Properties

Label 115.4.g.a.36.2
Level $115$
Weight $4$
Character 115.36
Analytic conductor $6.785$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(6,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 18]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.g (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78521965066\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 36.2
Character \(\chi\) \(=\) 115.36
Dual form 115.4.g.a.16.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.78120 - 3.20967i) q^{2} +(0.620793 + 0.398960i) q^{3} +(-1.42842 + 9.93487i) q^{4} +(2.07708 - 4.54816i) q^{5} +(-0.446019 - 3.10213i) q^{6} +(-1.32223 - 0.388243i) q^{7} +(7.27793 - 4.67724i) q^{8} +(-10.9900 - 24.0647i) q^{9} +O(q^{10})\) \(q+(-2.78120 - 3.20967i) q^{2} +(0.620793 + 0.398960i) q^{3} +(-1.42842 + 9.93487i) q^{4} +(2.07708 - 4.54816i) q^{5} +(-0.446019 - 3.10213i) q^{6} +(-1.32223 - 0.388243i) q^{7} +(7.27793 - 4.67724i) q^{8} +(-10.9900 - 24.0647i) q^{9} +(-20.3748 + 5.98259i) q^{10} +(-14.8819 + 17.1746i) q^{11} +(-4.85037 + 5.59762i) q^{12} +(-74.9993 + 22.0218i) q^{13} +(2.43126 + 5.32372i) q^{14} +(3.10397 - 1.99480i) q^{15} +(41.7900 + 12.2706i) q^{16} +(11.2099 + 77.9669i) q^{17} +(-46.6745 + 102.203i) q^{18} +(15.1094 - 105.088i) q^{19} +(42.2184 + 27.1322i) q^{20} +(-0.665941 - 0.768537i) q^{21} +96.5144 q^{22} +(-34.9765 + 104.612i) q^{23} +6.38412 q^{24} +(-16.3715 - 18.8937i) q^{25} +(279.271 + 179.476i) q^{26} +(5.61387 - 39.0453i) q^{27} +(5.74585 - 12.5817i) q^{28} +(37.5529 + 261.186i) q^{29} +(-15.0354 - 4.41479i) q^{30} +(-169.450 + 108.899i) q^{31} +(-105.592 - 231.215i) q^{32} +(-16.0906 + 4.72462i) q^{33} +(219.071 - 252.821i) q^{34} +(-4.51217 + 5.20732i) q^{35} +(254.778 - 74.8096i) q^{36} +(55.8043 + 122.194i) q^{37} +(-379.321 + 243.775i) q^{38} +(-55.3449 - 16.2507i) q^{39} +(-6.15603 - 42.8161i) q^{40} +(154.173 - 337.593i) q^{41} +(-0.614638 + 4.27490i) q^{42} +(-376.985 - 242.274i) q^{43} +(-149.370 - 172.382i) q^{44} -132.277 q^{45} +(433.046 - 178.683i) q^{46} -376.918 q^{47} +(21.0474 + 24.2901i) q^{48} +(-286.952 - 184.413i) q^{49} +(-15.1103 + 105.094i) q^{50} +(-24.1466 + 52.8737i) q^{51} +(-111.653 - 776.565i) q^{52} +(-236.779 - 69.5246i) q^{53} +(-140.936 + 90.5740i) q^{54} +(47.2021 + 103.358i) q^{55} +(-11.4390 + 3.35880i) q^{56} +(51.3058 - 59.2101i) q^{57} +(733.879 - 846.942i) q^{58} +(-93.6935 + 27.5109i) q^{59} +(15.3843 + 33.6869i) q^{60} +(650.166 - 417.836i) q^{61} +(820.804 + 241.010i) q^{62} +(5.18838 + 36.0860i) q^{63} +(-303.706 + 665.024i) q^{64} +(-55.6206 + 386.850i) q^{65} +(59.9155 + 38.5054i) q^{66} +(-147.259 - 169.945i) q^{67} -790.604 q^{68} +(-63.4491 + 50.9881i) q^{69} +29.2630 q^{70} +(178.320 + 205.792i) q^{71} +(-192.541 - 123.738i) q^{72} +(56.5199 - 393.104i) q^{73} +(237.001 - 518.960i) q^{74} +(-2.62549 - 18.2607i) q^{75} +(1022.46 + 300.220i) q^{76} +(26.3453 - 16.9311i) q^{77} +(101.766 + 222.835i) q^{78} +(-17.1560 + 5.03745i) q^{79} +(142.610 - 164.580i) q^{80} +(-448.703 + 517.830i) q^{81} +(-1512.35 + 444.066i) q^{82} +(362.501 + 793.767i) q^{83} +(8.58656 - 5.51825i) q^{84} +(377.890 + 110.958i) q^{85} +(270.851 + 1883.81i) q^{86} +(-80.8901 + 177.125i) q^{87} +(-27.9795 + 194.602i) q^{88} +(-535.468 - 344.125i) q^{89} +(367.889 + 424.566i) q^{90} +107.717 q^{91} +(-989.344 - 496.917i) q^{92} -148.640 q^{93} +(1048.28 + 1209.78i) q^{94} +(-446.575 - 286.996i) q^{95} +(26.6944 - 185.664i) q^{96} +(241.129 - 528.000i) q^{97} +(206.165 + 1433.91i) q^{98} +(576.855 + 169.380i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9} - 10 q^{10} + 2 q^{11} - 57 q^{12} + 34 q^{13} - 154 q^{14} + 30 q^{15} + 16 q^{16} + 252 q^{17} - 33 q^{18} - 160 q^{19} - 200 q^{20} - 684 q^{21} - 704 q^{22} + 127 q^{23} - 3090 q^{24} - 275 q^{25} - 567 q^{26} + 384 q^{27} - 188 q^{28} + 340 q^{29} - 15 q^{30} + 582 q^{31} - 1364 q^{32} + 1760 q^{33} + 1819 q^{34} + 665 q^{35} + 2794 q^{36} + 312 q^{37} + 3123 q^{38} - 1560 q^{39} - 1205 q^{40} + 1324 q^{41} + 1454 q^{42} - 1740 q^{43} - 369 q^{44} + 3730 q^{45} - 4322 q^{46} - 2858 q^{47} - 2686 q^{48} + 2015 q^{49} - 325 q^{50} - 1426 q^{51} + 1717 q^{52} + 882 q^{53} + 2541 q^{54} + 450 q^{55} + 7755 q^{56} + 3688 q^{57} + 6622 q^{58} + 2605 q^{59} + 1530 q^{60} - 104 q^{61} - 9360 q^{62} - 7618 q^{63} + 3483 q^{64} + 170 q^{65} - 1766 q^{66} - 166 q^{67} - 5018 q^{68} - 1194 q^{69} - 770 q^{70} - 1222 q^{71} + 3303 q^{72} - 922 q^{73} + 1245 q^{74} + 150 q^{75} + 1360 q^{76} - 3093 q^{77} - 1600 q^{78} + 2448 q^{79} + 2115 q^{80} - 1371 q^{81} + 6609 q^{82} + 6704 q^{83} + 3894 q^{84} - 720 q^{85} - 5074 q^{86} - 6324 q^{87} + 1918 q^{88} - 5380 q^{89} - 165 q^{90} + 7828 q^{91} - 16225 q^{92} - 24948 q^{93} - 16490 q^{94} + 685 q^{95} + 675 q^{96} - 4400 q^{97} + 8790 q^{98} - 3626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.78120 3.20967i −0.983301 1.13479i −0.990870 0.134819i \(-0.956955\pi\)
0.00756923 0.999971i \(-0.497591\pi\)
\(3\) 0.620793 + 0.398960i 0.119472 + 0.0767798i 0.599012 0.800740i \(-0.295560\pi\)
−0.479540 + 0.877520i \(0.659197\pi\)
\(4\) −1.42842 + 9.93487i −0.178552 + 1.24186i
\(5\) 2.07708 4.54816i 0.185779 0.406800i
\(6\) −0.446019 3.10213i −0.0303477 0.211073i
\(7\) −1.32223 0.388243i −0.0713940 0.0209632i 0.245841 0.969310i \(-0.420936\pi\)
−0.317234 + 0.948347i \(0.602754\pi\)
\(8\) 7.27793 4.67724i 0.321642 0.206707i
\(9\) −10.9900 24.0647i −0.407037 0.891286i
\(10\) −20.3748 + 5.98259i −0.644309 + 0.189186i
\(11\) −14.8819 + 17.1746i −0.407915 + 0.470759i −0.922118 0.386910i \(-0.873542\pi\)
0.514203 + 0.857669i \(0.328088\pi\)
\(12\) −4.85037 + 5.59762i −0.116682 + 0.134658i
\(13\) −74.9993 + 22.0218i −1.60008 + 0.469827i −0.955569 0.294766i \(-0.904758\pi\)
−0.644513 + 0.764593i \(0.722940\pi\)
\(14\) 2.43126 + 5.32372i 0.0464130 + 0.101630i
\(15\) 3.10397 1.99480i 0.0534294 0.0343370i
\(16\) 41.7900 + 12.2706i 0.652968 + 0.191729i
\(17\) 11.2099 + 77.9669i 0.159930 + 1.11234i 0.898758 + 0.438445i \(0.144470\pi\)
−0.738828 + 0.673894i \(0.764620\pi\)
\(18\) −46.6745 + 102.203i −0.611183 + 1.33830i
\(19\) 15.1094 105.088i 0.182439 1.26889i −0.668534 0.743681i \(-0.733078\pi\)
0.850973 0.525209i \(-0.176013\pi\)
\(20\) 42.2184 + 27.1322i 0.472017 + 0.303347i
\(21\) −0.665941 0.768537i −0.00692001 0.00798612i
\(22\) 96.5144 0.935315
\(23\) −34.9765 + 104.612i −0.317092 + 0.948395i
\(24\) 6.38412 0.0542980
\(25\) −16.3715 18.8937i −0.130972 0.151150i
\(26\) 279.271 + 179.476i 2.10652 + 1.35378i
\(27\) 5.61387 39.0453i 0.0400144 0.278307i
\(28\) 5.74585 12.5817i 0.0387808 0.0849182i
\(29\) 37.5529 + 261.186i 0.240462 + 1.67245i 0.649830 + 0.760080i \(0.274840\pi\)
−0.409368 + 0.912369i \(0.634251\pi\)
\(30\) −15.0354 4.41479i −0.0915024 0.0268675i
\(31\) −169.450 + 108.899i −0.981747 + 0.630930i −0.929934 0.367726i \(-0.880136\pi\)
−0.0518130 + 0.998657i \(0.516500\pi\)
\(32\) −105.592 231.215i −0.583321 1.27729i
\(33\) −16.0906 + 4.72462i −0.0848791 + 0.0249227i
\(34\) 219.071 252.821i 1.10501 1.27525i
\(35\) −4.51217 + 5.20732i −0.0217913 + 0.0251485i
\(36\) 254.778 74.8096i 1.17953 0.346341i
\(37\) 55.8043 + 122.194i 0.247951 + 0.542936i 0.992155 0.125016i \(-0.0398983\pi\)
−0.744204 + 0.667952i \(0.767171\pi\)
\(38\) −379.321 + 243.775i −1.61932 + 1.04067i
\(39\) −55.3449 16.2507i −0.227238 0.0667231i
\(40\) −6.15603 42.8161i −0.0243339 0.169246i
\(41\) 154.173 337.593i 0.587265 1.28593i −0.349816 0.936818i \(-0.613756\pi\)
0.937081 0.349112i \(-0.113517\pi\)
\(42\) −0.614638 + 4.27490i −0.00225811 + 0.0157055i
\(43\) −376.985 242.274i −1.33697 0.859219i −0.340265 0.940329i \(-0.610517\pi\)
−0.996705 + 0.0811107i \(0.974153\pi\)
\(44\) −149.370 172.382i −0.511782 0.590628i
\(45\) −132.277 −0.438194
\(46\) 433.046 178.683i 1.38803 0.572725i
\(47\) −376.918 −1.16977 −0.584884 0.811117i \(-0.698860\pi\)
−0.584884 + 0.811117i \(0.698860\pi\)
\(48\) 21.0474 + 24.2901i 0.0632904 + 0.0730410i
\(49\) −286.952 184.413i −0.836596 0.537648i
\(50\) −15.1103 + 105.094i −0.0427383 + 0.297252i
\(51\) −24.1466 + 52.8737i −0.0662980 + 0.145172i
\(52\) −111.653 776.565i −0.297760 2.07097i
\(53\) −236.779 69.5246i −0.613662 0.180187i −0.0398923 0.999204i \(-0.512701\pi\)
−0.573770 + 0.819016i \(0.694520\pi\)
\(54\) −140.936 + 90.5740i −0.355166 + 0.228251i
\(55\) 47.2021 + 103.358i 0.115722 + 0.253397i
\(56\) −11.4390 + 3.35880i −0.0272965 + 0.00801498i
\(57\) 51.3058 59.2101i 0.119221 0.137589i
\(58\) 733.879 846.942i 1.66143 1.91740i
\(59\) −93.6935 + 27.5109i −0.206743 + 0.0607053i −0.383464 0.923556i \(-0.625269\pi\)
0.176721 + 0.984261i \(0.443451\pi\)
\(60\) 15.3843 + 33.6869i 0.0331017 + 0.0724827i
\(61\) 650.166 417.836i 1.36468 0.877024i 0.366110 0.930572i \(-0.380689\pi\)
0.998565 + 0.0535479i \(0.0170530\pi\)
\(62\) 820.804 + 241.010i 1.68133 + 0.493682i
\(63\) 5.18838 + 36.0860i 0.0103758 + 0.0721652i
\(64\) −303.706 + 665.024i −0.593177 + 1.29888i
\(65\) −55.6206 + 386.850i −0.106137 + 0.738197i
\(66\) 59.9155 + 38.5054i 0.111744 + 0.0718133i
\(67\) −147.259 169.945i −0.268515 0.309883i 0.605439 0.795892i \(-0.292998\pi\)
−0.873954 + 0.486009i \(0.838452\pi\)
\(68\) −790.604 −1.40992
\(69\) −63.4491 + 50.9881i −0.110701 + 0.0889602i
\(70\) 29.2630 0.0499657
\(71\) 178.320 + 205.792i 0.298066 + 0.343986i 0.884951 0.465684i \(-0.154192\pi\)
−0.586885 + 0.809670i \(0.699646\pi\)
\(72\) −192.541 123.738i −0.315155 0.202538i
\(73\) 56.5199 393.104i 0.0906185 0.630265i −0.893007 0.450042i \(-0.851409\pi\)
0.983626 0.180223i \(-0.0576820\pi\)
\(74\) 237.001 518.960i 0.372308 0.815241i
\(75\) −2.62549 18.2607i −0.00404221 0.0281142i
\(76\) 1022.46 + 300.220i 1.54321 + 0.453127i
\(77\) 26.3453 16.9311i 0.0389912 0.0250581i
\(78\) 101.766 + 222.835i 0.147727 + 0.323476i
\(79\) −17.1560 + 5.03745i −0.0244329 + 0.00717414i −0.293926 0.955828i \(-0.594962\pi\)
0.269493 + 0.963002i \(0.413144\pi\)
\(80\) 142.610 164.580i 0.199303 0.230008i
\(81\) −448.703 + 517.830i −0.615504 + 0.710330i
\(82\) −1512.35 + 444.066i −2.03672 + 0.598035i
\(83\) 362.501 + 793.767i 0.479394 + 1.04973i 0.982630 + 0.185577i \(0.0594155\pi\)
−0.503236 + 0.864149i \(0.667857\pi\)
\(84\) 8.58656 5.51825i 0.0111532 0.00716774i
\(85\) 377.890 + 110.958i 0.482211 + 0.141590i
\(86\) 270.851 + 1883.81i 0.339612 + 2.36205i
\(87\) −80.8901 + 177.125i −0.0996820 + 0.218273i
\(88\) −27.9795 + 194.602i −0.0338935 + 0.235734i
\(89\) −535.468 344.125i −0.637748 0.409855i 0.181423 0.983405i \(-0.441930\pi\)
−0.819171 + 0.573550i \(0.805566\pi\)
\(90\) 367.889 + 424.566i 0.430877 + 0.497258i
\(91\) 107.717 0.124085
\(92\) −989.344 496.917i −1.12116 0.563121i
\(93\) −148.640 −0.165734
\(94\) 1048.28 + 1209.78i 1.15023 + 1.32744i
\(95\) −446.575 286.996i −0.482291 0.309950i
\(96\) 26.6944 185.664i 0.0283801 0.197388i
\(97\) 241.129 528.000i 0.252402 0.552683i −0.740440 0.672123i \(-0.765383\pi\)
0.992841 + 0.119440i \(0.0381099\pi\)
\(98\) 206.165 + 1433.91i 0.212509 + 1.47803i
\(99\) 576.855 + 169.380i 0.585617 + 0.171953i
\(100\) 211.092 135.661i 0.211092 0.135661i
\(101\) −492.191 1077.75i −0.484900 1.06178i −0.981087 0.193567i \(-0.937994\pi\)
0.496188 0.868215i \(-0.334733\pi\)
\(102\) 236.863 69.5494i 0.229931 0.0675139i
\(103\) 896.395 1034.50i 0.857519 0.989630i −0.142481 0.989798i \(-0.545508\pi\)
1.00000 0.000167937i \(5.34561e-5\pi\)
\(104\) −442.838 + 511.063i −0.417537 + 0.481864i
\(105\) −4.87864 + 1.43250i −0.00453435 + 0.00133140i
\(106\) 435.378 + 953.344i 0.398940 + 0.873556i
\(107\) −285.804 + 183.675i −0.258221 + 0.165949i −0.663346 0.748312i \(-0.730864\pi\)
0.405125 + 0.914261i \(0.367228\pi\)
\(108\) 379.891 + 111.546i 0.338473 + 0.0993846i
\(109\) −200.052 1391.40i −0.175794 1.22267i −0.866366 0.499410i \(-0.833550\pi\)
0.690571 0.723264i \(-0.257359\pi\)
\(110\) 200.468 438.963i 0.173762 0.380486i
\(111\) −14.1077 + 98.1211i −0.0120634 + 0.0839031i
\(112\) −50.4922 32.4493i −0.0425988 0.0273766i
\(113\) −540.066 623.269i −0.449603 0.518869i 0.485023 0.874501i \(-0.338811\pi\)
−0.934626 + 0.355632i \(0.884266\pi\)
\(114\) −332.736 −0.273365
\(115\) 403.143 + 376.365i 0.326898 + 0.305185i
\(116\) −2648.49 −2.11988
\(117\) 1354.19 + 1562.82i 1.07004 + 1.23489i
\(118\) 348.881 + 224.212i 0.272179 + 0.174919i
\(119\) 15.4479 107.443i 0.0119001 0.0827669i
\(120\) 13.2603 29.0360i 0.0100874 0.0220884i
\(121\) 115.924 + 806.270i 0.0870955 + 0.605763i
\(122\) −3149.35 924.734i −2.33712 0.686242i
\(123\) 230.396 148.066i 0.168895 0.108542i
\(124\) −839.852 1839.02i −0.608233 1.33185i
\(125\) −119.937 + 35.2166i −0.0858197 + 0.0251989i
\(126\) 101.394 117.015i 0.0716898 0.0827345i
\(127\) −194.963 + 224.999i −0.136222 + 0.157208i −0.819762 0.572705i \(-0.805894\pi\)
0.683540 + 0.729913i \(0.260440\pi\)
\(128\) 1028.06 301.867i 0.709913 0.208449i
\(129\) −137.373 300.804i −0.0937595 0.205305i
\(130\) 1396.35 897.381i 0.942063 0.605427i
\(131\) 1112.24 + 326.584i 0.741811 + 0.217815i 0.630737 0.775997i \(-0.282753\pi\)
0.111074 + 0.993812i \(0.464571\pi\)
\(132\) −23.9544 166.606i −0.0157952 0.109858i
\(133\) −60.7780 + 133.085i −0.0396250 + 0.0867666i
\(134\) −135.914 + 945.303i −0.0876208 + 0.609416i
\(135\) −165.924 106.633i −0.105781 0.0679814i
\(136\) 446.255 + 515.006i 0.281368 + 0.324716i
\(137\) −1191.25 −0.742885 −0.371443 0.928456i \(-0.621137\pi\)
−0.371443 + 0.928456i \(0.621137\pi\)
\(138\) 340.120 + 61.8427i 0.209804 + 0.0381478i
\(139\) −2773.78 −1.69258 −0.846290 0.532722i \(-0.821169\pi\)
−0.846290 + 0.532722i \(0.821169\pi\)
\(140\) −45.2888 52.2661i −0.0273400 0.0315521i
\(141\) −233.988 150.375i −0.139754 0.0898146i
\(142\) 164.582 1144.70i 0.0972637 0.676484i
\(143\) 737.917 1615.81i 0.431522 0.944902i
\(144\) −163.982 1140.52i −0.0948969 0.660022i
\(145\) 1265.92 + 371.707i 0.725025 + 0.212887i
\(146\) −1418.93 + 911.890i −0.804324 + 0.516908i
\(147\) −104.565 228.965i −0.0586691 0.128467i
\(148\) −1293.70 + 379.864i −0.718522 + 0.210977i
\(149\) 952.687 1099.46i 0.523807 0.604505i −0.430773 0.902460i \(-0.641759\pi\)
0.954580 + 0.297955i \(0.0963046\pi\)
\(150\) −51.3088 + 59.2135i −0.0279290 + 0.0322317i
\(151\) −868.606 + 255.046i −0.468120 + 0.137452i −0.507281 0.861780i \(-0.669350\pi\)
0.0391614 + 0.999233i \(0.487531\pi\)
\(152\) −381.558 835.495i −0.203608 0.445840i
\(153\) 1753.05 1126.62i 0.926314 0.595306i
\(154\) −127.615 37.4710i −0.0667759 0.0196072i
\(155\) 143.329 + 996.878i 0.0742742 + 0.516588i
\(156\) 240.505 526.632i 0.123434 0.270284i
\(157\) −512.442 + 3564.11i −0.260493 + 1.81177i 0.268655 + 0.963237i \(0.413421\pi\)
−0.529148 + 0.848530i \(0.677488\pi\)
\(158\) 63.8827 + 41.0549i 0.0321660 + 0.0206719i
\(159\) −119.253 137.626i −0.0594805 0.0686442i
\(160\) −1270.93 −0.627972
\(161\) 86.8620 124.742i 0.0425198 0.0610624i
\(162\) 2909.99 1.41130
\(163\) 1659.34 + 1914.99i 0.797361 + 0.920204i 0.998233 0.0594137i \(-0.0189231\pi\)
−0.200872 + 0.979617i \(0.564378\pi\)
\(164\) 3133.72 + 2013.92i 1.49209 + 0.958906i
\(165\) −11.9330 + 82.9959i −0.00563020 + 0.0391589i
\(166\) 1539.54 3371.13i 0.719830 1.57621i
\(167\) 61.2265 + 425.839i 0.0283703 + 0.197320i 0.999077 0.0429461i \(-0.0136744\pi\)
−0.970707 + 0.240266i \(0.922765\pi\)
\(168\) −8.44130 2.47859i −0.00387655 0.00113826i
\(169\) 3291.71 2115.45i 1.49827 0.962882i
\(170\) −694.845 1521.50i −0.313484 0.686433i
\(171\) −2694.97 + 791.316i −1.20520 + 0.353880i
\(172\) 2945.45 3399.23i 1.30575 1.50691i
\(173\) −87.6326 + 101.133i −0.0385120 + 0.0444452i −0.774679 0.632355i \(-0.782088\pi\)
0.736167 + 0.676800i \(0.236634\pi\)
\(174\) 793.483 232.988i 0.345711 0.101510i
\(175\) 14.3116 + 31.3381i 0.00618204 + 0.0135368i
\(176\) −832.658 + 535.117i −0.356613 + 0.229182i
\(177\) −69.1401 20.3014i −0.0293609 0.00862115i
\(178\) 384.715 + 2675.75i 0.161998 + 1.12672i
\(179\) −1049.51 + 2298.11i −0.438235 + 0.959601i 0.553684 + 0.832727i \(0.313222\pi\)
−0.991919 + 0.126874i \(0.959506\pi\)
\(180\) 188.947 1314.16i 0.0782406 0.544175i
\(181\) 509.405 + 327.375i 0.209192 + 0.134440i 0.641042 0.767506i \(-0.278503\pi\)
−0.431850 + 0.901946i \(0.642139\pi\)
\(182\) −299.581 345.735i −0.122013 0.140811i
\(183\) 570.318 0.230378
\(184\) 234.738 + 924.951i 0.0940497 + 0.370589i
\(185\) 671.669 0.266930
\(186\) 413.397 + 477.085i 0.162966 + 0.188073i
\(187\) −1505.88 967.769i −0.588881 0.378451i
\(188\) 538.397 3744.63i 0.208865 1.45269i
\(189\) −22.5819 + 49.4475i −0.00869097 + 0.0190306i
\(190\) 320.849 + 2231.55i 0.122510 + 0.852073i
\(191\) 2386.69 + 700.795i 0.904161 + 0.265486i 0.700581 0.713573i \(-0.252924\pi\)
0.203580 + 0.979058i \(0.434742\pi\)
\(192\) −453.857 + 291.676i −0.170595 + 0.109635i
\(193\) −1310.79 2870.22i −0.488872 1.07048i −0.979928 0.199353i \(-0.936116\pi\)
0.491055 0.871128i \(-0.336611\pi\)
\(194\) −2365.33 + 694.524i −0.875366 + 0.257031i
\(195\) −188.866 + 217.964i −0.0693590 + 0.0800446i
\(196\) 2242.01 2587.42i 0.817059 0.942936i
\(197\) 816.111 239.632i 0.295155 0.0866653i −0.130803 0.991408i \(-0.541755\pi\)
0.425958 + 0.904743i \(0.359937\pi\)
\(198\) −1060.69 2322.59i −0.380708 0.833633i
\(199\) −3654.09 + 2348.34i −1.30167 + 0.836531i −0.993393 0.114766i \(-0.963388\pi\)
−0.308275 + 0.951297i \(0.599752\pi\)
\(200\) −207.521 60.9337i −0.0733698 0.0215433i
\(201\) −23.6158 164.251i −0.00828720 0.0576387i
\(202\) −2090.34 + 4577.20i −0.728097 + 1.59431i
\(203\) 51.7500 359.929i 0.0178923 0.124444i
\(204\) −490.802 315.419i −0.168446 0.108254i
\(205\) −1215.20 1402.41i −0.414015 0.477798i
\(206\) −5813.44 −1.96622
\(207\) 2901.85 307.984i 0.974359 0.103412i
\(208\) −3404.44 −1.13488
\(209\) 1580.00 + 1823.41i 0.522922 + 0.603484i
\(210\) 18.1663 + 11.6748i 0.00596949 + 0.00383636i
\(211\) 416.355 2895.81i 0.135844 0.944815i −0.801893 0.597468i \(-0.796173\pi\)
0.937737 0.347347i \(-0.112917\pi\)
\(212\) 1028.94 2253.06i 0.333338 0.729909i
\(213\) 28.5970 + 198.897i 0.00919923 + 0.0639821i
\(214\) 1384.41 + 406.500i 0.442226 + 0.129849i
\(215\) −1884.93 + 1211.37i −0.597911 + 0.384254i
\(216\) −141.767 310.426i −0.0446575 0.0977863i
\(217\) 266.332 78.2022i 0.0833171 0.0244641i
\(218\) −3909.54 + 4511.85i −1.21462 + 1.40175i
\(219\) 191.920 221.487i 0.0592180 0.0683412i
\(220\) −1094.28 + 321.308i −0.335346 + 0.0984664i
\(221\) −2557.71 5600.60i −0.778508 1.70469i
\(222\) 354.173 227.613i 0.107074 0.0688125i
\(223\) 16.5331 + 4.85456i 0.00496475 + 0.00145778i 0.284214 0.958761i \(-0.408267\pi\)
−0.279249 + 0.960219i \(0.590086\pi\)
\(224\) 49.8502 + 346.716i 0.0148695 + 0.103419i
\(225\) −274.750 + 601.618i −0.0814073 + 0.178257i
\(226\) −498.460 + 3466.87i −0.146713 + 1.02041i
\(227\) 3307.75 + 2125.76i 0.967151 + 0.621550i 0.925968 0.377601i \(-0.123251\pi\)
0.0411831 + 0.999152i \(0.486887\pi\)
\(228\) 514.958 + 594.294i 0.149579 + 0.172623i
\(229\) −4523.02 −1.30520 −0.652598 0.757704i \(-0.726321\pi\)
−0.652598 + 0.757704i \(0.726321\pi\)
\(230\) 86.7905 2340.70i 0.0248817 0.671049i
\(231\) 23.1098 0.00658231
\(232\) 1494.94 + 1725.25i 0.423049 + 0.488225i
\(233\) 2106.89 + 1354.02i 0.592391 + 0.380706i 0.802217 0.597032i \(-0.203654\pi\)
−0.209827 + 0.977739i \(0.567290\pi\)
\(234\) 1249.87 8693.01i 0.349172 2.42855i
\(235\) −782.887 + 1714.28i −0.217319 + 0.475862i
\(236\) −139.484 970.130i −0.0384729 0.267585i
\(237\) −12.6601 3.71733i −0.00346987 0.00101885i
\(238\) −387.819 + 249.236i −0.105624 + 0.0678807i
\(239\) 1076.14 + 2356.41i 0.291254 + 0.637756i 0.997535 0.0701752i \(-0.0223558\pi\)
−0.706281 + 0.707931i \(0.749629\pi\)
\(240\) 154.192 45.2749i 0.0414711 0.0121770i
\(241\) 380.033 438.582i 0.101577 0.117226i −0.702685 0.711501i \(-0.748016\pi\)
0.804262 + 0.594275i \(0.202561\pi\)
\(242\) 2265.45 2614.47i 0.601772 0.694482i
\(243\) −1507.07 + 442.515i −0.397853 + 0.116820i
\(244\) 3222.44 + 7056.16i 0.845474 + 1.85133i
\(245\) −1434.76 + 922.066i −0.374137 + 0.240443i
\(246\) −1116.02 327.693i −0.289247 0.0849307i
\(247\) 1181.04 + 8214.29i 0.304241 + 2.11604i
\(248\) −723.899 + 1585.12i −0.185353 + 0.405867i
\(249\) −91.6427 + 637.389i −0.0233238 + 0.162220i
\(250\) 446.601 + 287.013i 0.112982 + 0.0726092i
\(251\) 3631.67 + 4191.17i 0.913264 + 1.05396i 0.998340 + 0.0575882i \(0.0183410\pi\)
−0.0850766 + 0.996374i \(0.527114\pi\)
\(252\) −365.921 −0.0914716
\(253\) −1276.15 2157.53i −0.317119 0.536138i
\(254\) 1264.40 0.312346
\(255\) 190.324 + 219.645i 0.0467393 + 0.0539400i
\(256\) 1092.13 + 701.867i 0.266632 + 0.171354i
\(257\) 249.852 1737.76i 0.0606433 0.421784i −0.936772 0.349939i \(-0.886202\pi\)
0.997416 0.0718447i \(-0.0228886\pi\)
\(258\) −583.422 + 1277.52i −0.140784 + 0.308274i
\(259\) −26.3453 183.235i −0.00632052 0.0439602i
\(260\) −3763.85 1105.17i −0.897786 0.263614i
\(261\) 5872.66 3774.13i 1.39275 0.895069i
\(262\) −2045.14 4478.23i −0.482249 1.05598i
\(263\) −3720.48 + 1092.43i −0.872300 + 0.256130i −0.687093 0.726569i \(-0.741114\pi\)
−0.185207 + 0.982700i \(0.559295\pi\)
\(264\) −95.0078 + 109.645i −0.0221490 + 0.0255613i
\(265\) −808.017 + 932.501i −0.187306 + 0.216163i
\(266\) 596.196 175.059i 0.137425 0.0403517i
\(267\) −195.123 427.261i −0.0447242 0.0979323i
\(268\) 1898.73 1220.24i 0.432774 0.278127i
\(269\) 1084.10 + 318.321i 0.245721 + 0.0721502i 0.402274 0.915519i \(-0.368220\pi\)
−0.156553 + 0.987670i \(0.550038\pi\)
\(270\) 119.211 + 829.128i 0.0268701 + 0.186886i
\(271\) 2166.22 4743.36i 0.485566 1.06324i −0.495329 0.868706i \(-0.664952\pi\)
0.980895 0.194537i \(-0.0623203\pi\)
\(272\) −488.241 + 3395.79i −0.108838 + 0.756985i
\(273\) 66.8697 + 42.9746i 0.0148247 + 0.00952725i
\(274\) 3313.10 + 3823.52i 0.730480 + 0.843019i
\(275\) 568.132 0.124581
\(276\) −415.929 703.191i −0.0907100 0.153359i
\(277\) 7079.26 1.53557 0.767783 0.640710i \(-0.221360\pi\)
0.767783 + 0.640710i \(0.221360\pi\)
\(278\) 7714.42 + 8902.91i 1.66432 + 1.92072i
\(279\) 4482.88 + 2880.97i 0.961947 + 0.618205i
\(280\) −8.48336 + 59.0030i −0.00181063 + 0.0125932i
\(281\) −1434.12 + 3140.29i −0.304458 + 0.666669i −0.998585 0.0531833i \(-0.983063\pi\)
0.694127 + 0.719852i \(0.255791\pi\)
\(282\) 168.112 + 1169.25i 0.0354998 + 0.246907i
\(283\) −6386.15 1875.14i −1.34140 0.393871i −0.469233 0.883074i \(-0.655469\pi\)
−0.872170 + 0.489203i \(0.837288\pi\)
\(284\) −2299.23 + 1477.63i −0.480403 + 0.308736i
\(285\) −162.731 356.331i −0.0338223 0.0740604i
\(286\) −7238.52 + 2125.42i −1.49658 + 0.439436i
\(287\) −334.922 + 386.520i −0.0688843 + 0.0794967i
\(288\) −4403.67 + 5082.10i −0.901002 + 1.03981i
\(289\) −1239.19 + 363.858i −0.252226 + 0.0740603i
\(290\) −2327.70 5096.96i −0.471336 1.03208i
\(291\) 360.342 231.578i 0.0725898 0.0466506i
\(292\) 3824.71 + 1123.04i 0.766521 + 0.225071i
\(293\) −256.395 1783.26i −0.0511220 0.355561i −0.999286 0.0377800i \(-0.987971\pi\)
0.948164 0.317781i \(-0.102938\pi\)
\(294\) −444.087 + 972.415i −0.0880941 + 0.192899i
\(295\) −69.4845 + 483.275i −0.0137137 + 0.0953810i
\(296\) 977.672 + 628.312i 0.191980 + 0.123378i
\(297\) 587.044 + 677.485i 0.114693 + 0.132362i
\(298\) −6178.51 −1.20105
\(299\) 319.474 8616.07i 0.0617914 1.66649i
\(300\) 185.168 0.0356356
\(301\) 404.402 + 466.705i 0.0774397 + 0.0893702i
\(302\) 3234.37 + 2078.61i 0.616283 + 0.396061i
\(303\) 124.429 865.424i 0.0235916 0.164083i
\(304\) 1920.92 4206.24i 0.362410 0.793566i
\(305\) −549.943 3824.94i −0.103245 0.718082i
\(306\) −8491.67 2493.38i −1.58639 0.465807i
\(307\) −3717.39 + 2389.02i −0.691083 + 0.444132i −0.838471 0.544947i \(-0.816550\pi\)
0.147388 + 0.989079i \(0.452914\pi\)
\(308\) 130.576 + 285.922i 0.0241567 + 0.0528958i
\(309\) 969.198 284.582i 0.178433 0.0523926i
\(310\) 2801.02 3232.55i 0.513185 0.592247i
\(311\) −3032.38 + 3499.56i −0.552896 + 0.638076i −0.961556 0.274611i \(-0.911451\pi\)
0.408659 + 0.912687i \(0.365996\pi\)
\(312\) −478.805 + 140.590i −0.0868813 + 0.0255107i
\(313\) 1871.39 + 4097.78i 0.337947 + 0.740001i 0.999955 0.00949590i \(-0.00302269\pi\)
−0.662008 + 0.749497i \(0.730295\pi\)
\(314\) 12864.8 8267.73i 2.31212 1.48591i
\(315\) 174.902 + 51.3557i 0.0312844 + 0.00918593i
\(316\) −25.5405 177.638i −0.00454672 0.0316232i
\(317\) 2385.92 5224.43i 0.422734 0.925657i −0.571717 0.820451i \(-0.693722\pi\)
0.994450 0.105206i \(-0.0335503\pi\)
\(318\) −110.066 + 765.528i −0.0194095 + 0.134996i
\(319\) −5044.63 3241.99i −0.885408 0.569017i
\(320\) 2393.82 + 2762.61i 0.418182 + 0.482608i
\(321\) −250.704 −0.0435917
\(322\) −641.961 + 68.1337i −0.111103 + 0.0117917i
\(323\) 8362.79 1.44061
\(324\) −4503.64 5197.48i −0.772229 0.891200i
\(325\) 1643.93 + 1056.49i 0.280581 + 0.180318i
\(326\) 1531.51 10651.9i 0.260192 1.80967i
\(327\) 430.920 943.582i 0.0728743 0.159573i
\(328\) −456.939 3178.08i −0.0769215 0.535001i
\(329\) 498.374 + 146.336i 0.0835144 + 0.0245220i
\(330\) 299.577 192.527i 0.0499733 0.0321159i
\(331\) 568.654 + 1245.18i 0.0944292 + 0.206771i 0.950952 0.309338i \(-0.100107\pi\)
−0.856523 + 0.516109i \(0.827380\pi\)
\(332\) −8403.78 + 2467.57i −1.38921 + 0.407909i
\(333\) 2327.28 2685.83i 0.382986 0.441990i
\(334\) 1196.52 1380.86i 0.196020 0.226219i
\(335\) −1078.81 + 316.766i −0.175945 + 0.0516620i
\(336\) −18.3992 40.2887i −0.00298738 0.00654145i
\(337\) −896.894 + 576.399i −0.144976 + 0.0931704i −0.611118 0.791539i \(-0.709280\pi\)
0.466142 + 0.884710i \(0.345644\pi\)
\(338\) −15944.8 4681.81i −2.56592 0.753423i
\(339\) −86.6100 602.386i −0.0138761 0.0965107i
\(340\) −1642.14 + 3595.79i −0.261934 + 0.573556i
\(341\) 651.441 4530.87i 0.103453 0.719532i
\(342\) 10035.1 + 6449.17i 1.58666 + 1.01968i
\(343\) 617.356 + 712.467i 0.0971840 + 0.112156i
\(344\) −3876.84 −0.607632
\(345\) 100.114 + 394.483i 0.0156230 + 0.0615601i
\(346\) 568.328 0.0883049
\(347\) −6342.37 7319.48i −0.981200 1.13236i −0.991194 0.132415i \(-0.957727\pi\)
0.00999489 0.999950i \(-0.496818\pi\)
\(348\) −1644.17 1056.64i −0.253266 0.162764i
\(349\) 52.3968 364.428i 0.00803650 0.0558951i −0.985409 0.170206i \(-0.945557\pi\)
0.993445 + 0.114311i \(0.0364659\pi\)
\(350\) 60.7815 133.093i 0.00928260 0.0203260i
\(351\) 438.812 + 3052.00i 0.0667294 + 0.464113i
\(352\) 5542.45 + 1627.41i 0.839243 + 0.246424i
\(353\) 8328.91 5352.67i 1.25582 0.807064i 0.268110 0.963388i \(-0.413601\pi\)
0.987706 + 0.156324i \(0.0499644\pi\)
\(354\) 127.131 + 278.379i 0.0190875 + 0.0417957i
\(355\) 1306.36 383.582i 0.195308 0.0573476i
\(356\) 4183.71 4828.26i 0.622854 0.718812i
\(357\) 52.4553 60.5366i 0.00777655 0.00897462i
\(358\) 10295.1 3022.90i 1.51986 0.446272i
\(359\) 1366.65 + 2992.55i 0.200917 + 0.439947i 0.983092 0.183112i \(-0.0586171\pi\)
−0.782175 + 0.623059i \(0.785890\pi\)
\(360\) −962.704 + 618.692i −0.140942 + 0.0905776i
\(361\) −4234.10 1243.24i −0.617306 0.181257i
\(362\) −365.990 2545.52i −0.0531381 0.369584i
\(363\) −249.704 + 546.776i −0.0361049 + 0.0790587i
\(364\) −153.864 + 1070.15i −0.0221557 + 0.154096i
\(365\) −1670.51 1073.57i −0.239557 0.153954i
\(366\) −1586.17 1830.53i −0.226531 0.261431i
\(367\) 372.890 0.0530373 0.0265186 0.999648i \(-0.491558\pi\)
0.0265186 + 0.999648i \(0.491558\pi\)
\(368\) −2745.32 + 3942.54i −0.388885 + 0.558476i
\(369\) −9818.44 −1.38517
\(370\) −1868.04 2155.84i −0.262473 0.302910i
\(371\) 286.085 + 183.856i 0.0400345 + 0.0257286i
\(372\) 212.320 1476.72i 0.0295922 0.205818i
\(373\) 4409.63 9655.75i 0.612123 1.34036i −0.308989 0.951066i \(-0.599990\pi\)
0.921112 0.389298i \(-0.127282\pi\)
\(374\) 1081.92 + 7524.93i 0.149585 + 1.04039i
\(375\) −88.5059 25.9877i −0.0121878 0.00357866i
\(376\) −2743.18 + 1762.93i −0.376247 + 0.241799i
\(377\) −8568.23 18761.8i −1.17052 2.56308i
\(378\) 221.515 65.0427i 0.0301415 0.00885036i
\(379\) −6368.85 + 7350.04i −0.863181 + 0.996164i 0.136804 + 0.990598i \(0.456317\pi\)
−0.999985 + 0.00556577i \(0.998228\pi\)
\(380\) 3489.17 4026.72i 0.471028 0.543595i
\(381\) −210.797 + 61.8957i −0.0283451 + 0.00832287i
\(382\) −4388.53 9609.54i −0.587792 1.28709i
\(383\) −4806.32 + 3088.84i −0.641231 + 0.412094i −0.820453 0.571714i \(-0.806279\pi\)
0.179221 + 0.983809i \(0.442642\pi\)
\(384\) 758.648 + 222.759i 0.100819 + 0.0296032i
\(385\) −22.2842 154.990i −0.00294989 0.0205169i
\(386\) −5566.91 + 12189.8i −0.734063 + 1.60737i
\(387\) −1687.19 + 11734.6i −0.221614 + 1.54136i
\(388\) 4901.18 + 3149.79i 0.641287 + 0.412130i
\(389\) 6228.64 + 7188.24i 0.811838 + 0.936911i 0.998968 0.0454246i \(-0.0144641\pi\)
−0.187130 + 0.982335i \(0.559919\pi\)
\(390\) 1224.87 0.159035
\(391\) −8548.35 1554.32i −1.10565 0.201036i
\(392\) −2950.96 −0.380220
\(393\) 560.180 + 646.482i 0.0719016 + 0.0829789i
\(394\) −3038.90 1952.99i −0.388573 0.249721i
\(395\) −12.7231 + 88.4913i −0.00162068 + 0.0112721i
\(396\) −2506.76 + 5489.03i −0.318104 + 0.696551i
\(397\) −325.658 2265.00i −0.0411695 0.286340i −0.999997 0.00235193i \(-0.999251\pi\)
0.958828 0.283988i \(-0.0916577\pi\)
\(398\) 17700.2 + 5197.24i 2.22922 + 0.654557i
\(399\) −90.8263 + 58.3705i −0.0113960 + 0.00732376i
\(400\) −452.327 990.458i −0.0565409 0.123807i
\(401\) −5841.56 + 1715.24i −0.727465 + 0.213603i −0.624437 0.781075i \(-0.714671\pi\)
−0.103029 + 0.994678i \(0.532853\pi\)
\(402\) −461.512 + 532.614i −0.0572591 + 0.0660805i
\(403\) 10310.5 11899.0i 1.27445 1.47079i
\(404\) 11410.3 3350.38i 1.40516 0.412593i
\(405\) 1423.19 + 3116.34i 0.174614 + 0.382351i
\(406\) −1299.18 + 834.932i −0.158811 + 0.102062i
\(407\) −2929.12 860.066i −0.356735 0.104747i
\(408\) 71.5656 + 497.750i 0.00868389 + 0.0603978i
\(409\) −5174.16 + 11329.8i −0.625539 + 1.36974i 0.285882 + 0.958265i \(0.407713\pi\)
−0.911421 + 0.411475i \(0.865014\pi\)
\(410\) −1121.58 + 7800.76i −0.135100 + 0.939639i
\(411\) −739.519 475.260i −0.0887538 0.0570386i
\(412\) 8997.15 + 10383.3i 1.07587 + 1.24162i
\(413\) 134.566 0.0160328
\(414\) −9059.13 8457.41i −1.07544 1.00401i
\(415\) 4363.12 0.516090
\(416\) 13011.1 + 15015.6i 1.53347 + 1.76972i
\(417\) −1721.94 1106.63i −0.202216 0.129956i
\(418\) 1458.28 10142.5i 0.170638 1.18681i
\(419\) −4361.89 + 9551.21i −0.508574 + 1.11362i 0.465013 + 0.885304i \(0.346050\pi\)
−0.973587 + 0.228317i \(0.926678\pi\)
\(420\) −7.26294 50.5149i −0.000843798 0.00586874i
\(421\) 3381.01 + 992.753i 0.391402 + 0.114926i 0.471511 0.881860i \(-0.343709\pi\)
−0.0801092 + 0.996786i \(0.525527\pi\)
\(422\) −10452.6 + 6717.46i −1.20574 + 0.774884i
\(423\) 4142.32 + 9070.42i 0.476139 + 1.04260i
\(424\) −2048.44 + 601.477i −0.234625 + 0.0688923i
\(425\) 1289.56 1488.23i 0.147183 0.169859i
\(426\) 558.859 644.958i 0.0635606 0.0733528i
\(427\) −1021.89 + 300.055i −0.115815 + 0.0340063i
\(428\) −1416.54 3101.79i −0.159979 0.350305i
\(429\) 1102.74 708.687i 0.124104 0.0797569i
\(430\) 9130.45 + 2680.94i 1.02397 + 0.300666i
\(431\) −1383.39 9621.69i −0.154607 1.07531i −0.908370 0.418168i \(-0.862672\pi\)
0.753763 0.657147i \(-0.228237\pi\)
\(432\) 713.715 1562.82i 0.0794875 0.174053i
\(433\) 188.145 1308.58i 0.0208815 0.145234i −0.976713 0.214548i \(-0.931172\pi\)
0.997595 + 0.0693145i \(0.0220812\pi\)
\(434\) −991.725 637.343i −0.109687 0.0704918i
\(435\) 637.576 + 735.802i 0.0702746 + 0.0811012i
\(436\) 14109.1 1.54978
\(437\) 10465.0 + 5256.25i 1.14556 + 0.575379i
\(438\) −1244.67 −0.135782
\(439\) 2281.28 + 2632.74i 0.248018 + 0.286228i 0.866084 0.499898i \(-0.166629\pi\)
−0.618067 + 0.786126i \(0.712084\pi\)
\(440\) 826.965 + 531.458i 0.0896000 + 0.0575824i
\(441\) −1284.25 + 8932.13i −0.138672 + 0.964488i
\(442\) −10862.6 + 23785.8i −1.16896 + 2.55967i
\(443\) −282.091 1961.99i −0.0302541 0.210422i 0.969087 0.246719i \(-0.0793526\pi\)
−0.999341 + 0.0362978i \(0.988444\pi\)
\(444\) −954.669 280.316i −0.102042 0.0299622i
\(445\) −2677.34 + 1720.62i −0.285209 + 0.183293i
\(446\) −30.4003 66.5673i −0.00322757 0.00706739i
\(447\) 1030.06 302.454i 0.108994 0.0320035i
\(448\) 659.762 761.406i 0.0695778 0.0802970i
\(449\) −5264.97 + 6076.10i −0.553384 + 0.638639i −0.961668 0.274216i \(-0.911582\pi\)
0.408284 + 0.912855i \(0.366127\pi\)
\(450\) 2695.13 791.361i 0.282332 0.0829003i
\(451\) 3503.64 + 7671.90i 0.365809 + 0.801010i
\(452\) 6963.54 4475.20i 0.724640 0.465698i
\(453\) −640.978 188.208i −0.0664807 0.0195205i
\(454\) −2376.51 16529.0i −0.245672 1.70868i
\(455\) 223.735 489.912i 0.0230525 0.0504779i
\(456\) 96.4603 670.896i 0.00990607 0.0688982i
\(457\) −7675.11 4932.50i −0.785616 0.504885i 0.0852768 0.996357i \(-0.472823\pi\)
−0.870893 + 0.491472i \(0.836459\pi\)
\(458\) 12579.4 + 14517.4i 1.28340 + 1.48112i
\(459\) 3107.17 0.315971
\(460\) −4315.00 + 3467.56i −0.437365 + 0.351470i
\(461\) 9726.44 0.982658 0.491329 0.870974i \(-0.336511\pi\)
0.491329 + 0.870974i \(0.336511\pi\)
\(462\) −64.2729 74.1749i −0.00647239 0.00746954i
\(463\) −9782.97 6287.14i −0.981973 0.631076i −0.0519779 0.998648i \(-0.516553\pi\)
−0.929995 + 0.367573i \(0.880189\pi\)
\(464\) −1635.59 + 11375.8i −0.163643 + 1.13816i
\(465\) −308.736 + 676.038i −0.0307899 + 0.0674205i
\(466\) −1513.73 10528.2i −0.150477 1.04659i
\(467\) −10451.0 3068.70i −1.03558 0.304074i −0.280603 0.959824i \(-0.590535\pi\)
−0.754978 + 0.655750i \(0.772353\pi\)
\(468\) −17460.8 + 11221.3i −1.72462 + 1.10835i
\(469\) 128.730 + 281.880i 0.0126742 + 0.0277527i
\(470\) 7679.64 2254.95i 0.753693 0.221304i
\(471\) −1740.06 + 2008.14i −0.170229 + 0.196454i
\(472\) −553.220 + 638.449i −0.0539491 + 0.0622606i
\(473\) 9771.22 2869.09i 0.949855 0.278903i
\(474\) 23.2787 + 50.9732i 0.00225575 + 0.00493940i
\(475\) −2232.88 + 1434.98i −0.215687 + 0.138614i
\(476\) 1045.36 + 306.946i 0.100660 + 0.0295564i
\(477\) 929.109 + 6462.10i 0.0891844 + 0.620291i
\(478\) 4570.36 10007.7i 0.437329 0.957618i
\(479\) 133.609 929.272i 0.0127448 0.0886420i −0.982456 0.186493i \(-0.940288\pi\)
0.995201 + 0.0978511i \(0.0311969\pi\)
\(480\) −788.983 507.048i −0.0750249 0.0482156i
\(481\) −6876.22 7935.59i −0.651827 0.752249i
\(482\) −2464.65 −0.232908
\(483\) 103.690 42.7846i 0.00976827 0.00403057i
\(484\) −8175.78 −0.767823
\(485\) −1900.58 2193.39i −0.177940 0.205354i
\(486\) 5611.77 + 3606.47i 0.523776 + 0.336611i
\(487\) 740.065 5147.26i 0.0688615 0.478942i −0.925986 0.377558i \(-0.876764\pi\)
0.994847 0.101384i \(-0.0323271\pi\)
\(488\) 2777.54 6081.96i 0.257650 0.564175i
\(489\) 266.108 + 1850.82i 0.0246090 + 0.171160i
\(490\) 6949.88 + 2040.67i 0.640742 + 0.188139i
\(491\) −9750.97 + 6266.57i −0.896243 + 0.575980i −0.905674 0.423975i \(-0.860634\pi\)
0.00943089 + 0.999956i \(0.496998\pi\)
\(492\) 1141.92 + 2500.45i 0.104638 + 0.229124i
\(493\) −19942.9 + 5855.76i −1.82187 + 0.534950i
\(494\) 23080.5 26636.3i 2.10210 2.42596i
\(495\) 1968.54 2271.81i 0.178746 0.206284i
\(496\) −8417.58 + 2471.62i −0.762017 + 0.223748i
\(497\) −155.883 341.337i −0.0140691 0.0308069i
\(498\) 2300.69 1478.56i 0.207020 0.133044i
\(499\) −17542.2 5150.86i −1.57374 0.462093i −0.625655 0.780100i \(-0.715168\pi\)
−0.948088 + 0.318007i \(0.896986\pi\)
\(500\) −178.552 1241.86i −0.0159702 0.111075i
\(501\) −131.884 + 288.785i −0.0117607 + 0.0257524i
\(502\) 3351.90 23313.0i 0.298013 2.07273i
\(503\) −3594.16 2309.83i −0.318600 0.204752i 0.371559 0.928409i \(-0.378823\pi\)
−0.690159 + 0.723657i \(0.742460\pi\)
\(504\) 206.543 + 238.364i 0.0182543 + 0.0210666i
\(505\) −5924.09 −0.522017
\(506\) −3375.74 + 10096.6i −0.296581 + 0.887048i
\(507\) 2887.45 0.252931
\(508\) −1956.85 2258.33i −0.170908 0.197238i
\(509\) 11962.0 + 7687.52i 1.04166 + 0.669437i 0.945398 0.325918i \(-0.105673\pi\)
0.0962667 + 0.995356i \(0.469310\pi\)
\(510\) 175.661 1221.75i 0.0152518 0.106079i
\(511\) −227.353 + 497.833i −0.0196820 + 0.0430975i
\(512\) −2004.54 13941.9i −0.173025 1.20342i
\(513\) −4018.39 1179.90i −0.345840 0.101548i
\(514\) −6272.52 + 4031.10i −0.538267 + 0.345923i
\(515\) −2843.17 6225.67i −0.243272 0.532691i
\(516\) 3184.67 935.105i 0.271700 0.0797785i
\(517\) 5609.25 6473.43i 0.477166 0.550679i
\(518\) −514.854 + 594.173i −0.0436706 + 0.0503985i
\(519\) −94.7499 + 27.8211i −0.00801360 + 0.00235300i
\(520\) 1404.59 + 3075.62i 0.118452 + 0.259374i
\(521\) 7783.86 5002.38i 0.654543 0.420649i −0.170781 0.985309i \(-0.554629\pi\)
0.825324 + 0.564660i \(0.190993\pi\)
\(522\) −28446.7 8352.72i −2.38521 0.700361i
\(523\) 1219.78 + 8483.74i 0.101983 + 0.709308i 0.975095 + 0.221788i \(0.0711892\pi\)
−0.873112 + 0.487520i \(0.837902\pi\)
\(524\) −4833.32 + 10583.5i −0.402948 + 0.882333i
\(525\) −3.61807 + 25.1642i −0.000300773 + 0.00209192i
\(526\) 13853.7 + 8903.26i 1.14839 + 0.738024i
\(527\) −10390.1 11990.8i −0.858819 0.991130i
\(528\) −730.399 −0.0602017
\(529\) −9720.29 7317.92i −0.798906 0.601456i
\(530\) 5240.27 0.429477
\(531\) 1691.73 + 1952.36i 0.138258 + 0.159558i
\(532\) −1235.37 793.923i −0.100677 0.0647010i
\(533\) −4128.51 + 28714.4i −0.335508 + 2.33351i
\(534\) −828.690 + 1814.58i −0.0671553 + 0.147049i
\(535\) 241.747 + 1681.39i 0.0195358 + 0.135874i
\(536\) −1866.61 548.087i −0.150420 0.0441674i
\(537\) −1568.38 + 1007.94i −0.126035 + 0.0809976i
\(538\) −1993.40 4364.93i −0.159742 0.349787i
\(539\) 7437.62 2183.88i 0.594362 0.174520i
\(540\) 1296.39 1496.12i 0.103311 0.119227i
\(541\) 8381.14 9672.35i 0.666051 0.768663i −0.317702 0.948190i \(-0.602911\pi\)
0.983753 + 0.179527i \(0.0574567\pi\)
\(542\) −21249.3 + 6239.36i −1.68401 + 0.494471i
\(543\) 185.626 + 406.464i 0.0146703 + 0.0321235i
\(544\) 16843.4 10824.6i 1.32749 0.853128i
\(545\) −6743.81 1980.16i −0.530043 0.155635i
\(546\) −48.0436 334.150i −0.00376571 0.0261911i
\(547\) 7493.59 16408.7i 0.585745 1.28260i −0.352234 0.935912i \(-0.614578\pi\)
0.937979 0.346691i \(-0.112695\pi\)
\(548\) 1701.60 11834.9i 0.132644 0.922558i
\(549\) −17200.4 11054.0i −1.33715 0.859335i
\(550\) −1580.09 1823.52i −0.122500 0.141373i
\(551\) 28015.0 2.16602
\(552\) −223.294 + 667.855i −0.0172174 + 0.0514960i
\(553\) 24.6400 0.00189475
\(554\) −19688.8 22722.1i −1.50992 1.74254i
\(555\) 416.968 + 267.969i 0.0318906 + 0.0204949i
\(556\) 3962.12 27557.1i 0.302214 2.10195i
\(557\) −10695.5 + 23419.9i −0.813616 + 1.78157i −0.222603 + 0.974909i \(0.571455\pi\)
−0.591014 + 0.806662i \(0.701272\pi\)
\(558\) −3220.79 22401.1i −0.244350 1.69949i
\(559\) 33609.0 + 9868.48i 2.54295 + 0.746677i
\(560\) −252.461 + 162.247i −0.0190507 + 0.0122432i
\(561\) −548.738 1201.57i −0.0412972 0.0904283i
\(562\) 14067.9 4130.70i 1.05590 0.310041i
\(563\) −9641.05 + 11126.4i −0.721708 + 0.832896i −0.991511 0.130020i \(-0.958496\pi\)
0.269803 + 0.962915i \(0.413041\pi\)
\(564\) 1828.19 2109.84i 0.136491 0.157518i
\(565\) −3956.49 + 1161.73i −0.294603 + 0.0865032i
\(566\) 11742.5 + 25712.6i 0.872041 + 1.90950i
\(567\) 794.334 510.488i 0.0588340 0.0378103i
\(568\) 2260.34 + 663.695i 0.166975 + 0.0490282i
\(569\) −2242.82 15599.2i −0.165244 1.14930i −0.888553 0.458774i \(-0.848289\pi\)
0.723309 0.690525i \(-0.242620\pi\)
\(570\) −691.119 + 1513.34i −0.0507856 + 0.111205i
\(571\) −2169.64 + 15090.2i −0.159013 + 1.10596i 0.741443 + 0.671016i \(0.234142\pi\)
−0.900456 + 0.434947i \(0.856767\pi\)
\(572\) 14998.8 + 9639.16i 1.09639 + 0.704604i
\(573\) 1202.05 + 1387.24i 0.0876378 + 0.101139i
\(574\) 2172.08 0.157946
\(575\) 2549.13 1051.82i 0.184880 0.0762850i
\(576\) 19341.4 1.39911
\(577\) 10893.8 + 12572.1i 0.785985 + 0.907075i 0.997526 0.0702938i \(-0.0223937\pi\)
−0.211541 + 0.977369i \(0.567848\pi\)
\(578\) 4614.29 + 2965.42i 0.332057 + 0.213400i
\(579\) 331.375 2304.76i 0.0237849 0.165428i
\(580\) −5501.11 + 12045.8i −0.393830 + 0.862367i
\(581\) −171.137 1190.29i −0.0122203 0.0849937i
\(582\) −1745.47 512.516i −0.124316 0.0365026i
\(583\) 4717.78 3031.93i 0.335147 0.215386i
\(584\) −1427.30 3125.34i −0.101133 0.221451i
\(585\) 9920.71 2912.98i 0.701147 0.205875i
\(586\) −5010.61 + 5782.55i −0.353219 + 0.407636i
\(587\) 17574.4 20281.9i 1.23573 1.42611i 0.367439 0.930047i \(-0.380235\pi\)
0.868289 0.496059i \(-0.165220\pi\)
\(588\) 2424.10 711.780i 0.170014 0.0499206i
\(589\) 8883.72 + 19452.6i 0.621473 + 1.36084i
\(590\) 1744.41 1121.06i 0.121722 0.0782260i
\(591\) 602.240 + 176.834i 0.0419168 + 0.0123079i
\(592\) 832.657 + 5791.25i 0.0578074 + 0.402059i
\(593\) 4717.19 10329.2i 0.326664 0.715294i −0.673041 0.739606i \(-0.735012\pi\)
0.999704 + 0.0243116i \(0.00773937\pi\)
\(594\) 541.819 3768.44i 0.0374261 0.260304i
\(595\) −456.580 293.426i −0.0314588 0.0202173i
\(596\) 9562.15 + 11035.3i 0.657183 + 0.758430i
\(597\) −3205.33 −0.219741
\(598\) −28543.3 + 22937.6i −1.95187 + 1.56854i
\(599\) −16435.3 −1.12108 −0.560540 0.828128i \(-0.689406\pi\)
−0.560540 + 0.828128i \(0.689406\pi\)
\(600\) −104.518 120.620i −0.00711153 0.00820714i
\(601\) −21395.4 13750.0i −1.45214 0.933232i −0.999129 0.0417263i \(-0.986714\pi\)
−0.453009 0.891506i \(-0.649649\pi\)
\(602\) 373.248 2595.99i 0.0252698 0.175756i
\(603\) −2471.32 + 5411.43i −0.166899 + 0.365457i
\(604\) −1293.11 8993.80i −0.0871126 0.605882i
\(605\) 3907.83 + 1147.44i 0.262605 + 0.0771077i
\(606\) −3123.79 + 2007.54i −0.209398 + 0.134572i
\(607\) −4673.03 10232.5i −0.312475 0.684225i 0.686609 0.727027i \(-0.259099\pi\)
−0.999084 + 0.0428025i \(0.986371\pi\)
\(608\) −25893.4 + 7603.00i −1.72717 + 0.507142i
\(609\) 175.723 202.795i 0.0116924 0.0134937i
\(610\) −10747.3 + 12403.0i −0.713352 + 0.823252i
\(611\) 28268.6 8300.41i 1.87173 0.549588i
\(612\) 8688.73 + 19025.7i 0.573890 + 1.25664i
\(613\) 8317.46 5345.30i 0.548024 0.352194i −0.237146 0.971474i \(-0.576212\pi\)
0.785170 + 0.619280i \(0.212576\pi\)
\(614\) 18006.7 + 5287.26i 1.18354 + 0.347518i
\(615\) −194.880 1355.42i −0.0127778 0.0888714i
\(616\) 112.548 246.447i 0.00736153 0.0161195i
\(617\) 1651.86 11488.9i 0.107782 0.749637i −0.862219 0.506535i \(-0.830926\pi\)
0.970001 0.243102i \(-0.0781649\pi\)
\(618\) −3608.94 2319.33i −0.234908 0.150966i
\(619\) 14995.8 + 17306.1i 0.973719 + 1.12373i 0.992294 + 0.123904i \(0.0395414\pi\)
−0.0185757 + 0.999827i \(0.505913\pi\)
\(620\) −10108.6 −0.654792
\(621\) 3888.25 + 1952.95i 0.251256 + 0.126198i
\(622\) 19666.1 1.26775
\(623\) 574.411 + 662.905i 0.0369395 + 0.0426304i
\(624\) −2113.46 1358.24i −0.135586 0.0871361i
\(625\) −88.9468 + 618.638i −0.00569259 + 0.0395929i
\(626\) 7947.82 17403.3i 0.507442 1.11114i
\(627\) 253.383 + 1762.32i 0.0161390 + 0.112249i
\(628\) −34677.0 10182.1i −2.20345 0.646990i
\(629\) −8901.55 + 5720.68i −0.564274 + 0.362637i
\(630\) −321.600 704.207i −0.0203379 0.0445338i
\(631\) −3247.73 + 953.619i −0.204897 + 0.0601632i −0.382571 0.923926i \(-0.624961\pi\)
0.177673 + 0.984089i \(0.443143\pi\)
\(632\) −101.299 + 116.905i −0.00637570 + 0.00735795i
\(633\) 1413.78 1631.59i 0.0887723 0.102449i
\(634\) −23404.4 + 6872.16i −1.46610 + 0.430486i
\(635\) 618.380 + 1354.06i 0.0386451 + 0.0846211i
\(636\) 1537.64 988.179i 0.0958668 0.0616098i
\(637\) 25582.3 + 7511.66i 1.59122 + 0.467225i
\(638\) 3624.39 + 25208.2i 0.224908 + 1.56427i
\(639\) 2992.59 6552.87i 0.185266 0.405677i
\(640\) 762.428 5302.80i 0.0470900 0.327518i
\(641\) −6203.31 3986.63i −0.382240 0.245651i 0.335384 0.942082i \(-0.391134\pi\)
−0.717624 + 0.696431i \(0.754770\pi\)
\(642\) 697.257 + 804.677i 0.0428638 + 0.0494674i
\(643\) 30423.3 1.86591 0.932953 0.359998i \(-0.117223\pi\)
0.932953 + 0.359998i \(0.117223\pi\)
\(644\) 1115.22 + 1041.15i 0.0682389 + 0.0637064i
\(645\) −1653.44 −0.100937
\(646\) −23258.5 26841.8i −1.41656 1.63479i
\(647\) −10816.9 6951.57i −0.657271 0.422402i 0.169046 0.985608i \(-0.445931\pi\)
−0.826317 + 0.563206i \(0.809568\pi\)
\(648\) −843.608 + 5867.42i −0.0511420 + 0.355701i
\(649\) 921.849 2018.57i 0.0557561 0.122089i
\(650\) −1181.10 8214.76i −0.0712719 0.495707i
\(651\) 196.537 + 57.7084i 0.0118324 + 0.00347430i
\(652\) −21395.4 + 13750.0i −1.28513 + 0.825905i
\(653\) 1165.32 + 2551.69i 0.0698352 + 0.152918i 0.941331 0.337486i \(-0.109577\pi\)
−0.871495 + 0.490404i \(0.836849\pi\)
\(654\) −4227.06 + 1241.18i −0.252739 + 0.0742108i
\(655\) 3795.57 4380.32i 0.226420 0.261303i
\(656\) 10585.4 12216.2i 0.630015 0.727076i
\(657\) −10081.1 + 2960.08i −0.598632 + 0.175774i
\(658\) −916.385 2006.60i −0.0542924 0.118884i
\(659\) −7497.30 + 4818.22i −0.443176 + 0.284812i −0.743137 0.669140i \(-0.766663\pi\)
0.299961 + 0.953952i \(0.403026\pi\)
\(660\) −807.508 237.106i −0.0476246 0.0139838i
\(661\) 1049.99 + 7302.83i 0.0617849 + 0.429723i 0.997112 + 0.0759403i \(0.0241958\pi\)
−0.935327 + 0.353783i \(0.884895\pi\)
\(662\) 2415.08 5288.28i 0.141789 0.310476i
\(663\) 646.606 4497.24i 0.0378764 0.263436i
\(664\) 6350.90 + 4081.47i 0.371179 + 0.238542i
\(665\) 479.053 + 552.856i 0.0279351 + 0.0322389i
\(666\) −15093.3 −0.878156
\(667\) −28636.6 5206.90i −1.66239 0.302267i
\(668\) −4318.12 −0.250109
\(669\) 8.32688 + 9.60973i 0.000481219 + 0.000555357i
\(670\) 4017.08 + 2581.62i 0.231632 + 0.148861i
\(671\) −2499.52 + 17384.6i −0.143805 + 1.00018i
\(672\) −107.379 + 235.127i −0.00616404 + 0.0134974i
\(673\) 485.324 + 3375.50i 0.0277977 + 0.193337i 0.998989 0.0449658i \(-0.0143179\pi\)
−0.971191 + 0.238303i \(0.923409\pi\)
\(674\) 4344.49 + 1275.66i 0.248284 + 0.0729027i
\(675\) −829.620 + 533.164i −0.0473068 + 0.0304022i
\(676\) 16314.8 + 35724.4i 0.928244 + 2.03257i
\(677\) 11464.0 3366.13i 0.650808 0.191095i 0.0603684 0.998176i \(-0.480772\pi\)
0.590440 + 0.807082i \(0.298954\pi\)
\(678\) −1692.58 + 1953.34i −0.0958749 + 0.110646i
\(679\) −523.822 + 604.523i −0.0296059 + 0.0341671i
\(680\) 3269.23 959.934i 0.184367 0.0541350i
\(681\) 1205.34 + 2639.32i 0.0678247 + 0.148515i
\(682\) −16354.4 + 10510.3i −0.918243 + 0.590119i
\(683\) −22390.2 6574.36i −1.25438 0.368318i −0.413977 0.910287i \(-0.635861\pi\)
−0.840398 + 0.541969i \(0.817679\pi\)
\(684\) −4012.07 27904.5i −0.224277 1.55988i
\(685\) −2474.31 + 5417.99i −0.138013 + 0.302206i
\(686\) 569.796 3963.02i 0.0317127 0.220567i
\(687\) −2807.86 1804.50i −0.155934 0.100213i
\(688\) −12781.4 14750.5i −0.708262 0.817378i
\(689\) 19289.3 1.06657
\(690\) 987.724 1418.47i 0.0544957 0.0782610i
\(691\) 8373.85 0.461007 0.230504 0.973071i \(-0.425963\pi\)
0.230504 + 0.973071i \(0.425963\pi\)
\(692\) −879.571 1015.08i −0.0483183 0.0557623i
\(693\) −696.977 447.920i −0.0382048 0.0245528i
\(694\) −5853.77 + 40713.8i −0.320181 + 2.22691i
\(695\) −5761.34 + 12615.6i −0.314446 + 0.688541i
\(696\) 239.742 + 1667.44i 0.0130566 + 0.0908107i
\(697\) 28049.3 + 8236.03i 1.52431 + 0.447578i
\(698\) −1315.42 + 845.369i −0.0713315 + 0.0458420i
\(699\) 767.746 + 1681.13i 0.0415434 + 0.0909673i
\(700\) −331.783 + 97.4202i −0.0179146 + 0.00526020i
\(701\) 3162.63 3649.87i 0.170401 0.196653i −0.664125 0.747621i \(-0.731196\pi\)
0.834526 + 0.550968i \(0.185741\pi\)
\(702\) 8575.50 9896.65i 0.461056 0.532087i
\(703\) 13684.4 4018.09i 0.734162 0.215569i
\(704\) −6901.82 15112.9i −0.369492 0.809074i
\(705\) −1169.94 + 751.875i −0.0625000 + 0.0401663i
\(706\) −40344.6 11846.2i −2.15069 0.631501i
\(707\) 232.364 + 1616.13i 0.0123606 + 0.0859699i
\(708\) 300.452 657.899i 0.0159487 0.0349228i
\(709\) −1865.71 + 12976.3i −0.0988266 + 0.687354i 0.878828 + 0.477138i \(0.158326\pi\)
−0.977655 + 0.210216i \(0.932583\pi\)
\(710\) −4864.41 3126.17i −0.257124 0.165244i
\(711\) 309.769 + 357.492i 0.0163393 + 0.0188566i
\(712\) −5506.65 −0.289846
\(713\) −5465.36 21535.4i −0.287068 1.13115i
\(714\) −340.191 −0.0178310
\(715\) −5816.26 6712.33i −0.304218 0.351086i
\(716\) −21332.3 13709.4i −1.11344 0.715565i
\(717\) −272.055 + 1892.18i −0.0141702 + 0.0985562i
\(718\) 5804.18 12709.4i 0.301685 0.660599i
\(719\) 57.9513 + 403.060i 0.00300587 + 0.0209063i 0.991269 0.131854i \(-0.0420929\pi\)
−0.988263 + 0.152760i \(0.951184\pi\)
\(720\) −5527.86 1623.13i −0.286127 0.0840144i
\(721\) −1586.88 + 1019.83i −0.0819674 + 0.0526773i
\(722\) 7785.46 + 17047.8i 0.401309 + 0.878743i
\(723\) 410.898 120.651i 0.0211362 0.00620615i
\(724\) −3980.07 + 4593.25i −0.204307 + 0.235783i
\(725\) 4319.98 4985.53i 0.221297 0.255390i
\(726\) 2449.45 719.223i 0.125217 0.0367670i
\(727\) −1398.53 3062.36i −0.0713462 0.156226i 0.870599 0.491994i \(-0.163732\pi\)
−0.941945 + 0.335767i \(0.891004\pi\)
\(728\) 783.953 503.816i 0.0399110 0.0256493i
\(729\) 16638.6 + 4885.52i 0.845327 + 0.248210i
\(730\) 1200.20 + 8347.58i 0.0608512 + 0.423230i
\(731\) 14663.4 32108.3i 0.741920 1.62458i
\(732\) −814.654 + 5666.04i −0.0411345 + 0.286097i
\(733\) 22548.6 + 14491.1i 1.13622 + 0.730207i 0.966850 0.255345i \(-0.0821890\pi\)
0.169374 + 0.985552i \(0.445825\pi\)
\(734\) −1037.08 1196.85i −0.0521516 0.0601862i
\(735\) −1258.56 −0.0631600
\(736\) 27881.1 2959.12i 1.39635 0.148199i
\(737\) 5110.24 0.255411
\(738\) 27307.0 + 31514.0i 1.36204 + 1.57188i
\(739\) 9857.72 + 6335.17i 0.490693 + 0.315349i 0.762484 0.647007i \(-0.223980\pi\)
−0.271791 + 0.962356i \(0.587616\pi\)
\(740\) −959.425 + 6672.95i −0.0476610 + 0.331490i
\(741\) −2543.99 + 5570.57i −0.126121 + 0.276167i
\(742\) −205.542 1429.58i −0.0101694 0.0707297i
\(743\) −15166.3 4453.22i −0.748852 0.219883i −0.115030 0.993362i \(-0.536697\pi\)
−0.633822 + 0.773479i \(0.718515\pi\)
\(744\) −1081.79 + 695.224i −0.0533069 + 0.0342583i
\(745\) −3021.72 6616.63i −0.148600 0.325389i
\(746\) −43255.8 + 12701.1i −2.12293 + 0.623349i
\(747\) 15117.9 17447.0i 0.740476 0.854554i
\(748\) 11765.7 13578.3i 0.575128 0.663734i
\(749\) 449.210 131.900i 0.0219143 0.00643461i
\(750\) 162.740 + 356.351i 0.00792324 + 0.0173495i
\(751\) −15381.1 + 9884.81i −0.747355 + 0.480296i −0.858055 0.513558i \(-0.828327\pi\)
0.110700 + 0.993854i \(0.464691\pi\)
\(752\) −15751.4 4625.02i −0.763822 0.224278i
\(753\) 582.409 + 4050.75i 0.0281862 + 0.196039i
\(754\) −36389.3 + 79681.4i −1.75759 + 3.84858i
\(755\) −644.171 + 4480.31i −0.0310514 + 0.215967i
\(756\) −458.998 294.980i −0.0220815 0.0141909i
\(757\) 1439.20 + 1660.92i 0.0690997 + 0.0797453i 0.789247 0.614076i \(-0.210471\pi\)
−0.720147 + 0.693821i \(0.755926\pi\)
\(758\) 41304.2 1.97920
\(759\) 68.5408 1848.52i 0.00327783 0.0884017i
\(760\) −4592.49 −0.219194
\(761\) 106.841 + 123.301i 0.00508931 + 0.00587338i 0.758289 0.651919i \(-0.226036\pi\)
−0.753199 + 0.657792i \(0.771490\pi\)
\(762\) 784.934 + 504.446i 0.0373165 + 0.0239818i
\(763\) −275.683 + 1917.42i −0.0130805 + 0.0909768i
\(764\) −10371.5 + 22710.4i −0.491136 +