Properties

Label 115.4.g.a.16.5
Level $115$
Weight $4$
Character 115.16
Analytic conductor $6.785$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(6,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 18]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.g (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78521965066\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 16.5
Character \(\chi\) \(=\) 115.16
Dual form 115.4.g.a.36.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.861960 + 0.994755i) q^{2} +(-0.892278 + 0.573432i) q^{3} +(0.891957 + 6.20369i) q^{4} +(2.07708 + 4.54816i) q^{5} +(0.198683 - 1.38187i) q^{6} +(31.2385 - 9.17246i) q^{7} +(-15.7984 - 10.1530i) q^{8} +(-10.7489 + 23.5367i) q^{9} +O(q^{10})\) \(q+(-0.861960 + 0.994755i) q^{2} +(-0.892278 + 0.573432i) q^{3} +(0.891957 + 6.20369i) q^{4} +(2.07708 + 4.54816i) q^{5} +(0.198683 - 1.38187i) q^{6} +(31.2385 - 9.17246i) q^{7} +(-15.7984 - 10.1530i) q^{8} +(-10.7489 + 23.5367i) q^{9} +(-6.31466 - 1.85415i) q^{10} +(12.0872 + 13.9493i) q^{11} +(-4.35327 - 5.02394i) q^{12} +(-46.8944 - 13.7694i) q^{13} +(-17.8020 + 38.9810i) q^{14} +(-4.46139 - 2.86716i) q^{15} +(-24.3916 + 7.16201i) q^{16} +(-16.3103 + 113.440i) q^{17} +(-14.1482 - 30.9802i) q^{18} +(-0.754174 - 5.24540i) q^{19} +(-26.3627 + 16.9423i) q^{20} +(-22.6137 + 26.0976i) q^{21} -24.2948 q^{22} +(91.9473 + 60.9319i) q^{23} +19.9186 q^{24} +(-16.3715 + 18.8937i) q^{25} +(54.1183 - 34.7797i) q^{26} +(-7.98130 - 55.5112i) q^{27} +(84.7665 + 185.613i) q^{28} +(-8.90313 + 61.9226i) q^{29} +(6.69766 - 1.96661i) q^{30} +(-253.699 - 163.043i) q^{31} +(76.3106 - 167.097i) q^{32} +(-18.7841 - 5.51550i) q^{33} +(-98.7865 - 114.006i) q^{34} +(106.603 + 123.026i) q^{35} +(-155.602 - 45.6890i) q^{36} +(-89.3887 + 195.734i) q^{37} +(5.86795 + 3.77110i) q^{38} +(49.7387 - 14.6046i) q^{39} +(13.3631 - 92.9421i) q^{40} +(-25.1319 - 55.0311i) q^{41} +(-6.46860 - 44.9901i) q^{42} +(367.457 - 236.150i) q^{43} +(-75.7561 + 87.4272i) q^{44} -129.375 q^{45} +(-139.867 + 38.9441i) q^{46} +576.204 q^{47} +(17.6571 - 20.3774i) q^{48} +(603.162 - 387.628i) q^{49} +(-4.68304 - 32.5713i) q^{50} +(-50.4970 - 110.573i) q^{51} +(43.5936 - 303.200i) q^{52} +(188.349 - 55.3042i) q^{53} +(62.0996 + 39.9090i) q^{54} +(-38.3378 + 83.9481i) q^{55} +(-586.646 - 172.255i) q^{56} +(3.68081 + 4.24788i) q^{57} +(-53.9237 - 62.2312i) q^{58} +(1.75568 + 0.515513i) q^{59} +(13.8076 - 30.2345i) q^{60} +(337.791 + 217.085i) q^{61} +(380.866 - 111.832i) q^{62} +(-119.889 + 833.847i) q^{63} +(15.9606 + 34.9489i) q^{64} +(-34.7776 - 241.883i) q^{65} +(21.6777 - 13.9314i) q^{66} +(-211.314 + 243.869i) q^{67} -718.297 q^{68} +(-116.983 - 1.64271i) q^{69} -214.268 q^{70} +(106.599 - 123.021i) q^{71} +(408.783 - 262.709i) q^{72} +(-61.6457 - 428.755i) q^{73} +(-117.658 - 257.635i) q^{74} +(3.77366 - 26.2464i) q^{75} +(31.8682 - 9.35733i) q^{76} +(505.534 + 324.887i) q^{77} +(-28.3448 + 62.0664i) q^{78} +(823.577 + 241.824i) q^{79} +(-83.2371 - 96.0608i) q^{80} +(-418.549 - 483.031i) q^{81} +(76.4051 + 22.4346i) q^{82} +(-69.3782 + 151.917i) q^{83} +(-182.072 - 117.010i) q^{84} +(-549.822 + 161.442i) q^{85} +(-81.8216 + 569.082i) q^{86} +(-27.5643 - 60.3575i) q^{87} +(-49.3300 - 343.097i) q^{88} +(213.700 - 137.337i) q^{89} +(111.516 - 128.696i) q^{90} -1591.21 q^{91} +(-295.990 + 624.761i) q^{92} +319.864 q^{93} +(-496.665 + 573.182i) q^{94} +(22.2904 - 14.3252i) q^{95} +(27.7285 + 192.856i) q^{96} +(143.140 + 313.432i) q^{97} +(-134.306 + 934.118i) q^{98} +(-458.245 + 134.553i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9} - 10 q^{10} + 2 q^{11} - 57 q^{12} + 34 q^{13} - 154 q^{14} + 30 q^{15} + 16 q^{16} + 252 q^{17} - 33 q^{18} - 160 q^{19} - 200 q^{20} - 684 q^{21} - 704 q^{22} + 127 q^{23} - 3090 q^{24} - 275 q^{25} - 567 q^{26} + 384 q^{27} - 188 q^{28} + 340 q^{29} - 15 q^{30} + 582 q^{31} - 1364 q^{32} + 1760 q^{33} + 1819 q^{34} + 665 q^{35} + 2794 q^{36} + 312 q^{37} + 3123 q^{38} - 1560 q^{39} - 1205 q^{40} + 1324 q^{41} + 1454 q^{42} - 1740 q^{43} - 369 q^{44} + 3730 q^{45} - 4322 q^{46} - 2858 q^{47} - 2686 q^{48} + 2015 q^{49} - 325 q^{50} - 1426 q^{51} + 1717 q^{52} + 882 q^{53} + 2541 q^{54} + 450 q^{55} + 7755 q^{56} + 3688 q^{57} + 6622 q^{58} + 2605 q^{59} + 1530 q^{60} - 104 q^{61} - 9360 q^{62} - 7618 q^{63} + 3483 q^{64} + 170 q^{65} - 1766 q^{66} - 166 q^{67} - 5018 q^{68} - 1194 q^{69} - 770 q^{70} - 1222 q^{71} + 3303 q^{72} - 922 q^{73} + 1245 q^{74} + 150 q^{75} + 1360 q^{76} - 3093 q^{77} - 1600 q^{78} + 2448 q^{79} + 2115 q^{80} - 1371 q^{81} + 6609 q^{82} + 6704 q^{83} + 3894 q^{84} - 720 q^{85} - 5074 q^{86} - 6324 q^{87} + 1918 q^{88} - 5380 q^{89} - 165 q^{90} + 7828 q^{91} - 16225 q^{92} - 24948 q^{93} - 16490 q^{94} + 685 q^{95} + 675 q^{96} - 4400 q^{97} + 8790 q^{98} - 3626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.861960 + 0.994755i −0.304749 + 0.351699i −0.887381 0.461037i \(-0.847477\pi\)
0.582632 + 0.812736i \(0.302023\pi\)
\(3\) −0.892278 + 0.573432i −0.171719 + 0.110357i −0.623677 0.781682i \(-0.714362\pi\)
0.451958 + 0.892039i \(0.350726\pi\)
\(4\) 0.891957 + 6.20369i 0.111495 + 0.775462i
\(5\) 2.07708 + 4.54816i 0.185779 + 0.406800i
\(6\) 0.198683 1.38187i 0.0135187 0.0940245i
\(7\) 31.2385 9.17246i 1.68672 0.495266i 0.709007 0.705202i \(-0.249144\pi\)
0.977715 + 0.209936i \(0.0673254\pi\)
\(8\) −15.7984 10.1530i −0.698196 0.448703i
\(9\) −10.7489 + 23.5367i −0.398106 + 0.871731i
\(10\) −6.31466 1.85415i −0.199687 0.0586334i
\(11\) 12.0872 + 13.9493i 0.331310 + 0.382352i 0.896825 0.442386i \(-0.145868\pi\)
−0.565515 + 0.824738i \(0.691322\pi\)
\(12\) −4.35327 5.02394i −0.104723 0.120857i
\(13\) −46.8944 13.7694i −1.00047 0.293766i −0.259824 0.965656i \(-0.583665\pi\)
−0.740651 + 0.671890i \(0.765483\pi\)
\(14\) −17.8020 + 38.9810i −0.339842 + 0.744150i
\(15\) −4.46139 2.86716i −0.0767950 0.0493532i
\(16\) −24.3916 + 7.16201i −0.381118 + 0.111906i
\(17\) −16.3103 + 113.440i −0.232695 + 1.61843i 0.453667 + 0.891171i \(0.350115\pi\)
−0.686363 + 0.727260i \(0.740794\pi\)
\(18\) −14.1482 30.9802i −0.185264 0.405673i
\(19\) −0.754174 5.24540i −0.00910629 0.0633356i 0.984762 0.173910i \(-0.0556401\pi\)
−0.993868 + 0.110574i \(0.964731\pi\)
\(20\) −26.3627 + 16.9423i −0.294744 + 0.189421i
\(21\) −22.6137 + 26.0976i −0.234986 + 0.271188i
\(22\) −24.2948 −0.235439
\(23\) 91.9473 + 60.9319i 0.833579 + 0.552400i
\(24\) 19.9186 0.169411
\(25\) −16.3715 + 18.8937i −0.130972 + 0.151150i
\(26\) 54.1183 34.7797i 0.408211 0.262341i
\(27\) −7.98130 55.5112i −0.0568890 0.395672i
\(28\) 84.7665 + 185.613i 0.572120 + 1.25277i
\(29\) −8.90313 + 61.9226i −0.0570093 + 0.396508i 0.941259 + 0.337685i \(0.109644\pi\)
−0.998268 + 0.0588232i \(0.981265\pi\)
\(30\) 6.69766 1.96661i 0.0407606 0.0119684i
\(31\) −253.699 163.043i −1.46986 0.944624i −0.998017 0.0629427i \(-0.979951\pi\)
−0.471846 0.881681i \(-0.656412\pi\)
\(32\) 76.3106 167.097i 0.421561 0.923089i
\(33\) −18.7841 5.51550i −0.0990875 0.0290947i
\(34\) −98.7865 114.006i −0.498287 0.575053i
\(35\) 106.603 + 123.026i 0.514832 + 0.594148i
\(36\) −155.602 45.6890i −0.720381 0.211523i
\(37\) −89.3887 + 195.734i −0.397173 + 0.869688i 0.600376 + 0.799718i \(0.295018\pi\)
−0.997549 + 0.0699702i \(0.977710\pi\)
\(38\) 5.86795 + 3.77110i 0.0250502 + 0.0160988i
\(39\) 49.7387 14.6046i 0.204220 0.0599643i
\(40\) 13.3631 92.9421i 0.0528221 0.367386i
\(41\) −25.1319 55.0311i −0.0957302 0.209620i 0.855709 0.517458i \(-0.173122\pi\)
−0.951439 + 0.307838i \(0.900394\pi\)
\(42\) −6.46860 44.9901i −0.0237649 0.165289i
\(43\) 367.457 236.150i 1.30318 0.837502i 0.309624 0.950859i \(-0.399797\pi\)
0.993554 + 0.113357i \(0.0361604\pi\)
\(44\) −75.7561 + 87.4272i −0.259560 + 0.299549i
\(45\) −129.375 −0.428580
\(46\) −139.867 + 38.9441i −0.448311 + 0.124826i
\(47\) 576.204 1.78825 0.894127 0.447813i \(-0.147797\pi\)
0.894127 + 0.447813i \(0.147797\pi\)
\(48\) 17.6571 20.3774i 0.0530956 0.0612756i
\(49\) 603.162 387.628i 1.75849 1.13011i
\(50\) −4.68304 32.5713i −0.0132456 0.0921255i
\(51\) −50.4970 110.573i −0.138647 0.303595i
\(52\) 43.5936 303.200i 0.116257 0.808583i
\(53\) 188.349 55.3042i 0.488145 0.143332i −0.0283925 0.999597i \(-0.509039\pi\)
0.516538 + 0.856265i \(0.327221\pi\)
\(54\) 62.0996 + 39.9090i 0.156494 + 0.100573i
\(55\) −38.3378 + 83.9481i −0.0939903 + 0.205810i
\(56\) −586.646 172.255i −1.39989 0.411045i
\(57\) 3.68081 + 4.24788i 0.00855325 + 0.00987098i
\(58\) −53.9237 62.2312i −0.122078 0.140886i
\(59\) 1.75568 + 0.515513i 0.00387406 + 0.00113753i 0.283669 0.958922i \(-0.408448\pi\)
−0.279795 + 0.960060i \(0.590266\pi\)
\(60\) 13.8076 30.2345i 0.0297093 0.0650542i
\(61\) 337.791 + 217.085i 0.709012 + 0.455654i 0.844799 0.535084i \(-0.179720\pi\)
−0.135787 + 0.990738i \(0.543356\pi\)
\(62\) 380.866 111.832i 0.780162 0.229076i
\(63\) −119.889 + 833.847i −0.239756 + 1.66754i
\(64\) 15.9606 + 34.9489i 0.0311731 + 0.0682595i
\(65\) −34.7776 241.883i −0.0663635 0.461569i
\(66\) 21.6777 13.9314i 0.0404294 0.0259824i
\(67\) −211.314 + 243.869i −0.385315 + 0.444677i −0.914961 0.403541i \(-0.867779\pi\)
0.529646 + 0.848219i \(0.322325\pi\)
\(68\) −718.297 −1.28098
\(69\) −116.983 1.64271i −0.204103 0.00286608i
\(70\) −214.268 −0.365856
\(71\) 106.599 123.021i 0.178182 0.205633i −0.659632 0.751589i \(-0.729288\pi\)
0.837814 + 0.545956i \(0.183833\pi\)
\(72\) 408.783 262.709i 0.669105 0.430008i
\(73\) −61.6457 428.755i −0.0988367 0.687425i −0.977647 0.210253i \(-0.932571\pi\)
0.878810 0.477171i \(-0.158338\pi\)
\(74\) −117.658 257.635i −0.184830 0.404722i
\(75\) 3.77366 26.2464i 0.00580994 0.0404090i
\(76\) 31.8682 9.35733i 0.0480991 0.0141232i
\(77\) 505.534 + 324.887i 0.748195 + 0.480835i
\(78\) −28.3448 + 62.0664i −0.0411463 + 0.0900978i
\(79\) 823.577 + 241.824i 1.17291 + 0.344397i 0.809435 0.587209i \(-0.199773\pi\)
0.363471 + 0.931605i \(0.381591\pi\)
\(80\) −83.2371 96.0608i −0.116327 0.134249i
\(81\) −418.549 483.031i −0.574141 0.662594i
\(82\) 76.4051 + 22.4346i 0.102897 + 0.0302132i
\(83\) −69.3782 + 151.917i −0.0917499 + 0.200904i −0.949943 0.312422i \(-0.898860\pi\)
0.858193 + 0.513326i \(0.171587\pi\)
\(84\) −182.072 117.010i −0.236496 0.151987i
\(85\) −549.822 + 161.442i −0.701607 + 0.206010i
\(86\) −81.8216 + 569.082i −0.102594 + 0.713554i
\(87\) −27.5643 60.3575i −0.0339679 0.0743794i
\(88\) −49.3300 343.097i −0.0597567 0.415617i
\(89\) 213.700 137.337i 0.254519 0.163569i −0.407160 0.913357i \(-0.633481\pi\)
0.661679 + 0.749788i \(0.269844\pi\)
\(90\) 111.516 128.696i 0.130609 0.150731i
\(91\) −1591.21 −1.83302
\(92\) −295.990 + 624.761i −0.335425 + 0.707999i
\(93\) 319.864 0.356649
\(94\) −496.665 + 573.182i −0.544969 + 0.628927i
\(95\) 22.2904 14.3252i 0.0240732 0.0154709i
\(96\) 27.7285 + 192.856i 0.0294794 + 0.205034i
\(97\) 143.140 + 313.432i 0.149831 + 0.328085i 0.969634 0.244562i \(-0.0786440\pi\)
−0.819802 + 0.572647i \(0.805917\pi\)
\(98\) −134.306 + 934.118i −0.138438 + 0.962859i
\(99\) −458.245 + 134.553i −0.465205 + 0.136597i
\(100\) −131.814 84.7115i −0.131814 0.0847115i
\(101\) −578.135 + 1265.94i −0.569570 + 1.24718i 0.377456 + 0.926027i \(0.376799\pi\)
−0.947026 + 0.321157i \(0.895928\pi\)
\(102\) 153.520 + 45.0774i 0.149026 + 0.0437581i
\(103\) 22.8056 + 26.3191i 0.0218166 + 0.0251776i 0.766553 0.642181i \(-0.221970\pi\)
−0.744736 + 0.667359i \(0.767425\pi\)
\(104\) 601.055 + 693.654i 0.566714 + 0.654023i
\(105\) −165.666 48.6440i −0.153975 0.0452111i
\(106\) −107.335 + 235.031i −0.0983518 + 0.215360i
\(107\) 638.085 + 410.072i 0.576505 + 0.370497i 0.796165 0.605079i \(-0.206859\pi\)
−0.219660 + 0.975576i \(0.570495\pi\)
\(108\) 337.255 99.0271i 0.300485 0.0882305i
\(109\) 229.568 1596.68i 0.201731 1.40307i −0.597416 0.801932i \(-0.703806\pi\)
0.799147 0.601136i \(-0.205285\pi\)
\(110\) −50.4621 110.497i −0.0437397 0.0957767i
\(111\) −32.4806 225.907i −0.0277741 0.193173i
\(112\) −696.264 + 447.461i −0.587417 + 0.377510i
\(113\) 844.624 974.748i 0.703146 0.811474i −0.286028 0.958221i \(-0.592335\pi\)
0.989174 + 0.146747i \(0.0468805\pi\)
\(114\) −7.39831 −0.00607821
\(115\) −86.1469 + 544.751i −0.0698543 + 0.441724i
\(116\) −392.090 −0.313833
\(117\) 828.150 955.736i 0.654380 0.755195i
\(118\) −2.02613 + 1.30212i −0.00158068 + 0.00101584i
\(119\) 531.018 + 3693.31i 0.409062 + 2.84509i
\(120\) 41.3724 + 90.5930i 0.0314731 + 0.0689164i
\(121\) 140.937 980.237i 0.105888 0.736467i
\(122\) −507.109 + 148.901i −0.376324 + 0.110499i
\(123\) 53.9812 + 34.6916i 0.0395717 + 0.0254312i
\(124\) 785.178 1719.30i 0.568638 1.24514i
\(125\) −119.937 35.2166i −0.0858197 0.0251989i
\(126\) −726.133 838.003i −0.513406 0.592502i
\(127\) −612.976 707.412i −0.428290 0.494273i 0.500055 0.865994i \(-0.333313\pi\)
−0.928344 + 0.371721i \(0.878768\pi\)
\(128\) 1361.53 + 399.781i 0.940181 + 0.276062i
\(129\) −192.458 + 421.423i −0.131356 + 0.287630i
\(130\) 270.592 + 173.899i 0.182557 + 0.117322i
\(131\) −1708.88 + 501.773i −1.13974 + 0.334658i −0.796529 0.604601i \(-0.793333\pi\)
−0.343211 + 0.939258i \(0.611514\pi\)
\(132\) 17.4619 121.450i 0.0115141 0.0800825i
\(133\) −71.6725 156.941i −0.0467278 0.102320i
\(134\) −60.4460 420.411i −0.0389682 0.271030i
\(135\) 235.896 151.601i 0.150390 0.0966500i
\(136\) 1409.44 1626.58i 0.888662 1.02557i
\(137\) 2320.13 1.44687 0.723437 0.690390i \(-0.242561\pi\)
0.723437 + 0.690390i \(0.242561\pi\)
\(138\) 102.469 114.953i 0.0632080 0.0709092i
\(139\) −1604.02 −0.978789 −0.489394 0.872063i \(-0.662782\pi\)
−0.489394 + 0.872063i \(0.662782\pi\)
\(140\) −668.130 + 771.064i −0.403338 + 0.465477i
\(141\) −514.134 + 330.414i −0.307077 + 0.197347i
\(142\) 30.4924 + 212.079i 0.0180202 + 0.125333i
\(143\) −374.746 820.578i −0.219145 0.479862i
\(144\) 93.6114 651.082i 0.0541733 0.376783i
\(145\) −300.126 + 88.1251i −0.171891 + 0.0504716i
\(146\) 479.642 + 308.247i 0.271887 + 0.174731i
\(147\) −315.909 + 691.744i −0.177250 + 0.388123i
\(148\) −1294.00 379.954i −0.718693 0.211027i
\(149\) 1477.35 + 1704.95i 0.812277 + 0.937418i 0.998987 0.0449972i \(-0.0143279\pi\)
−0.186710 + 0.982415i \(0.559782\pi\)
\(150\) 22.8560 + 26.3772i 0.0124412 + 0.0143579i
\(151\) 742.471 + 218.009i 0.400142 + 0.117492i 0.475611 0.879656i \(-0.342227\pi\)
−0.0754688 + 0.997148i \(0.524045\pi\)
\(152\) −41.3418 + 90.5259i −0.0220609 + 0.0483067i
\(153\) −2494.70 1603.25i −1.31820 0.847155i
\(154\) −758.933 + 222.843i −0.397121 + 0.116605i
\(155\) 214.592 1492.52i 0.111203 0.773431i
\(156\) 134.967 + 295.537i 0.0692694 + 0.151679i
\(157\) −287.830 2001.90i −0.146314 1.01764i −0.922186 0.386747i \(-0.873599\pi\)
0.775871 0.630891i \(-0.217311\pi\)
\(158\) −950.446 + 610.814i −0.478566 + 0.307556i
\(159\) −136.346 + 157.352i −0.0680060 + 0.0784831i
\(160\) 918.487 0.453830
\(161\) 3431.19 + 1060.04i 1.67960 + 0.518901i
\(162\) 841.270 0.408003
\(163\) 2249.44 2595.99i 1.08092 1.24744i 0.113694 0.993516i \(-0.463732\pi\)
0.967223 0.253928i \(-0.0817227\pi\)
\(164\) 318.980 204.996i 0.151879 0.0976066i
\(165\) −13.9305 96.8891i −0.00657268 0.0457140i
\(166\) −91.3189 199.961i −0.0426971 0.0934937i
\(167\) 8.37301 58.2356i 0.00387978 0.0269844i −0.987790 0.155794i \(-0.950206\pi\)
0.991669 + 0.128809i \(0.0411155\pi\)
\(168\) 622.228 182.702i 0.285749 0.0839036i
\(169\) 161.255 + 103.632i 0.0733979 + 0.0471699i
\(170\) 313.329 686.095i 0.141360 0.309536i
\(171\) 131.566 + 38.6313i 0.0588369 + 0.0172761i
\(172\) 1792.76 + 2068.96i 0.794748 + 0.917188i
\(173\) −2088.33 2410.06i −0.917760 1.05915i −0.998052 0.0623804i \(-0.980131\pi\)
0.0802922 0.996771i \(-0.474415\pi\)
\(174\) 83.8003 + 24.6060i 0.0365108 + 0.0107205i
\(175\) −338.120 + 740.380i −0.146054 + 0.319814i
\(176\) −394.730 253.677i −0.169056 0.108646i
\(177\) −1.86216 + 0.546780i −0.000790783 + 0.000232195i
\(178\) −47.5846 + 330.958i −0.0200372 + 0.139362i
\(179\) −1735.05 3799.22i −0.724489 1.58641i −0.807505 0.589861i \(-0.799182\pi\)
0.0830159 0.996548i \(-0.473545\pi\)
\(180\) −115.397 802.603i −0.0477843 0.332347i
\(181\) 1320.11 848.385i 0.542117 0.348398i −0.240749 0.970587i \(-0.577393\pi\)
0.782867 + 0.622190i \(0.213757\pi\)
\(182\) 1371.56 1582.87i 0.558609 0.644669i
\(183\) −425.887 −0.172035
\(184\) −833.975 1896.17i −0.334138 0.759713i
\(185\) −1075.90 −0.427576
\(186\) −275.710 + 318.186i −0.108688 + 0.125433i
\(187\) −1779.56 + 1143.65i −0.695905 + 0.447231i
\(188\) 513.949 + 3574.59i 0.199381 + 1.38672i
\(189\) −758.498 1660.88i −0.291919 0.639213i
\(190\) −4.96341 + 34.5212i −0.00189518 + 0.0131812i
\(191\) −1556.43 + 457.008i −0.589629 + 0.173131i −0.562918 0.826513i \(-0.690321\pi\)
−0.0267106 + 0.999643i \(0.508503\pi\)
\(192\) −34.2821 22.0318i −0.0128859 0.00828128i
\(193\) −1978.42 + 4332.13i −0.737873 + 1.61572i 0.0491479 + 0.998792i \(0.484349\pi\)
−0.787021 + 0.616926i \(0.788378\pi\)
\(194\) −435.169 127.777i −0.161048 0.0472880i
\(195\) 169.735 + 195.885i 0.0623332 + 0.0719364i
\(196\) 2942.72 + 3396.08i 1.07242 + 1.23764i
\(197\) 712.131 + 209.100i 0.257549 + 0.0756233i 0.407958 0.913001i \(-0.366241\pi\)
−0.150409 + 0.988624i \(0.548059\pi\)
\(198\) 261.141 571.820i 0.0937299 0.205240i
\(199\) 3551.50 + 2282.41i 1.26512 + 0.813045i 0.988977 0.148071i \(-0.0473064\pi\)
0.276146 + 0.961116i \(0.410943\pi\)
\(200\) 450.472 132.270i 0.159266 0.0467646i
\(201\) 48.7083 338.773i 0.0170926 0.118882i
\(202\) −760.969 1666.29i −0.265058 0.580395i
\(203\) 289.862 + 2016.03i 0.100218 + 0.697034i
\(204\) 640.921 411.895i 0.219968 0.141365i
\(205\) 198.089 228.607i 0.0674886 0.0778860i
\(206\) −45.8386 −0.0155035
\(207\) −2422.47 + 1509.19i −0.813397 + 0.506744i
\(208\) 1242.45 0.414174
\(209\) 64.0539 73.9221i 0.0211995 0.0244656i
\(210\) 191.186 122.868i 0.0628243 0.0403747i
\(211\) −228.690 1590.57i −0.0746145 0.518956i −0.992513 0.122140i \(-0.961024\pi\)
0.917898 0.396816i \(-0.129885\pi\)
\(212\) 511.089 + 1119.13i 0.165574 + 0.362557i
\(213\) −24.5712 + 170.896i −0.00790418 + 0.0549748i
\(214\) −957.925 + 281.272i −0.305993 + 0.0898475i
\(215\) 1837.29 + 1180.75i 0.582799 + 0.374542i
\(216\) −437.513 + 958.021i −0.137820 + 0.301783i
\(217\) −9420.70 2766.17i −2.94709 0.865344i
\(218\) 1390.43 + 1604.64i 0.431980 + 0.498532i
\(219\) 300.867 + 347.219i 0.0928343 + 0.107136i
\(220\) −554.984 162.958i −0.170077 0.0499392i
\(221\) 2326.87 5095.14i 0.708245 1.55084i
\(222\) 252.719 + 162.413i 0.0764028 + 0.0491011i
\(223\) 3861.40 1133.81i 1.15954 0.340473i 0.355289 0.934756i \(-0.384382\pi\)
0.804256 + 0.594283i \(0.202564\pi\)
\(224\) 851.141 5919.82i 0.253881 1.76578i
\(225\) −268.722 588.419i −0.0796213 0.174346i
\(226\) 241.603 + 1680.39i 0.0711115 + 0.494591i
\(227\) −2165.35 + 1391.59i −0.633125 + 0.406885i −0.817465 0.575978i \(-0.804622\pi\)
0.184340 + 0.982862i \(0.440985\pi\)
\(228\) −23.0694 + 26.6236i −0.00670093 + 0.00773328i
\(229\) −1755.81 −0.506669 −0.253334 0.967379i \(-0.581527\pi\)
−0.253334 + 0.967379i \(0.581527\pi\)
\(230\) −467.638 555.249i −0.134066 0.159183i
\(231\) −637.378 −0.181543
\(232\) 769.355 887.883i 0.217718 0.251260i
\(233\) 1117.15 717.950i 0.314107 0.201865i −0.374082 0.927396i \(-0.622042\pi\)
0.688189 + 0.725531i \(0.258406\pi\)
\(234\) 236.891 + 1647.61i 0.0661797 + 0.460290i
\(235\) 1196.82 + 2620.67i 0.332221 + 0.727462i
\(236\) −1.63210 + 11.3515i −0.000450172 + 0.00313101i
\(237\) −873.529 + 256.491i −0.239417 + 0.0702991i
\(238\) −4131.66 2655.26i −1.12528 0.723171i
\(239\) −1592.48 + 3487.04i −0.430999 + 0.943757i 0.562164 + 0.827026i \(0.309969\pi\)
−0.993164 + 0.116731i \(0.962758\pi\)
\(240\) 129.355 + 37.9820i 0.0347909 + 0.0102155i
\(241\) 1769.95 + 2042.63i 0.473080 + 0.545963i 0.941266 0.337667i \(-0.109638\pi\)
−0.468186 + 0.883630i \(0.655092\pi\)
\(242\) 853.614 + 985.123i 0.226745 + 0.261678i
\(243\) 2103.33 + 617.592i 0.555261 + 0.163039i
\(244\) −1045.44 + 2289.18i −0.274292 + 0.600615i
\(245\) 3015.81 + 1938.14i 0.786420 + 0.505401i
\(246\) −81.0392 + 23.7953i −0.0210035 + 0.00616720i
\(247\) −36.8596 + 256.364i −0.00949523 + 0.0660408i
\(248\) 2352.67 + 5151.62i 0.602397 + 1.31907i
\(249\) −25.2095 175.336i −0.00641601 0.0446243i
\(250\) 138.412 88.9522i 0.0350159 0.0225033i
\(251\) 697.158 804.563i 0.175316 0.202325i −0.661291 0.750130i \(-0.729991\pi\)
0.836606 + 0.547805i \(0.184536\pi\)
\(252\) −5279.87 −1.31984
\(253\) 261.421 + 2019.09i 0.0649621 + 0.501737i
\(254\) 1232.06 0.304356
\(255\) 398.018 459.337i 0.0977445 0.112803i
\(256\) −1829.84 + 1175.97i −0.446738 + 0.287101i
\(257\) 402.244 + 2797.67i 0.0976314 + 0.679041i 0.978586 + 0.205840i \(0.0659926\pi\)
−0.880954 + 0.473201i \(0.843098\pi\)
\(258\) −253.322 554.698i −0.0611285 0.133853i
\(259\) −997.010 + 6934.35i −0.239194 + 1.66363i
\(260\) 1469.55 431.499i 0.350530 0.102925i
\(261\) −1361.76 875.149i −0.322953 0.207549i
\(262\) 973.847 2132.43i 0.229635 0.502832i
\(263\) −4058.84 1191.78i −0.951629 0.279424i −0.231164 0.972915i \(-0.574253\pi\)
−0.720465 + 0.693491i \(0.756072\pi\)
\(264\) 240.759 + 277.851i 0.0561276 + 0.0647747i
\(265\) 642.747 + 741.769i 0.148995 + 0.171949i
\(266\) 217.896 + 63.9802i 0.0502259 + 0.0147477i
\(267\) −111.927 + 245.085i −0.0256547 + 0.0561759i
\(268\) −1701.37 1093.41i −0.387791 0.249218i
\(269\) −8260.37 + 2425.46i −1.87228 + 0.549751i −0.874362 + 0.485275i \(0.838719\pi\)
−0.997919 + 0.0644762i \(0.979462\pi\)
\(270\) −52.5269 + 365.333i −0.0118396 + 0.0823461i
\(271\) 458.190 + 1003.30i 0.102705 + 0.224893i 0.954008 0.299782i \(-0.0969141\pi\)
−0.851303 + 0.524675i \(0.824187\pi\)
\(272\) −414.628 2883.80i −0.0924284 0.642854i
\(273\) 1419.80 912.452i 0.314763 0.202286i
\(274\) −1999.86 + 2307.96i −0.440933 + 0.508864i
\(275\) −461.440 −0.101185
\(276\) −94.1527 727.191i −0.0205338 0.158593i
\(277\) 1461.65 0.317048 0.158524 0.987355i \(-0.449326\pi\)
0.158524 + 0.987355i \(0.449326\pi\)
\(278\) 1382.60 1595.61i 0.298285 0.344239i
\(279\) 6564.48 4218.73i 1.40862 0.905265i
\(280\) −435.065 3025.95i −0.0928576 0.645839i
\(281\) 1359.51 + 2976.91i 0.288618 + 0.631985i 0.997291 0.0735515i \(-0.0234333\pi\)
−0.708674 + 0.705537i \(0.750706\pi\)
\(282\) 114.482 796.240i 0.0241749 0.168140i
\(283\) −4630.32 + 1359.58i −0.972593 + 0.285579i −0.729163 0.684340i \(-0.760091\pi\)
−0.243429 + 0.969919i \(0.578272\pi\)
\(284\) 858.269 + 551.576i 0.179327 + 0.115247i
\(285\) −11.6747 + 25.5641i −0.00242650 + 0.00531328i
\(286\) 1139.29 + 334.526i 0.235551 + 0.0691640i
\(287\) −1289.85 1488.57i −0.265288 0.306158i
\(288\) 3112.67 + 3592.21i 0.636860 + 0.734975i
\(289\) −7888.70 2316.33i −1.60568 0.471470i
\(290\) 171.034 374.512i 0.0346326 0.0758349i
\(291\) −307.453 197.588i −0.0619354 0.0398034i
\(292\) 2604.88 764.862i 0.522052 0.153288i
\(293\) −11.9582 + 83.1710i −0.00238432 + 0.0165833i −0.990979 0.134018i \(-0.957212\pi\)
0.988595 + 0.150601i \(0.0481210\pi\)
\(294\) −415.815 910.508i −0.0824858 0.180619i
\(295\) 1.30204 + 9.05585i 0.000256974 + 0.00178730i
\(296\) 3399.48 2184.72i 0.667537 0.429000i
\(297\) 677.872 782.306i 0.132438 0.152842i
\(298\) −2969.43 −0.577229
\(299\) −3472.81 4123.43i −0.671699 0.797539i
\(300\) 166.191 0.0319834
\(301\) 9312.74 10747.5i 1.78331 2.05805i
\(302\) −856.845 + 550.661i −0.163265 + 0.104924i
\(303\) −210.073 1461.09i −0.0398296 0.277021i
\(304\) 55.9631 + 122.542i 0.0105582 + 0.0231193i
\(305\) −285.721 + 1987.23i −0.0536404 + 0.373077i
\(306\) 3745.17 1099.68i 0.699663 0.205440i
\(307\) −7355.12 4726.85i −1.36736 0.878748i −0.368651 0.929568i \(-0.620180\pi\)
−0.998708 + 0.0508202i \(0.983816\pi\)
\(308\) −1564.59 + 3425.97i −0.289450 + 0.633807i
\(309\) −35.4412 10.4065i −0.00652484 0.00191587i
\(310\) 1299.72 + 1499.96i 0.238126 + 0.274812i
\(311\) 2069.92 + 2388.81i 0.377409 + 0.435553i 0.912397 0.409306i \(-0.134229\pi\)
−0.534988 + 0.844860i \(0.679684\pi\)
\(312\) −934.071 274.268i −0.169492 0.0497672i
\(313\) 3215.95 7041.95i 0.580755 1.27168i −0.360116 0.932908i \(-0.617263\pi\)
0.940870 0.338767i \(-0.110010\pi\)
\(314\) 2239.50 + 1439.24i 0.402491 + 0.258666i
\(315\) −4041.49 + 1186.69i −0.722895 + 0.212261i
\(316\) −765.607 + 5324.92i −0.136294 + 0.947943i
\(317\) −191.148 418.556i −0.0338673 0.0741591i 0.891942 0.452149i \(-0.149343\pi\)
−0.925810 + 0.377990i \(0.876615\pi\)
\(318\) −39.0016 271.262i −0.00687767 0.0478353i
\(319\) −971.392 + 624.275i −0.170494 + 0.109570i
\(320\) −125.802 + 145.183i −0.0219766 + 0.0253624i
\(321\) −804.498 −0.139884
\(322\) −4012.03 + 2499.48i −0.694353 + 0.432580i
\(323\) 607.340 0.104623
\(324\) 2623.25 3027.39i 0.449803 0.519100i
\(325\) 1027.89 660.584i 0.175437 0.112747i
\(326\) 643.447 + 4475.27i 0.109317 + 0.760314i
\(327\) 710.750 + 1556.33i 0.120197 + 0.263196i
\(328\) −161.688 + 1124.57i −0.0272187 + 0.189310i
\(329\) 17999.8 5285.21i 3.01629 0.885662i
\(330\) 108.388 + 69.6570i 0.0180806 + 0.0116197i
\(331\) −2121.10 + 4644.57i −0.352225 + 0.771264i 0.647731 + 0.761869i \(0.275718\pi\)
−0.999956 + 0.00939539i \(0.997009\pi\)
\(332\) −1004.33 294.898i −0.166023 0.0487488i
\(333\) −3646.11 4207.84i −0.600017 0.692457i
\(334\) 50.7129 + 58.5258i 0.00830804 + 0.00958799i
\(335\) −1548.07 454.555i −0.252478 0.0741343i
\(336\) 364.672 798.520i 0.0592097 0.129651i
\(337\) 7406.63 + 4759.95i 1.19722 + 0.769410i 0.978474 0.206371i \(-0.0661653\pi\)
0.218751 + 0.975781i \(0.429802\pi\)
\(338\) −242.084 + 71.0823i −0.0389575 + 0.0114390i
\(339\) −194.687 + 1354.08i −0.0311916 + 0.216943i
\(340\) −1491.96 3266.93i −0.237979 0.521101i
\(341\) −792.169 5509.65i −0.125802 0.874969i
\(342\) −151.833 + 97.5774i −0.0240065 + 0.0154280i
\(343\) 7973.44 9201.83i 1.25518 1.44855i
\(344\) −8202.86 −1.28566
\(345\) −235.511 535.469i −0.0367521 0.0835613i
\(346\) 4197.47 0.652189
\(347\) 2018.40 2329.36i 0.312257 0.360364i −0.577828 0.816159i \(-0.696099\pi\)
0.890085 + 0.455795i \(0.150645\pi\)
\(348\) 349.853 224.837i 0.0538911 0.0346337i
\(349\) 634.337 + 4411.91i 0.0972931 + 0.676688i 0.978845 + 0.204602i \(0.0655899\pi\)
−0.881552 + 0.472087i \(0.843501\pi\)
\(350\) −445.050 974.524i −0.0679684 0.148830i
\(351\) −390.080 + 2713.06i −0.0593188 + 0.412571i
\(352\) 3253.27 955.245i 0.492613 0.144644i
\(353\) −7269.25 4671.66i −1.09604 0.704384i −0.137834 0.990455i \(-0.544014\pi\)
−0.958208 + 0.286071i \(0.907651\pi\)
\(354\) 1.06120 2.32370i 0.000159328 0.000348879i
\(355\) 780.935 + 229.303i 0.116754 + 0.0342821i
\(356\) 1042.61 + 1203.23i 0.155219 + 0.179133i
\(357\) −2591.68 2990.96i −0.384219 0.443413i
\(358\) 5274.84 + 1548.83i 0.778726 + 0.228654i
\(359\) −1949.18 + 4268.12i −0.286557 + 0.627472i −0.997093 0.0761881i \(-0.975725\pi\)
0.710536 + 0.703660i \(0.248452\pi\)
\(360\) 2043.92 + 1313.55i 0.299233 + 0.192305i
\(361\) 6554.22 1924.49i 0.955564 0.280579i
\(362\) −293.949 + 2044.46i −0.0426786 + 0.296836i
\(363\) 436.345 + 955.462i 0.0630913 + 0.138151i
\(364\) −1419.29 9871.39i −0.204371 1.42143i
\(365\) 1822.00 1170.93i 0.261282 0.167916i
\(366\) 367.098 423.653i 0.0524276 0.0605047i
\(367\) 5917.47 0.841660 0.420830 0.907139i \(-0.361739\pi\)
0.420830 + 0.907139i \(0.361739\pi\)
\(368\) −2679.13 827.699i −0.379510 0.117247i
\(369\) 1565.39 0.220843
\(370\) 927.379 1070.25i 0.130303 0.150378i
\(371\) 5376.46 3455.24i 0.752377 0.483523i
\(372\) 285.305 + 1984.34i 0.0397644 + 0.276568i
\(373\) 409.704 + 897.128i 0.0568732 + 0.124535i 0.935935 0.352173i \(-0.114557\pi\)
−0.879062 + 0.476708i \(0.841830\pi\)
\(374\) 396.254 2756.01i 0.0547856 0.381042i
\(375\) 127.211 37.3525i 0.0175177 0.00514367i
\(376\) −9103.09 5850.20i −1.24855 0.802396i
\(377\) 1270.15 2781.23i 0.173517 0.379949i
\(378\) 2305.96 + 677.092i 0.313772 + 0.0921318i
\(379\) 9639.05 + 11124.1i 1.30640 + 1.50766i 0.707006 + 0.707208i \(0.250045\pi\)
0.599392 + 0.800456i \(0.295409\pi\)
\(380\) 108.751 + 125.506i 0.0146811 + 0.0169429i
\(381\) 952.597 + 279.708i 0.128092 + 0.0376112i
\(382\) 886.967 1942.19i 0.118799 0.260133i
\(383\) −675.817 434.321i −0.0901636 0.0579446i 0.494782 0.869017i \(-0.335248\pi\)
−0.584946 + 0.811072i \(0.698884\pi\)
\(384\) −1444.11 + 424.028i −0.191912 + 0.0563505i
\(385\) −427.606 + 2974.07i −0.0566047 + 0.393695i
\(386\) −2604.09 5702.16i −0.343380 0.751897i
\(387\) 1608.46 + 11187.1i 0.211273 + 1.46944i
\(388\) −1816.76 + 1167.56i −0.237712 + 0.152768i
\(389\) −3390.30 + 3912.61i −0.441889 + 0.509967i −0.932380 0.361479i \(-0.882272\pi\)
0.490491 + 0.871446i \(0.336817\pi\)
\(390\) −341.162 −0.0442959
\(391\) −8411.82 + 9436.71i −1.08799 + 1.22055i
\(392\) −13464.6 −1.73486
\(393\) 1237.07 1427.65i 0.158783 0.183245i
\(394\) −821.832 + 528.159i −0.105084 + 0.0675337i
\(395\) 610.777 + 4248.05i 0.0778013 + 0.541120i
\(396\) −1243.46 2722.79i −0.157793 0.345519i
\(397\) 1009.32 7019.94i 0.127597 0.887458i −0.820990 0.570942i \(-0.806578\pi\)
0.948587 0.316516i \(-0.102513\pi\)
\(398\) −5331.69 + 1565.53i −0.671492 + 0.197168i
\(399\) 153.947 + 98.9355i 0.0193157 + 0.0124135i
\(400\) 264.010 578.101i 0.0330012 0.0722626i
\(401\) −9601.03 2819.12i −1.19564 0.351072i −0.377457 0.926027i \(-0.623201\pi\)
−0.818185 + 0.574955i \(0.805020\pi\)
\(402\) 295.012 + 340.462i 0.0366016 + 0.0422405i
\(403\) 9652.08 + 11139.1i 1.19306 + 1.37687i
\(404\) −8369.17 2457.41i −1.03065 0.302625i
\(405\) 1327.55 2906.92i 0.162880 0.356657i
\(406\) −2255.31 1449.40i −0.275688 0.177174i
\(407\) −3810.81 + 1118.95i −0.464115 + 0.136276i
\(408\) −324.877 + 2259.57i −0.0394211 + 0.274180i
\(409\) 530.851 + 1162.40i 0.0641782 + 0.140531i 0.939003 0.343908i \(-0.111751\pi\)
−0.874825 + 0.484439i \(0.839024\pi\)
\(410\) 56.6631 + 394.101i 0.00682535 + 0.0474713i
\(411\) −2070.20 + 1330.43i −0.248456 + 0.159673i
\(412\) −142.934 + 164.955i −0.0170919 + 0.0197251i
\(413\) 59.5733 0.00709784
\(414\) 586.798 3710.62i 0.0696607 0.440500i
\(415\) −835.046 −0.0987731
\(416\) −5879.38 + 6785.16i −0.692933 + 0.799687i
\(417\) 1431.24 919.799i 0.168076 0.108016i
\(418\) 18.3225 + 127.436i 0.00214398 + 0.0149117i
\(419\) −5812.60 12727.8i −0.677719 1.48400i −0.865043 0.501698i \(-0.832709\pi\)
0.187324 0.982298i \(-0.440019\pi\)
\(420\) 154.005 1071.13i 0.0178921 0.124442i
\(421\) −13711.3 + 4025.99i −1.58728 + 0.466068i −0.951971 0.306188i \(-0.900946\pi\)
−0.635311 + 0.772256i \(0.719128\pi\)
\(422\) 1779.35 + 1143.52i 0.205255 + 0.131909i
\(423\) −6193.54 + 13562.0i −0.711916 + 1.55888i
\(424\) −3537.11 1038.59i −0.405135 0.118958i
\(425\) −1876.29 2165.35i −0.214149 0.247141i
\(426\) −148.821 171.748i −0.0169258 0.0195334i
\(427\) 12543.3 + 3683.05i 1.42158 + 0.417412i
\(428\) −1974.82 + 4324.25i −0.223029 + 0.488366i
\(429\) 804.923 + 517.293i 0.0905875 + 0.0582171i
\(430\) −2758.22 + 809.888i −0.309333 + 0.0908285i
\(431\) 779.978 5424.87i 0.0871699 0.606280i −0.898674 0.438616i \(-0.855469\pi\)
0.985844 0.167663i \(-0.0536222\pi\)
\(432\) 592.248 + 1296.84i 0.0659596 + 0.144431i
\(433\) −1627.91 11322.3i −0.180675 1.25662i −0.855172 0.518344i \(-0.826549\pi\)
0.674498 0.738277i \(-0.264360\pi\)
\(434\) 10871.9 6986.96i 1.20246 0.772776i
\(435\) 217.262 250.734i 0.0239470 0.0276363i
\(436\) 10110.1 1.11052
\(437\) 250.268 528.253i 0.0273958 0.0578256i
\(438\) −604.733 −0.0659709
\(439\) −8500.86 + 9810.51i −0.924200 + 1.06658i 0.0733975 + 0.997303i \(0.476616\pi\)
−0.997597 + 0.0692806i \(0.977930\pi\)
\(440\) 1458.00 937.000i 0.157971 0.101522i
\(441\) 2640.20 + 18363.0i 0.285088 + 1.98283i
\(442\) 3062.74 + 6706.47i 0.329592 + 0.721706i
\(443\) 972.582 6764.46i 0.104309 0.725483i −0.868804 0.495155i \(-0.835111\pi\)
0.973113 0.230328i \(-0.0739798\pi\)
\(444\) 1372.49 402.999i 0.146701 0.0430754i
\(445\) 1068.50 + 686.684i 0.113824 + 0.0731505i
\(446\) −2200.51 + 4818.44i −0.233626 + 0.511569i
\(447\) −2295.88 674.132i −0.242934 0.0713319i
\(448\) 819.153 + 945.353i 0.0863869 + 0.0996958i
\(449\) 6306.55 + 7278.15i 0.662861 + 0.764982i 0.983242 0.182307i \(-0.0583564\pi\)
−0.320381 + 0.947289i \(0.603811\pi\)
\(450\) 816.959 + 239.881i 0.0855819 + 0.0251291i
\(451\) 463.873 1015.74i 0.0484323 0.106052i
\(452\) 6800.40 + 4370.35i 0.707664 + 0.454788i
\(453\) −787.503 + 231.232i −0.0816780 + 0.0239828i
\(454\) 482.158 3353.49i 0.0498432 0.346667i
\(455\) −3305.07 7237.09i −0.340536 0.745670i
\(456\) −15.0221 104.481i −0.00154271 0.0107298i
\(457\) 2004.60 1288.28i 0.205189 0.131867i −0.434011 0.900908i \(-0.642902\pi\)
0.639200 + 0.769041i \(0.279266\pi\)
\(458\) 1513.44 1746.60i 0.154407 0.178195i
\(459\) 6427.38 0.653605
\(460\) −3456.31 48.5347i −0.350329 0.00491944i
\(461\) 1559.73 0.157579 0.0787893 0.996891i \(-0.474895\pi\)
0.0787893 + 0.996891i \(0.474895\pi\)
\(462\) 549.394 634.034i 0.0553249 0.0638484i
\(463\) −9372.23 + 6023.17i −0.940744 + 0.604579i −0.918606 0.395175i \(-0.870684\pi\)
−0.0221384 + 0.999755i \(0.507047\pi\)
\(464\) −226.329 1574.15i −0.0226446 0.157496i
\(465\) 664.382 + 1454.79i 0.0662580 + 0.145085i
\(466\) −248.756 + 1730.14i −0.0247283 + 0.171989i
\(467\) 9701.09 2848.50i 0.961269 0.282254i 0.236798 0.971559i \(-0.423902\pi\)
0.724471 + 0.689305i \(0.242084\pi\)
\(468\) 6667.77 + 4285.11i 0.658585 + 0.423247i
\(469\) −4364.26 + 9556.39i −0.429686 + 0.940881i
\(470\) −3638.53 1068.37i −0.357091 0.104851i
\(471\) 1404.78 + 1621.20i 0.137429 + 0.158601i
\(472\) −22.5028 25.9696i −0.00219444 0.00253252i
\(473\) 7735.64 + 2271.39i 0.751977 + 0.220800i
\(474\) 497.801 1090.03i 0.0482379 0.105626i
\(475\) 111.452 + 71.6259i 0.0107658 + 0.00691879i
\(476\) −22438.5 + 6588.55i −2.16065 + 0.634424i
\(477\) −722.856 + 5027.57i −0.0693864 + 0.482593i
\(478\) −2096.10 4589.81i −0.200572 0.439191i
\(479\) 140.838 + 979.551i 0.0134344 + 0.0934380i 0.995435 0.0954372i \(-0.0304249\pi\)
−0.982001 + 0.188875i \(0.939516\pi\)
\(480\) −819.545 + 526.690i −0.0779311 + 0.0500833i
\(481\) 6886.98 7948.00i 0.652847 0.753425i
\(482\) −3557.53 −0.336185
\(483\) −3669.44 + 1021.70i −0.345684 + 0.0962508i
\(484\) 6206.80 0.582908
\(485\) −1128.23 + 1302.05i −0.105629 + 0.121903i
\(486\) −2427.33 + 1559.95i −0.226556 + 0.145599i
\(487\) 132.198 + 919.455i 0.0123007 + 0.0855533i 0.995047 0.0994052i \(-0.0316940\pi\)
−0.982746 + 0.184959i \(0.940785\pi\)
\(488\) −3132.49 6859.19i −0.290576 0.636272i
\(489\) −518.499 + 3606.24i −0.0479496 + 0.333497i
\(490\) −4527.48 + 1329.39i −0.417410 + 0.122563i
\(491\) −209.985 134.949i −0.0193004 0.0124036i 0.530955 0.847400i \(-0.321833\pi\)
−0.550255 + 0.834996i \(0.685470\pi\)
\(492\) −167.067 + 365.826i −0.0153089 + 0.0335218i
\(493\) −6879.31 2019.95i −0.628455 0.184531i
\(494\) −223.248 257.642i −0.0203328 0.0234653i
\(495\) −1563.78 1804.69i −0.141993 0.163869i
\(496\) 7355.84 + 2159.87i 0.665901 + 0.195526i
\(497\) 2201.58 4820.78i 0.198701 0.435094i
\(498\) 196.146 + 126.055i 0.0176496 + 0.0113427i
\(499\) 1304.57 383.057i 0.117035 0.0343647i −0.222690 0.974889i \(-0.571484\pi\)
0.339726 + 0.940525i \(0.389666\pi\)
\(500\) 111.495 775.462i 0.00997238 0.0693594i
\(501\) 25.9231 + 56.7636i 0.00231169 + 0.00506190i
\(502\) 199.421 + 1387.00i 0.0177302 + 0.123317i
\(503\) −6482.92 + 4166.32i −0.574671 + 0.369318i −0.795463 0.606003i \(-0.792772\pi\)
0.220792 + 0.975321i \(0.429136\pi\)
\(504\) 10360.1 11956.2i 0.915626 1.05669i
\(505\) −6958.52 −0.613169
\(506\) −2233.84 1480.33i −0.196257 0.130057i
\(507\) −203.310 −0.0178093
\(508\) 3841.82 4433.70i 0.335538 0.387231i
\(509\) −1173.74 + 754.315i −0.102210 + 0.0656865i −0.590747 0.806857i \(-0.701167\pi\)
0.488537 + 0.872543i \(0.337531\pi\)
\(510\) 113.852 + 791.860i 0.00988523 + 0.0687533i
\(511\) −5858.46 12828.2i −0.507168 1.11054i
\(512\) −1208.12 + 8402.63i −0.104281 + 0.725288i
\(513\) −285.159 + 83.7302i −0.0245421 + 0.00720620i
\(514\) −3129.71 2011.34i −0.268571 0.172600i
\(515\) −72.3344 + 158.390i −0.00618920 + 0.0135525i
\(516\) −2786.04 818.057i −0.237691 0.0697925i
\(517\) 6964.66 + 8037.65i 0.592467 + 0.683744i
\(518\) −6038.60 6968.92i −0.512202 0.591113i
\(519\) 3245.37 + 952.927i 0.274482 + 0.0805951i
\(520\) −1906.41 + 4174.46i −0.160773 + 0.352043i
\(521\) −2151.97 1382.99i −0.180959 0.116295i 0.447025 0.894521i \(-0.352483\pi\)
−0.627984 + 0.778226i \(0.716120\pi\)
\(522\) 2044.34 600.272i 0.171414 0.0503318i
\(523\) 2389.80 16621.4i 0.199806 1.38968i −0.605040 0.796195i \(-0.706843\pi\)
0.804845 0.593485i \(-0.202248\pi\)
\(524\) −4637.10 10153.8i −0.386589 0.846512i
\(525\) −122.860 854.513i −0.0102135 0.0710362i
\(526\) 4684.08 3010.28i 0.388281 0.249533i
\(527\) 22633.5 26120.5i 1.87084 2.15906i
\(528\) 497.675 0.0410200
\(529\) 4741.60 + 11205.1i 0.389710 + 0.920938i
\(530\) −1291.90 −0.105880
\(531\) −31.0050 + 35.7817i −0.00253391 + 0.00292428i
\(532\) 909.684 584.619i 0.0741350 0.0476437i
\(533\) 420.796 + 2926.70i 0.0341965 + 0.237842i
\(534\) −147.323 322.593i −0.0119388 0.0261423i
\(535\) −539.724 + 3753.86i −0.0436155 + 0.303353i
\(536\) 5814.42 1707.27i 0.468554 0.137580i
\(537\) 3726.74 + 2395.03i 0.299480 + 0.192464i
\(538\) 4707.36 10307.7i 0.377228 0.826015i
\(539\) 12697.7 + 3728.37i 1.01471 + 0.297945i
\(540\) 1150.90 + 1328.20i 0.0917161 + 0.105846i
\(541\) −12974.1 14972.9i −1.03106 1.18990i −0.981565 0.191128i \(-0.938785\pi\)
−0.0494912 0.998775i \(-0.515760\pi\)
\(542\) −1392.97 409.014i −0.110394 0.0324145i
\(543\) −691.416 + 1513.99i −0.0546437 + 0.119653i
\(544\) 17710.9 + 11382.1i 1.39586 + 0.897065i
\(545\) 7738.80 2272.32i 0.608245 0.178597i
\(546\) −316.147 + 2198.85i −0.0247800 + 0.172348i
\(547\) −561.779 1230.12i −0.0439121 0.0961541i 0.886405 0.462911i \(-0.153195\pi\)
−0.930317 + 0.366757i \(0.880468\pi\)
\(548\) 2069.45 + 14393.4i 0.161319 + 1.12200i
\(549\) −8740.35 + 5617.08i −0.679470 + 0.436669i
\(550\) 397.742 459.019i 0.0308360 0.0355866i
\(551\) 331.523 0.0256322
\(552\) 1831.46 + 1213.68i 0.141218 + 0.0935826i
\(553\) 27945.4 2.14894
\(554\) −1259.89 + 1453.99i −0.0966200 + 0.111505i
\(555\) 959.998 616.953i 0.0734228 0.0471860i
\(556\) −1430.72 9950.88i −0.109130 0.759013i
\(557\) −3478.32 7616.46i −0.264598 0.579389i 0.729970 0.683480i \(-0.239534\pi\)
−0.994568 + 0.104090i \(0.966807\pi\)
\(558\) −1461.71 + 10166.4i −0.110895 + 0.771288i
\(559\) −20483.3 + 6014.45i −1.54983 + 0.455070i
\(560\) −3481.32 2237.31i −0.262701 0.168828i
\(561\) 932.054 2040.91i 0.0701450 0.153596i
\(562\) −4133.14 1213.60i −0.310224 0.0910901i
\(563\) −230.506 266.018i −0.0172552 0.0199135i 0.747056 0.664761i \(-0.231466\pi\)
−0.764312 + 0.644847i \(0.776921\pi\)
\(564\) −2508.37 2894.81i −0.187272 0.216124i
\(565\) 6187.66 + 1816.86i 0.460737 + 0.135285i
\(566\) 2638.69 5777.93i 0.195959 0.429090i
\(567\) −17505.4 11250.1i −1.29658 0.833260i
\(568\) −2933.12 + 861.243i −0.216675 + 0.0636214i
\(569\) 1292.16 8987.16i 0.0952023 0.662146i −0.885210 0.465191i \(-0.845986\pi\)
0.980413 0.196955i \(-0.0631053\pi\)
\(570\) −15.3669 33.6487i −0.00112920 0.00247261i
\(571\) −1150.70 8003.28i −0.0843349 0.586562i −0.987542 0.157357i \(-0.949703\pi\)
0.903207 0.429205i \(-0.141206\pi\)
\(572\) 4756.36 3056.73i 0.347681 0.223441i
\(573\) 1126.70 1300.28i 0.0821443 0.0947995i
\(574\) 2592.56 0.188522
\(575\) −2656.55 + 739.679i −0.192671 + 0.0536465i
\(576\) −994.141 −0.0719141
\(577\) −10128.2 + 11688.5i −0.730748 + 0.843328i −0.992556 0.121792i \(-0.961136\pi\)
0.261808 + 0.965120i \(0.415681\pi\)
\(578\) 9103.92 5850.73i 0.655144 0.421035i
\(579\) −718.884 4999.95i −0.0515990 0.358879i
\(580\) −814.401 1783.29i −0.0583037 0.127667i
\(581\) −773.819 + 5382.03i −0.0552555 + 0.384310i
\(582\) 461.563 135.527i 0.0328736 0.00965255i
\(583\) 3048.05 + 1958.87i 0.216531 + 0.139156i
\(584\) −3379.25 + 7399.52i −0.239442 + 0.524306i
\(585\) 6066.97 + 1781.42i 0.428783 + 0.125902i
\(586\) −72.4273 83.5856i −0.00510571 0.00589230i
\(587\) 13329.1 + 15382.6i 0.937225 + 1.08162i 0.996518 + 0.0833745i \(0.0265698\pi\)
−0.0592934 + 0.998241i \(0.518885\pi\)
\(588\) −4573.15 1342.80i −0.320737 0.0941769i
\(589\) −663.890 + 1453.72i −0.0464433 + 0.101697i
\(590\) −10.1307 6.51058i −0.000706903 0.000454299i
\(591\) −755.323 + 221.783i −0.0525716 + 0.0154364i
\(592\) 778.482 5414.46i 0.0540463 0.375900i
\(593\) −285.535 625.235i −0.0197732 0.0432973i 0.899488 0.436946i \(-0.143940\pi\)
−0.919261 + 0.393649i \(0.871213\pi\)
\(594\) 193.904 + 1348.63i 0.0133939 + 0.0931566i
\(595\) −15694.8 + 10086.4i −1.08139 + 0.694965i
\(596\) −9259.28 + 10685.8i −0.636367 + 0.734407i
\(597\) −4477.74 −0.306971
\(598\) 7095.23 + 99.6336i 0.485193 + 0.00681325i
\(599\) 16585.6 1.13134 0.565668 0.824633i \(-0.308618\pi\)
0.565668 + 0.824633i \(0.308618\pi\)
\(600\) −326.098 + 376.337i −0.0221881 + 0.0256065i
\(601\) −13895.9 + 8930.34i −0.943136 + 0.606117i −0.919282 0.393599i \(-0.871230\pi\)
−0.0238539 + 0.999715i \(0.507594\pi\)
\(602\) 2663.89 + 18527.8i 0.180352 + 1.25438i
\(603\) −3468.50 7594.96i −0.234243 0.512920i
\(604\) −690.210 + 4800.52i −0.0464971 + 0.323394i
\(605\) 4751.01 1395.02i 0.319266 0.0937451i
\(606\) 1634.50 + 1050.43i 0.109566 + 0.0704138i
\(607\) 7522.54 16472.1i 0.503016 1.10145i −0.472462 0.881351i \(-0.656635\pi\)
0.975477 0.220100i \(-0.0706382\pi\)
\(608\) −934.042 274.259i −0.0623033 0.0182939i
\(609\) −1414.70 1632.65i −0.0941320 0.108634i
\(610\) −1730.53 1997.13i −0.114864 0.132560i
\(611\) −27020.8 7934.01i −1.78910 0.525328i
\(612\) 7720.88 16906.4i 0.509964 1.11667i
\(613\) 9940.13 + 6388.13i 0.654940 + 0.420904i 0.825468 0.564448i \(-0.190911\pi\)
−0.170528 + 0.985353i \(0.554547\pi\)
\(614\) 11041.9 3242.19i 0.725755 0.213101i
\(615\) −45.6600 + 317.572i −0.00299380 + 0.0208223i
\(616\) −4688.04 10265.4i −0.306634 0.671435i
\(617\) −4.36001 30.3245i −0.000284485 0.00197864i 0.989679 0.143304i \(-0.0457727\pi\)
−0.989963 + 0.141325i \(0.954864\pi\)
\(618\) 40.9007 26.2853i 0.00266225 0.00171092i
\(619\) 15074.3 17396.7i 0.978817 1.12962i −0.0127365 0.999919i \(-0.504054\pi\)
0.991554 0.129696i \(-0.0414003\pi\)
\(620\) 9450.53 0.612165
\(621\) 2648.55 5590.42i 0.171147 0.361249i
\(622\) −4160.47 −0.268199
\(623\) 5415.97 6250.36i 0.348292 0.401951i
\(624\) −1108.61 + 712.458i −0.0711214 + 0.0457070i
\(625\) −88.9468 618.638i −0.00569259 0.0395929i
\(626\) 4232.99 + 9268.96i 0.270262 + 0.591792i
\(627\) −14.7645 + 102.690i −0.000940413 + 0.00654071i
\(628\) 12162.5 3571.22i 0.772827 0.226922i
\(629\) −20746.2 13332.8i −1.31511 0.845170i
\(630\) 2303.14 5043.16i 0.145649 0.318928i
\(631\) −13309.6 3908.04i −0.839691 0.246556i −0.166516 0.986039i \(-0.553252\pi\)
−0.673175 + 0.739483i \(0.735070\pi\)
\(632\) −10555.9 12182.2i −0.664387 0.766744i
\(633\) 1116.14 + 1288.10i 0.0700831 + 0.0808802i
\(634\) 581.122 + 170.633i 0.0364027 + 0.0106888i
\(635\) 1944.23 4257.26i 0.121503 0.266054i
\(636\) −1097.78 705.499i −0.0684430 0.0439856i
\(637\) −33622.3 + 9872.41i −2.09131 + 0.614065i
\(638\) 216.300 1504.40i 0.0134222 0.0933537i
\(639\) 1749.71 + 3831.33i 0.108321 + 0.237191i
\(640\) 1009.73 + 7022.82i 0.0623641 + 0.433752i
\(641\) 10391.5 6678.20i 0.640310 0.411502i −0.179804 0.983702i \(-0.557546\pi\)
0.820114 + 0.572200i \(0.193910\pi\)
\(642\) 693.445 800.278i 0.0426294 0.0491970i
\(643\) −168.548 −0.0103373 −0.00516865 0.999987i \(-0.501645\pi\)
−0.00516865 + 0.999987i \(0.501645\pi\)
\(644\) −3515.70 + 22231.6i −0.215121 + 1.36032i
\(645\) −2316.45 −0.141411
\(646\) −523.503 + 604.155i −0.0318838 + 0.0367959i
\(647\) 12841.5 8252.72i 0.780295 0.501465i −0.0888366 0.996046i \(-0.528315\pi\)
0.869131 + 0.494581i \(0.164679\pi\)
\(648\) 1708.18 + 11880.6i 0.103555 + 0.720240i
\(649\) 14.0301 + 30.7216i 0.000848580 + 0.00185813i
\(650\) −228.880 + 1591.89i −0.0138114 + 0.0960604i
\(651\) 9992.09 2933.94i 0.601568 0.176636i
\(652\) 18111.1 + 11639.3i 1.08786 + 0.699126i
\(653\) −2386.09 + 5224.81i −0.142994 + 0.313113i −0.967555 0.252660i \(-0.918695\pi\)
0.824561 + 0.565773i \(0.191422\pi\)
\(654\) −2160.80 634.468i −0.129196 0.0379353i
\(655\) −5831.62 6730.05i −0.347879 0.401473i
\(656\) 1007.14 + 1162.30i 0.0599423 + 0.0691771i
\(657\) 10754.1 + 3157.69i 0.638597 + 0.187509i
\(658\) −10257.6 + 22461.0i −0.607724 + 1.33073i
\(659\) −25636.9 16475.8i −1.51543 0.973910i −0.992594 0.121479i \(-0.961236\pi\)
−0.522840 0.852431i \(-0.675127\pi\)
\(660\) 588.645 172.842i 0.0347166 0.0101937i
\(661\) −847.013 + 5891.10i −0.0498411 + 0.346652i 0.949607 + 0.313442i \(0.101482\pi\)
−0.999448 + 0.0332103i \(0.989427\pi\)
\(662\) −2791.90 6113.41i −0.163913 0.358919i
\(663\) 845.499 + 5880.58i 0.0495271 + 0.344469i
\(664\) 2638.48 1695.65i 0.154206 0.0991021i
\(665\) 564.923 651.956i 0.0329425 0.0380177i
\(666\) 7328.57 0.426391
\(667\) −4591.68 + 5151.13i −0.266553 + 0.299029i
\(668\) 368.744 0.0213580
\(669\) −2795.28 + 3225.92i −0.161542 + 0.186430i
\(670\) 1786.55 1148.14i 0.103015 0.0662040i
\(671\) 1054.74 + 7335.90i 0.0606824 + 0.422055i
\(672\) 2635.16 + 5770.19i 0.151270 + 0.331235i
\(673\) −3465.34 + 24102.0i −0.198483 + 1.38048i 0.610205 + 0.792243i \(0.291087\pi\)
−0.808689 + 0.588237i \(0.799822\pi\)
\(674\) −11119.2 + 3264.89i −0.635453 + 0.186586i
\(675\) 1179.48 + 758.006i 0.0672566 + 0.0432232i
\(676\) −499.071 + 1092.81i −0.0283950 + 0.0621764i
\(677\) −19745.5 5797.80i −1.12095 0.329140i −0.331803 0.943349i \(-0.607657\pi\)
−0.789143 + 0.614209i \(0.789475\pi\)
\(678\) −1179.16 1360.83i −0.0667928 0.0770830i
\(679\) 7346.42 + 8478.22i 0.415213 + 0.479182i
\(680\) 10325.4 + 3031.82i 0.582297 + 0.170978i
\(681\) 1134.11 2483.36i 0.0638170 0.139740i
\(682\) 6163.57 + 3961.09i 0.346064 + 0.222402i
\(683\) −28115.0 + 8255.30i −1.57509 + 0.462490i −0.948479 0.316839i \(-0.897379\pi\)
−0.626615 + 0.779329i \(0.715560\pi\)
\(684\) −122.305 + 850.653i −0.00683694 + 0.0475520i
\(685\) 4819.08 + 10552.3i 0.268799 + 0.588588i
\(686\) 2280.79 + 15863.2i 0.126940 + 0.882887i
\(687\) 1566.67 1006.84i 0.0870046 0.0559145i
\(688\) −7271.54 + 8391.81i −0.402943 + 0.465021i
\(689\) −9594.01 −0.530483
\(690\) 735.661 + 227.277i 0.0405886 + 0.0125395i
\(691\) 12657.6 0.696841 0.348420 0.937338i \(-0.386718\pi\)
0.348420 + 0.937338i \(0.386718\pi\)
\(692\) 13088.6 15105.0i 0.719006 0.829778i
\(693\) −13080.7 + 8406.46i −0.717020 + 0.460801i
\(694\) 577.359 + 4015.62i 0.0315796 + 0.219641i
\(695\) −3331.68 7295.36i −0.181839 0.398171i
\(696\) −177.338 + 1233.41i −0.00965801 + 0.0671729i
\(697\) 6652.65 1953.39i 0.361531 0.106155i
\(698\) −4935.54 3171.88i −0.267640 0.172002i
\(699\) −585.114 + 1281.22i −0.0316610 + 0.0693279i
\(700\) −4894.68 1437.21i −0.264288 0.0776019i
\(701\) 5572.72 + 6431.26i 0.300255 + 0.346512i 0.885749 0.464164i \(-0.153645\pi\)
−0.585495 + 0.810676i \(0.699100\pi\)
\(702\) −2362.60 2726.58i −0.127024 0.146593i
\(703\) 1094.12 + 321.262i 0.0586990 + 0.0172356i
\(704\) −294.594 + 645.072i −0.0157712 + 0.0345342i
\(705\) −2570.67 1652.07i −0.137329 0.0882561i
\(706\) 10913.0 3204.33i 0.581749 0.170817i
\(707\) −6448.31 + 44849.0i −0.343018 + 2.38574i
\(708\) −5.05302 11.0646i −0.000268226 0.000587334i
\(709\) −2513.12 17479.2i −0.133120 0.925872i −0.941453 0.337146i \(-0.890539\pi\)
0.808332 0.588727i \(-0.200371\pi\)
\(710\) −901.235 + 579.188i −0.0476377 + 0.0306149i
\(711\) −14544.3 + 16785.0i −0.767163 + 0.885353i
\(712\) −4770.50 −0.251098
\(713\) −13392.5 30449.7i −0.703438 1.59937i
\(714\) 5209.19 0.273038
\(715\) 2953.75 3408.81i 0.154495 0.178297i
\(716\) 22021.6 14152.4i 1.14942 0.738689i
\(717\) −578.648 4024.59i −0.0301395 0.209625i
\(718\) −2565.61 5617.90i −0.133353 0.292003i
\(719\) 4585.95 31896.0i 0.237868 1.65441i −0.424647 0.905359i \(-0.639602\pi\)
0.662515 0.749048i \(-0.269489\pi\)
\(720\) 3155.66 926.586i 0.163340 0.0479609i
\(721\) 953.825 + 612.986i 0.0492681 + 0.0316627i
\(722\) −3735.07 + 8178.67i −0.192528 + 0.421577i
\(723\) −2750.59 807.646i −0.141488 0.0415445i
\(724\) 6440.61 + 7432.86i 0.330612 + 0.381547i
\(725\) −1024.19 1181.98i −0.0524656 0.0605485i
\(726\) −1326.56 389.514i −0.0678145 0.0199121i
\(727\) −2043.71 + 4475.09i −0.104260 + 0.228297i −0.954571 0.297983i \(-0.903686\pi\)
0.850311 + 0.526280i \(0.176414\pi\)
\(728\) 25138.6 + 16155.6i 1.27980 + 0.822480i
\(729\) 14326.9 4206.76i 0.727883 0.213726i
\(730\) −405.705 + 2821.74i −0.0205696 + 0.143065i
\(731\) 20795.6 + 45536.1i 1.05220 + 2.30399i
\(732\) −379.873 2642.07i −0.0191810 0.133407i
\(733\) 19872.7 12771.4i 1.00139 0.643552i 0.0662365 0.997804i \(-0.478901\pi\)
0.935150 + 0.354252i \(0.115264\pi\)
\(734\) −5100.62 + 5886.43i −0.256495 + 0.296011i
\(735\) −3802.33 −0.190818
\(736\) 17198.1 10714.4i 0.861318 0.536598i
\(737\) −5956.00 −0.297682
\(738\) −1349.30 + 1557.18i −0.0673016 + 0.0776702i
\(739\) −7680.50 + 4935.96i −0.382316 + 0.245700i −0.717656 0.696397i \(-0.754785\pi\)
0.335340 + 0.942097i \(0.391149\pi\)
\(740\) −959.653 6674.53i −0.0476724 0.331569i
\(741\) −114.119 249.885i −0.00565756 0.0123883i
\(742\) −1197.18 + 8326.54i −0.0592314 + 0.411963i
\(743\) −5581.95 + 1639.01i −0.275615 + 0.0809279i −0.416619 0.909081i \(-0.636785\pi\)
0.141004 + 0.990009i \(0.454967\pi\)
\(744\) −5053.34 3247.58i −0.249011 0.160030i
\(745\) −4685.83 + 10260.5i −0.230437 + 0.504587i
\(746\) −1245.57 365.733i −0.0611308 0.0179496i
\(747\) −2829.89 3265.87i −0.138608 0.159963i
\(748\) −8682.17 10019.8i −0.424400 0.489784i
\(749\) 23694.2 + 6957.25i 1.15590 + 0.339402i
\(750\) −72.4942 + 158.740i −0.00352949 + 0.00772850i
\(751\) 16590.5 + 10662.1i 0.806121 + 0.518062i 0.877608 0.479379i \(-0.159138\pi\)
−0.0714871 + 0.997442i \(0.522774\pi\)
\(752\) −14054.5 + 4126.78i −0.681537 + 0.200117i
\(753\) −160.696 + 1117.67i −0.00777702 + 0.0540903i
\(754\) 1671.83 + 3660.80i 0.0807486 + 0.176815i
\(755\) 550.627 + 3829.70i 0.0265422 + 0.184605i
\(756\) 9627.04 6186.92i 0.463138 0.297641i
\(757\) −21439.9 + 24743.0i −1.02939 + 1.18798i −0.0474310 + 0.998875i \(0.515103\pi\)
−0.981957 + 0.189103i \(0.939442\pi\)
\(758\) −19374.2 −0.928367
\(759\) −1391.07 1651.69i −0.0665254 0.0789887i
\(760\) −497.596 −0.0237496
\(761\) −4242.46 + 4896.05i −0.202088 + 0.233222i −0.847743 0.530407i \(-0.822039\pi\)
0.645655 + 0.763629i \(0.276584\pi\)
\(762\) −1099.34 + 706.504i −0.0522637 + 0.0335878i
\(763\) −7474.13 51983.7i −0.354629 2.46650i
\(764\) −4223.41 9247.97i