Properties

Label 115.4.g.a.16.8
Level $115$
Weight $4$
Character 115.16
Analytic conductor $6.785$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(6,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 18]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.g (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78521965066\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 16.8
Character \(\chi\) \(=\) 115.16
Dual form 115.4.g.a.36.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.784981 - 0.905916i) q^{2} +(6.23621 - 4.00777i) q^{3} +(0.934030 + 6.49632i) q^{4} +(2.07708 + 4.54816i) q^{5} +(1.26460 - 8.79550i) q^{6} +(8.12768 - 2.38650i) q^{7} +(14.6856 + 9.43786i) q^{8} +(11.6119 - 25.4265i) q^{9} +O(q^{10})\) \(q+(0.784981 - 0.905916i) q^{2} +(6.23621 - 4.00777i) q^{3} +(0.934030 + 6.49632i) q^{4} +(2.07708 + 4.54816i) q^{5} +(1.26460 - 8.79550i) q^{6} +(8.12768 - 2.38650i) q^{7} +(14.6856 + 9.43786i) q^{8} +(11.6119 - 25.4265i) q^{9} +(5.75072 + 1.68856i) q^{10} +(13.9544 + 16.1043i) q^{11} +(31.8605 + 36.7690i) q^{12} +(-12.7635 - 3.74769i) q^{13} +(4.21810 - 9.23635i) q^{14} +(31.1810 + 20.0388i) q^{15} +(-30.3003 + 8.89698i) q^{16} +(3.21473 - 22.3589i) q^{17} +(-13.9192 - 30.4787i) q^{18} +(-16.8267 - 117.032i) q^{19} +(-27.6062 + 17.7415i) q^{20} +(41.1213 - 47.4566i) q^{21} +25.5431 q^{22} +(-109.364 + 14.3672i) q^{23} +129.407 q^{24} +(-16.3715 + 18.8937i) q^{25} +(-13.4142 + 8.62077i) q^{26} +(-1.00488 - 6.98911i) q^{27} +(23.0950 + 50.5709i) q^{28} +(39.3749 - 273.859i) q^{29} +(42.6300 - 12.5173i) q^{30} +(53.4229 + 34.3328i) q^{31} +(-73.7398 + 161.468i) q^{32} +(151.565 + 44.5035i) q^{33} +(-17.7318 - 20.4636i) q^{34} +(27.7360 + 32.0090i) q^{35} +(176.024 + 51.6855i) q^{36} +(-81.0712 + 177.521i) q^{37} +(-119.230 - 76.6246i) q^{38} +(-94.6156 + 27.7816i) q^{39} +(-12.4218 + 86.3956i) q^{40} +(11.4634 + 25.1013i) q^{41} +(-10.7122 - 74.5050i) q^{42} +(24.8094 - 15.9440i) q^{43} +(-91.5847 + 105.694i) q^{44} +139.763 q^{45} +(-72.8335 + 110.353i) q^{46} -313.776 q^{47} +(-153.302 + 176.920i) q^{48} +(-228.186 + 146.646i) q^{49} +(4.26482 + 29.6624i) q^{50} +(-69.5617 - 152.319i) q^{51} +(12.4247 - 86.4160i) q^{52} +(22.8416 - 6.70690i) q^{53} +(-7.12036 - 4.57598i) q^{54} +(-44.2604 + 96.9168i) q^{55} +(141.883 + 41.6607i) q^{56} +(-573.974 - 662.401i) q^{57} +(-217.184 - 250.644i) q^{58} +(-630.788 - 185.216i) q^{59} +(-101.055 + 221.279i) q^{60} +(379.558 + 243.927i) q^{61} +(73.0386 - 21.4461i) q^{62} +(33.6973 - 234.370i) q^{63} +(-16.5571 - 36.2550i) q^{64} +(-9.46558 - 65.8345i) q^{65} +(159.292 - 102.371i) q^{66} +(187.329 - 216.189i) q^{67} +148.253 q^{68} +(-624.439 + 527.904i) q^{69} +50.7697 q^{70} +(-462.390 + 533.626i) q^{71} +(410.499 - 263.812i) q^{72} +(112.766 + 784.304i) q^{73} +(97.1799 + 212.794i) q^{74} +(-26.3745 + 183.439i) q^{75} +(744.563 - 218.623i) q^{76} +(151.850 + 97.5881i) q^{77} +(-49.1036 + 107.522i) q^{78} +(254.724 + 74.7937i) q^{79} +(-103.401 - 119.331i) q^{80} +(459.958 + 530.819i) q^{81} +(31.7382 + 9.31918i) q^{82} +(167.064 - 365.818i) q^{83} +(346.702 + 222.812i) q^{84} +(108.369 - 31.8201i) q^{85} +(5.03094 - 34.9910i) q^{86} +(-852.011 - 1865.64i) q^{87} +(52.9393 + 368.201i) q^{88} +(1269.69 - 815.981i) q^{89} +(109.711 - 126.613i) q^{90} -112.681 q^{91} +(-195.484 - 697.047i) q^{92} +470.754 q^{93} +(-246.308 + 284.255i) q^{94} +(497.332 - 319.616i) q^{95} +(187.268 + 1302.48i) q^{96} +(-136.810 - 299.571i) q^{97} +(-46.2725 + 321.832i) q^{98} +(571.513 - 167.811i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9} - 10 q^{10} + 2 q^{11} - 57 q^{12} + 34 q^{13} - 154 q^{14} + 30 q^{15} + 16 q^{16} + 252 q^{17} - 33 q^{18} - 160 q^{19} - 200 q^{20} - 684 q^{21} - 704 q^{22} + 127 q^{23} - 3090 q^{24} - 275 q^{25} - 567 q^{26} + 384 q^{27} - 188 q^{28} + 340 q^{29} - 15 q^{30} + 582 q^{31} - 1364 q^{32} + 1760 q^{33} + 1819 q^{34} + 665 q^{35} + 2794 q^{36} + 312 q^{37} + 3123 q^{38} - 1560 q^{39} - 1205 q^{40} + 1324 q^{41} + 1454 q^{42} - 1740 q^{43} - 369 q^{44} + 3730 q^{45} - 4322 q^{46} - 2858 q^{47} - 2686 q^{48} + 2015 q^{49} - 325 q^{50} - 1426 q^{51} + 1717 q^{52} + 882 q^{53} + 2541 q^{54} + 450 q^{55} + 7755 q^{56} + 3688 q^{57} + 6622 q^{58} + 2605 q^{59} + 1530 q^{60} - 104 q^{61} - 9360 q^{62} - 7618 q^{63} + 3483 q^{64} + 170 q^{65} - 1766 q^{66} - 166 q^{67} - 5018 q^{68} - 1194 q^{69} - 770 q^{70} - 1222 q^{71} + 3303 q^{72} - 922 q^{73} + 1245 q^{74} + 150 q^{75} + 1360 q^{76} - 3093 q^{77} - 1600 q^{78} + 2448 q^{79} + 2115 q^{80} - 1371 q^{81} + 6609 q^{82} + 6704 q^{83} + 3894 q^{84} - 720 q^{85} - 5074 q^{86} - 6324 q^{87} + 1918 q^{88} - 5380 q^{89} - 165 q^{90} + 7828 q^{91} - 16225 q^{92} - 24948 q^{93} - 16490 q^{94} + 685 q^{95} + 675 q^{96} - 4400 q^{97} + 8790 q^{98} - 3626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.784981 0.905916i 0.277533 0.320290i −0.599821 0.800134i \(-0.704762\pi\)
0.877353 + 0.479845i \(0.159307\pi\)
\(3\) 6.23621 4.00777i 1.20016 0.771295i 0.221175 0.975234i \(-0.429011\pi\)
0.978984 + 0.203939i \(0.0653743\pi\)
\(4\) 0.934030 + 6.49632i 0.116754 + 0.812040i
\(5\) 2.07708 + 4.54816i 0.185779 + 0.406800i
\(6\) 1.26460 8.79550i 0.0860453 0.598458i
\(7\) 8.12768 2.38650i 0.438853 0.128859i −0.0548398 0.998495i \(-0.517465\pi\)
0.493693 + 0.869636i \(0.335647\pi\)
\(8\) 14.6856 + 9.43786i 0.649018 + 0.417098i
\(9\) 11.6119 25.4265i 0.430070 0.941722i
\(10\) 5.75072 + 1.68856i 0.181854 + 0.0533970i
\(11\) 13.9544 + 16.1043i 0.382493 + 0.441420i 0.914050 0.405602i \(-0.132938\pi\)
−0.531557 + 0.847023i \(0.678393\pi\)
\(12\) 31.8605 + 36.7690i 0.766446 + 0.884525i
\(13\) −12.7635 3.74769i −0.272304 0.0799556i 0.142730 0.989762i \(-0.454412\pi\)
−0.415034 + 0.909806i \(0.636230\pi\)
\(14\) 4.21810 9.23635i 0.0805239 0.176323i
\(15\) 31.1810 + 20.0388i 0.536727 + 0.344934i
\(16\) −30.3003 + 8.89698i −0.473443 + 0.139015i
\(17\) 3.21473 22.3589i 0.0458639 0.318991i −0.953955 0.299950i \(-0.903030\pi\)
0.999819 0.0190402i \(-0.00606104\pi\)
\(18\) −13.9192 30.4787i −0.182265 0.399106i
\(19\) −16.8267 117.032i −0.203174 1.41311i −0.794788 0.606888i \(-0.792418\pi\)
0.591613 0.806222i \(-0.298491\pi\)
\(20\) −27.6062 + 17.7415i −0.308647 + 0.198356i
\(21\) 41.1213 47.4566i 0.427305 0.493137i
\(22\) 25.5431 0.247537
\(23\) −109.364 + 14.3672i −0.991481 + 0.130251i
\(24\) 129.407 1.10063
\(25\) −16.3715 + 18.8937i −0.130972 + 0.151150i
\(26\) −13.4142 + 8.62077i −0.101182 + 0.0650258i
\(27\) −1.00488 6.98911i −0.00716258 0.0498169i
\(28\) 23.0950 + 50.5709i 0.155876 + 0.341322i
\(29\) 39.3749 273.859i 0.252129 1.75360i −0.333253 0.942837i \(-0.608146\pi\)
0.585382 0.810758i \(-0.300945\pi\)
\(30\) 42.6300 12.5173i 0.259438 0.0761779i
\(31\) 53.4229 + 34.3328i 0.309517 + 0.198915i 0.686173 0.727439i \(-0.259289\pi\)
−0.376655 + 0.926354i \(0.622926\pi\)
\(32\) −73.7398 + 161.468i −0.407359 + 0.891991i
\(33\) 151.565 + 44.5035i 0.799518 + 0.234760i
\(34\) −17.7318 20.4636i −0.0894407 0.103220i
\(35\) 27.7360 + 32.0090i 0.133950 + 0.154586i
\(36\) 176.024 + 51.6855i 0.814928 + 0.239285i
\(37\) −81.0712 + 177.521i −0.360217 + 0.788765i 0.639582 + 0.768723i \(0.279107\pi\)
−0.999799 + 0.0200421i \(0.993620\pi\)
\(38\) −119.230 76.6246i −0.508992 0.327109i
\(39\) −94.6156 + 27.7816i −0.388477 + 0.114067i
\(40\) −12.4218 + 86.3956i −0.0491015 + 0.341508i
\(41\) 11.4634 + 25.1013i 0.0436654 + 0.0956138i 0.930208 0.367034i \(-0.119627\pi\)
−0.886542 + 0.462648i \(0.846899\pi\)
\(42\) −10.7122 74.5050i −0.0393554 0.273723i
\(43\) 24.8094 15.9440i 0.0879859 0.0565451i −0.495908 0.868375i \(-0.665165\pi\)
0.583894 + 0.811830i \(0.301528\pi\)
\(44\) −91.5847 + 105.694i −0.313793 + 0.362137i
\(45\) 139.763 0.462991
\(46\) −72.8335 + 110.353i −0.233450 + 0.353710i
\(47\) −313.776 −0.973808 −0.486904 0.873456i \(-0.661874\pi\)
−0.486904 + 0.873456i \(0.661874\pi\)
\(48\) −153.302 + 176.920i −0.460985 + 0.532005i
\(49\) −228.186 + 146.646i −0.665266 + 0.427540i
\(50\) 4.26482 + 29.6624i 0.0120627 + 0.0838981i
\(51\) −69.5617 152.319i −0.190992 0.418214i
\(52\) 12.4247 86.4160i 0.0331347 0.230457i
\(53\) 22.8416 6.70690i 0.0591988 0.0173823i −0.251999 0.967727i \(-0.581088\pi\)
0.311198 + 0.950345i \(0.399270\pi\)
\(54\) −7.12036 4.57598i −0.0179437 0.0115317i
\(55\) −44.2604 + 96.9168i −0.108510 + 0.237605i
\(56\) 141.883 + 41.6607i 0.338570 + 0.0994132i
\(57\) −573.974 662.401i −1.33377 1.53925i
\(58\) −217.184 250.644i −0.491684 0.567434i
\(59\) −630.788 185.216i −1.39189 0.408696i −0.502000 0.864868i \(-0.667402\pi\)
−0.889892 + 0.456171i \(0.849220\pi\)
\(60\) −101.055 + 221.279i −0.217435 + 0.476116i
\(61\) 379.558 + 243.927i 0.796679 + 0.511995i 0.874531 0.484970i \(-0.161170\pi\)
−0.0778513 + 0.996965i \(0.524806\pi\)
\(62\) 73.0386 21.4461i 0.149611 0.0439299i
\(63\) 33.6973 234.370i 0.0673884 0.468696i
\(64\) −16.5571 36.2550i −0.0323381 0.0708106i
\(65\) −9.46558 65.8345i −0.0180625 0.125627i
\(66\) 159.292 102.371i 0.297083 0.190924i
\(67\) 187.329 216.189i 0.341580 0.394204i −0.558805 0.829299i \(-0.688740\pi\)
0.900384 + 0.435095i \(0.143285\pi\)
\(68\) 148.253 0.264388
\(69\) −624.439 + 527.904i −1.08947 + 0.921047i
\(70\) 50.7697 0.0866877
\(71\) −462.390 + 533.626i −0.772895 + 0.891969i −0.996575 0.0826938i \(-0.973648\pi\)
0.223680 + 0.974663i \(0.428193\pi\)
\(72\) 410.499 263.812i 0.671914 0.431813i
\(73\) 112.766 + 784.304i 0.180798 + 1.25748i 0.854882 + 0.518823i \(0.173630\pi\)
−0.674084 + 0.738655i \(0.735461\pi\)
\(74\) 97.1799 + 212.794i 0.152661 + 0.334282i
\(75\) −26.3745 + 183.439i −0.0406062 + 0.282422i
\(76\) 744.563 218.623i 1.12378 0.329972i
\(77\) 151.850 + 97.5881i 0.224739 + 0.144431i
\(78\) −49.1036 + 107.522i −0.0712806 + 0.156083i
\(79\) 254.724 + 74.7937i 0.362768 + 0.106518i 0.458037 0.888933i \(-0.348553\pi\)
−0.0952686 + 0.995452i \(0.530371\pi\)
\(80\) −103.401 119.331i −0.144507 0.166770i
\(81\) 459.958 + 530.819i 0.630943 + 0.728147i
\(82\) 31.7382 + 9.31918i 0.0427427 + 0.0125504i
\(83\) 167.064 365.818i 0.220935 0.483780i −0.766413 0.642348i \(-0.777960\pi\)
0.987348 + 0.158568i \(0.0506877\pi\)
\(84\) 346.702 + 222.812i 0.450336 + 0.289413i
\(85\) 108.369 31.8201i 0.138286 0.0406044i
\(86\) 5.03094 34.9910i 0.00630814 0.0438741i
\(87\) −852.011 1865.64i −1.04994 2.29906i
\(88\) 52.9393 + 368.201i 0.0641289 + 0.446027i
\(89\) 1269.69 815.981i 1.51221 0.971841i 0.519097 0.854716i \(-0.326268\pi\)
0.993117 0.117125i \(-0.0373679\pi\)
\(90\) 109.711 126.613i 0.128495 0.148291i
\(91\) −112.681 −0.129804
\(92\) −195.484 697.047i −0.221528 0.789915i
\(93\) 470.754 0.524892
\(94\) −246.308 + 284.255i −0.270263 + 0.311901i
\(95\) 497.332 319.616i 0.537107 0.345178i
\(96\) 187.268 + 1302.48i 0.199093 + 1.38472i
\(97\) −136.810 299.571i −0.143205 0.313576i 0.824415 0.565985i \(-0.191504\pi\)
−0.967620 + 0.252410i \(0.918777\pi\)
\(98\) −46.2725 + 321.832i −0.0476962 + 0.331734i
\(99\) 571.513 167.811i 0.580194 0.170360i
\(100\) −138.031 88.7073i −0.138031 0.0887073i
\(101\) −164.274 + 359.711i −0.161841 + 0.354382i −0.973128 0.230267i \(-0.926040\pi\)
0.811287 + 0.584648i \(0.198767\pi\)
\(102\) −192.593 56.5503i −0.186956 0.0548953i
\(103\) −268.101 309.405i −0.256474 0.295986i 0.612881 0.790175i \(-0.290011\pi\)
−0.869355 + 0.494189i \(0.835465\pi\)
\(104\) −152.069 175.497i −0.143381 0.165470i
\(105\) 301.252 + 88.4556i 0.279992 + 0.0822132i
\(106\) 11.8543 25.9574i 0.0108622 0.0237849i
\(107\) −1012.54 650.718i −0.914819 0.587918i −0.00366893 0.999993i \(-0.501168\pi\)
−0.911150 + 0.412075i \(0.864804\pi\)
\(108\) 44.4649 13.0561i 0.0396170 0.0116326i
\(109\) −1.22232 + 8.50145i −0.00107411 + 0.00747056i −0.990351 0.138579i \(-0.955747\pi\)
0.989277 + 0.146049i \(0.0466558\pi\)
\(110\) 53.0549 + 116.174i 0.0459872 + 0.100698i
\(111\) 205.887 + 1431.97i 0.176053 + 1.22448i
\(112\) −225.039 + 144.624i −0.189859 + 0.122015i
\(113\) 1321.55 1525.15i 1.10018 1.26968i 0.140047 0.990145i \(-0.455275\pi\)
0.960136 0.279533i \(-0.0901798\pi\)
\(114\) −1050.64 −0.863169
\(115\) −292.503 467.565i −0.237183 0.379136i
\(116\) 1815.85 1.45343
\(117\) −243.499 + 281.013i −0.192406 + 0.222048i
\(118\) −662.947 + 426.050i −0.517197 + 0.332382i
\(119\) −27.2314 189.398i −0.0209773 0.145900i
\(120\) 268.788 + 588.564i 0.204474 + 0.447736i
\(121\) 124.800 868.000i 0.0937638 0.652141i
\(122\) 518.923 152.370i 0.385091 0.113073i
\(123\) 172.088 + 110.594i 0.126152 + 0.0810729i
\(124\) −173.138 + 379.120i −0.125389 + 0.274564i
\(125\) −119.937 35.2166i −0.0858197 0.0251989i
\(126\) −185.868 214.503i −0.131416 0.151662i
\(127\) 520.497 + 600.686i 0.363675 + 0.419703i 0.907867 0.419257i \(-0.137709\pi\)
−0.544193 + 0.838960i \(0.683164\pi\)
\(128\) −1408.39 413.540i −0.972540 0.285563i
\(129\) 90.8165 198.860i 0.0619841 0.135726i
\(130\) −67.0709 43.1038i −0.0452500 0.0290804i
\(131\) 825.673 242.439i 0.550682 0.161695i 0.00545784 0.999985i \(-0.498263\pi\)
0.545224 + 0.838290i \(0.316445\pi\)
\(132\) −147.543 + 1026.18i −0.0972875 + 0.676649i
\(133\) −416.060 911.045i −0.271256 0.593967i
\(134\) −48.7995 339.408i −0.0314600 0.218809i
\(135\) 29.7004 19.0873i 0.0189348 0.0121687i
\(136\) 258.231 298.014i 0.162817 0.187901i
\(137\) 406.045 0.253217 0.126609 0.991953i \(-0.459591\pi\)
0.126609 + 0.991953i \(0.459591\pi\)
\(138\) −11.9356 + 980.084i −0.00736249 + 0.604567i
\(139\) 2230.31 1.36095 0.680475 0.732771i \(-0.261773\pi\)
0.680475 + 0.732771i \(0.261773\pi\)
\(140\) −182.035 + 210.079i −0.109891 + 0.126821i
\(141\) −1956.77 + 1257.54i −1.16872 + 0.751093i
\(142\) 120.454 + 837.773i 0.0711848 + 0.495101i
\(143\) −117.753 257.843i −0.0688602 0.150783i
\(144\) −125.625 + 873.742i −0.0726998 + 0.505638i
\(145\) 1327.34 389.741i 0.760202 0.223216i
\(146\) 799.033 + 513.507i 0.452934 + 0.291083i
\(147\) −835.292 + 1829.04i −0.468665 + 1.02623i
\(148\) −1228.96 360.854i −0.682565 0.200419i
\(149\) −1494.18 1724.38i −0.821532 0.948098i 0.177822 0.984063i \(-0.443095\pi\)
−0.999353 + 0.0359648i \(0.988550\pi\)
\(150\) 145.476 + 167.889i 0.0791874 + 0.0913871i
\(151\) 545.659 + 160.220i 0.294073 + 0.0863477i 0.425442 0.904986i \(-0.360119\pi\)
−0.131368 + 0.991334i \(0.541937\pi\)
\(152\) 857.425 1877.50i 0.457542 1.00188i
\(153\) −531.181 341.369i −0.280676 0.180379i
\(154\) 207.606 60.9586i 0.108632 0.0318973i
\(155\) −45.1878 + 314.288i −0.0234166 + 0.162866i
\(156\) −268.852 588.704i −0.137983 0.302141i
\(157\) 486.111 + 3380.97i 0.247107 + 1.71867i 0.614767 + 0.788709i \(0.289250\pi\)
−0.367660 + 0.929960i \(0.619841\pi\)
\(158\) 267.710 172.047i 0.134797 0.0866286i
\(159\) 115.565 133.369i 0.0576410 0.0665213i
\(160\) −887.544 −0.438540
\(161\) −854.591 + 377.771i −0.418331 + 0.184922i
\(162\) 841.936 0.408325
\(163\) −965.614 + 1114.38i −0.464005 + 0.535490i −0.938734 0.344642i \(-0.888000\pi\)
0.474730 + 0.880132i \(0.342546\pi\)
\(164\) −152.359 + 97.9152i −0.0725441 + 0.0466213i
\(165\) 112.403 + 781.779i 0.0530336 + 0.368857i
\(166\) −200.259 438.506i −0.0936331 0.205028i
\(167\) 104.555 727.195i 0.0484473 0.336958i −0.951154 0.308717i \(-0.900100\pi\)
0.999601 0.0282409i \(-0.00899057\pi\)
\(168\) 1051.78 308.830i 0.483015 0.141826i
\(169\) −1699.37 1092.12i −0.773497 0.497096i
\(170\) 56.2415 123.152i 0.0253737 0.0555606i
\(171\) −3171.12 931.123i −1.41814 0.416402i
\(172\) 126.750 + 146.277i 0.0561896 + 0.0648462i
\(173\) −145.016 167.358i −0.0637306 0.0735490i 0.722989 0.690860i \(-0.242768\pi\)
−0.786720 + 0.617310i \(0.788222\pi\)
\(174\) −2358.93 692.644i −1.02776 0.301777i
\(175\) −87.9725 + 192.633i −0.0380005 + 0.0832096i
\(176\) −566.104 363.813i −0.242453 0.155815i
\(177\) −4676.03 + 1373.01i −1.98572 + 0.583059i
\(178\) 257.473 1790.76i 0.108418 0.754064i
\(179\) −526.493 1152.86i −0.219843 0.481389i 0.767288 0.641303i \(-0.221606\pi\)
−0.987131 + 0.159914i \(0.948878\pi\)
\(180\) 130.542 + 907.942i 0.0540559 + 0.375967i
\(181\) −1937.65 + 1245.25i −0.795714 + 0.511374i −0.874215 0.485540i \(-0.838623\pi\)
0.0785006 + 0.996914i \(0.474987\pi\)
\(182\) −88.4526 + 102.080i −0.0360250 + 0.0415750i
\(183\) 3344.61 1.35104
\(184\) −1741.68 821.175i −0.697816 0.329010i
\(185\) −975.785 −0.387790
\(186\) 369.533 426.464i 0.145675 0.168117i
\(187\) 404.934 260.235i 0.158352 0.101766i
\(188\) −293.076 2038.39i −0.113696 0.790770i
\(189\) −24.8469 54.4071i −0.00956267 0.0209393i
\(190\) 100.851 701.433i 0.0385078 0.267828i
\(191\) 1832.71 538.132i 0.694295 0.203863i 0.0845008 0.996423i \(-0.473070\pi\)
0.609794 + 0.792560i \(0.291252\pi\)
\(192\) −248.555 159.737i −0.0934267 0.0600417i
\(193\) −2100.86 + 4600.25i −0.783541 + 1.71571i −0.0892622 + 0.996008i \(0.528451\pi\)
−0.694278 + 0.719706i \(0.744276\pi\)
\(194\) −378.779 111.220i −0.140179 0.0411603i
\(195\) −322.879 372.622i −0.118574 0.136841i
\(196\) −1165.79 1345.40i −0.424852 0.490305i
\(197\) 2866.29 + 841.619i 1.03662 + 0.304380i 0.755401 0.655263i \(-0.227442\pi\)
0.281222 + 0.959643i \(0.409260\pi\)
\(198\) 296.604 649.471i 0.106458 0.233111i
\(199\) 2747.21 + 1765.52i 0.978615 + 0.628918i 0.929089 0.369855i \(-0.120593\pi\)
0.0495256 + 0.998773i \(0.484229\pi\)
\(200\) −418.742 + 122.954i −0.148048 + 0.0434707i
\(201\) 301.786 2098.97i 0.105902 0.736566i
\(202\) 196.915 + 431.185i 0.0685887 + 0.150188i
\(203\) −333.537 2319.80i −0.115319 0.802060i
\(204\) 924.540 594.165i 0.317307 0.203921i
\(205\) −90.3545 + 104.275i −0.0307836 + 0.0355261i
\(206\) −490.749 −0.165981
\(207\) −904.620 + 2947.59i −0.303746 + 0.989717i
\(208\) 420.081 0.140035
\(209\) 1649.92 1904.10i 0.546062 0.630190i
\(210\) 316.611 203.473i 0.104039 0.0668618i
\(211\) 90.3106 + 628.124i 0.0294656 + 0.204938i 0.999236 0.0390813i \(-0.0124431\pi\)
−0.969770 + 0.244019i \(0.921534\pi\)
\(212\) 64.9049 + 142.122i 0.0210268 + 0.0460423i
\(213\) −744.909 + 5180.96i −0.239626 + 1.66664i
\(214\) −1384.32 + 406.472i −0.442196 + 0.129841i
\(215\) 124.047 + 79.7201i 0.0393485 + 0.0252877i
\(216\) 51.2049 112.123i 0.0161299 0.0353195i
\(217\) 516.139 + 151.552i 0.161465 + 0.0474103i
\(218\) 6.74210 + 7.78080i 0.00209465 + 0.00241735i
\(219\) 3846.54 + 4439.15i 1.18687 + 1.36972i
\(220\) −670.943 197.007i −0.205613 0.0603736i
\(221\) −124.826 + 273.330i −0.0379940 + 0.0831953i
\(222\) 1458.86 + 937.556i 0.441048 + 0.283444i
\(223\) 3312.40 972.607i 0.994684 0.292066i 0.256411 0.966568i \(-0.417460\pi\)
0.738273 + 0.674502i \(0.235642\pi\)
\(224\) −213.990 + 1488.34i −0.0638296 + 0.443945i
\(225\) 290.297 + 635.663i 0.0860140 + 0.188344i
\(226\) −344.266 2394.42i −0.101328 0.704754i
\(227\) 3640.04 2339.31i 1.06431 0.683990i 0.113428 0.993546i \(-0.463817\pi\)
0.950881 + 0.309556i \(0.100180\pi\)
\(228\) 3767.06 4347.42i 1.09421 1.26278i
\(229\) 4308.30 1.24323 0.621617 0.783322i \(-0.286476\pi\)
0.621617 + 0.783322i \(0.286476\pi\)
\(230\) −653.184 102.047i −0.187259 0.0292555i
\(231\) 1338.08 0.381122
\(232\) 3162.88 3650.16i 0.895057 1.03295i
\(233\) −3565.09 + 2291.14i −1.00239 + 0.644196i −0.935413 0.353558i \(-0.884972\pi\)
−0.0669767 + 0.997755i \(0.521335\pi\)
\(234\) 63.4320 + 441.179i 0.0177208 + 0.123251i
\(235\) −651.737 1427.10i −0.180913 0.396145i
\(236\) 614.048 4270.80i 0.169369 1.17799i
\(237\) 1888.27 554.445i 0.517536 0.151962i
\(238\) −192.955 124.005i −0.0525522 0.0337732i
\(239\) −1828.57 + 4004.02i −0.494898 + 1.08368i 0.483196 + 0.875512i \(0.339476\pi\)
−0.978094 + 0.208163i \(0.933251\pi\)
\(240\) −1123.08 329.766i −0.302061 0.0886931i
\(241\) 3189.56 + 3680.95i 0.852521 + 0.983861i 0.999986 0.00520584i \(-0.00165708\pi\)
−0.147466 + 0.989067i \(0.547112\pi\)
\(242\) −688.370 794.421i −0.182852 0.211022i
\(243\) 5178.72 + 1520.61i 1.36714 + 0.401428i
\(244\) −1230.11 + 2693.57i −0.322745 + 0.706713i
\(245\) −1140.93 733.232i −0.297516 0.191202i
\(246\) 235.275 69.0831i 0.0609781 0.0179048i
\(247\) −223.834 + 1556.80i −0.0576609 + 0.401040i
\(248\) 460.519 + 1008.40i 0.117915 + 0.258198i
\(249\) −424.271 2950.87i −0.107980 0.751019i
\(250\) −126.051 + 81.0082i −0.0318887 + 0.0204936i
\(251\) 3317.53 3828.63i 0.834264 0.962792i −0.165461 0.986216i \(-0.552911\pi\)
0.999726 + 0.0234239i \(0.00745675\pi\)
\(252\) 1554.02 0.388468
\(253\) −1757.49 1560.75i −0.436730 0.387840i
\(254\) 952.752 0.235358
\(255\) 548.286 632.756i 0.134647 0.155391i
\(256\) −1211.95 + 778.875i −0.295887 + 0.190155i
\(257\) 773.531 + 5380.03i 0.187749 + 1.30582i 0.837818 + 0.545949i \(0.183831\pi\)
−0.650069 + 0.759875i \(0.725260\pi\)
\(258\) −108.862 238.374i −0.0262691 0.0575213i
\(259\) −235.266 + 1636.31i −0.0564429 + 0.392569i
\(260\) 418.841 122.983i 0.0999055 0.0293349i
\(261\) −6506.05 4181.18i −1.54297 0.991604i
\(262\) 428.507 938.300i 0.101043 0.221253i
\(263\) −2582.26 758.221i −0.605434 0.177772i −0.0353737 0.999374i \(-0.511262\pi\)
−0.570061 + 0.821603i \(0.693080\pi\)
\(264\) 1805.80 + 2084.01i 0.420983 + 0.485840i
\(265\) 77.9478 + 89.9565i 0.0180690 + 0.0208528i
\(266\) −1151.93 338.237i −0.265524 0.0779648i
\(267\) 4647.80 10177.3i 1.06532 2.33273i
\(268\) 1579.40 + 1015.02i 0.359990 + 0.231351i
\(269\) −2600.20 + 763.486i −0.589356 + 0.173050i −0.562795 0.826597i \(-0.690274\pi\)
−0.0265611 + 0.999647i \(0.508456\pi\)
\(270\) 6.02276 41.8892i 0.00135753 0.00944184i
\(271\) 359.416 + 787.012i 0.0805645 + 0.176412i 0.945628 0.325252i \(-0.105449\pi\)
−0.865063 + 0.501663i \(0.832722\pi\)
\(272\) 101.520 + 706.085i 0.0226306 + 0.157400i
\(273\) −702.704 + 451.600i −0.155786 + 0.100118i
\(274\) 318.737 367.843i 0.0702760 0.0811029i
\(275\) −532.725 −0.116817
\(276\) −4012.68 3563.48i −0.875127 0.777160i
\(277\) −5967.13 −1.29433 −0.647166 0.762349i \(-0.724046\pi\)
−0.647166 + 0.762349i \(0.724046\pi\)
\(278\) 1750.75 2020.47i 0.377708 0.435898i
\(279\) 1493.30 959.689i 0.320437 0.205932i
\(280\) 105.223 + 731.840i 0.0224581 + 0.156199i
\(281\) −2228.31 4879.33i −0.473061 1.03586i −0.984313 0.176428i \(-0.943546\pi\)
0.511253 0.859430i \(-0.329182\pi\)
\(282\) −396.802 + 2759.82i −0.0837916 + 0.582783i
\(283\) −6238.69 + 1831.85i −1.31043 + 0.384777i −0.861030 0.508553i \(-0.830180\pi\)
−0.449400 + 0.893331i \(0.648362\pi\)
\(284\) −3898.49 2505.41i −0.814553 0.523481i
\(285\) 1820.52 3986.38i 0.378380 0.828536i
\(286\) −326.018 95.7276i −0.0674052 0.0197919i
\(287\) 153.075 + 176.658i 0.0314834 + 0.0363338i
\(288\) 3249.30 + 3749.89i 0.664815 + 0.767237i
\(289\) 4224.40 + 1240.40i 0.859841 + 0.252472i
\(290\) 688.861 1508.40i 0.139487 0.305435i
\(291\) −2053.78 1319.89i −0.413728 0.265887i
\(292\) −4989.76 + 1465.13i −1.00001 + 0.293630i
\(293\) −759.989 + 5285.84i −0.151533 + 1.05393i 0.762120 + 0.647436i \(0.224159\pi\)
−0.913652 + 0.406496i \(0.866750\pi\)
\(294\) 1001.26 + 2192.46i 0.198622 + 0.434922i
\(295\) −467.802 3253.63i −0.0923270 0.642149i
\(296\) −2866.00 + 1841.86i −0.562779 + 0.361676i
\(297\) 98.5320 113.712i 0.0192505 0.0222163i
\(298\) −2735.05 −0.531668
\(299\) 1449.71 + 226.489i 0.280398 + 0.0438066i
\(300\) −1216.31 −0.234079
\(301\) 163.592 188.795i 0.0313266 0.0361528i
\(302\) 573.477 368.552i 0.109271 0.0702244i
\(303\) 417.188 + 2901.60i 0.0790984 + 0.550141i
\(304\) 1551.09 + 3396.42i 0.292635 + 0.640782i
\(305\) −321.049 + 2232.95i −0.0602729 + 0.419207i
\(306\) −726.218 + 213.237i −0.135670 + 0.0398364i
\(307\) −993.729 638.631i −0.184740 0.118725i 0.445002 0.895530i \(-0.353203\pi\)
−0.629742 + 0.776805i \(0.716839\pi\)
\(308\) −492.131 + 1077.62i −0.0910447 + 0.199360i
\(309\) −2911.96 855.028i −0.536102 0.157414i
\(310\) 249.247 + 287.646i 0.0456654 + 0.0527007i
\(311\) 4031.68 + 4652.81i 0.735098 + 0.848348i 0.993036 0.117813i \(-0.0375884\pi\)
−0.257938 + 0.966162i \(0.583043\pi\)
\(312\) −1651.68 484.978i −0.299706 0.0880016i
\(313\) −1608.00 + 3521.02i −0.290381 + 0.635846i −0.997455 0.0712935i \(-0.977287\pi\)
0.707074 + 0.707139i \(0.250015\pi\)
\(314\) 3444.47 + 2213.62i 0.619052 + 0.397841i
\(315\) 1135.94 333.544i 0.203185 0.0596605i
\(316\) −247.964 + 1724.63i −0.0441426 + 0.307018i
\(317\) 257.287 + 563.379i 0.0455857 + 0.0998187i 0.931055 0.364880i \(-0.118890\pi\)
−0.885469 + 0.464699i \(0.846163\pi\)
\(318\) −30.1050 209.385i −0.00530882 0.0369237i
\(319\) 4959.75 3187.44i 0.870510 0.559443i
\(320\) 130.503 150.609i 0.0227980 0.0263103i
\(321\) −8922.32 −1.55139
\(322\) −328.609 + 1070.73i −0.0568717 + 0.185309i
\(323\) −2670.81 −0.460087
\(324\) −3018.76 + 3483.83i −0.517620 + 0.597365i
\(325\) 279.765 179.794i 0.0477495 0.0306867i
\(326\) 251.545 + 1749.53i 0.0427355 + 0.297232i
\(327\) 26.4492 + 57.9156i 0.00447292 + 0.00979432i
\(328\) −68.5560 + 476.818i −0.0115408 + 0.0802678i
\(329\) −2550.27 + 748.827i −0.427359 + 0.125484i
\(330\) 796.460 + 511.854i 0.132860 + 0.0853837i
\(331\) 4339.14 9501.40i 0.720546 1.57778i −0.0925910 0.995704i \(-0.529515\pi\)
0.813137 0.582072i \(-0.197758\pi\)
\(332\) 2532.51 + 743.613i 0.418644 + 0.122925i
\(333\) 3572.35 + 4122.71i 0.587879 + 0.678448i
\(334\) −576.704 665.552i −0.0944785 0.109034i
\(335\) 1372.36 + 402.960i 0.223820 + 0.0657196i
\(336\) −823.771 + 1803.81i −0.133751 + 0.292874i
\(337\) 7719.43 + 4960.97i 1.24779 + 0.801903i 0.986564 0.163375i \(-0.0522381\pi\)
0.261222 + 0.965279i \(0.415874\pi\)
\(338\) −2323.34 + 682.196i −0.373885 + 0.109783i
\(339\) 2129.01 14807.6i 0.341097 2.37238i
\(340\) 307.934 + 674.280i 0.0491178 + 0.107553i
\(341\) 192.581 + 1339.43i 0.0305832 + 0.212711i
\(342\) −3332.78 + 2141.85i −0.526948 + 0.338649i
\(343\) −3407.34 + 3932.28i −0.536382 + 0.619018i
\(344\) 514.818 0.0806893
\(345\) −3698.00 1743.55i −0.577083 0.272086i
\(346\) −265.447 −0.0412443
\(347\) 4263.31 4920.13i 0.659558 0.761171i −0.323147 0.946349i \(-0.604741\pi\)
0.982705 + 0.185178i \(0.0592862\pi\)
\(348\) 11324.0 7277.50i 1.74434 1.12102i
\(349\) −565.948 3936.25i −0.0868037 0.603733i −0.986070 0.166331i \(-0.946808\pi\)
0.899266 0.437402i \(-0.144101\pi\)
\(350\) 105.452 + 230.909i 0.0161048 + 0.0352645i
\(351\) −13.3673 + 92.9713i −0.00203274 + 0.0141380i
\(352\) −3629.32 + 1065.66i −0.549555 + 0.161364i
\(353\) −7928.47 5095.32i −1.19544 0.768262i −0.217277 0.976110i \(-0.569718\pi\)
−0.978161 + 0.207848i \(0.933354\pi\)
\(354\) −2426.77 + 5313.88i −0.364353 + 0.797823i
\(355\) −3387.44 994.641i −0.506441 0.148704i
\(356\) 6486.80 + 7486.17i 0.965730 + 1.11451i
\(357\) −928.885 1071.99i −0.137708 0.158924i
\(358\) −1457.68 428.013i −0.215198 0.0631877i
\(359\) −957.723 + 2097.12i −0.140799 + 0.308306i −0.966874 0.255253i \(-0.917841\pi\)
0.826076 + 0.563559i \(0.190568\pi\)
\(360\) 2052.50 + 1319.06i 0.300489 + 0.193113i
\(361\) −6832.29 + 2006.14i −0.996106 + 0.292483i
\(362\) −392.924 + 2732.84i −0.0570486 + 0.396782i
\(363\) −2700.47 5913.20i −0.390462 0.854993i
\(364\) −105.248 732.013i −0.0151551 0.105406i
\(365\) −3332.92 + 2141.94i −0.477953 + 0.307162i
\(366\) 2625.45 3029.93i 0.374958 0.432725i
\(367\) −1772.26 −0.252075 −0.126037 0.992025i \(-0.540226\pi\)
−0.126037 + 0.992025i \(0.540226\pi\)
\(368\) 3185.95 1408.35i 0.451303 0.199497i
\(369\) 771.350 0.108821
\(370\) −765.973 + 883.980i −0.107624 + 0.124205i
\(371\) 169.643 109.023i 0.0237397 0.0152566i
\(372\) 439.699 + 3058.17i 0.0612831 + 0.426233i
\(373\) −5718.48 12521.7i −0.793812 1.73821i −0.665403 0.746485i \(-0.731740\pi\)
−0.128410 0.991721i \(-0.540987\pi\)
\(374\) 82.1141 571.116i 0.0113530 0.0789618i
\(375\) −889.090 + 261.060i −0.122433 + 0.0359496i
\(376\) −4607.99 2961.37i −0.632018 0.406173i
\(377\) −1528.90 + 3347.82i −0.208865 + 0.457352i
\(378\) −68.7926 20.1993i −0.00936061 0.00274852i
\(379\) 8672.51 + 10008.6i 1.17540 + 1.35649i 0.921084 + 0.389364i \(0.127305\pi\)
0.254317 + 0.967121i \(0.418149\pi\)
\(380\) 2540.85 + 2932.30i 0.343007 + 0.395852i
\(381\) 5653.34 + 1659.97i 0.760182 + 0.223210i
\(382\) 951.140 2082.71i 0.127394 0.278954i
\(383\) 8091.92 + 5200.36i 1.07958 + 0.693802i 0.954460 0.298340i \(-0.0964329\pi\)
0.125117 + 0.992142i \(0.460069\pi\)
\(384\) −10440.4 + 3065.57i −1.38746 + 0.407394i
\(385\) −128.442 + 893.336i −0.0170027 + 0.118256i
\(386\) 2518.30 + 5514.31i 0.332068 + 0.727127i
\(387\) −117.317 815.956i −0.0154097 0.107177i
\(388\) 1818.33 1168.57i 0.237916 0.152899i
\(389\) −2331.84 + 2691.09i −0.303931 + 0.350755i −0.887085 0.461607i \(-0.847273\pi\)
0.583154 + 0.812362i \(0.301819\pi\)
\(390\) −591.018 −0.0767368
\(391\) −30.3413 + 2491.46i −0.00392436 + 0.322247i
\(392\) −4735.08 −0.610096
\(393\) 4177.43 4821.01i 0.536192 0.618798i
\(394\) 3012.42 1935.96i 0.385186 0.247544i
\(395\) 188.907 + 1313.88i 0.0240631 + 0.167363i
\(396\) 1623.97 + 3555.99i 0.206079 + 0.451250i
\(397\) −1626.84 + 11314.9i −0.205665 + 1.43043i 0.581429 + 0.813597i \(0.302494\pi\)
−0.787094 + 0.616833i \(0.788415\pi\)
\(398\) 3755.92 1102.84i 0.473033 0.138895i
\(399\) −6245.89 4013.99i −0.783674 0.503637i
\(400\) 327.965 718.144i 0.0409957 0.0897680i
\(401\) −10776.9 3164.38i −1.34208 0.394069i −0.469666 0.882844i \(-0.655626\pi\)
−0.872410 + 0.488776i \(0.837444\pi\)
\(402\) −1664.59 1921.04i −0.206523 0.238341i
\(403\) −553.193 638.419i −0.0683784 0.0789129i
\(404\) −2490.23 731.198i −0.306667 0.0900457i
\(405\) −1458.89 + 3194.51i −0.178994 + 0.391942i
\(406\) −2363.37 1518.84i −0.288896 0.185662i
\(407\) −3990.15 + 1171.61i −0.485957 + 0.142690i
\(408\) 416.009 2893.41i 0.0504792 0.351091i
\(409\) −3922.72 8589.57i −0.474245 1.03845i −0.984006 0.178136i \(-0.942993\pi\)
0.509761 0.860316i \(-0.329734\pi\)
\(410\) 23.5375 + 163.707i 0.00283521 + 0.0197193i
\(411\) 2532.18 1627.33i 0.303901 0.195305i
\(412\) 1759.58 2030.66i 0.210408 0.242824i
\(413\) −5568.86 −0.663501
\(414\) 1960.16 + 3133.31i 0.232697 + 0.371965i
\(415\) 2010.80 0.237847
\(416\) 1546.31 1784.53i 0.182245 0.210322i
\(417\) 13908.7 8938.55i 1.63336 1.04969i
\(418\) −429.806 2989.37i −0.0502931 0.349796i
\(419\) −5561.99 12179.1i −0.648499 1.42001i −0.892862 0.450330i \(-0.851306\pi\)
0.244363 0.969684i \(-0.421421\pi\)
\(420\) −293.257 + 2039.65i −0.0340702 + 0.236964i
\(421\) 9709.55 2850.98i 1.12402 0.330043i 0.333668 0.942691i \(-0.391714\pi\)
0.790356 + 0.612647i \(0.209895\pi\)
\(422\) 639.920 + 411.252i 0.0738171 + 0.0474394i
\(423\) −3643.54 + 7978.23i −0.418806 + 0.917056i
\(424\) 398.741 + 117.081i 0.0456712 + 0.0134103i
\(425\) 369.814 + 426.788i 0.0422085 + 0.0487112i
\(426\) 4108.77 + 4741.78i 0.467302 + 0.539295i
\(427\) 3667.06 + 1076.75i 0.415600 + 0.122031i
\(428\) 3281.53 7185.55i 0.370605 0.811511i
\(429\) −1767.71 1136.04i −0.198941 0.127852i
\(430\) 169.594 49.7973i 0.0190199 0.00558474i
\(431\) −1216.36 + 8460.00i −0.135940 + 0.945484i 0.801663 + 0.597777i \(0.203949\pi\)
−0.937603 + 0.347708i \(0.886960\pi\)
\(432\) 92.6303 + 202.832i 0.0103164 + 0.0225897i
\(433\) −1380.19 9599.41i −0.153181 1.06540i −0.910843 0.412752i \(-0.864567\pi\)
0.757662 0.652647i \(-0.226342\pi\)
\(434\) 542.453 348.613i 0.0599967 0.0385576i
\(435\) 6715.56 7750.17i 0.740199 0.854235i
\(436\) −56.3698 −0.00619180
\(437\) 3521.68 + 12557.4i 0.385503 + 1.37461i
\(438\) 7040.95 0.768105
\(439\) 11211.0 12938.2i 1.21885 1.40662i 0.332819 0.942991i \(-0.392000\pi\)
0.886027 0.463633i \(-0.153454\pi\)
\(440\) −1564.68 + 1005.56i −0.169530 + 0.108950i
\(441\) 1079.03 + 7504.82i 0.116513 + 0.810368i
\(442\) 149.628 + 327.640i 0.0161020 + 0.0352585i
\(443\) −544.307 + 3785.74i −0.0583765 + 0.406018i 0.939591 + 0.342298i \(0.111205\pi\)
−0.997968 + 0.0637194i \(0.979704\pi\)
\(444\) −9110.25 + 2675.01i −0.973769 + 0.285924i
\(445\) 6348.46 + 4079.91i 0.676283 + 0.434620i
\(446\) 1719.07 3764.23i 0.182512 0.399645i
\(447\) −16228.9 4765.25i −1.71723 0.504225i
\(448\) −221.093 255.155i −0.0233163 0.0269084i
\(449\) −2661.16 3071.14i −0.279706 0.322798i 0.598461 0.801152i \(-0.295779\pi\)
−0.878167 + 0.478354i \(0.841234\pi\)
\(450\) 803.735 + 235.998i 0.0841965 + 0.0247223i
\(451\) −244.273 + 534.884i −0.0255042 + 0.0558464i
\(452\) 11142.2 + 7160.65i 1.15948 + 0.745152i
\(453\) 4044.97 1187.71i 0.419534 0.123186i
\(454\) 738.142 5133.89i 0.0763056 0.530717i
\(455\) −234.047 512.492i −0.0241150 0.0528044i
\(456\) −2177.50 15144.8i −0.223620 1.55531i
\(457\) 1257.05 807.856i 0.128670 0.0826913i −0.474722 0.880136i \(-0.657452\pi\)
0.603393 + 0.797444i \(0.293815\pi\)
\(458\) 3381.93 3902.96i 0.345038 0.398195i
\(459\) −159.500 −0.0162196
\(460\) 2764.25 2336.91i 0.280182 0.236867i
\(461\) 15716.4 1.58782 0.793912 0.608033i \(-0.208041\pi\)
0.793912 + 0.608033i \(0.208041\pi\)
\(462\) 1050.37 1212.19i 0.105774 0.122069i
\(463\) 5532.43 3555.47i 0.555321 0.356883i −0.232684 0.972552i \(-0.574751\pi\)
0.788005 + 0.615669i \(0.211114\pi\)
\(464\) 1243.44 + 8648.32i 0.124408 + 0.865277i
\(465\) 977.792 + 2141.07i 0.0975140 + 0.213526i
\(466\) −722.942 + 5028.17i −0.0718662 + 0.499840i
\(467\) −4854.59 + 1425.44i −0.481035 + 0.141245i −0.513255 0.858236i \(-0.671561\pi\)
0.0322198 + 0.999481i \(0.489742\pi\)
\(468\) −2052.98 1319.37i −0.202776 0.130316i
\(469\) 1006.61 2204.17i 0.0991066 0.217013i
\(470\) −1804.44 529.831i −0.177090 0.0519984i
\(471\) 16581.6 + 19136.2i 1.62217 + 1.87208i
\(472\) −7515.45 8673.30i −0.732896 0.845807i
\(473\) 602.968 + 177.047i 0.0586141 + 0.0172107i
\(474\) 979.972 2145.84i 0.0949612 0.207936i
\(475\) 2486.66 + 1598.08i 0.240202 + 0.154368i
\(476\) 1204.96 353.807i 0.116027 0.0340687i
\(477\) 94.7013 658.662i 0.00909030 0.0632244i
\(478\) 2191.91 + 4799.61i 0.209740 + 0.459266i
\(479\) 444.039 + 3088.36i 0.0423563 + 0.294595i 0.999978 + 0.00656705i \(0.00209037\pi\)
−0.957622 + 0.288028i \(0.907001\pi\)
\(480\) −5534.91 + 3557.07i −0.526318 + 0.338244i
\(481\) 1700.04 1961.96i 0.161155 0.185982i
\(482\) 5838.37 0.551723
\(483\) −3815.39 + 5780.86i −0.359434 + 0.544593i
\(484\) 5755.37 0.540512
\(485\) 1078.33 1244.46i 0.100958 0.116512i
\(486\) 5442.74 3497.84i 0.507999 0.326471i
\(487\) −2820.72 19618.5i −0.262462 1.82546i −0.514203 0.857669i \(-0.671912\pi\)
0.251741 0.967795i \(-0.418997\pi\)
\(488\) 3271.89 + 7164.43i 0.303507 + 0.664587i
\(489\) −1555.60 + 10819.5i −0.143858 + 1.00056i
\(490\) −1559.86 + 458.015i −0.143810 + 0.0422265i
\(491\) 10667.2 + 6855.41i 0.980459 + 0.630103i 0.929587 0.368602i \(-0.120164\pi\)
0.0508720 + 0.998705i \(0.483800\pi\)
\(492\) −557.721 + 1221.24i −0.0511057 + 0.111906i
\(493\) −5996.61 1760.76i −0.547817 0.160853i
\(494\) 1234.63 + 1424.83i 0.112446 + 0.129770i
\(495\) 1950.31 + 2250.78i 0.177091 + 0.204373i
\(496\) −1924.19 564.993i −0.174191 0.0511471i
\(497\) −2484.66 + 5440.64i −0.224250 + 0.491038i
\(498\) −3006.29 1932.02i −0.270512 0.173847i
\(499\) −4165.54 + 1223.11i −0.373698 + 0.109728i −0.463188 0.886260i \(-0.653295\pi\)
0.0894899 + 0.995988i \(0.471476\pi\)
\(500\) 116.754 812.040i 0.0104428 0.0726310i
\(501\) −2262.40 4953.97i −0.201750 0.441770i
\(502\) −864.222 6010.80i −0.0768369 0.534413i
\(503\) −6392.77 + 4108.38i −0.566679 + 0.364182i −0.792393 0.610011i \(-0.791165\pi\)
0.225714 + 0.974194i \(0.427529\pi\)
\(504\) 2706.82 3123.83i 0.239229 0.276085i
\(505\) −1977.23 −0.174229
\(506\) −2793.51 + 366.983i −0.245428 + 0.0322419i
\(507\) −14974.6 −1.31173
\(508\) −3416.09 + 3942.38i −0.298355 + 0.344320i
\(509\) −7802.81 + 5014.56i −0.679476 + 0.436673i −0.834331 0.551264i \(-0.814146\pi\)
0.154854 + 0.987937i \(0.450509\pi\)
\(510\) −142.830 993.402i −0.0124012 0.0862521i
\(511\) 2788.27 + 6105.46i 0.241381 + 0.528551i
\(512\) 1425.41 9913.91i 0.123036 0.855737i
\(513\) −801.044 + 235.208i −0.0689414 + 0.0202430i
\(514\) 5481.06 + 3522.46i 0.470349 + 0.302275i
\(515\) 850.358 1862.02i 0.0727597 0.159322i
\(516\) 1376.69 + 404.231i 0.117452 + 0.0344870i
\(517\) −4378.57 5053.14i −0.372474 0.429858i
\(518\) 1297.68 + 1497.60i 0.110071 + 0.127029i
\(519\) −1575.08 462.486i −0.133215 0.0391154i
\(520\) 482.329 1056.15i 0.0406760 0.0890681i
\(521\) −12544.4 8061.78i −1.05485 0.677914i −0.106238 0.994341i \(-0.533880\pi\)
−0.948617 + 0.316427i \(0.897517\pi\)
\(522\) −8894.92 + 2611.78i −0.745824 + 0.218994i
\(523\) −1327.71 + 9234.42i −0.111007 + 0.772070i 0.855937 + 0.517081i \(0.172981\pi\)
−0.966944 + 0.254990i \(0.917928\pi\)
\(524\) 2346.17 + 5137.39i 0.195597 + 0.428297i
\(525\) 223.413 + 1553.87i 0.0185725 + 0.129174i
\(526\) −2713.91 + 1744.13i −0.224966 + 0.144577i
\(527\) 939.386 1084.11i 0.0776476 0.0896101i
\(528\) −4988.42 −0.411161
\(529\) 11754.2 3142.53i 0.966069 0.258283i
\(530\) 142.681 0.0116937
\(531\) −12034.0 + 13888.0i −0.983490 + 1.13501i
\(532\) 5529.82 3553.80i 0.450655 0.289618i
\(533\) −52.2406 363.341i −0.00424539 0.0295273i
\(534\) −5571.31 12199.5i −0.451487 0.988619i
\(535\) 856.454 5956.77i 0.0692107 0.481371i
\(536\) 4791.39 1406.88i 0.386113 0.113373i
\(537\) −7903.71 5079.40i −0.635140 0.408180i
\(538\) −1349.45 + 2954.88i −0.108139 + 0.236792i
\(539\) −5545.84 1628.41i −0.443184 0.130131i
\(540\) 151.738 + 175.115i 0.0120922 + 0.0139551i
\(541\) 14314.5 + 16519.9i 1.13758 + 1.31284i 0.943320 + 0.331886i \(0.107685\pi\)
0.194259 + 0.980950i \(0.437770\pi\)
\(542\) 995.101 + 292.188i 0.0788621 + 0.0231560i
\(543\) −7092.90 + 15531.3i −0.560563 + 1.22746i
\(544\) 3373.19 + 2167.82i 0.265854 + 0.170854i
\(545\) −41.2048 + 12.0988i −0.00323857 + 0.000950930i
\(546\) −142.497 + 991.088i −0.0111691 + 0.0776825i
\(547\) −9985.36 21864.9i −0.780518 1.70910i −0.701993 0.712184i \(-0.747706\pi\)
−0.0785252 0.996912i \(-0.525021\pi\)
\(548\) 379.258 + 2637.80i 0.0295640 + 0.205622i
\(549\) 10609.6 6818.38i 0.824785 0.530057i
\(550\) −418.179 + 482.604i −0.0324204 + 0.0374151i
\(551\) −32712.9 −2.52925
\(552\) −14152.5 + 1859.22i −1.09125 + 0.143358i
\(553\) 2248.81 0.172928
\(554\) −4684.08 + 5405.72i −0.359219 + 0.414561i
\(555\) −6085.20 + 3910.72i −0.465410 + 0.299101i
\(556\) 2083.17 + 14488.8i 0.158896 + 1.10515i
\(557\) −349.643 765.611i −0.0265976 0.0582406i 0.895867 0.444322i \(-0.146556\pi\)
−0.922465 + 0.386082i \(0.873828\pi\)
\(558\) 302.818 2106.15i 0.0229737 0.159785i
\(559\) −376.407 + 110.523i −0.0284800 + 0.00836248i
\(560\) −1125.19 723.118i −0.0849073 0.0545666i
\(561\) 1482.29 3245.77i 0.111555 0.244272i
\(562\) −6169.45 1811.51i −0.463065 0.135968i
\(563\) −4319.08 4984.49i −0.323317 0.373128i 0.570702 0.821158i \(-0.306671\pi\)
−0.894019 + 0.448030i \(0.852126\pi\)
\(564\) −9997.08 11537.2i −0.746370 0.861357i
\(565\) 9681.56 + 2842.76i 0.720896 + 0.211674i
\(566\) −3237.76 + 7089.70i −0.240447 + 0.526506i
\(567\) 5005.19 + 3216.64i 0.370720 + 0.238247i
\(568\) −11826.8 + 3472.65i −0.873661 + 0.256530i
\(569\) −713.173 + 4960.23i −0.0525444 + 0.365454i 0.946537 + 0.322596i \(0.104556\pi\)
−0.999081 + 0.0428584i \(0.986354\pi\)
\(570\) −2182.25 4778.47i −0.160359 0.351137i
\(571\) −3137.39 21821.0i −0.229940 1.59926i −0.698352 0.715755i \(-0.746083\pi\)
0.468412 0.883510i \(-0.344826\pi\)
\(572\) 1565.05 1005.80i 0.114402 0.0735217i
\(573\) 9272.46 10701.0i 0.676025 0.780175i
\(574\) 280.198 0.0203750
\(575\) 1519.01 2301.52i 0.110169 0.166922i
\(576\) −1114.10 −0.0805915
\(577\) 10817.4 12484.0i 0.780479 0.900721i −0.216665 0.976246i \(-0.569518\pi\)
0.997144 + 0.0755255i \(0.0240634\pi\)
\(578\) 4439.77 2853.27i 0.319498 0.205329i
\(579\) 5335.31 + 37107.9i 0.382949 + 2.66347i
\(580\) 3771.66 + 8258.77i 0.270016 + 0.591253i
\(581\) 484.813 3371.95i 0.0346186 0.240778i
\(582\) −2807.89 + 824.470i −0.199984 + 0.0587206i
\(583\) 426.751 + 274.256i 0.0303160 + 0.0194829i
\(584\) −5746.12 + 12582.2i −0.407151 + 0.891536i
\(585\) −1783.86 523.787i −0.126074 0.0370187i
\(586\) 4191.95 + 4837.77i 0.295508 + 0.341035i
\(587\) −17670.9 20393.3i −1.24252 1.43394i −0.860239 0.509891i \(-0.829686\pi\)
−0.382277 0.924048i \(-0.624860\pi\)
\(588\) −12662.2 3717.95i −0.888060 0.260758i
\(589\) 3119.12 6829.92i 0.218202 0.477796i
\(590\) −3314.73 2130.25i −0.231297 0.148646i
\(591\) 21247.8 6238.92i 1.47888 0.434238i
\(592\) 877.082 6100.24i 0.0608916 0.423511i
\(593\) 1594.75 + 3492.01i 0.110436 + 0.241821i 0.956778 0.290818i \(-0.0939276\pi\)
−0.846342 + 0.532639i \(0.821200\pi\)
\(594\) −25.6678 178.524i −0.00177300 0.0123315i
\(595\) 804.852 517.247i 0.0554550 0.0356387i
\(596\) 9806.50 11317.3i 0.673976 0.777810i
\(597\) 24208.0 1.65958
\(598\) 1343.18 1135.53i 0.0918505 0.0776509i
\(599\) −7910.73 −0.539606 −0.269803 0.962916i \(-0.586959\pi\)
−0.269803 + 0.962916i \(0.586959\pi\)
\(600\) −2118.59 + 2444.99i −0.144152 + 0.166360i
\(601\) −22004.1 + 14141.2i −1.49345 + 0.959784i −0.497735 + 0.867329i \(0.665835\pi\)
−0.995717 + 0.0924546i \(0.970529\pi\)
\(602\) −42.6161 296.401i −0.00288522 0.0200671i
\(603\) −3321.68 7273.47i −0.224327 0.491208i
\(604\) −531.178 + 3694.42i −0.0357836 + 0.248881i
\(605\) 4207.02 1235.29i 0.282710 0.0830112i
\(606\) 2956.09 + 1899.77i 0.198157 + 0.127348i
\(607\) −6073.56 + 13299.2i −0.406126 + 0.889291i 0.590487 + 0.807047i \(0.298936\pi\)
−0.996612 + 0.0822437i \(0.973791\pi\)
\(608\) 20137.7 + 5912.98i 1.34325 + 0.394413i
\(609\) −11377.2 13130.0i −0.757026 0.873655i
\(610\) 1770.84 + 2043.66i 0.117540 + 0.135648i
\(611\) 4004.87 + 1175.94i 0.265172 + 0.0778614i
\(612\) 1721.50 3769.57i 0.113705 0.248980i
\(613\) 18395.8 + 11822.2i 1.21207 + 0.778949i 0.981004 0.193989i \(-0.0621426\pi\)
0.231065 + 0.972938i \(0.425779\pi\)
\(614\) −1358.60 + 398.922i −0.0892977 + 0.0262202i
\(615\) −145.561 + 1012.40i −0.00954404 + 0.0663802i
\(616\) 1308.98 + 2866.28i 0.0856177 + 0.187477i
\(617\) 2989.30 + 20791.0i 0.195048 + 1.35659i 0.818401 + 0.574648i \(0.194861\pi\)
−0.623353 + 0.781941i \(0.714230\pi\)
\(618\) −3060.42 + 1966.81i −0.199204 + 0.128021i
\(619\) 5231.54 6037.52i 0.339698 0.392033i −0.560038 0.828467i \(-0.689213\pi\)
0.899736 + 0.436434i \(0.143759\pi\)
\(620\) −2083.92 −0.134987
\(621\) 210.313 + 749.923i 0.0135903 + 0.0484595i
\(622\) 7379.84 0.475731
\(623\) 8372.30 9662.15i 0.538410 0.621358i
\(624\) 2619.71 1683.59i 0.168065 0.108009i
\(625\) −88.9468 618.638i −0.00569259 0.0395929i
\(626\) 1927.50 + 4220.64i 0.123065 + 0.269474i
\(627\) 2658.01 18486.9i 0.169299 1.17750i
\(628\) −21509.8 + 6315.86i −1.36678 + 0.401322i
\(629\) 3708.56 + 2383.35i 0.235088 + 0.151082i
\(630\) 589.532 1290.90i 0.0372818 0.0816358i
\(631\) −3755.91 1102.83i −0.236958 0.0695771i 0.161098 0.986938i \(-0.448497\pi\)
−0.398055 + 0.917361i \(0.630315\pi\)
\(632\) 3034.88 + 3502.44i 0.191014 + 0.220442i
\(633\) 3080.57 + 3555.17i 0.193431 + 0.223231i
\(634\) 712.339 + 209.162i 0.0446224 + 0.0131023i
\(635\) −1650.90 + 3614.98i −0.103172 + 0.225915i
\(636\) 974.352 + 626.178i 0.0607477 + 0.0390402i
\(637\) 3462.03 1016.54i 0.215339 0.0632292i
\(638\) 1005.76 6995.19i 0.0624111 0.434079i
\(639\) 8199.03 + 17953.4i 0.507588 + 1.11146i
\(640\) −1044.48 7264.53i −0.0645105 0.448681i
\(641\) 10844.0 6969.03i 0.668195 0.429423i −0.162079 0.986778i \(-0.551820\pi\)
0.830274 + 0.557355i \(0.188184\pi\)
\(642\) −7003.85 + 8082.87i −0.430560 + 0.496893i
\(643\) −26674.9 −1.63601 −0.818007 0.575209i \(-0.804921\pi\)
−0.818007 + 0.575209i \(0.804921\pi\)
\(644\) −3252.33 5198.85i −0.199006 0.318111i
\(645\) 1093.08 0.0667288
\(646\) −2096.54 + 2419.53i −0.127689 + 0.147361i
\(647\) −11487.0 + 7382.27i −0.697993 + 0.448573i −0.840919 0.541160i \(-0.817985\pi\)
0.142926 + 0.989733i \(0.454349\pi\)
\(648\) 1744.95 + 12136.4i 0.105784 + 0.735746i
\(649\) −5819.52 12743.0i −0.351982 0.770733i
\(650\) 56.7319 394.579i 0.00342340 0.0238102i
\(651\) 3826.14 1123.46i 0.230351 0.0676370i
\(652\) −8141.27 5232.08i −0.489013 0.314270i
\(653\) −6101.42 + 13360.2i −0.365646 + 0.800653i 0.633981 + 0.773349i \(0.281420\pi\)
−0.999627 + 0.0273046i \(0.991308\pi\)
\(654\) 73.2288 + 21.5019i 0.00437840 + 0.00128561i
\(655\) 2817.64 + 3251.73i 0.168083 + 0.193978i
\(656\) −570.671 658.589i −0.0339648 0.0391975i
\(657\) 21251.5 + 6240.01i 1.26195 + 0.370542i
\(658\) −1323.54 + 2898.15i −0.0784148 + 0.171704i
\(659\) −19050.2 12242.8i −1.12608 0.723690i −0.161344 0.986898i \(-0.551583\pi\)
−0.964739 + 0.263208i \(0.915219\pi\)
\(660\) −4973.70 + 1460.41i −0.293335 + 0.0861308i
\(661\) −2383.52 + 16577.8i −0.140255 + 0.975493i 0.791180 + 0.611584i \(0.209467\pi\)
−0.931434 + 0.363909i \(0.881442\pi\)
\(662\) −5201.32 11389.3i −0.305370 0.668668i
\(663\) 317.004 + 2204.81i 0.0185693 + 0.129152i
\(664\) 5905.97 3795.53i 0.345175 0.221830i
\(665\) 3279.39 3784.62i 0.191232 0.220693i
\(666\) 6539.06 0.380456
\(667\) −371.629 + 30516.1i −0.0215735 + 1.77150i
\(668\) 4821.74 0.279280
\(669\) 16758.8 19340.7i 0.968510 1.11772i
\(670\) 1442.32 926.924i 0.0831668 0.0534481i
\(671\) 1368.25 + 9516.38i 0.0787193 + 0.547505i
\(672\) 4630.42 + 10139.2i 0.265807 + 0.582036i
\(673\) 195.281 1358.21i 0.0111850 0.0777935i −0.983464 0.181102i \(-0.942034\pi\)
0.994649 + 0.103308i \(0.0329428\pi\)
\(674\) 10553.8 3098.88i 0.603143 0.177099i
\(675\) 148.502 + 95.4364i 0.00846791 + 0.00544200i
\(676\) 5507.50 12059.7i 0.313353 0.686148i
\(677\) −9789.22 2874.37i −0.555731 0.163177i −0.00820575 0.999966i \(-0.502612\pi\)
−0.547526 + 0.836789i \(0.684430\pi\)
\(678\) −11743.2 13552.4i −0.665184 0.767663i
\(679\) −1826.87 2108.32i −0.103253 0.119160i
\(680\) 1891.78 + 555.477i 0.106686 + 0.0313258i
\(681\) 13324.6 29176.9i 0.749782 1.64179i
\(682\) 1364.59 + 876.966i 0.0766169 + 0.0492387i
\(683\) 22525.6 6614.12i 1.26196 0.370545i 0.418736 0.908108i \(-0.362473\pi\)
0.843224 + 0.537563i \(0.180655\pi\)
\(684\) 3086.96 21470.3i 0.172563 1.20020i
\(685\) 843.386 + 1846.76i 0.0470425 + 0.103009i
\(686\) 887.619 + 6173.53i 0.0494016 + 0.343595i
\(687\) 26867.5 17266.7i 1.49208 0.958900i
\(688\) −609.879 + 703.838i −0.0337957 + 0.0390023i
\(689\) −316.673 −0.0175099
\(690\) −4482.37 + 1981.42i −0.247306 + 0.109321i
\(691\) −9341.27 −0.514267 −0.257134 0.966376i \(-0.582778\pi\)
−0.257134 + 0.966376i \(0.582778\pi\)
\(692\) 951.760 1098.39i 0.0522839 0.0603389i
\(693\) 4244.59 2727.83i 0.232668 0.149526i
\(694\) −1110.60 7724.41i −0.0607462 0.422499i
\(695\) 4632.51 + 10143.8i 0.252836 + 0.553634i
\(696\) 5095.40 35439.3i 0.277501 1.93006i
\(697\) 598.091 175.615i 0.0325026 0.00954362i
\(698\) −4010.17 2577.18i −0.217460 0.139753i
\(699\) −13050.3 + 28576.1i −0.706161 + 1.54628i
\(700\) −1333.57 391.572i −0.0720062 0.0211429i
\(701\) −13514.6 15596.7i −0.728159 0.840341i 0.264104 0.964494i \(-0.414924\pi\)
−0.992263 + 0.124154i \(0.960378\pi\)
\(702\) 73.7312 + 85.0903i 0.00396411 + 0.00457482i
\(703\) 22139.9 + 6500.86i 1.18780 + 0.348769i
\(704\) 352.816 772.559i 0.0188881 0.0413592i
\(705\) −9783.87 6287.71i −0.522669 0.335899i
\(706\) −10839.6 + 3182.80i −0.577839 + 0.169669i
\(707\) −476.719 + 3315.65i −0.0253591 + 0.176376i
\(708\) −13287.0 29094.6i −0.705307 1.54441i
\(709\) 3497.64 + 24326.6i 0.185270 + 1.28858i 0.844057 + 0.536254i \(0.180161\pi\)
−0.658786 + 0.752330i \(0.728930\pi\)
\(710\) −3560.13 + 2287.96i −0.188182 + 0.120937i
\(711\) 4859.57 5608.24i 0.256326 0.295816i
\(712\) 26347.3 1.38681
\(713\) −6335.83 2987.25i −0.332789 0.156905i
\(714\) −1700.29 −0.0891201
\(715\) 928.131 1071.12i 0.0485456 0.0560246i
\(716\) 6997.57 4497.07i 0.365240 0.234725i
\(717\) 4643.81 + 32298.4i 0.241878 + 1.68230i
\(718\) 1148.02 + 2513.82i 0.0596710 + 0.130661i
\(719\) −1812.61 + 12607.0i −0.0940182 + 0.653911i 0.887253 + 0.461282i \(0.152610\pi\)
−0.981272 + 0.192629i \(0.938299\pi\)
\(720\) −4234.85 + 1243.47i −0.219200 + 0.0643628i
\(721\) −2917.43 1874.92i −0.150695 0.0968457i
\(722\) −3545.82 + 7764.26i −0.182772 + 0.400216i
\(723\) 34643.1 + 10172.1i 1.78201 + 0.523245i
\(724\) −9899.36 11424.5i −0.508159 0.586447i
\(725\) 4529.58 + 5227.42i 0.232034 + 0.267781i
\(726\) −7476.68 2195.35i −0.382211 0.112227i
\(727\) −6269.77 + 13728.9i −0.319853 + 0.700380i −0.999448 0.0332069i \(-0.989428\pi\)
0.679596 + 0.733587i \(0.262155\pi\)
\(728\) −1654.79 1063.47i −0.0842453 0.0541412i
\(729\) 20193.9 5929.46i 1.02596 0.301248i
\(730\) −675.862 + 4700.72i −0.0342668 + 0.238331i
\(731\) −276.736 605.967i −0.0140020 0.0306601i
\(732\) 3123.96 + 21727.6i 0.157739 + 1.09710i
\(733\) −13313.5 + 8556.05i −0.670865 + 0.431139i −0.831237 0.555918i \(-0.812367\pi\)
0.160372 + 0.987057i \(0.448731\pi\)
\(734\) −1391.19 + 1605.52i −0.0699590 + 0.0807369i
\(735\) −10053.7 −0.504540
\(736\) 5744.67 18718.3i 0.287706 0.937451i
\(737\) 6095.63 0.304661
\(738\) 605.495 698.779i 0.0302013 0.0348542i
\(739\) 10365.3 6661.39i 0.515960 0.331588i −0.256612 0.966515i \(-0.582606\pi\)
0.772572 + 0.634927i \(0.218970\pi\)
\(740\) −911.412 6339.01i −0.0452759 0.314901i
\(741\) 4843.42 + 10605.6i 0.240118 + 0.525785i
\(742\) 34.4009 239.263i 0.00170202 0.0118378i
\(743\) 37964.7 11147.4i 1.87455 0.550417i 0.876997 0.480496i \(-0.159543\pi\)
0.997552 0.0699215i \(-0.0222749\pi\)
\(744\) 6913.31 + 4442.91i 0.340664 + 0.218932i
\(745\) 4739.22 10377.4i 0.233063 0.510336i
\(746\) −15832.5 4648.85i −0.777038 0.228159i
\(747\) −7361.55 8495.68i −0.360569 0.416119i
\(748\) 2068.79 + 2387.51i 0.101126 + 0.116706i
\(749\) −9782.51 2872.40i −0.477230 0.140127i
\(750\) −461.420 + 1010.37i −0.0224649 + 0.0491912i
\(751\) −28742.9 18472.0i −1.39660 0.897539i −0.396805 0.917903i \(-0.629881\pi\)
−0.999793 + 0.0203641i \(0.993517\pi\)
\(752\) 9507.52 2791.66i 0.461042 0.135374i
\(753\) 5344.53 37172.0i 0.258653 1.79897i
\(754\) 1832.69 + 4013.03i 0.0885180 + 0.193827i
\(755\) 404.669 + 2814.53i 0.0195065 + 0.135671i
\(756\) 330.238 212.231i 0.0158871 0.0102100i
\(757\) −14154.9 + 16335.7i −0.679617 + 0.784320i −0.985849 0.167637i \(-0.946386\pi\)
0.306232 + 0.951957i \(0.400932\pi\)
\(758\) 15874.7 0.760680
\(759\) −17215.2 2689.53i −0.823284 0.128622i
\(760\) 10320.1 0.492565
\(761\) −16979.4 + 19595.2i −0.808807 + 0.933413i −0.998830 0.0483668i \(-0.984598\pi\)
0.190023 + 0.981780i \(0.439144\pi\)
\(762\) 5941.56 3818.41i 0.282467 0.181531i
\(763\) 10.3541 + 72.0141i 0.000491275 + 0.00341689i
\(764\) 5207.68 + 11403.2i 0.246607 + 0.539993i