215.48i −0.00868146 + 0.0603809i
\(741\) −495.065 + 1084.04i −0.0245434 + 0.0537426i
\(742\) −1915.07 13319.6i −0.0947497 0.658999i
\(743\) −28073.6 8243.14i −1.38616 0.407014i −0.498253 0.867031i \(-0.666025\pi\)
−0.887910 + 0.460017i \(0.847843\pi\)
\(744\) 1215.82 781.360i 0.0599115 0.0385028i
\(745\) −377.684 827.012i −0.0185735 0.0406703i
\(746\) 24101.5 7076.83i 1.18286 0.347320i
\(747\) 4978.58 5745.58i 0.243851 0.281419i
\(748\) 5934.54 6848.82i 0.290091 0.334783i
\(749\) 46943.9 13784.0i 2.29011 0.672437i
\(750\) 161.154 + 352.877i 0.00784600 + 0.0171803i
\(751\) −3846.55 + 2472.02i −0.186901 + 0.120114i −0.630745 0.775990i \(-0.717251\pi\)
0.443844 + 0.896104i \(0.353614\pi\)
\(752\) −19034.7 5589.10i −0.923038 0.271029i
\(753\) −356.164 2477.18i −0.0172369 0.119885i
\(754\) 26311.4 57614.0i 1.27083 2.78273i
\(755\) 1025.92 7135.45i 0.0494532 0.343954i
\(756\) −3478.19 2235.29i −0.167329 0.107536i
\(757\) −1021.50 1178.87i −0.0490450 0.0566009i 0.730697 0.682702i \(-0.239195\pi\)
−0.779742 + 0.626101i \(0.784650\pi\)
\(758\) −15568.9 −0.746024
\(759\) −6225.44 + 3330.60i −0.297720 + 0.159280i
\(760\) −1435.69 −0.0685237
\(761\) −18373.1 21203.7i −0.875195 1.01003i −0.999841 0.0178280i \(-0.994325\pi\)
0.124646 0.992201i \(-0.460221\pi\)
\(762\) 4741.40 + 3047.11i 0.225411 + 0.144863i
\(763\) −3988.15 + 27738.2i −0.189228 + 1.31611i
\(764\) 133.407 292.120i 0.00631740 0.0138332i