Properties

Label 115.4.g.a.16.9
Level $115$
Weight $4$
Character 115.16
Analytic conductor $6.785$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(6,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 18]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.g (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78521965066\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 16.9
Character \(\chi\) \(=\) 115.16
Dual form 115.4.g.a.36.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.11818 - 2.44451i) q^{2} +(-0.807164 + 0.518733i) q^{3} +(-0.350419 - 2.43722i) q^{4} +(2.07708 + 4.54816i) q^{5} +(-0.441670 + 3.07188i) q^{6} +(31.6351 - 9.28890i) q^{7} +(15.0685 + 9.68396i) q^{8} +(-10.8338 + 23.7227i) q^{9} +O(q^{10})\) \(q+(2.11818 - 2.44451i) q^{2} +(-0.807164 + 0.518733i) q^{3} +(-0.350419 - 2.43722i) q^{4} +(2.07708 + 4.54816i) q^{5} +(-0.441670 + 3.07188i) q^{6} +(31.6351 - 9.28890i) q^{7} +(15.0685 + 9.68396i) q^{8} +(-10.8338 + 23.7227i) q^{9} +(15.5176 + 4.55638i) q^{10} +(-43.6869 - 50.4173i) q^{11} +(1.54711 + 1.78546i) q^{12} +(74.3430 + 21.8291i) q^{13} +(44.3019 - 97.0077i) q^{14} +(-4.03582 - 2.59366i) q^{15} +(74.4906 - 21.8724i) q^{16} +(7.85142 - 54.6078i) q^{17} +(35.0423 + 76.7320i) q^{18} +(2.28138 + 15.8673i) q^{19} +(10.3570 - 6.65605i) q^{20} +(-20.7162 + 23.9078i) q^{21} -215.782 q^{22} +(-107.980 - 22.5249i) q^{23} -17.1862 q^{24} +(-16.3715 + 18.8937i) q^{25} +(210.833 - 135.494i) q^{26} +(-7.24788 - 50.4101i) q^{27} +(-33.7246 - 73.8466i) q^{28} +(-35.9668 + 250.154i) q^{29} +(-14.8888 + 4.37175i) q^{30} +(-70.7442 - 45.4645i) q^{31} +(44.7898 - 98.0759i) q^{32} +(61.4156 + 18.0332i) q^{33} +(-116.859 - 134.862i) q^{34} +(107.956 + 124.588i) q^{35} +(61.6137 + 18.0914i) q^{36} +(41.4347 - 90.7294i) q^{37} +(43.6202 + 28.0330i) q^{38} +(-71.3304 + 20.9445i) q^{39} +(-12.7457 + 88.6484i) q^{40} +(48.6556 + 106.541i) q^{41} +(14.5621 + 101.282i) q^{42} +(-215.405 + 138.432i) q^{43} +(-107.569 + 124.142i) q^{44} -130.397 q^{45} +(-283.782 + 216.245i) q^{46} -255.532 q^{47} +(-48.7802 + 56.2954i) q^{48} +(625.945 - 402.270i) q^{49} +(11.5081 + 80.0406i) q^{50} +(21.9895 + 48.1503i) q^{51} +(27.1510 - 188.839i) q^{52} +(-121.070 + 35.5492i) q^{53} +(-138.580 - 89.0600i) q^{54} +(138.565 - 303.415i) q^{55} +(566.648 + 166.383i) q^{56} +(-10.0724 - 11.6241i) q^{57} +(535.320 + 617.792i) q^{58} +(-652.592 - 191.618i) q^{59} +(-4.90710 + 10.7450i) q^{60} +(-189.119 - 121.540i) q^{61} +(-260.987 + 76.6327i) q^{62} +(-122.370 + 851.102i) q^{63} +(113.133 + 247.726i) q^{64} +(55.1338 + 383.464i) q^{65} +(174.171 - 111.933i) q^{66} +(133.508 - 154.077i) q^{67} -135.843 q^{68} +(98.8417 - 37.8313i) q^{69} +533.225 q^{70} +(273.764 - 315.941i) q^{71} +(-392.978 + 252.552i) q^{72} +(-16.3078 - 113.423i) q^{73} +(-134.023 - 293.468i) q^{74} +(3.41370 - 23.7428i) q^{75} +(37.8728 - 11.1204i) q^{76} +(-1850.36 - 1189.15i) q^{77} +(-99.8914 + 218.732i) q^{78} +(-1044.42 - 306.669i) q^{79} +(254.202 + 293.365i) q^{80} +(-429.117 - 495.227i) q^{81} +(363.501 + 106.733i) q^{82} +(121.099 - 265.170i) q^{83} +(65.5280 + 42.1123i) q^{84} +(264.673 - 77.7151i) q^{85} +(-117.867 + 819.782i) q^{86} +(-100.732 - 220.573i) q^{87} +(-170.058 - 1182.78i) q^{88} +(-450.737 + 289.671i) q^{89} +(-276.204 + 318.756i) q^{90} +2554.61 q^{91} +(-17.0599 + 271.064i) q^{92} +80.6860 q^{93} +(-541.261 + 624.649i) q^{94} +(-67.4286 + 43.3338i) q^{95} +(14.7225 + 102.397i) q^{96} +(122.812 + 268.921i) q^{97} +(342.509 - 2382.21i) q^{98} +(1669.33 - 490.159i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9} - 10 q^{10} + 2 q^{11} - 57 q^{12} + 34 q^{13} - 154 q^{14} + 30 q^{15} + 16 q^{16} + 252 q^{17} - 33 q^{18} - 160 q^{19} - 200 q^{20} - 684 q^{21} - 704 q^{22} + 127 q^{23} - 3090 q^{24} - 275 q^{25} - 567 q^{26} + 384 q^{27} - 188 q^{28} + 340 q^{29} - 15 q^{30} + 582 q^{31} - 1364 q^{32} + 1760 q^{33} + 1819 q^{34} + 665 q^{35} + 2794 q^{36} + 312 q^{37} + 3123 q^{38} - 1560 q^{39} - 1205 q^{40} + 1324 q^{41} + 1454 q^{42} - 1740 q^{43} - 369 q^{44} + 3730 q^{45} - 4322 q^{46} - 2858 q^{47} - 2686 q^{48} + 2015 q^{49} - 325 q^{50} - 1426 q^{51} + 1717 q^{52} + 882 q^{53} + 2541 q^{54} + 450 q^{55} + 7755 q^{56} + 3688 q^{57} + 6622 q^{58} + 2605 q^{59} + 1530 q^{60} - 104 q^{61} - 9360 q^{62} - 7618 q^{63} + 3483 q^{64} + 170 q^{65} - 1766 q^{66} - 166 q^{67} - 5018 q^{68} - 1194 q^{69} - 770 q^{70} - 1222 q^{71} + 3303 q^{72} - 922 q^{73} + 1245 q^{74} + 150 q^{75} + 1360 q^{76} - 3093 q^{77} - 1600 q^{78} + 2448 q^{79} + 2115 q^{80} - 1371 q^{81} + 6609 q^{82} + 6704 q^{83} + 3894 q^{84} - 720 q^{85} - 5074 q^{86} - 6324 q^{87} + 1918 q^{88} - 5380 q^{89} - 165 q^{90} + 7828 q^{91} - 16225 q^{92} - 24948 q^{93} - 16490 q^{94} + 685 q^{95} + 675 q^{96} - 4400 q^{97} + 8790 q^{98} - 3626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.11818 2.44451i 0.748889 0.864263i −0.245572 0.969378i \(-0.578976\pi\)
0.994460 + 0.105115i \(0.0335211\pi\)
\(3\) −0.807164 + 0.518733i −0.155339 + 0.0998301i −0.616001 0.787745i \(-0.711248\pi\)
0.460662 + 0.887575i \(0.347612\pi\)
\(4\) −0.350419 2.43722i −0.0438024 0.304652i
\(5\) 2.07708 + 4.54816i 0.185779 + 0.406800i
\(6\) −0.441670 + 3.07188i −0.0300519 + 0.209015i
\(7\) 31.6351 9.28890i 1.70813 0.501553i 0.725676 0.688037i \(-0.241527\pi\)
0.982458 + 0.186484i \(0.0597091\pi\)
\(8\) 15.0685 + 9.68396i 0.665941 + 0.427974i
\(9\) −10.8338 + 23.7227i −0.401251 + 0.878617i
\(10\) 15.5176 + 4.55638i 0.490710 + 0.144085i
\(11\) −43.6869 50.4173i −1.19746 1.38195i −0.904859 0.425711i \(-0.860024\pi\)
−0.292603 0.956234i \(-0.594522\pi\)
\(12\) 1.54711 + 1.78546i 0.0372177 + 0.0429515i
\(13\) 74.3430 + 21.8291i 1.58608 + 0.465715i 0.951629 0.307249i \(-0.0994086\pi\)
0.634450 + 0.772964i \(0.281227\pi\)
\(14\) 44.3019 97.0077i 0.845728 1.85189i
\(15\) −4.03582 2.59366i −0.0694696 0.0446454i
\(16\) 74.4906 21.8724i 1.16392 0.341757i
\(17\) 7.85142 54.6078i 0.112015 0.779079i −0.853941 0.520370i \(-0.825794\pi\)
0.965955 0.258709i \(-0.0832970\pi\)
\(18\) 35.0423 + 76.7320i 0.458864 + 1.00477i
\(19\) 2.28138 + 15.8673i 0.0275466 + 0.191590i 0.998948 0.0458515i \(-0.0146001\pi\)
−0.971402 + 0.237442i \(0.923691\pi\)
\(20\) 10.3570 6.65605i 0.115795 0.0744169i
\(21\) −20.7162 + 23.9078i −0.215269 + 0.248434i
\(22\) −215.782 −2.09113
\(23\) −107.980 22.5249i −0.978928 0.204207i
\(24\) −17.1862 −0.146171
\(25\) −16.3715 + 18.8937i −0.130972 + 0.151150i
\(26\) 210.833 135.494i 1.59030 1.02202i
\(27\) −7.24788 50.4101i −0.0516613 0.359312i
\(28\) −33.7246 73.8466i −0.227620 0.498418i
\(29\) −35.9668 + 250.154i −0.230305 + 1.60181i 0.466481 + 0.884531i \(0.345522\pi\)
−0.696787 + 0.717279i \(0.745388\pi\)
\(30\) −14.8888 + 4.37175i −0.0906104 + 0.0266056i
\(31\) −70.7442 45.4645i −0.409872 0.263409i 0.319417 0.947614i \(-0.396513\pi\)
−0.729289 + 0.684205i \(0.760149\pi\)
\(32\) 44.7898 98.0759i 0.247431 0.541798i
\(33\) 61.4156 + 18.0332i 0.323972 + 0.0951268i
\(34\) −116.859 134.862i −0.589443 0.680254i
\(35\) 107.956 + 124.588i 0.521368 + 0.601690i
\(36\) 61.6137 + 18.0914i 0.285249 + 0.0837566i
\(37\) 41.4347 90.7294i 0.184103 0.403130i −0.794967 0.606653i \(-0.792512\pi\)
0.979070 + 0.203523i \(0.0652390\pi\)
\(38\) 43.6202 + 28.0330i 0.186214 + 0.119672i
\(39\) −71.3304 + 20.9445i −0.292872 + 0.0859949i
\(40\) −12.7457 + 88.6484i −0.0503819 + 0.350414i
\(41\) 48.6556 + 106.541i 0.185335 + 0.405827i 0.979378 0.202034i \(-0.0647552\pi\)
−0.794044 + 0.607861i \(0.792028\pi\)
\(42\) 14.5621 + 101.282i 0.0534997 + 0.372099i
\(43\) −215.405 + 138.432i −0.763928 + 0.490947i −0.863664 0.504067i \(-0.831836\pi\)
0.0997364 + 0.995014i \(0.468200\pi\)
\(44\) −107.569 + 124.142i −0.368561 + 0.425342i
\(45\) −130.397 −0.431965
\(46\) −283.782 + 216.245i −0.909597 + 0.693123i
\(47\) −255.532 −0.793045 −0.396523 0.918025i \(-0.629783\pi\)
−0.396523 + 0.918025i \(0.629783\pi\)
\(48\) −48.7802 + 56.2954i −0.146684 + 0.169282i
\(49\) 625.945 402.270i 1.82491 1.17280i
\(50\) 11.5081 + 80.0406i 0.0325498 + 0.226389i
\(51\) 21.9895 + 48.1503i 0.0603754 + 0.132204i
\(52\) 27.1510 188.839i 0.0724071 0.503602i
\(53\) −121.070 + 35.5492i −0.313777 + 0.0921333i −0.434829 0.900513i \(-0.643191\pi\)
0.121052 + 0.992646i \(0.461373\pi\)
\(54\) −138.580 89.0600i −0.349229 0.224436i
\(55\) 138.565 303.415i 0.339711 0.743864i
\(56\) 566.648 + 166.383i 1.35217 + 0.397033i
\(57\) −10.0724 11.6241i −0.0234055 0.0270114i
\(58\) 535.320 + 617.792i 1.21191 + 1.39862i
\(59\) −652.592 191.618i −1.44000 0.422823i −0.533781 0.845623i \(-0.679229\pi\)
−0.906223 + 0.422799i \(0.861047\pi\)
\(60\) −4.90710 + 10.7450i −0.0105584 + 0.0231197i
\(61\) −189.119 121.540i −0.396955 0.255108i 0.326901 0.945059i \(-0.393996\pi\)
−0.723856 + 0.689951i \(0.757632\pi\)
\(62\) −260.987 + 76.6327i −0.534603 + 0.156974i
\(63\) −122.370 + 851.102i −0.244717 + 1.70204i
\(64\) 113.133 + 247.726i 0.220963 + 0.483841i
\(65\) 55.1338 + 383.464i 0.105208 + 0.731737i
\(66\) 174.171 111.933i 0.324834 0.208758i
\(67\) 133.508 154.077i 0.243442 0.280947i −0.620859 0.783923i \(-0.713216\pi\)
0.864301 + 0.502975i \(0.167761\pi\)
\(68\) −135.843 −0.242255
\(69\) 98.8417 37.8313i 0.172451 0.0660052i
\(70\) 533.225 0.910465
\(71\) 273.764 315.941i 0.457603 0.528102i −0.479319 0.877641i \(-0.659116\pi\)
0.936922 + 0.349539i \(0.113662\pi\)
\(72\) −392.978 + 252.552i −0.643235 + 0.413382i
\(73\) −16.3078 113.423i −0.0261463 0.181852i 0.972563 0.232639i \(-0.0747360\pi\)
−0.998709 + 0.0507873i \(0.983827\pi\)
\(74\) −134.023 293.468i −0.210538 0.461014i
\(75\) 3.41370 23.7428i 0.00525573 0.0365544i
\(76\) 37.8728 11.1204i 0.0571619 0.0167843i
\(77\) −1850.36 1189.15i −2.73855 1.75996i
\(78\) −99.8914 + 218.732i −0.145006 + 0.317519i
\(79\) −1044.42 306.669i −1.48742 0.436746i −0.565704 0.824608i \(-0.691396\pi\)
−0.921718 + 0.387862i \(0.873214\pi\)
\(80\) 254.202 + 293.365i 0.355258 + 0.409990i
\(81\) −429.117 495.227i −0.588637 0.679324i
\(82\) 363.501 + 106.733i 0.489536 + 0.143741i
\(83\) 121.099 265.170i 0.160149 0.350677i −0.812499 0.582963i \(-0.801893\pi\)
0.972648 + 0.232286i \(0.0746205\pi\)
\(84\) 65.5280 + 42.1123i 0.0851153 + 0.0547003i
\(85\) 264.673 77.7151i 0.337739 0.0991692i
\(86\) −117.867 + 819.782i −0.147790 + 1.02790i
\(87\) −100.732 220.573i −0.124134 0.271815i
\(88\) −170.058 1182.78i −0.206002 1.43278i
\(89\) −450.737 + 289.671i −0.536832 + 0.345001i −0.780799 0.624783i \(-0.785188\pi\)
0.243967 + 0.969784i \(0.421551\pi\)
\(90\) −276.204 + 318.756i −0.323494 + 0.373332i
\(91\) 2554.61 2.94282
\(92\) −17.0599 + 271.064i −0.0193329 + 0.307178i
\(93\) 80.6860 0.0899651
\(94\) −541.261 + 624.649i −0.593903 + 0.685400i
\(95\) −67.4286 + 43.3338i −0.0728214 + 0.0467995i
\(96\) 14.7225 + 102.397i 0.0156522 + 0.108863i
\(97\) 122.812 + 268.921i 0.128553 + 0.281492i 0.962954 0.269666i \(-0.0869133\pi\)
−0.834401 + 0.551158i \(0.814186\pi\)
\(98\) 342.509 2382.21i 0.353048 2.45550i
\(99\) 1669.33 490.159i 1.69468 0.497604i
\(100\) 51.7851 + 33.2803i 0.0517851 + 0.0332803i
\(101\) −88.7561 + 194.349i −0.0874412 + 0.191470i −0.948301 0.317373i \(-0.897199\pi\)
0.860860 + 0.508843i \(0.169927\pi\)
\(102\) 164.281 + 48.2373i 0.159473 + 0.0468256i
\(103\) −174.315 201.171i −0.166755 0.192446i 0.666221 0.745754i \(-0.267911\pi\)
−0.832977 + 0.553308i \(0.813365\pi\)
\(104\) 908.847 + 1048.87i 0.856921 + 0.988940i
\(105\) −151.766 44.5624i −0.141055 0.0414176i
\(106\) −169.546 + 371.255i −0.155357 + 0.340184i
\(107\) 1248.35 + 802.267i 1.12788 + 0.724842i 0.965116 0.261823i \(-0.0843238\pi\)
0.162761 + 0.986666i \(0.447960\pi\)
\(108\) −120.321 + 35.3294i −0.107202 + 0.0314775i
\(109\) 120.961 841.301i 0.106293 0.739284i −0.865064 0.501661i \(-0.832723\pi\)
0.971357 0.237623i \(-0.0763684\pi\)
\(110\) −448.195 981.411i −0.388489 0.850671i
\(111\) 13.6197 + 94.7270i 0.0116462 + 0.0810008i
\(112\) 2153.35 1383.87i 1.81672 1.16753i
\(113\) 628.595 725.437i 0.523303 0.603923i −0.431152 0.902279i \(-0.641893\pi\)
0.954455 + 0.298356i \(0.0964382\pi\)
\(114\) −49.7503 −0.0408732
\(115\) −121.835 537.895i −0.0987930 0.436165i
\(116\) 622.284 0.498083
\(117\) −1323.26 + 1527.12i −1.04560 + 1.20669i
\(118\) −1850.72 + 1189.38i −1.44383 + 0.927895i
\(119\) −258.866 1800.45i −0.199414 1.38695i
\(120\) −35.6969 78.1654i −0.0271556 0.0594624i
\(121\) −443.944 + 3087.70i −0.333542 + 2.31983i
\(122\) −697.693 + 204.861i −0.517755 + 0.152027i
\(123\) −94.5392 60.7567i −0.0693034 0.0445386i
\(124\) −86.0169 + 188.351i −0.0622947 + 0.136406i
\(125\) −119.937 35.2166i −0.0858197 0.0251989i
\(126\) 1821.32 + 2101.92i 1.28775 + 1.48614i
\(127\) −1189.27 1372.49i −0.830951 0.958968i 0.168693 0.985669i \(-0.446045\pi\)
−0.999643 + 0.0267006i \(0.991500\pi\)
\(128\) 1672.82 + 491.184i 1.15514 + 0.339179i
\(129\) 102.058 223.475i 0.0696563 0.152526i
\(130\) 1054.16 + 677.470i 0.711202 + 0.457062i
\(131\) 893.722 262.421i 0.596068 0.175021i 0.0302371 0.999543i \(-0.490374\pi\)
0.565831 + 0.824521i \(0.308556\pi\)
\(132\) 22.4298 156.002i 0.0147899 0.102866i
\(133\) 219.562 + 480.773i 0.143146 + 0.313446i
\(134\) −93.8475 652.724i −0.0605014 0.420797i
\(135\) 214.219 137.670i 0.136571 0.0877686i
\(136\) 647.129 746.827i 0.408021 0.470882i
\(137\) −490.412 −0.305830 −0.152915 0.988239i \(-0.548866\pi\)
−0.152915 + 0.988239i \(0.548866\pi\)
\(138\) 116.885 321.753i 0.0721010 0.198474i
\(139\) 1210.77 0.738822 0.369411 0.929266i \(-0.379560\pi\)
0.369411 + 0.929266i \(0.379560\pi\)
\(140\) 265.818 306.770i 0.160469 0.185191i
\(141\) 206.256 132.553i 0.123191 0.0791698i
\(142\) −192.438 1338.44i −0.113726 0.790979i
\(143\) −2147.25 4701.82i −1.25568 2.74955i
\(144\) −288.143 + 2004.08i −0.166749 + 1.15977i
\(145\) −1212.45 + 356.007i −0.694402 + 0.203895i
\(146\) −311.806 200.386i −0.176748 0.113589i
\(147\) −296.569 + 649.396i −0.166399 + 0.364362i
\(148\) −235.647 69.1922i −0.130879 0.0384295i
\(149\) 119.076 + 137.421i 0.0654705 + 0.0755569i 0.787540 0.616264i \(-0.211354\pi\)
−0.722070 + 0.691821i \(0.756809\pi\)
\(150\) −50.8086 58.6362i −0.0276567 0.0319175i
\(151\) 1383.36 + 406.192i 0.745540 + 0.218910i 0.632371 0.774665i \(-0.282082\pi\)
0.113169 + 0.993576i \(0.463900\pi\)
\(152\) −119.282 + 261.190i −0.0636514 + 0.139377i
\(153\) 1210.38 + 777.866i 0.639566 + 0.411024i
\(154\) −6826.28 + 2004.38i −3.57193 + 1.04881i
\(155\) 59.8389 416.189i 0.0310089 0.215672i
\(156\) 76.0419 + 166.508i 0.0390271 + 0.0854574i
\(157\) 220.377 + 1532.76i 0.112026 + 0.779155i 0.965945 + 0.258749i \(0.0833102\pi\)
−0.853919 + 0.520406i \(0.825781\pi\)
\(158\) −2961.92 + 1903.51i −1.49138 + 0.958450i
\(159\) 79.2824 91.4968i 0.0395441 0.0456363i
\(160\) 539.097 0.266371
\(161\) −3625.18 + 290.436i −1.77456 + 0.142171i
\(162\) −2119.53 −1.02794
\(163\) 1209.06 1395.33i 0.580985 0.670493i −0.386831 0.922151i \(-0.626430\pi\)
0.967816 + 0.251658i \(0.0809757\pi\)
\(164\) 242.614 155.918i 0.115518 0.0742389i
\(165\) 45.5467 + 316.784i 0.0214897 + 0.149464i
\(166\) −391.700 857.704i −0.183144 0.401029i
\(167\) −574.070 + 3992.74i −0.266005 + 1.85011i 0.219168 + 0.975687i \(0.429666\pi\)
−0.485173 + 0.874418i \(0.661243\pi\)
\(168\) −543.685 + 159.640i −0.249680 + 0.0733127i
\(169\) 3202.13 + 2057.89i 1.45750 + 0.936680i
\(170\) 370.650 811.610i 0.167221 0.366162i
\(171\) −401.132 117.783i −0.179388 0.0526730i
\(172\) 412.872 + 476.479i 0.183030 + 0.211228i
\(173\) 455.491 + 525.664i 0.200175 + 0.231015i 0.846958 0.531660i \(-0.178431\pi\)
−0.646783 + 0.762674i \(0.723886\pi\)
\(174\) −752.559 220.971i −0.327882 0.0962747i
\(175\) −342.412 + 749.778i −0.147908 + 0.323874i
\(176\) −4357.01 2800.08i −1.86603 1.19923i
\(177\) 626.147 183.853i 0.265899 0.0780750i
\(178\) −246.638 + 1715.40i −0.103856 + 0.722332i
\(179\) −104.685 229.228i −0.0437124 0.0957167i 0.886516 0.462698i \(-0.153119\pi\)
−0.930228 + 0.366981i \(0.880391\pi\)
\(180\) 45.6936 + 317.806i 0.0189211 + 0.131599i
\(181\) −950.291 + 610.715i −0.390246 + 0.250796i −0.721020 0.692914i \(-0.756327\pi\)
0.330774 + 0.943710i \(0.392690\pi\)
\(182\) 5411.12 6244.77i 2.20384 2.54337i
\(183\) 215.697 0.0871299
\(184\) −1408.97 1385.09i −0.564513 0.554946i
\(185\) 498.715 0.198196
\(186\) 170.907 197.238i 0.0673738 0.0777535i
\(187\) −3096.19 + 1989.80i −1.21078 + 0.778120i
\(188\) 89.5433 + 622.787i 0.0347373 + 0.241603i
\(189\) −697.542 1527.40i −0.268459 0.587842i
\(190\) −36.8961 + 256.618i −0.0140880 + 0.0979844i
\(191\) −125.141 + 36.7448i −0.0474078 + 0.0139202i −0.305350 0.952240i \(-0.598774\pi\)
0.257943 + 0.966160i \(0.416955\pi\)
\(192\) −219.821 141.270i −0.0826259 0.0531005i
\(193\) −1097.31 + 2402.77i −0.409253 + 0.896140i 0.586994 + 0.809591i \(0.300311\pi\)
−0.996248 + 0.0865486i \(0.972416\pi\)
\(194\) 917.515 + 269.407i 0.339556 + 0.0997025i
\(195\) −243.417 280.919i −0.0893922 0.103164i
\(196\) −1199.76 1384.60i −0.437232 0.504593i
\(197\) 882.559 + 259.143i 0.319186 + 0.0937216i 0.437401 0.899266i \(-0.355899\pi\)
−0.118215 + 0.992988i \(0.537717\pi\)
\(198\) 2337.73 5118.92i 0.839068 1.83730i
\(199\) 2639.60 + 1696.37i 0.940283 + 0.604283i 0.918475 0.395479i \(-0.129421\pi\)
0.0218077 + 0.999762i \(0.493058\pi\)
\(200\) −429.661 + 126.160i −0.151908 + 0.0446042i
\(201\) −27.8384 + 193.620i −0.00976900 + 0.0679449i
\(202\) 287.086 + 628.630i 0.0999964 + 0.218962i
\(203\) 1185.85 + 8247.74i 0.410000 + 2.85162i
\(204\) 109.647 70.4660i 0.0376316 0.0241843i
\(205\) −383.504 + 442.587i −0.130659 + 0.150788i
\(206\) −860.993 −0.291205
\(207\) 1704.18 2317.54i 0.572216 0.778164i
\(208\) 6015.31 2.00522
\(209\) 700.323 808.216i 0.231782 0.267490i
\(210\) −430.400 + 276.601i −0.141430 + 0.0908919i
\(211\) 483.510 + 3362.89i 0.157754 + 1.09721i 0.902759 + 0.430147i \(0.141538\pi\)
−0.745004 + 0.667060i \(0.767553\pi\)
\(212\) 129.066 + 282.616i 0.0418128 + 0.0915573i
\(213\) −57.0837 + 397.026i −0.0183630 + 0.127717i
\(214\) 4605.38 1352.26i 1.47111 0.431956i
\(215\) −1077.02 692.161i −0.341639 0.219558i
\(216\) 378.954 829.794i 0.119373 0.261391i
\(217\) −2660.31 781.138i −0.832229 0.244365i
\(218\) −1800.35 2077.71i −0.559335 0.645507i
\(219\) 71.9993 + 83.0916i 0.0222158 + 0.0256384i
\(220\) −788.046 231.391i −0.241500 0.0709109i
\(221\) 1775.74 3888.32i 0.540493 1.18351i
\(222\) 260.410 + 167.355i 0.0787277 + 0.0505952i
\(223\) −4641.13 + 1362.76i −1.39369 + 0.409224i −0.890513 0.454958i \(-0.849654\pi\)
−0.503178 + 0.864183i \(0.667836\pi\)
\(224\) 505.911 3518.69i 0.150904 1.04956i
\(225\) −270.844 593.066i −0.0802502 0.175723i
\(226\) −441.860 3073.21i −0.130054 0.904543i
\(227\) 3370.84 2166.31i 0.985596 0.633404i 0.0546290 0.998507i \(-0.482602\pi\)
0.930967 + 0.365102i \(0.118966\pi\)
\(228\) −24.8010 + 28.6219i −0.00720388 + 0.00831373i
\(229\) 4616.72 1.33223 0.666117 0.745848i \(-0.267955\pi\)
0.666117 + 0.745848i \(0.267955\pi\)
\(230\) −1572.96 841.530i −0.450946 0.241256i
\(231\) 2110.40 0.601099
\(232\) −2964.45 + 3421.16i −0.838904 + 0.968146i
\(233\) 3228.90 2075.09i 0.907864 0.583449i −0.00124851 0.999999i \(-0.500397\pi\)
0.909113 + 0.416550i \(0.136761\pi\)
\(234\) 930.163 + 6469.43i 0.259858 + 1.80735i
\(235\) −530.759 1162.20i −0.147331 0.322611i
\(236\) −238.335 + 1657.66i −0.0657385 + 0.457222i
\(237\) 1002.10 294.242i 0.274655 0.0806459i
\(238\) −4949.55 3180.88i −1.34803 0.866327i
\(239\) 1527.52 3344.81i 0.413419 0.905261i −0.582313 0.812965i \(-0.697852\pi\)
0.995732 0.0922964i \(-0.0294207\pi\)
\(240\) −357.360 104.930i −0.0961147 0.0282218i
\(241\) −1417.69 1636.10i −0.378926 0.437304i 0.533965 0.845506i \(-0.320701\pi\)
−0.912892 + 0.408202i \(0.866156\pi\)
\(242\) 6607.54 + 7625.51i 1.75516 + 2.02556i
\(243\) 1922.63 + 564.534i 0.507558 + 0.149032i
\(244\) −229.948 + 503.516i −0.0603316 + 0.132108i
\(245\) 3129.72 + 2011.35i 0.816125 + 0.524492i
\(246\) −348.771 + 102.408i −0.0903936 + 0.0265419i
\(247\) −176.765 + 1229.43i −0.0455355 + 0.316706i
\(248\) −625.734 1370.17i −0.160218 0.350829i
\(249\) 39.8055 + 276.854i 0.0101308 + 0.0704614i
\(250\) −340.134 + 218.591i −0.0860479 + 0.0552996i
\(251\) 1708.10 1971.26i 0.429540 0.495716i −0.499179 0.866499i \(-0.666365\pi\)
0.928720 + 0.370783i \(0.120911\pi\)
\(252\) 2117.20 0.529251
\(253\) 3581.65 + 6428.09i 0.890026 + 1.59735i
\(254\) −5874.15 −1.45109
\(255\) −173.321 + 200.023i −0.0425639 + 0.0491214i
\(256\) 2911.19 1870.91i 0.710741 0.456765i
\(257\) −238.982 1662.15i −0.0580049 0.403433i −0.998052 0.0623883i \(-0.980128\pi\)
0.940047 0.341045i \(-0.110781\pi\)
\(258\) −330.110 722.840i −0.0796579 0.174426i
\(259\) 468.015 3255.12i 0.112282 0.780938i
\(260\) 915.267 268.747i 0.218317 0.0641037i
\(261\) −5544.67 3563.34i −1.31497 0.845078i
\(262\) 1251.57 2740.56i 0.295124 0.646231i
\(263\) 219.611 + 64.4836i 0.0514897 + 0.0151188i 0.307376 0.951588i \(-0.400549\pi\)
−0.255886 + 0.966707i \(0.582367\pi\)
\(264\) 750.809 + 866.480i 0.175035 + 0.202001i
\(265\) −413.154 476.805i −0.0957731 0.110528i
\(266\) 1640.32 + 481.643i 0.378100 + 0.111020i
\(267\) 213.557 467.624i 0.0489493 0.107184i
\(268\) −422.303 271.398i −0.0962547 0.0618591i
\(269\) −7802.96 + 2291.16i −1.76861 + 0.519310i −0.993631 0.112682i \(-0.964056\pi\)
−0.774975 + 0.631992i \(0.782238\pi\)
\(270\) 117.218 815.269i 0.0264210 0.183762i
\(271\) −414.043 906.628i −0.0928094 0.203224i 0.857534 0.514427i \(-0.171995\pi\)
−0.950343 + 0.311203i \(0.899268\pi\)
\(272\) −609.549 4239.50i −0.135880 0.945065i
\(273\) −2061.99 + 1325.16i −0.457133 + 0.293782i
\(274\) −1038.78 + 1198.81i −0.229033 + 0.264318i
\(275\) 1667.79 0.365715
\(276\) −126.839 227.642i −0.0276624 0.0496466i
\(277\) 6282.89 1.36282 0.681412 0.731900i \(-0.261366\pi\)
0.681412 + 0.731900i \(0.261366\pi\)
\(278\) 2564.63 2959.74i 0.553295 0.638537i
\(279\) 1844.97 1185.69i 0.395897 0.254427i
\(280\) 420.234 + 2922.79i 0.0896921 + 0.623822i
\(281\) −2232.21 4887.85i −0.473887 1.03767i −0.984099 0.177620i \(-0.943160\pi\)
0.510212 0.860049i \(-0.329567\pi\)
\(282\) 112.861 784.964i 0.0238325 0.165759i
\(283\) −1245.05 + 365.579i −0.261521 + 0.0767895i −0.409865 0.912146i \(-0.634424\pi\)
0.148343 + 0.988936i \(0.452606\pi\)
\(284\) −865.949 556.512i −0.180932 0.116278i
\(285\) 31.9473 69.9549i 0.00663998 0.0145395i
\(286\) −16041.9 4710.32i −3.31670 0.973870i
\(287\) 2528.87 + 2918.47i 0.520120 + 0.600251i
\(288\) 1841.38 + 2125.06i 0.376751 + 0.434794i
\(289\) 1793.62 + 526.653i 0.365076 + 0.107196i
\(290\) −1697.92 + 3717.92i −0.343811 + 0.752841i
\(291\) −238.627 153.356i −0.0480707 0.0308932i
\(292\) −270.722 + 79.4912i −0.0542563 + 0.0159311i
\(293\) −994.122 + 6914.27i −0.198216 + 1.37862i 0.611242 + 0.791444i \(0.290670\pi\)
−0.809458 + 0.587178i \(0.800239\pi\)
\(294\) 959.266 + 2100.50i 0.190291 + 0.416679i
\(295\) −483.972 3366.10i −0.0955184 0.664345i
\(296\) 1502.98 965.907i 0.295132 0.189670i
\(297\) −2224.91 + 2567.68i −0.434687 + 0.501656i
\(298\) 588.151 0.114331
\(299\) −7535.84 4031.66i −1.45755 0.779790i
\(300\) −59.0626 −0.0113666
\(301\) −5528.46 + 6380.19i −1.05866 + 1.22175i
\(302\) 3923.15 2521.25i 0.747522 0.480404i
\(303\) −29.1743 202.912i −0.00553143 0.0384719i
\(304\) 516.999 + 1132.07i 0.0975392 + 0.213581i
\(305\) 159.967 1112.59i 0.0300317 0.208875i
\(306\) 4465.30 1311.13i 0.834197 0.244942i
\(307\) −4321.05 2776.97i −0.803308 0.516255i 0.0733857 0.997304i \(-0.476620\pi\)
−0.876694 + 0.481049i \(0.840256\pi\)
\(308\) −2249.83 + 4926.43i −0.416220 + 0.911395i
\(309\) 245.055 + 71.9546i 0.0451155 + 0.0132471i
\(310\) −890.627 1027.84i −0.163175 0.188314i
\(311\) −1568.30 1809.91i −0.285949 0.330002i 0.594543 0.804064i \(-0.297333\pi\)
−0.880492 + 0.474061i \(0.842787\pi\)
\(312\) −1277.67 375.158i −0.231839 0.0680741i
\(313\) −588.970 + 1289.66i −0.106360 + 0.232895i −0.955327 0.295549i \(-0.904497\pi\)
0.848968 + 0.528445i \(0.177225\pi\)
\(314\) 4213.63 + 2707.94i 0.757289 + 0.486680i
\(315\) −4125.12 + 1211.24i −0.737855 + 0.216654i
\(316\) −381.435 + 2652.94i −0.0679032 + 0.472277i
\(317\) −586.167 1283.53i −0.103856 0.227413i 0.850569 0.525863i \(-0.176258\pi\)
−0.954425 + 0.298450i \(0.903530\pi\)
\(318\) −55.7303 387.613i −0.00982767 0.0683530i
\(319\) 14183.4 9115.11i 2.48940 1.59984i
\(320\) −891.714 + 1029.09i −0.155776 + 0.179775i
\(321\) −1423.79 −0.247564
\(322\) −6968.80 + 9476.97i −1.20607 + 1.64016i
\(323\) 884.394 0.152350
\(324\) −1056.61 + 1219.39i −0.181174 + 0.209086i
\(325\) −1629.54 + 1047.24i −0.278125 + 0.178740i
\(326\) −849.887 5911.09i −0.144389 1.00425i
\(327\) 338.775 + 741.814i 0.0572914 + 0.125451i
\(328\) −298.569 + 2076.59i −0.0502613 + 0.349575i
\(329\) −8083.77 + 2373.61i −1.35463 + 0.397755i
\(330\) 870.857 + 559.666i 0.145270 + 0.0933593i
\(331\) −2446.72 + 5357.57i −0.406296 + 0.889664i 0.590297 + 0.807186i \(0.299011\pi\)
−0.996593 + 0.0824780i \(0.973717\pi\)
\(332\) −688.713 202.224i −0.113849 0.0334292i
\(333\) 1703.45 + 1965.88i 0.280326 + 0.323513i
\(334\) 8544.30 + 9860.65i 1.39977 + 1.61542i
\(335\) 978.073 + 287.188i 0.159516 + 0.0468381i
\(336\) −1020.24 + 2234.02i −0.165651 + 0.362726i
\(337\) 481.591 + 309.499i 0.0778454 + 0.0500282i 0.578985 0.815339i \(-0.303449\pi\)
−0.501139 + 0.865367i \(0.667086\pi\)
\(338\) 11813.2 3468.67i 1.90104 0.558197i
\(339\) −131.071 + 911.619i −0.0209994 + 0.146054i
\(340\) −282.155 617.834i −0.0450059 0.0985493i
\(341\) 798.391 + 5552.93i 0.126790 + 0.881842i
\(342\) −1137.59 + 731.084i −0.179865 + 0.115592i
\(343\) 8659.40 9993.48i 1.36316 1.57317i
\(344\) −4586.40 −0.718844
\(345\) 377.365 + 370.970i 0.0588888 + 0.0578908i
\(346\) 2249.80 0.349566
\(347\) 7945.87 9170.03i 1.22927 1.41865i 0.353843 0.935305i \(-0.384875\pi\)
0.875428 0.483349i \(-0.160580\pi\)
\(348\) −502.285 + 322.799i −0.0773716 + 0.0497237i
\(349\) 744.988 + 5181.51i 0.114265 + 0.794727i 0.963691 + 0.267020i \(0.0860390\pi\)
−0.849426 + 0.527707i \(0.823052\pi\)
\(350\) 1107.55 + 2425.19i 0.169146 + 0.370377i
\(351\) 561.577 3905.85i 0.0853981 0.593957i
\(352\) −6901.45 + 2026.45i −1.04502 + 0.306847i
\(353\) −8358.31 5371.56i −1.26025 0.809912i −0.271930 0.962317i \(-0.587662\pi\)
−0.988318 + 0.152404i \(0.951298\pi\)
\(354\) 876.860 1920.05i 0.131651 0.288276i
\(355\) 2005.58 + 588.891i 0.299845 + 0.0880424i
\(356\) 863.940 + 997.039i 0.128620 + 0.148435i
\(357\) 1142.90 + 1318.98i 0.169436 + 0.195540i
\(358\) −782.090 229.642i −0.115460 0.0339022i
\(359\) −2213.87 + 4847.70i −0.325470 + 0.712679i −0.999665 0.0258738i \(-0.991763\pi\)
0.674196 + 0.738553i \(0.264490\pi\)
\(360\) −1964.89 1262.76i −0.287664 0.184870i
\(361\) 6334.59 1860.00i 0.923545 0.271177i
\(362\) −519.988 + 3616.60i −0.0754971 + 0.525094i
\(363\) −1243.35 2722.57i −0.179777 0.393657i
\(364\) −895.186 6226.15i −0.128902 0.896536i
\(365\) 481.994 309.759i 0.0691197 0.0444206i
\(366\) 456.884 527.273i 0.0652506 0.0753032i
\(367\) 2685.34 0.381944 0.190972 0.981595i \(-0.438836\pi\)
0.190972 + 0.981595i \(0.438836\pi\)
\(368\) −8536.16 + 683.885i −1.20918 + 0.0968749i
\(369\) −3054.56 −0.430932
\(370\) 1056.37 1219.11i 0.148427 0.171294i
\(371\) −3499.83 + 2249.21i −0.489763 + 0.314752i
\(372\) −28.2740 196.650i −0.00394069 0.0274081i
\(373\) 3226.04 + 7064.05i 0.447824 + 0.980597i 0.990096 + 0.140394i \(0.0448370\pi\)
−0.542272 + 0.840203i \(0.682436\pi\)
\(374\) −1694.20 + 11783.4i −0.234237 + 1.62916i
\(375\) 115.076 33.7895i 0.0158467 0.00465302i
\(376\) −3850.49 2474.56i −0.528122 0.339403i
\(377\) −8134.51 + 17812.1i −1.11127 + 2.43334i
\(378\) −5211.26 1530.16i −0.709096 0.208209i
\(379\) −3152.05 3637.65i −0.427202 0.493018i 0.500815 0.865554i \(-0.333034\pi\)
−0.928018 + 0.372536i \(0.878488\pi\)
\(380\) 129.242 + 149.153i 0.0174473 + 0.0201353i
\(381\) 1671.89 + 490.912i 0.224813 + 0.0660110i
\(382\) −175.248 + 383.740i −0.0234725 + 0.0513975i
\(383\) −7439.28 4780.94i −0.992505 0.637844i −0.0596967 0.998217i \(-0.519013\pi\)
−0.932809 + 0.360372i \(0.882650\pi\)
\(384\) −1605.03 + 471.280i −0.213298 + 0.0626300i
\(385\) 1565.13 10885.7i 0.207185 1.44100i
\(386\) 3549.29 + 7771.86i 0.468016 + 1.02481i
\(387\) −950.334 6609.72i −0.124827 0.868193i
\(388\) 612.383 393.555i 0.0801264 0.0514941i
\(389\) 6800.52 7848.22i 0.886375 1.02293i −0.113194 0.993573i \(-0.536108\pi\)
0.999569 0.0293587i \(-0.00934651\pi\)
\(390\) −1202.31 −0.156106
\(391\) −2077.83 + 5719.69i −0.268748 + 0.739788i
\(392\) 13327.6 1.71721
\(393\) −585.254 + 675.419i −0.0751200 + 0.0866931i
\(394\) 2502.89 1608.51i 0.320035 0.205674i
\(395\) −774.557 5387.16i −0.0986637 0.686221i
\(396\) −1779.59 3896.76i −0.225828 0.494493i
\(397\) 1012.32 7040.85i 0.127977 0.890102i −0.820136 0.572169i \(-0.806102\pi\)
0.948113 0.317933i \(-0.102989\pi\)
\(398\) 9737.92 2859.31i 1.22643 0.360111i
\(399\) −426.615 274.169i −0.0535275 0.0344000i
\(400\) −806.273 + 1765.49i −0.100784 + 0.220686i
\(401\) 10744.2 + 3154.77i 1.33800 + 0.392872i 0.870955 0.491362i \(-0.163501\pi\)
0.467044 + 0.884234i \(0.345319\pi\)
\(402\) 414.339 + 478.173i 0.0514064 + 0.0593261i
\(403\) −4266.88 4924.24i −0.527416 0.608670i
\(404\) 504.773 + 148.215i 0.0621618 + 0.0182524i
\(405\) 1361.06 2980.31i 0.166992 0.365662i
\(406\) 22673.5 + 14571.4i 2.77159 + 1.78119i
\(407\) −6384.49 + 1874.65i −0.777561 + 0.228313i
\(408\) −134.936 + 938.499i −0.0163733 + 0.113879i
\(409\) −6039.85 13225.4i −0.730199 1.59891i −0.799034 0.601285i \(-0.794656\pi\)
0.0688352 0.997628i \(-0.478072\pi\)
\(410\) 269.578 + 1874.95i 0.0324719 + 0.225847i
\(411\) 395.843 254.393i 0.0475072 0.0305310i
\(412\) −429.214 + 495.339i −0.0513248 + 0.0592320i
\(413\) −22424.7 −2.67179
\(414\) −2055.48 9074.83i −0.244013 1.07730i
\(415\) 1457.57 0.172408
\(416\) 5470.71 6313.53i 0.644768 0.744102i
\(417\) −977.290 + 628.066i −0.114768 + 0.0737567i
\(418\) −492.281 3423.89i −0.0576034 0.400641i
\(419\) 3839.29 + 8406.88i 0.447641 + 0.980198i 0.990132 + 0.140136i \(0.0447540\pi\)
−0.542491 + 0.840062i \(0.682519\pi\)
\(420\) −55.4268 + 385.502i −0.00643941 + 0.0447871i
\(421\) −114.307 + 33.5636i −0.0132327 + 0.00388548i −0.288342 0.957527i \(-0.593104\pi\)
0.275109 + 0.961413i \(0.411286\pi\)
\(422\) 9244.75 + 5941.24i 1.06642 + 0.685344i
\(423\) 2768.37 6061.89i 0.318210 0.696783i
\(424\) −2168.60 636.758i −0.248388 0.0729332i
\(425\) 903.207 + 1042.36i 0.103087 + 0.118969i
\(426\) 849.620 + 980.513i 0.0966296 + 0.111516i
\(427\) −7111.78 2088.21i −0.806003 0.236664i
\(428\) 1517.86 3323.64i 0.171421 0.375360i
\(429\) 4172.17 + 2681.29i 0.469543 + 0.301757i
\(430\) −3973.32 + 1166.67i −0.445606 + 0.130842i
\(431\) −408.984 + 2844.55i −0.0457078 + 0.317905i 0.954121 + 0.299420i \(0.0967932\pi\)
−0.999829 + 0.0184845i \(0.994116\pi\)
\(432\) −1642.49 3596.55i −0.182927 0.400554i
\(433\) −2427.59 16884.2i −0.269428 1.87391i −0.453868 0.891069i \(-0.649956\pi\)
0.184440 0.982844i \(-0.440953\pi\)
\(434\) −7544.51 + 4848.56i −0.834442 + 0.536264i
\(435\) 793.971 916.292i 0.0875127 0.100995i
\(436\) −2092.82 −0.229881
\(437\) 111.068 1764.74i 0.0121581 0.193178i
\(438\) 355.625 0.0387955
\(439\) 5366.65 6193.44i 0.583454 0.673342i −0.384890 0.922963i \(-0.625761\pi\)
0.968344 + 0.249621i \(0.0803060\pi\)
\(440\) 5026.24 3230.17i 0.544583 0.349982i
\(441\) 2761.58 + 19207.2i 0.298194 + 2.07399i
\(442\) −5743.70 12576.9i −0.618099 1.35345i
\(443\) −1828.82 + 12719.7i −0.196140 + 1.36418i 0.619215 + 0.785221i \(0.287451\pi\)
−0.815355 + 0.578961i \(0.803458\pi\)
\(444\) 226.098 66.3884i 0.0241670 0.00709606i
\(445\) −2253.69 1448.36i −0.240079 0.154289i
\(446\) −6499.46 + 14231.8i −0.690041 + 1.51098i
\(447\) −167.399 49.1527i −0.0177130 0.00520099i
\(448\) 5880.07 + 6785.97i 0.620106 + 0.715640i
\(449\) −4669.04 5388.36i −0.490747 0.566353i 0.455318 0.890329i \(-0.349526\pi\)
−0.946065 + 0.323976i \(0.894980\pi\)
\(450\) −2023.45 594.139i −0.211970 0.0622399i
\(451\) 3245.90 7107.52i 0.338899 0.742084i
\(452\) −1988.32 1277.82i −0.206909 0.132972i
\(453\) −1327.31 + 389.732i −0.137665 + 0.0404221i
\(454\) 1844.48 12828.7i 0.190674 1.32616i
\(455\) 5306.12 + 11618.8i 0.546714 + 1.19714i
\(456\) −39.2082 272.699i −0.00402651 0.0280050i
\(457\) −7804.58 + 5015.70i −0.798868 + 0.513401i −0.875246 0.483678i \(-0.839301\pi\)
0.0763783 + 0.997079i \(0.475664\pi\)
\(458\) 9779.03 11285.6i 0.997694 1.15140i
\(459\) −2809.69 −0.285720
\(460\) −1268.28 + 485.428i −0.128551 + 0.0492026i
\(461\) −14700.0 −1.48513 −0.742565 0.669774i \(-0.766391\pi\)
−0.742565 + 0.669774i \(0.766391\pi\)
\(462\) 4470.19 5158.87i 0.450156 0.519508i
\(463\) −1770.24 + 1137.66i −0.177689 + 0.114194i −0.626462 0.779452i \(-0.715498\pi\)
0.448773 + 0.893646i \(0.351861\pi\)
\(464\) 2792.29 + 19420.8i 0.279373 + 1.94308i
\(465\) 167.591 + 366.973i 0.0167136 + 0.0365978i
\(466\) 1766.82 12288.5i 0.175636 1.22157i
\(467\) 9362.20 2748.99i 0.927690 0.272394i 0.217220 0.976123i \(-0.430301\pi\)
0.710469 + 0.703728i \(0.248483\pi\)
\(468\) 4185.63 + 2689.94i 0.413420 + 0.265689i
\(469\) 2792.34 6114.38i 0.274922 0.601995i
\(470\) −3965.24 1164.30i −0.389155 0.114266i
\(471\) −972.971 1122.87i −0.0951850 0.109849i
\(472\) −7977.98 9207.08i −0.778001 0.897861i
\(473\) 16389.7 + 4812.46i 1.59324 + 0.467817i
\(474\) 1403.34 3072.89i 0.135986 0.297769i
\(475\) −337.143 216.669i −0.0325667 0.0209294i
\(476\) −4297.39 + 1261.83i −0.413804 + 0.121504i
\(477\) 468.318 3257.22i 0.0449535 0.312658i
\(478\) −4940.84 10818.9i −0.472780 1.03524i
\(479\) 1726.60 + 12008.8i 0.164698 + 1.14550i 0.889631 + 0.456681i \(0.150962\pi\)
−0.724933 + 0.688820i \(0.758129\pi\)
\(480\) −435.139 + 279.647i −0.0413777 + 0.0265918i
\(481\) 5060.92 5840.61i 0.479746 0.553657i
\(482\) −7002.36 −0.661719
\(483\) 2775.46 2114.93i 0.261465 0.199239i
\(484\) 7680.97 0.721353
\(485\) −968.004 + 1117.14i −0.0906285 + 0.104591i
\(486\) 5452.47 3504.09i 0.508908 0.327055i
\(487\) 1989.96 + 13840.5i 0.185161 + 1.28782i 0.844327 + 0.535828i \(0.180000\pi\)
−0.659166 + 0.751997i \(0.729091\pi\)
\(488\) −1672.77 3662.85i −0.155169 0.339773i
\(489\) −252.106 + 1753.43i −0.0233141 + 0.162153i
\(490\) 11546.1 3390.23i 1.06449 0.312561i
\(491\) 6266.15 + 4027.01i 0.575942 + 0.370135i 0.795950 0.605363i \(-0.206972\pi\)
−0.220008 + 0.975498i \(0.570608\pi\)
\(492\) −114.949 + 251.703i −0.0105331 + 0.0230643i
\(493\) 13378.0 + 3928.13i 1.22214 + 0.358852i
\(494\) 2630.92 + 3036.24i 0.239617 + 0.276532i
\(495\) 5696.64 + 6574.27i 0.517262 + 0.596952i
\(496\) −6264.20 1839.33i −0.567078 0.166509i
\(497\) 5725.81 12537.8i 0.516776 1.13158i
\(498\) 761.085 + 489.120i 0.0684840 + 0.0440120i
\(499\) 9330.43 2739.66i 0.837049 0.245780i 0.165006 0.986292i \(-0.447236\pi\)
0.672042 + 0.740513i \(0.265417\pi\)
\(500\) −43.8024 + 304.652i −0.00391781 + 0.0272489i
\(501\) −1607.80 3520.58i −0.143375 0.313948i
\(502\) −1200.68 8350.95i −0.106751 0.742472i
\(503\) −464.191 + 298.318i −0.0411476 + 0.0264440i −0.561053 0.827780i \(-0.689604\pi\)
0.519905 + 0.854224i \(0.325967\pi\)
\(504\) −10086.0 + 11639.8i −0.891399 + 1.02873i
\(505\) −1068.28 −0.0941346
\(506\) 23300.1 + 4860.47i 2.04707 + 0.427024i
\(507\) −3652.14 −0.319915
\(508\) −2928.32 + 3379.46i −0.255754 + 0.295156i
\(509\) −7582.88 + 4873.22i −0.660324 + 0.424365i −0.827426 0.561575i \(-0.810196\pi\)
0.167102 + 0.985940i \(0.446559\pi\)
\(510\) 121.833 + 847.370i 0.0105782 + 0.0735729i
\(511\) −1569.47 3436.67i −0.135870 0.297513i
\(512\) −391.970 + 2726.21i −0.0338336 + 0.235318i
\(513\) 783.339 230.009i 0.0674177 0.0197956i
\(514\) −4569.35 2936.54i −0.392112 0.251995i
\(515\) 552.890 1210.66i 0.0473073 0.103588i
\(516\) −580.420 170.427i −0.0495186 0.0145400i
\(517\) 11163.4 + 12883.2i 0.949642 + 1.09595i
\(518\) −6965.81 8038.97i −0.590850 0.681877i
\(519\) −640.335 188.019i −0.0541572 0.0159020i
\(520\) −2882.67 + 6312.16i −0.243102 + 0.532320i
\(521\) 2617.53 + 1682.19i 0.220108 + 0.141455i 0.646048 0.763296i \(-0.276420\pi\)
−0.425941 + 0.904751i \(0.640057\pi\)
\(522\) −20455.2 + 6006.19i −1.71513 + 0.503609i
\(523\) −1804.61 + 12551.3i −0.150880 + 1.04939i 0.763870 + 0.645370i \(0.223297\pi\)
−0.914750 + 0.404021i \(0.867612\pi\)
\(524\) −952.754 2086.24i −0.0794299 0.173927i
\(525\) −112.552 782.814i −0.00935649 0.0650758i
\(526\) 622.806 400.253i 0.0516267 0.0331784i
\(527\) −3038.16 + 3506.23i −0.251128 + 0.289817i
\(528\) 4969.32 0.409587
\(529\) 11152.3 + 4864.47i 0.916599 + 0.399808i
\(530\) −2040.69 −0.167249
\(531\) 11615.7 13405.3i 0.949303 1.09555i
\(532\) 1094.81 703.593i 0.0892220 0.0573395i
\(533\) 1291.51 + 8982.67i 0.104956 + 0.729986i
\(534\) −690.759 1512.55i −0.0559777 0.122574i
\(535\) −1055.92 + 7344.08i −0.0853296 + 0.593480i
\(536\) 3503.85 1028.82i 0.282357 0.0829074i
\(537\) 203.406 + 130.721i 0.0163456 + 0.0105047i
\(538\) −10927.3 + 23927.5i −0.875669 + 1.91745i
\(539\) −47627.0 13984.5i −3.80601 1.11754i
\(540\) −410.599 473.856i −0.0327210 0.0377621i
\(541\) 5614.82 + 6479.85i 0.446211 + 0.514955i 0.933642 0.358207i \(-0.116612\pi\)
−0.487432 + 0.873161i \(0.662066\pi\)
\(542\) −3093.28 908.268i −0.245143 0.0719805i
\(543\) 450.243 985.894i 0.0355834 0.0779167i
\(544\) −5004.05 3215.91i −0.394388 0.253458i
\(545\) 4077.61 1197.30i 0.320488 0.0941037i
\(546\) −1128.30 + 7847.48i −0.0884371 + 0.615093i
\(547\) −5086.00 11136.8i −0.397554 0.870521i −0.997512 0.0704900i \(-0.977544\pi\)
0.599959 0.800031i \(-0.295184\pi\)
\(548\) 171.850 + 1195.24i 0.0133961 + 0.0931719i
\(549\) 4932.12 3169.68i 0.383420 0.246409i
\(550\) 3532.68 4076.93i 0.273880 0.316074i
\(551\) −4051.34 −0.313236
\(552\) 1855.76 + 387.116i 0.143091 + 0.0298492i
\(553\) −35888.9 −2.75977
\(554\) 13308.3 15358.6i 1.02060 1.17784i
\(555\) −402.545 + 258.700i −0.0307875 + 0.0197859i
\(556\) −424.277 2950.91i −0.0323622 0.225084i
\(557\) −1112.71 2436.50i −0.0846447 0.185346i 0.862577 0.505926i \(-0.168849\pi\)
−0.947221 + 0.320581i \(0.896122\pi\)
\(558\) 1009.54 7021.52i 0.0765902 0.532697i
\(559\) −19035.7 + 5589.38i −1.44029 + 0.422908i
\(560\) 10766.7 + 6919.36i 0.812460 + 0.522136i
\(561\) 1466.96 3212.19i 0.110401 0.241744i
\(562\) −16676.6 4896.69i −1.25171 0.367535i
\(563\) 16647.2 + 19211.8i 1.24617 + 1.43816i 0.855643 + 0.517566i \(0.173162\pi\)
0.390528 + 0.920591i \(0.372293\pi\)
\(564\) −395.336 456.242i −0.0295153 0.0340625i
\(565\) 4605.04 + 1352.16i 0.342895 + 0.100683i
\(566\) −1743.57 + 3817.89i −0.129484 + 0.283530i
\(567\) −18175.3 11680.5i −1.34619 0.865143i
\(568\) 7184.78 2109.64i 0.530751 0.155843i
\(569\) 1167.68 8121.38i 0.0860309 0.598358i −0.900509 0.434837i \(-0.856806\pi\)
0.986540 0.163521i \(-0.0522851\pi\)
\(570\) −103.335 226.272i −0.00759338 0.0166272i
\(571\) 2178.10 + 15149.0i 0.159633 + 1.11028i 0.899310 + 0.437312i \(0.144070\pi\)
−0.739676 + 0.672963i \(0.765021\pi\)
\(572\) −10706.9 + 6880.92i −0.782656 + 0.502982i
\(573\) 81.9487 94.5738i 0.00597462 0.00689508i
\(574\) 12490.8 0.908287
\(575\) 2193.37 1671.37i 0.159078 0.121219i
\(576\) −7102.39 −0.513772
\(577\) −3995.38 + 4610.92i −0.288267 + 0.332678i −0.881350 0.472463i \(-0.843365\pi\)
0.593084 + 0.805141i \(0.297910\pi\)
\(578\) 5086.60 3268.96i 0.366046 0.235244i
\(579\) −360.687 2508.63i −0.0258889 0.180061i
\(580\) 1292.53 + 2830.25i 0.0925335 + 0.202620i
\(581\) 1367.84 9513.55i 0.0976724 0.679326i
\(582\) −880.335 + 258.490i −0.0626994 + 0.0184102i
\(583\) 7081.45 + 4550.97i 0.503059 + 0.323297i
\(584\) 852.650 1867.04i 0.0604159 0.132292i
\(585\) −9694.10 2846.44i −0.685131 0.201173i
\(586\) 14796.3 + 17075.8i 1.04305 + 1.20374i
\(587\) 12916.5 + 14906.4i 0.908211 + 1.04813i 0.998635 + 0.0522278i \(0.0166322\pi\)
−0.0904244 + 0.995903i \(0.528822\pi\)
\(588\) 1686.64 + 495.243i 0.118293 + 0.0347338i
\(589\) 560.007 1226.24i 0.0391760 0.0857835i
\(590\) −9253.59 5946.92i −0.645702 0.414967i
\(591\) −846.796 + 248.642i −0.0589383 + 0.0173058i
\(592\) 1102.03 7664.77i 0.0765085 0.532129i
\(593\) −4071.00 8914.25i −0.281916 0.617309i 0.714707 0.699424i \(-0.246560\pi\)
−0.996623 + 0.0821144i \(0.973833\pi\)
\(594\) 1563.96 + 10877.6i 0.108031 + 0.751369i
\(595\) 7651.07 4917.05i 0.527165 0.338789i
\(596\) 293.199 338.370i 0.0201508 0.0232553i
\(597\) −3010.55 −0.206388
\(598\) −25817.7 + 9881.62i −1.76549 + 0.675735i
\(599\) 11643.9 0.794251 0.397126 0.917764i \(-0.370008\pi\)
0.397126 + 0.917764i \(0.370008\pi\)
\(600\) 281.363 324.711i 0.0191444 0.0220938i
\(601\) −5161.32 + 3316.98i −0.350307 + 0.225129i −0.703946 0.710253i \(-0.748581\pi\)
0.353639 + 0.935382i \(0.384944\pi\)
\(602\) 3886.14 + 27028.7i 0.263102 + 1.82991i
\(603\) 2208.71 + 4836.40i 0.149164 + 0.326623i
\(604\) 505.222 3513.90i 0.0340351 0.236719i
\(605\) −14965.4 + 4394.25i −1.00567 + 0.295292i
\(606\) −557.816 358.487i −0.0373923 0.0240306i
\(607\) 1353.16 2963.00i 0.0904826 0.198129i −0.858980 0.512009i \(-0.828902\pi\)
0.949463 + 0.313880i \(0.101629\pi\)
\(608\) 1658.39 + 486.946i 0.110619 + 0.0324807i
\(609\) −5235.55 6042.14i −0.348366 0.402036i
\(610\) −2380.90 2747.71i −0.158033 0.182379i
\(611\) −18997.0 5578.02i −1.25783 0.369333i
\(612\) 1471.69 3222.55i 0.0972050 0.212849i
\(613\) 3966.61 + 2549.18i 0.261354 + 0.167962i 0.664755 0.747061i \(-0.268536\pi\)
−0.403402 + 0.915023i \(0.632172\pi\)
\(614\) −15941.1 + 4680.72i −1.04777 + 0.307653i
\(615\) 79.9660 556.176i 0.00524316 0.0364669i
\(616\) −16366.5 35837.6i −1.07049 2.34405i
\(617\) −2434.46 16932.1i −0.158846 1.10480i −0.900765 0.434307i \(-0.856993\pi\)
0.741919 0.670489i \(-0.233916\pi\)
\(618\) 694.963 446.625i 0.0452354 0.0290710i
\(619\) 2498.03 2882.89i 0.162204 0.187194i −0.668829 0.743416i \(-0.733204\pi\)
0.831034 + 0.556222i \(0.187750\pi\)
\(620\) −1035.31 −0.0670632
\(621\) −352.858 + 5606.53i −0.0228015 + 0.362290i
\(622\) −7746.28 −0.499353
\(623\) −11568.4 + 13350.6i −0.743945 + 0.858558i
\(624\) −4855.34 + 3120.34i −0.311489 + 0.200182i
\(625\) −88.9468 618.638i −0.00569259 0.0395929i
\(626\) 1905.05 + 4171.48i 0.121631 + 0.266335i
\(627\) −146.027 + 1015.64i −0.00930107 + 0.0646904i
\(628\) 3658.44 1074.21i 0.232464 0.0682577i
\(629\) −4629.22 2975.02i −0.293448 0.188588i
\(630\) −5776.84 + 12649.5i −0.365325 + 0.799950i
\(631\) −1559.95 458.043i −0.0984164 0.0288977i 0.232154 0.972679i \(-0.425423\pi\)
−0.330570 + 0.943781i \(0.607241\pi\)
\(632\) −12768.1 14735.2i −0.803619 0.927426i
\(633\) −2134.71 2463.59i −0.134040 0.154690i
\(634\) −4379.19 1285.85i −0.274322 0.0805481i
\(635\) 3772.11 8259.76i 0.235735 0.516187i
\(636\) −250.780 161.166i −0.0156353 0.0100482i
\(637\) 55315.8 16242.2i 3.44064 1.01026i
\(638\) 7760.98 53978.8i 0.481599 3.34959i
\(639\) 4529.05 + 9917.24i 0.280386 + 0.613959i
\(640\) 1240.59 + 8628.48i 0.0766227 + 0.532923i
\(641\) −584.336 + 375.530i −0.0360061 + 0.0231397i −0.558520 0.829491i \(-0.688631\pi\)
0.522514 + 0.852631i \(0.324994\pi\)
\(642\) −3015.83 + 3480.46i −0.185398 + 0.213960i
\(643\) −6693.73 −0.410536 −0.205268 0.978706i \(-0.565807\pi\)
−0.205268 + 0.978706i \(0.565807\pi\)
\(644\) 1978.19 + 8733.59i 0.121043 + 0.534397i
\(645\) 1228.38 0.0749883
\(646\) 1873.30 2161.91i 0.114093 0.131670i
\(647\) 6670.53 4286.89i 0.405326 0.260487i −0.322055 0.946721i \(-0.604374\pi\)
0.727381 + 0.686234i \(0.240737\pi\)
\(648\) −1670.40 11617.9i −0.101265 0.704311i
\(649\) 18848.8 + 41273.2i 1.14003 + 2.49632i
\(650\) −891.664 + 6201.66i −0.0538061 + 0.374230i
\(651\) 2552.51 749.484i 0.153672 0.0451223i
\(652\) −3824.39 2457.79i −0.229716 0.147629i
\(653\) −4259.41 + 9326.81i −0.255258 + 0.558938i −0.993266 0.115854i \(-0.963039\pi\)
0.738008 + 0.674792i \(0.235767\pi\)
\(654\) 2530.95 + 743.155i 0.151327 + 0.0444337i
\(655\) 3049.86 + 3519.73i 0.181936 + 0.209965i
\(656\) 5954.69 + 6872.08i 0.354408 + 0.409009i
\(657\) 2867.37 + 841.936i 0.170269 + 0.0499955i
\(658\) −11320.5 + 24788.5i −0.670700 + 1.46863i
\(659\) 3477.02 + 2234.55i 0.205532 + 0.132087i 0.639358 0.768909i \(-0.279200\pi\)
−0.433826 + 0.900997i \(0.642837\pi\)
\(660\) 756.112 222.015i 0.0445934 0.0130938i
\(661\) 1911.05 13291.6i 0.112453 0.782125i −0.853068 0.521799i \(-0.825261\pi\)
0.965521 0.260326i \(-0.0838299\pi\)
\(662\) 7914.03 + 17329.3i 0.464634 + 1.01741i
\(663\) 583.688 + 4059.64i 0.0341909 + 0.237803i
\(664\) 4392.68 2823.00i 0.256730 0.164991i
\(665\) −1730.59 + 1997.20i −0.100916 + 0.116464i
\(666\) 8413.82 0.489533
\(667\) 9518.38 26201.5i 0.552554 1.52103i
\(668\) 9932.35 0.575291
\(669\) 3039.24 3507.47i 0.175641 0.202701i
\(670\) 2773.76 1782.59i 0.159940 0.102787i
\(671\) 2134.33 + 14844.6i 0.122794 + 0.854052i
\(672\) 1416.90 + 3102.59i 0.0813367 + 0.178103i
\(673\) −779.192 + 5419.40i −0.0446295 + 0.310405i 0.955263 + 0.295757i \(0.0955719\pi\)
−0.999893 + 0.0146480i \(0.995337\pi\)
\(674\) 1776.67 521.677i 0.101535 0.0298134i
\(675\) 1071.09 + 688.350i 0.0610762 + 0.0392513i
\(676\) 3893.43 8525.42i 0.221520 0.485061i
\(677\) 10362.3 + 3042.64i 0.588264 + 0.172730i 0.562301 0.826933i \(-0.309916\pi\)
0.0259638 + 0.999663i \(0.491735\pi\)
\(678\) 1950.83 + 2251.37i 0.110503 + 0.127527i
\(679\) 6383.14 + 7366.54i 0.360770 + 0.416350i
\(680\) 4740.83 + 1392.03i 0.267356 + 0.0785029i
\(681\) −1597.08 + 3497.13i −0.0898684 + 0.196784i
\(682\) 15265.3 + 9810.42i 0.857095 + 0.550822i
\(683\) 13215.5 3880.42i 0.740376 0.217394i 0.110269 0.993902i \(-0.464829\pi\)
0.630108 + 0.776508i \(0.283011\pi\)
\(684\) −146.498 + 1018.92i −0.00818934 + 0.0569581i
\(685\) −1018.62 2230.47i −0.0568169 0.124412i
\(686\) −6086.98 42335.9i −0.338779 2.35626i
\(687\) −3726.45 + 2394.84i −0.206947 + 0.132997i
\(688\) −13017.8 + 15023.3i −0.721364 + 0.832499i
\(689\) −9776.68 −0.540583
\(690\) 1706.16 136.691i 0.0941341 0.00754167i
\(691\) 15843.5 0.872235 0.436118 0.899890i \(-0.356353\pi\)
0.436118 + 0.899890i \(0.356353\pi\)
\(692\) 1121.55 1294.33i 0.0616110 0.0711029i
\(693\) 48256.3 31012.4i 2.64517 1.69995i
\(694\) −5585.42 38847.5i −0.305504 2.12483i
\(695\) 2514.86 + 5506.78i 0.137258 + 0.300553i
\(696\) 618.130 4299.19i 0.0336640 0.234138i
\(697\) 6199.98 1820.48i 0.336931 0.0989319i
\(698\) 14244.2 + 9154.22i 0.772425 + 0.496407i
\(699\) −1529.84 + 3349.87i −0.0827807 + 0.181264i
\(700\) 1947.36 + 571.797i 0.105148 + 0.0308742i
\(701\) −3553.92 4101.44i −0.191483 0.220983i 0.651887 0.758316i \(-0.273977\pi\)
−0.843370 + 0.537333i \(0.819432\pi\)
\(702\) −8358.36 9646.06i −0.449382 0.518614i
\(703\) 1534.16 + 450.471i 0.0823073 + 0.0241676i
\(704\) 7547.28 16526.2i 0.404047 0.884739i
\(705\) 1031.28 + 662.763i 0.0550925 + 0.0354058i
\(706\) −30835.2 + 9054.02i −1.64376 + 0.482652i
\(707\) −1002.52 + 6972.69i −0.0533291 + 0.370912i
\(708\) −667.505 1461.63i −0.0354328 0.0775869i
\(709\) −3460.38 24067.5i −0.183297 1.27486i −0.848901 0.528552i \(-0.822735\pi\)
0.665604 0.746305i \(-0.268174\pi\)
\(710\) 5687.71 3655.27i 0.300642 0.193211i
\(711\) 18590.0 21454.0i 0.980562 1.13163i
\(712\) −9597.11 −0.505150
\(713\) 6614.85 + 6502.75i 0.347445 + 0.341557i
\(714\) 5645.12 0.295887
\(715\) 16924.6 19532.1i 0.885238 1.02162i
\(716\) −521.995 + 335.466i −0.0272456 + 0.0175097i
\(717\) 502.100 + 3492.18i 0.0261524 + 0.181894i
\(718\) 7160.86 + 15680.1i 0.372202 + 0.815009i
\(719\) 4181.86 29085.5i 0.216908 1.50863i −0.532447 0.846463i \(-0.678727\pi\)
0.749355 0.662168i \(-0.230364\pi\)
\(720\) −9713.36 + 2852.10i −0.502771 + 0.147627i
\(721\) −7383.13 4744.85i −0.381362 0.245087i
\(722\) 8871.00 19424.8i 0.457264 1.00127i
\(723\) 1993.00 + 585.198i 0.102518 + 0.0301020i
\(724\) 1821.45 + 2102.06i 0.0934994 + 0.107904i
\(725\) −4137.52 4774.95i −0.211950 0.244603i
\(726\) −9288.97 2727.49i −0.474857 0.139431i
\(727\) −12656.4 + 27713.6i −0.645665 + 1.41381i 0.249633 + 0.968340i \(0.419690\pi\)
−0.895298 + 0.445468i \(0.853037\pi\)
\(728\) 38494.3 + 24738.8i 1.95974 + 1.25945i
\(729\) 15131.1 4442.91i 0.768742 0.225723i
\(730\) 263.741 1834.36i 0.0133719 0.0930037i
\(731\) 5868.25 + 12849.7i 0.296915 + 0.650154i
\(732\) −75.5844 525.701i −0.00381650 0.0265444i
\(733\) −18646.8 + 11983.6i −0.939614 + 0.603853i −0.918285 0.395920i \(-0.870426\pi\)
−0.0213284 + 0.999773i \(0.506790\pi\)
\(734\) 5688.02 6564.33i 0.286034 0.330100i
\(735\) −3569.55 −0.179136
\(736\) −7045.54 + 9581.33i −0.352856 + 0.479854i
\(737\) −13600.7 −0.679767
\(738\) −6470.09 + 7466.88i −0.322720 + 0.372439i
\(739\) −31268.5 + 20095.1i −1.55647 + 1.00028i −0.572928 + 0.819605i \(0.694193\pi\)
−0.983542 + 0.180678i \(0.942171\pi\)
\(740\) −174.759 1215.48i −0.00868146 0.0603809i
\(741\) −495.065 1084.04i −0.0245434 0.0537426i
\(742\) −1915.07 + 13319.6i −0.0947497 + 0.658999i
\(743\) −28073.6 + 8243.14i −1.38616 + 0.407014i −0.887910 0.460017i \(-0.847843\pi\)
−0.498253 + 0.867031i \(0.666025\pi\)
\(744\) 1215.82 + 781.360i 0.0599115 + 0.0385028i
\(745\) −377.684 + 827.012i −0.0185735 + 0.0406703i
\(746\) 24101.5 + 7076.83i 1.18286 + 0.347320i
\(747\) 4978.58 + 5745.58i 0.243851 + 0.281419i
\(748\) 5934.54 + 6848.82i 0.290091 + 0.334783i
\(749\) 46943.9 + 13784.0i 2.29011 + 0.672437i
\(750\) 161.154 352.877i 0.00784600 0.0171803i
\(751\) −3846.55 2472.02i −0.186901 0.120114i 0.443844 0.896104i \(-0.353614\pi\)
−0.630745 + 0.775990i \(0.717251\pi\)
\(752\) −19034.7 + 5589.10i −0.923038 + 0.271029i
\(753\) −356.164 + 2477.18i −0.0172369 + 0.119885i
\(754\) 26311.4 + 57614.0i 1.27083 + 2.78273i
\(755\) 1025.92 + 7135.45i 0.0494532 + 0.343954i
\(756\) −3478.19 + 2235.29i −0.167329 + 0.107536i
\(757\) −1021.50 + 1178.87i −0.0490450 + 0.0566009i −0.779742 0.626101i \(-0.784650\pi\)
0.730697 + 0.682702i \(0.239195\pi\)
\(758\) −15568.9 −0.746024
\(759\) −6225.44 3330.60i −0.297720 0.159280i
\(760\) −1435.69 −0.0685237
\(761\) −18373.1 + 21203.7i −0.875195 + 1.01003i 0.124646 + 0.992201i \(0.460221\pi\)
−0.999841 + 0.0178280i \(0.994325\pi\)
\(762\) 4741.40 3047.11i 0.225411 0.144863i
\(763\) −3988.15 27738.2i −0.189228 1.31611i
\(764\) 133.407 + 292.120i 0.00631740 + 0.0138332i