Properties

Label 115.4.g.a.16.4
Level $115$
Weight $4$
Character 115.16
Analytic conductor $6.785$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(6,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 18]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.g (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78521965066\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 16.4
Character \(\chi\) \(=\) 115.16
Dual form 115.4.g.a.36.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.69252 + 1.95327i) q^{2} +(-4.05620 + 2.60676i) q^{3} +(0.187875 + 1.30670i) q^{4} +(2.07708 + 4.54816i) q^{5} +(1.77348 - 12.3348i) q^{6} +(-18.0212 + 5.29151i) q^{7} +(-20.2644 - 13.0231i) q^{8} +(-1.55865 + 3.41296i) q^{9} +O(q^{10})\) \(q+(-1.69252 + 1.95327i) q^{2} +(-4.05620 + 2.60676i) q^{3} +(0.187875 + 1.30670i) q^{4} +(2.07708 + 4.54816i) q^{5} +(1.77348 - 12.3348i) q^{6} +(-18.0212 + 5.29151i) q^{7} +(-20.2644 - 13.0231i) q^{8} +(-1.55865 + 3.41296i) q^{9} +(-12.3993 - 3.64075i) q^{10} +(23.4071 + 27.0133i) q^{11} +(-4.16831 - 4.81049i) q^{12} +(12.6925 + 3.72685i) q^{13} +(20.1655 - 44.1563i) q^{14} +(-20.2810 - 13.0338i) q^{15} +(49.6021 - 14.5645i) q^{16} +(5.64595 - 39.2685i) q^{17} +(-4.02839 - 8.82094i) q^{18} +(-19.5882 - 136.239i) q^{19} +(-5.55284 + 3.56860i) q^{20} +(59.3040 - 68.4405i) q^{21} -92.3810 q^{22} +(-38.5347 - 103.354i) q^{23} +116.144 q^{24} +(-16.3715 + 18.8937i) q^{25} +(-28.7618 + 18.4841i) q^{26} +(-21.1017 - 146.765i) q^{27} +(-10.3002 - 22.5542i) q^{28} +(-37.7953 + 262.872i) q^{29} +(59.7844 - 17.5543i) q^{30} +(219.068 + 140.787i) q^{31} +(24.5491 - 53.7551i) q^{32} +(-165.361 - 48.5544i) q^{33} +(67.1459 + 77.4905i) q^{34} +(-61.4981 - 70.9726i) q^{35} +(-4.75254 - 1.39547i) q^{36} +(-165.735 + 362.908i) q^{37} +(299.265 + 192.326i) q^{38} +(-61.1983 + 17.9695i) q^{39} +(17.1406 - 119.216i) q^{40} +(-190.422 - 416.965i) q^{41} +(33.3096 + 231.673i) q^{42} +(-92.4431 + 59.4096i) q^{43} +(-30.9006 + 35.6612i) q^{44} -18.7601 q^{45} +(267.099 + 99.6600i) q^{46} -169.504 q^{47} +(-163.230 + 188.377i) q^{48} +(8.21491 - 5.27940i) q^{49} +(-9.19547 - 63.9559i) q^{50} +(79.4624 + 173.998i) q^{51} +(-2.48527 + 17.2855i) q^{52} +(-219.448 + 64.4356i) q^{53} +(322.387 + 207.185i) q^{54} +(-74.2423 + 162.568i) q^{55} +(434.101 + 127.464i) q^{56} +(434.597 + 501.552i) q^{57} +(-449.491 - 518.740i) q^{58} +(-847.937 - 248.977i) q^{59} +(13.2210 - 28.9499i) q^{60} +(161.787 + 103.974i) q^{61} +(-645.770 + 189.615i) q^{62} +(10.0290 - 69.7533i) q^{63} +(235.251 + 515.128i) q^{64} +(9.41294 + 65.4685i) q^{65} +(374.716 - 240.815i) q^{66} +(-116.268 + 134.180i) q^{67} +52.3728 q^{68} +(425.724 + 318.774i) q^{69} +242.715 q^{70} +(497.362 - 573.987i) q^{71} +(76.0323 - 48.8630i) q^{72} +(81.1694 + 564.545i) q^{73} +(-428.349 - 937.953i) q^{74} +(17.1547 - 119.313i) q^{75} +(174.344 - 51.1919i) q^{76} +(-564.766 - 362.953i) q^{77} +(68.4800 - 149.950i) q^{78} +(-610.161 - 179.160i) q^{79} +(169.269 + 195.347i) q^{80} +(401.834 + 463.741i) q^{81} +(1136.74 + 333.776i) q^{82} +(-68.2885 + 149.531i) q^{83} +(100.573 + 64.6343i) q^{84} +(190.326 - 55.8848i) q^{85} +(40.4186 - 281.118i) q^{86} +(-531.940 - 1164.79i) q^{87} +(-122.534 - 852.240i) q^{88} +(-701.025 + 450.521i) q^{89} +(31.7518 - 36.6435i) q^{90} -248.455 q^{91} +(127.813 - 69.7709i) q^{92} -1255.58 q^{93} +(286.888 - 331.087i) q^{94} +(578.952 - 372.070i) q^{95} +(40.5505 + 282.035i) q^{96} +(137.186 + 300.394i) q^{97} +(-3.59178 + 24.9814i) q^{98} +(-128.679 + 37.7834i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9} - 10 q^{10} + 2 q^{11} - 57 q^{12} + 34 q^{13} - 154 q^{14} + 30 q^{15} + 16 q^{16} + 252 q^{17} - 33 q^{18} - 160 q^{19} - 200 q^{20} - 684 q^{21} - 704 q^{22} + 127 q^{23} - 3090 q^{24} - 275 q^{25} - 567 q^{26} + 384 q^{27} - 188 q^{28} + 340 q^{29} - 15 q^{30} + 582 q^{31} - 1364 q^{32} + 1760 q^{33} + 1819 q^{34} + 665 q^{35} + 2794 q^{36} + 312 q^{37} + 3123 q^{38} - 1560 q^{39} - 1205 q^{40} + 1324 q^{41} + 1454 q^{42} - 1740 q^{43} - 369 q^{44} + 3730 q^{45} - 4322 q^{46} - 2858 q^{47} - 2686 q^{48} + 2015 q^{49} - 325 q^{50} - 1426 q^{51} + 1717 q^{52} + 882 q^{53} + 2541 q^{54} + 450 q^{55} + 7755 q^{56} + 3688 q^{57} + 6622 q^{58} + 2605 q^{59} + 1530 q^{60} - 104 q^{61} - 9360 q^{62} - 7618 q^{63} + 3483 q^{64} + 170 q^{65} - 1766 q^{66} - 166 q^{67} - 5018 q^{68} - 1194 q^{69} - 770 q^{70} - 1222 q^{71} + 3303 q^{72} - 922 q^{73} + 1245 q^{74} + 150 q^{75} + 1360 q^{76} - 3093 q^{77} - 1600 q^{78} + 2448 q^{79} + 2115 q^{80} - 1371 q^{81} + 6609 q^{82} + 6704 q^{83} + 3894 q^{84} - 720 q^{85} - 5074 q^{86} - 6324 q^{87} + 1918 q^{88} - 5380 q^{89} - 165 q^{90} + 7828 q^{91} - 16225 q^{92} - 24948 q^{93} - 16490 q^{94} + 685 q^{95} + 675 q^{96} - 4400 q^{97} + 8790 q^{98} - 3626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.69252 + 1.95327i −0.598395 + 0.690584i −0.971455 0.237223i \(-0.923763\pi\)
0.373061 + 0.927807i \(0.378308\pi\)
\(3\) −4.05620 + 2.60676i −0.780616 + 0.501672i −0.869238 0.494394i \(-0.835390\pi\)
0.0886218 + 0.996065i \(0.471754\pi\)
\(4\) 0.187875 + 1.30670i 0.0234844 + 0.163337i
\(5\) 2.07708 + 4.54816i 0.185779 + 0.406800i
\(6\) 1.77348 12.3348i 0.120670 0.839279i
\(7\) −18.0212 + 5.29151i −0.973055 + 0.285715i −0.729355 0.684136i \(-0.760180\pi\)
−0.243701 + 0.969851i \(0.578361\pi\)
\(8\) −20.2644 13.0231i −0.895567 0.575546i
\(9\) −1.55865 + 3.41296i −0.0577276 + 0.126406i
\(10\) −12.3993 3.64075i −0.392099 0.115131i
\(11\) 23.4071 + 27.0133i 0.641592 + 0.740437i 0.979655 0.200687i \(-0.0643173\pi\)
−0.338064 + 0.941123i \(0.609772\pi\)
\(12\) −4.16831 4.81049i −0.100274 0.115722i
\(13\) 12.6925 + 3.72685i 0.270790 + 0.0795110i 0.414308 0.910137i \(-0.364024\pi\)
−0.143519 + 0.989648i \(0.545842\pi\)
\(14\) 20.1655 44.1563i 0.384961 0.842947i
\(15\) −20.2810 13.0338i −0.349102 0.224354i
\(16\) 49.6021 14.5645i 0.775033 0.227570i
\(17\) 5.64595 39.2685i 0.0805497 0.560235i −0.909083 0.416615i \(-0.863216\pi\)
0.989633 0.143621i \(-0.0458745\pi\)
\(18\) −4.02839 8.82094i −0.0527500 0.115506i
\(19\) −19.5882 136.239i −0.236519 1.64502i −0.668915 0.743339i \(-0.733241\pi\)
0.432396 0.901684i \(-0.357668\pi\)
\(20\) −5.55284 + 3.56860i −0.0620827 + 0.0398981i
\(21\) 59.3040 68.4405i 0.616248 0.711188i
\(22\) −92.3810 −0.895259
\(23\) −38.5347 103.354i −0.349350 0.936992i
\(24\) 116.144 0.987829
\(25\) −16.3715 + 18.8937i −0.130972 + 0.151150i
\(26\) −28.7618 + 18.4841i −0.216948 + 0.139424i
\(27\) −21.1017 146.765i −0.150408 1.04611i
\(28\) −10.3002 22.5542i −0.0695195 0.152226i
\(29\) −37.7953 + 262.872i −0.242014 + 1.68325i 0.399969 + 0.916529i \(0.369021\pi\)
−0.641983 + 0.766719i \(0.721888\pi\)
\(30\) 59.7844 17.5543i 0.363837 0.106832i
\(31\) 219.068 + 140.787i 1.26922 + 0.815678i 0.989518 0.144409i \(-0.0461282\pi\)
0.279701 + 0.960087i \(0.409765\pi\)
\(32\) 24.5491 53.7551i 0.135616 0.296958i
\(33\) −165.361 48.5544i −0.872293 0.256128i
\(34\) 67.1459 + 77.4905i 0.338689 + 0.390868i
\(35\) −61.4981 70.9726i −0.297002 0.342759i
\(36\) −4.75254 1.39547i −0.0220025 0.00646052i
\(37\) −165.735 + 362.908i −0.736395 + 1.61248i 0.0529995 + 0.998595i \(0.483122\pi\)
−0.789395 + 0.613886i \(0.789605\pi\)
\(38\) 299.265 + 192.326i 1.27756 + 0.821037i
\(39\) −61.1983 + 17.9695i −0.251271 + 0.0737799i
\(40\) 17.1406 119.216i 0.0677542 0.471241i
\(41\) −190.422 416.965i −0.725338 1.58827i −0.806270 0.591548i \(-0.798517\pi\)
0.0809319 0.996720i \(-0.474210\pi\)
\(42\) 33.3096 + 231.673i 0.122376 + 0.851142i
\(43\) −92.4431 + 59.4096i −0.327848 + 0.210695i −0.694201 0.719781i \(-0.744242\pi\)
0.366354 + 0.930476i \(0.380606\pi\)
\(44\) −30.9006 + 35.6612i −0.105874 + 0.122185i
\(45\) −18.7601 −0.0621465
\(46\) 267.099 + 99.6600i 0.856121 + 0.319436i
\(47\) −169.504 −0.526058 −0.263029 0.964788i \(-0.584721\pi\)
−0.263029 + 0.964788i \(0.584721\pi\)
\(48\) −163.230 + 188.377i −0.490838 + 0.566457i
\(49\) 8.21491 5.27940i 0.0239502 0.0153918i
\(50\) −9.19547 63.9559i −0.0260087 0.180895i
\(51\) 79.4624 + 173.998i 0.218176 + 0.477738i
\(52\) −2.48527 + 17.2855i −0.00662779 + 0.0460973i
\(53\) −219.448 + 64.4356i −0.568744 + 0.166998i −0.553447 0.832885i \(-0.686688\pi\)
−0.0152976 + 0.999883i \(0.504870\pi\)
\(54\) 322.387 + 207.185i 0.812431 + 0.522118i
\(55\) −74.2423 + 162.568i −0.182015 + 0.398557i
\(56\) 434.101 + 127.464i 1.03588 + 0.304161i
\(57\) 434.597 + 501.552i 1.00989 + 1.16548i
\(58\) −449.491 518.740i −1.01760 1.17438i
\(59\) −847.937 248.977i −1.87105 0.549390i −0.998102 0.0615777i \(-0.980387\pi\)
−0.872948 0.487812i \(-0.837795\pi\)
\(60\) 13.2210 28.9499i 0.0284470 0.0622902i
\(61\) 161.787 + 103.974i 0.339586 + 0.218238i 0.699307 0.714821i \(-0.253492\pi\)
−0.359722 + 0.933060i \(0.617128\pi\)
\(62\) −645.770 + 189.615i −1.32279 + 0.388406i
\(63\) 10.0290 69.7533i 0.0200561 0.139494i
\(64\) 235.251 + 515.128i 0.459475 + 1.00611i
\(65\) 9.41294 + 65.4685i 0.0179620 + 0.124929i
\(66\) 374.716 240.815i 0.698854 0.449126i
\(67\) −116.268 + 134.180i −0.212006 + 0.244668i −0.851786 0.523891i \(-0.824480\pi\)
0.639780 + 0.768558i \(0.279026\pi\)
\(68\) 52.3728 0.0933990
\(69\) 425.724 + 318.774i 0.742770 + 0.556173i
\(70\) 242.715 0.414428
\(71\) 497.362 573.987i 0.831353 0.959432i −0.168301 0.985736i \(-0.553828\pi\)
0.999654 + 0.0263033i \(0.00837358\pi\)
\(72\) 76.0323 48.8630i 0.124451 0.0799800i
\(73\) 81.1694 + 564.545i 0.130139 + 0.905138i 0.945369 + 0.326001i \(0.105701\pi\)
−0.815230 + 0.579137i \(0.803390\pi\)
\(74\) −428.349 937.953i −0.672899 1.47344i
\(75\) 17.1547 119.313i 0.0264114 0.183695i
\(76\) 174.344 51.1919i 0.263139 0.0772646i
\(77\) −564.766 362.953i −0.835858 0.537173i
\(78\) 68.4800 149.950i 0.0994082 0.217673i
\(79\) −610.161 179.160i −0.868968 0.255152i −0.183292 0.983059i \(-0.558675\pi\)
−0.685677 + 0.727906i \(0.740494\pi\)
\(80\) 169.269 + 195.347i 0.236560 + 0.273005i
\(81\) 401.834 + 463.741i 0.551213 + 0.636134i
\(82\) 1136.74 + 333.776i 1.53087 + 0.449504i
\(83\) −68.2885 + 149.531i −0.0903089 + 0.197749i −0.949397 0.314079i \(-0.898304\pi\)
0.859088 + 0.511828i \(0.171032\pi\)
\(84\) 100.573 + 64.6343i 0.130636 + 0.0839545i
\(85\) 190.326 55.8848i 0.242868 0.0713125i
\(86\) 40.4186 281.118i 0.0506797 0.352485i
\(87\) −531.940 1164.79i −0.655517 1.43538i
\(88\) −122.534 852.240i −0.148433 1.03238i
\(89\) −701.025 + 450.521i −0.834927 + 0.536575i −0.886840 0.462077i \(-0.847104\pi\)
0.0519132 + 0.998652i \(0.483468\pi\)
\(90\) 31.7518 36.6435i 0.0371881 0.0429174i
\(91\) −248.455 −0.286211
\(92\) 127.813 69.7709i 0.144842 0.0790665i
\(93\) −1255.58 −1.39998
\(94\) 286.888 331.087i 0.314790 0.363287i
\(95\) 578.952 372.070i 0.625255 0.401827i
\(96\) 40.5505 + 282.035i 0.0431112 + 0.299845i
\(97\) 137.186 + 300.394i 0.143599 + 0.314437i 0.967742 0.251944i \(-0.0810700\pi\)
−0.824143 + 0.566382i \(0.808343\pi\)
\(98\) −3.59178 + 24.9814i −0.00370229 + 0.0257500i
\(99\) −128.679 + 37.7834i −0.130633 + 0.0383573i
\(100\) −27.7642 17.8430i −0.0277642 0.0178430i
\(101\) 408.762 895.063i 0.402706 0.881803i −0.594283 0.804256i \(-0.702564\pi\)
0.996989 0.0775468i \(-0.0247087\pi\)
\(102\) −474.357 139.284i −0.460474 0.135207i
\(103\) 613.830 + 708.397i 0.587208 + 0.677674i 0.969139 0.246517i \(-0.0792860\pi\)
−0.381930 + 0.924191i \(0.624741\pi\)
\(104\) −208.670 240.818i −0.196748 0.227059i
\(105\) 434.457 + 127.568i 0.403797 + 0.118566i
\(106\) 245.559 537.698i 0.225007 0.492697i
\(107\) −167.266 107.495i −0.151123 0.0971211i 0.462894 0.886414i \(-0.346811\pi\)
−0.614017 + 0.789293i \(0.710447\pi\)
\(108\) 187.813 55.1470i 0.167337 0.0491345i
\(109\) −27.1092 + 188.549i −0.0238220 + 0.165685i −0.998260 0.0589728i \(-0.981217\pi\)
0.974438 + 0.224658i \(0.0721266\pi\)
\(110\) −191.882 420.164i −0.166321 0.364191i
\(111\) −273.763 1904.06i −0.234094 1.62816i
\(112\) −816.823 + 524.940i −0.689130 + 0.442877i
\(113\) 433.518 500.307i 0.360902 0.416503i −0.546040 0.837759i \(-0.683865\pi\)
0.906942 + 0.421256i \(0.138411\pi\)
\(114\) −1715.23 −1.40917
\(115\) 390.032 389.936i 0.316266 0.316189i
\(116\) −350.596 −0.280621
\(117\) −32.5027 + 37.5101i −0.0256827 + 0.0296394i
\(118\) 1921.47 1234.85i 1.49903 0.963366i
\(119\) 106.042 + 737.542i 0.0816882 + 0.568154i
\(120\) 241.241 + 528.244i 0.183518 + 0.401849i
\(121\) 7.59835 52.8477i 0.00570875 0.0397052i
\(122\) −476.917 + 140.035i −0.353918 + 0.103920i
\(123\) 1859.32 + 1194.91i 1.36300 + 0.875947i
\(124\) −142.808 + 312.706i −0.103424 + 0.226467i
\(125\) −119.937 35.2166i −0.0858197 0.0251989i
\(126\) 119.273 + 137.648i 0.0843306 + 0.0973227i
\(127\) −63.7917 73.6196i −0.0445717 0.0514384i 0.733026 0.680201i \(-0.238107\pi\)
−0.777598 + 0.628762i \(0.783562\pi\)
\(128\) −950.736 279.161i −0.656516 0.192770i
\(129\) 220.101 481.954i 0.150224 0.328944i
\(130\) −143.809 92.4204i −0.0970222 0.0623524i
\(131\) −2273.66 + 667.606i −1.51642 + 0.445260i −0.930861 0.365373i \(-0.880941\pi\)
−0.585554 + 0.810633i \(0.699123\pi\)
\(132\) 32.3788 225.199i 0.0213501 0.148493i
\(133\) 1073.92 + 2351.55i 0.700153 + 1.53312i
\(134\) −65.3047 454.204i −0.0421005 0.292816i
\(135\) 623.682 400.816i 0.397615 0.255532i
\(136\) −625.809 + 722.222i −0.394579 + 0.455368i
\(137\) −1614.76 −1.00699 −0.503496 0.863998i \(-0.667953\pi\)
−0.503496 + 0.863998i \(0.667953\pi\)
\(138\) −1343.20 + 292.022i −0.828554 + 0.180135i
\(139\) 548.916 0.334953 0.167476 0.985876i \(-0.446438\pi\)
0.167476 + 0.985876i \(0.446438\pi\)
\(140\) 81.1858 93.6935i 0.0490104 0.0565610i
\(141\) 687.542 441.857i 0.410649 0.263908i
\(142\) 279.356 + 1942.96i 0.165092 + 1.14824i
\(143\) 196.420 + 430.101i 0.114864 + 0.251516i
\(144\) −27.6041 + 191.991i −0.0159746 + 0.111106i
\(145\) −1274.09 + 374.106i −0.729706 + 0.214261i
\(146\) −1240.09 796.957i −0.702948 0.451758i
\(147\) −19.5592 + 42.8286i −0.0109742 + 0.0240302i
\(148\) −505.349 148.384i −0.280672 0.0824127i
\(149\) 788.436 + 909.904i 0.433498 + 0.500283i 0.929902 0.367808i \(-0.119892\pi\)
−0.496404 + 0.868092i \(0.665346\pi\)
\(150\) 204.017 + 235.448i 0.111053 + 0.128161i
\(151\) 1451.88 + 426.311i 0.782467 + 0.229753i 0.648482 0.761230i \(-0.275404\pi\)
0.133985 + 0.990983i \(0.457223\pi\)
\(152\) −1377.32 + 3015.90i −0.734968 + 1.60935i
\(153\) 125.222 + 80.4750i 0.0661671 + 0.0425230i
\(154\) 1664.82 488.835i 0.871137 0.255789i
\(155\) −185.299 + 1288.78i −0.0960229 + 0.667854i
\(156\) −34.9783 76.5918i −0.0179520 0.0393093i
\(157\) −8.91074 61.9756i −0.00452965 0.0315044i 0.987431 0.158049i \(-0.0505204\pi\)
−0.991961 + 0.126545i \(0.959611\pi\)
\(158\) 1382.65 888.578i 0.696190 0.447414i
\(159\) 722.155 833.412i 0.360193 0.415685i
\(160\) 295.477 0.145997
\(161\) 1241.34 + 1658.66i 0.607649 + 0.811931i
\(162\) −1585.92 −0.769147
\(163\) 789.539 911.176i 0.379395 0.437846i −0.533649 0.845706i \(-0.679180\pi\)
0.913044 + 0.407861i \(0.133725\pi\)
\(164\) 509.072 327.161i 0.242389 0.155774i
\(165\) −122.634 852.940i −0.0578610 0.402432i
\(166\) −176.495 386.469i −0.0825219 0.180698i
\(167\) 404.055 2810.26i 0.187226 1.30218i −0.651924 0.758284i \(-0.726038\pi\)
0.839150 0.543900i \(-0.183053\pi\)
\(168\) −2093.07 + 614.580i −0.961212 + 0.282237i
\(169\) −1701.02 1093.18i −0.774248 0.497579i
\(170\) −212.972 + 466.344i −0.0960837 + 0.210394i
\(171\) 495.510 + 145.495i 0.221594 + 0.0650659i
\(172\) −94.9982 109.634i −0.0421136 0.0486017i
\(173\) 2054.80 + 2371.37i 0.903027 + 1.04215i 0.998906 + 0.0467553i \(0.0148881\pi\)
−0.0958798 + 0.995393i \(0.530566\pi\)
\(174\) 3175.46 + 932.398i 1.38351 + 0.406235i
\(175\) 195.059 427.119i 0.0842574 0.184498i
\(176\) 1554.48 + 999.001i 0.665756 + 0.427855i
\(177\) 4088.43 1200.47i 1.73619 0.509790i
\(178\) 306.507 2131.80i 0.129066 0.897671i
\(179\) 212.640 + 465.616i 0.0887902 + 0.194424i 0.948818 0.315824i \(-0.102281\pi\)
−0.860027 + 0.510248i \(0.829554\pi\)
\(180\) −3.52455 24.5138i −0.00145947 0.0101508i
\(181\) −1164.66 + 748.481i −0.478278 + 0.307371i −0.757476 0.652863i \(-0.773568\pi\)
0.279198 + 0.960234i \(0.409931\pi\)
\(182\) 420.514 485.299i 0.171267 0.197653i
\(183\) −927.277 −0.374570
\(184\) −565.112 + 2596.25i −0.226416 + 1.04021i
\(185\) −1994.81 −0.792764
\(186\) 2125.09 2452.49i 0.837738 0.966801i
\(187\) 1192.92 766.646i 0.466499 0.299800i
\(188\) −31.8456 221.491i −0.0123541 0.0859248i
\(189\) 1156.89 + 2533.23i 0.445244 + 0.974949i
\(190\) −253.133 + 1760.58i −0.0966538 + 0.672242i
\(191\) −3469.31 + 1018.68i −1.31430 + 0.385913i −0.862432 0.506173i \(-0.831060\pi\)
−0.451866 + 0.892086i \(0.649241\pi\)
\(192\) −2297.04 1476.22i −0.863410 0.554880i
\(193\) −1236.87 + 2708.38i −0.461306 + 1.01012i 0.525882 + 0.850558i \(0.323735\pi\)
−0.987188 + 0.159562i \(0.948992\pi\)
\(194\) −818.939 240.462i −0.303074 0.0889907i
\(195\) −208.842 241.016i −0.0766946 0.0885103i
\(196\) 8.44196 + 9.74254i 0.00307652 + 0.00355049i
\(197\) −1649.54 484.348i −0.596572 0.175169i −0.0305131 0.999534i \(-0.509714\pi\)
−0.566058 + 0.824365i \(0.691532\pi\)
\(198\) 143.989 315.293i 0.0516812 0.113166i
\(199\) −2018.99 1297.52i −0.719207 0.462206i 0.129154 0.991625i \(-0.458774\pi\)
−0.848361 + 0.529418i \(0.822410\pi\)
\(200\) 577.814 169.661i 0.204288 0.0599844i
\(201\) 121.830 847.345i 0.0427523 0.297349i
\(202\) 1056.46 + 2313.33i 0.367982 + 0.805769i
\(203\) −709.874 4937.28i −0.245435 1.70704i
\(204\) −212.434 + 136.523i −0.0729088 + 0.0468556i
\(205\) 1500.90 1732.14i 0.511354 0.590134i
\(206\) −2422.61 −0.819374
\(207\) 412.805 + 29.5752i 0.138609 + 0.00993053i
\(208\) 683.854 0.227965
\(209\) 3221.76 3718.11i 1.06629 1.23056i
\(210\) −984.501 + 632.700i −0.323510 + 0.207907i
\(211\) 236.640 + 1645.87i 0.0772083 + 0.536996i 0.991314 + 0.131519i \(0.0419854\pi\)
−0.914105 + 0.405477i \(0.867106\pi\)
\(212\) −125.427 274.646i −0.0406337 0.0889753i
\(213\) −521.155 + 3624.71i −0.167648 + 1.16601i
\(214\) 493.067 144.778i 0.157502 0.0462467i
\(215\) −462.216 297.048i −0.146618 0.0942256i
\(216\) −1483.73 + 3248.91i −0.467384 + 1.02343i
\(217\) −4692.85 1377.95i −1.46807 0.431065i
\(218\) −322.404 372.074i −0.100165 0.115596i
\(219\) −1800.88 2078.32i −0.555671 0.641278i
\(220\) −226.375 66.4698i −0.0693738 0.0203700i
\(221\) 218.009 477.373i 0.0663569 0.145301i
\(222\) 4182.49 + 2687.92i 1.26446 + 0.812619i
\(223\) −1516.89 + 445.400i −0.455510 + 0.133750i −0.501435 0.865195i \(-0.667194\pi\)
0.0459255 + 0.998945i \(0.485376\pi\)
\(224\) −157.960 + 1098.63i −0.0471167 + 0.327704i
\(225\) −38.9662 85.3240i −0.0115455 0.0252812i
\(226\) 243.496 + 1693.55i 0.0716687 + 0.498467i
\(227\) 859.460 552.342i 0.251297 0.161499i −0.408928 0.912567i \(-0.634097\pi\)
0.660225 + 0.751068i \(0.270461\pi\)
\(228\) −573.727 + 662.117i −0.166649 + 0.192323i
\(229\) −2116.30 −0.610695 −0.305347 0.952241i \(-0.598773\pi\)
−0.305347 + 0.952241i \(0.598773\pi\)
\(230\) 101.515 + 1421.81i 0.0291030 + 0.407615i
\(231\) 3236.94 0.921969
\(232\) 4189.32 4834.73i 1.18553 1.36817i
\(233\) 1109.98 713.342i 0.312092 0.200569i −0.375213 0.926939i \(-0.622430\pi\)
0.687304 + 0.726370i \(0.258794\pi\)
\(234\) −18.2560 126.973i −0.00510013 0.0354722i
\(235\) −352.073 770.931i −0.0977306 0.214000i
\(236\) 166.032 1154.77i 0.0457955 0.318515i
\(237\) 2941.96 863.838i 0.806334 0.236761i
\(238\) −1620.09 1041.17i −0.441240 0.283568i
\(239\) −1353.07 + 2962.82i −0.366205 + 0.801878i 0.633401 + 0.773824i \(0.281658\pi\)
−0.999606 + 0.0280542i \(0.991069\pi\)
\(240\) −1195.81 351.122i −0.321622 0.0944367i
\(241\) 1542.04 + 1779.60i 0.412163 + 0.475661i 0.923434 0.383758i \(-0.125370\pi\)
−0.511271 + 0.859420i \(0.670825\pi\)
\(242\) 90.3653 + 104.287i 0.0240037 + 0.0277018i
\(243\) 1002.46 + 294.349i 0.264641 + 0.0777057i
\(244\) −105.467 + 230.941i −0.0276715 + 0.0605922i
\(245\) 41.0745 + 26.3970i 0.0107108 + 0.00688344i
\(246\) −5480.90 + 1609.34i −1.42053 + 0.417104i
\(247\) 259.120 1802.22i 0.0667506 0.464261i
\(248\) −2605.80 5705.90i −0.667211 1.46099i
\(249\) −112.800 784.539i −0.0287084 0.199671i
\(250\) 271.782 174.664i 0.0687560 0.0441868i
\(251\) −1211.29 + 1397.90i −0.304606 + 0.351534i −0.887329 0.461137i \(-0.847442\pi\)
0.582723 + 0.812671i \(0.301987\pi\)
\(252\) 93.0308 0.0232555
\(253\) 1889.95 3460.17i 0.469644 0.859838i
\(254\) 251.767 0.0621940
\(255\) −626.323 + 722.815i −0.153811 + 0.177508i
\(256\) −1656.83 + 1064.78i −0.404499 + 0.259956i
\(257\) 959.019 + 6670.12i 0.232770 + 1.61895i 0.686029 + 0.727574i \(0.259352\pi\)
−0.453259 + 0.891379i \(0.649739\pi\)
\(258\) 568.861 + 1245.63i 0.137270 + 0.300580i
\(259\) 1066.41 7417.05i 0.255844 1.77943i
\(260\) −83.7791 + 24.5998i −0.0199837 + 0.00586774i
\(261\) −838.263 538.719i −0.198801 0.127762i
\(262\) 2544.19 5571.00i 0.599926 1.31365i
\(263\) −6995.05 2053.93i −1.64005 0.481563i −0.673746 0.738963i \(-0.735316\pi\)
−0.966305 + 0.257400i \(0.917134\pi\)
\(264\) 2718.61 + 3137.44i 0.633783 + 0.731425i
\(265\) −748.873 864.245i −0.173596 0.200340i
\(266\) −6410.82 1882.39i −1.47772 0.433897i
\(267\) 1669.10 3654.81i 0.382573 0.837718i
\(268\) −197.177 126.718i −0.0449422 0.0288826i
\(269\) 1108.18 325.390i 0.251178 0.0737524i −0.153720 0.988114i \(-0.549125\pi\)
0.404898 + 0.914362i \(0.367307\pi\)
\(270\) −272.691 + 1896.61i −0.0614645 + 0.427495i
\(271\) −2550.63 5585.11i −0.571734 1.25192i −0.945869 0.324548i \(-0.894788\pi\)
0.374135 0.927374i \(-0.377940\pi\)
\(272\) −291.874 2030.03i −0.0650642 0.452531i
\(273\) 1007.78 647.664i 0.223421 0.143584i
\(274\) 2733.00 3154.05i 0.602579 0.695413i
\(275\) −893.591 −0.195948
\(276\) −336.559 + 616.183i −0.0734003 + 0.134384i
\(277\) 7245.50 1.57162 0.785812 0.618465i \(-0.212245\pi\)
0.785812 + 0.618465i \(0.212245\pi\)
\(278\) −929.049 + 1072.18i −0.200434 + 0.231313i
\(279\) −821.949 + 528.234i −0.176376 + 0.113350i
\(280\) 321.936 + 2239.11i 0.0687119 + 0.477902i
\(281\) 2743.96 + 6008.44i 0.582530 + 1.27556i 0.939852 + 0.341582i \(0.110963\pi\)
−0.357322 + 0.933981i \(0.616310\pi\)
\(282\) −300.612 + 2090.80i −0.0634794 + 0.441509i
\(283\) 5361.34 1574.23i 1.12614 0.330666i 0.334953 0.942235i \(-0.391279\pi\)
0.791191 + 0.611569i \(0.209461\pi\)
\(284\) 843.470 + 542.065i 0.176235 + 0.113259i
\(285\) −1378.45 + 3018.38i −0.286499 + 0.627345i
\(286\) −1172.55 344.291i −0.242427 0.0711830i
\(287\) 5638.01 + 6506.61i 1.15959 + 1.33823i
\(288\) 145.200 + 167.570i 0.0297084 + 0.0342853i
\(289\) 3203.85 + 940.737i 0.652118 + 0.191479i
\(290\) 1425.69 3121.82i 0.288687 0.632136i
\(291\) −1339.51 860.850i −0.269840 0.173416i
\(292\) −722.441 + 212.128i −0.144787 + 0.0425132i
\(293\) 679.602 4726.73i 0.135504 0.942453i −0.802703 0.596379i \(-0.796606\pi\)
0.938207 0.346074i \(-0.112485\pi\)
\(294\) −50.5516 110.692i −0.0100280 0.0219582i
\(295\) −628.843 4373.70i −0.124111 0.863208i
\(296\) 8084.71 5195.73i 1.58755 1.02025i
\(297\) 3470.68 4005.37i 0.678078 0.782543i
\(298\) −3111.73 −0.604891
\(299\) −103.916 1455.44i −0.0200990 0.281505i
\(300\) 159.130 0.0306245
\(301\) 1351.57 1559.80i 0.258815 0.298689i
\(302\) −3290.03 + 2114.38i −0.626888 + 0.402876i
\(303\) 675.197 + 4696.10i 0.128017 + 0.890376i
\(304\) −2955.87 6472.46i −0.557668 1.22112i
\(305\) −136.848 + 951.796i −0.0256914 + 0.178687i
\(306\) −369.129 + 108.386i −0.0689598 + 0.0202484i
\(307\) 5937.99 + 3816.11i 1.10391 + 0.709437i 0.959957 0.280148i \(-0.0903837\pi\)
0.143948 + 0.989585i \(0.454020\pi\)
\(308\) 368.165 806.169i 0.0681109 0.149142i
\(309\) −4336.44 1273.29i −0.798354 0.234418i
\(310\) −2203.71 2543.22i −0.403750 0.465952i
\(311\) 2956.24 + 3411.69i 0.539014 + 0.622055i 0.958288 0.285805i \(-0.0922609\pi\)
−0.419274 + 0.907860i \(0.637715\pi\)
\(312\) 1474.16 + 432.854i 0.267494 + 0.0785433i
\(313\) −4320.07 + 9459.63i −0.780142 + 1.70827i −0.0772122 + 0.997015i \(0.524602\pi\)
−0.702930 + 0.711259i \(0.748125\pi\)
\(314\) 136.136 + 87.4896i 0.0244670 + 0.0157240i
\(315\) 338.080 99.2694i 0.0604720 0.0177562i
\(316\) 119.474 830.957i 0.0212687 0.147927i
\(317\) 845.924 + 1852.31i 0.149880 + 0.328190i 0.969648 0.244504i \(-0.0786253\pi\)
−0.819769 + 0.572695i \(0.805898\pi\)
\(318\) 405.617 + 2821.13i 0.0715278 + 0.497487i
\(319\) −7985.72 + 5132.11i −1.40161 + 0.900762i
\(320\) −1854.25 + 2139.92i −0.323924 + 0.373829i
\(321\) 958.679 0.166692
\(322\) −5340.80 382.639i −0.924321 0.0662225i
\(323\) −5460.50 −0.940651
\(324\) −530.476 + 612.202i −0.0909595 + 0.104973i
\(325\) −278.210 + 178.794i −0.0474840 + 0.0305161i
\(326\) 443.464 + 3084.36i 0.0753411 + 0.524009i
\(327\) −381.542 835.460i −0.0645239 0.141288i
\(328\) −1571.41 + 10929.4i −0.264533 + 1.83987i
\(329\) 3054.67 896.933i 0.511883 0.150302i
\(330\) 1873.58 + 1204.08i 0.312537 + 0.200855i
\(331\) −4784.71 + 10477.1i −0.794536 + 1.73979i −0.131353 + 0.991336i \(0.541932\pi\)
−0.663184 + 0.748456i \(0.730795\pi\)
\(332\) −208.222 61.1394i −0.0344206 0.0101068i
\(333\) −980.270 1131.29i −0.161317 0.186169i
\(334\) 4805.33 + 5545.64i 0.787233 + 0.908515i
\(335\) −851.770 250.102i −0.138917 0.0407897i
\(336\) 1944.80 4258.53i 0.315767 0.691434i
\(337\) −4012.09 2578.41i −0.648524 0.416781i 0.174603 0.984639i \(-0.444136\pi\)
−0.823127 + 0.567858i \(0.807772\pi\)
\(338\) 5014.29 1472.33i 0.806927 0.236935i
\(339\) −454.256 + 3159.42i −0.0727782 + 0.506184i
\(340\) 108.782 + 238.200i 0.0173516 + 0.0379947i
\(341\) 1324.65 + 9213.15i 0.210363 + 1.46311i
\(342\) −1122.85 + 721.612i −0.177534 + 0.114094i
\(343\) 4098.66 4730.11i 0.645210 0.744612i
\(344\) 2647.00 0.414874
\(345\) −565.576 + 2598.38i −0.0882597 + 0.405484i
\(346\) −8109.70 −1.26006
\(347\) −2573.06 + 2969.47i −0.398067 + 0.459394i −0.919031 0.394185i \(-0.871027\pi\)
0.520964 + 0.853579i \(0.325572\pi\)
\(348\) 1422.09 913.920i 0.219057 0.140779i
\(349\) 785.624 + 5464.14i 0.120497 + 0.838076i 0.956995 + 0.290105i \(0.0936903\pi\)
−0.836498 + 0.547971i \(0.815401\pi\)
\(350\) 504.137 + 1103.91i 0.0769922 + 0.168589i
\(351\) 279.140 1941.46i 0.0424484 0.295235i
\(352\) 2026.72 595.100i 0.306888 0.0901106i
\(353\) 929.847 + 597.576i 0.140200 + 0.0901014i 0.608861 0.793277i \(-0.291627\pi\)
−0.468660 + 0.883378i \(0.655263\pi\)
\(354\) −4574.89 + 10017.6i −0.686872 + 1.50404i
\(355\) 3643.64 + 1069.87i 0.544745 + 0.159952i
\(356\) −720.400 831.386i −0.107250 0.123774i
\(357\) −2352.73 2715.19i −0.348794 0.402530i
\(358\) −1269.37 372.721i −0.187397 0.0550249i
\(359\) 1401.20 3068.20i 0.205996 0.451068i −0.778231 0.627978i \(-0.783883\pi\)
0.984227 + 0.176910i \(0.0566101\pi\)
\(360\) 380.162 + 244.315i 0.0556563 + 0.0357682i
\(361\) −11596.3 + 3404.97i −1.69067 + 0.496424i
\(362\) 509.220 3541.71i 0.0739338 0.514221i
\(363\) 106.941 + 234.168i 0.0154626 + 0.0338585i
\(364\) −46.6785 324.656i −0.00672148 0.0467489i
\(365\) −2399.05 + 1541.77i −0.344033 + 0.221096i
\(366\) 1569.43 1811.22i 0.224141 0.258672i
\(367\) −8095.00 −1.15138 −0.575689 0.817669i \(-0.695266\pi\)
−0.575689 + 0.817669i \(0.695266\pi\)
\(368\) −3416.70 4565.34i −0.483989 0.646698i
\(369\) 1719.88 0.242638
\(370\) 3376.25 3896.40i 0.474386 0.547470i
\(371\) 3613.76 2322.42i 0.505706 0.324997i
\(372\) −235.892 1640.67i −0.0328775 0.228668i
\(373\) 555.602 + 1216.60i 0.0771259 + 0.168882i 0.944267 0.329180i \(-0.106772\pi\)
−0.867141 + 0.498062i \(0.834045\pi\)
\(374\) −521.579 + 3627.66i −0.0721128 + 0.501556i
\(375\) 578.288 169.801i 0.0796338 0.0233826i
\(376\) 3434.89 + 2207.47i 0.471120 + 0.302770i
\(377\) −1459.40 + 3195.65i −0.199372 + 0.436563i
\(378\) −6906.13 2027.82i −0.939717 0.275926i
\(379\) 943.030 + 1088.32i 0.127811 + 0.147501i 0.816048 0.577984i \(-0.196161\pi\)
−0.688237 + 0.725486i \(0.741615\pi\)
\(380\) 594.953 + 686.613i 0.0803170 + 0.0926908i
\(381\) 450.661 + 132.326i 0.0605986 + 0.0177933i
\(382\) 3882.11 8500.64i 0.519963 1.13856i
\(383\) 12266.7 + 7883.32i 1.63655 + 1.05175i 0.943773 + 0.330596i \(0.107250\pi\)
0.692778 + 0.721151i \(0.256387\pi\)
\(384\) 4584.09 1346.01i 0.609194 0.178876i
\(385\) 477.707 3322.53i 0.0632369 0.439823i
\(386\) −3196.75 6999.91i −0.421530 0.923021i
\(387\) −58.6764 408.103i −0.00770720 0.0536048i
\(388\) −366.751 + 235.697i −0.0479871 + 0.0308394i
\(389\) 6797.88 7845.17i 0.886032 1.02254i −0.113548 0.993533i \(-0.536221\pi\)
0.999579 0.0290025i \(-0.00923308\pi\)
\(390\) 824.236 0.107018
\(391\) −4276.12 + 929.665i −0.553076 + 0.120243i
\(392\) −235.224 −0.0303077
\(393\) 7482.12 8634.83i 0.960364 1.10832i
\(394\) 3737.93 2402.22i 0.477954 0.307163i
\(395\) −452.505 3147.24i −0.0576405 0.400898i
\(396\) −73.5470 161.046i −0.00933302 0.0204365i
\(397\) 414.776 2884.83i 0.0524358 0.364699i −0.946662 0.322228i \(-0.895568\pi\)
0.999098 0.0424705i \(-0.0135228\pi\)
\(398\) 5951.58 1747.54i 0.749562 0.220091i
\(399\) −10485.9 6738.91i −1.31567 0.845533i
\(400\) −536.884 + 1175.61i −0.0671105 + 0.146951i
\(401\) −4255.87 1249.63i −0.529995 0.155620i 0.00577719 0.999983i \(-0.498161\pi\)
−0.535772 + 0.844363i \(0.679979\pi\)
\(402\) 1448.89 + 1672.11i 0.179762 + 0.207456i
\(403\) 2255.83 + 2603.37i 0.278836 + 0.321794i
\(404\) 1246.37 + 365.968i 0.153489 + 0.0450683i
\(405\) −1274.53 + 2790.83i −0.156375 + 0.342414i
\(406\) 10845.3 + 6969.85i 1.32572 + 0.851990i
\(407\) −13682.7 + 4017.61i −1.66640 + 0.489301i
\(408\) 655.746 4560.81i 0.0795693 0.553417i
\(409\) −5767.10 12628.2i −0.697224 1.52671i −0.843305 0.537435i \(-0.819393\pi\)
0.146081 0.989273i \(-0.453334\pi\)
\(410\) 843.020 + 5863.33i 0.101546 + 0.706267i
\(411\) 6549.77 4209.28i 0.786074 0.505179i
\(412\) −810.339 + 935.181i −0.0968993 + 0.111828i
\(413\) 16598.3 1.97760
\(414\) −756.448 + 756.263i −0.0898005 + 0.0897785i
\(415\) −821.931 −0.0972217
\(416\) 511.927 590.795i 0.0603348 0.0696301i
\(417\) −2226.51 + 1430.89i −0.261470 + 0.168036i
\(418\) 1809.58 + 12585.9i 0.211745 + 1.47272i
\(419\) −2164.92 4740.52i −0.252419 0.552720i 0.740425 0.672139i \(-0.234624\pi\)
−0.992844 + 0.119419i \(0.961897\pi\)
\(420\) −85.0696 + 591.672i −0.00988326 + 0.0687396i
\(421\) 375.995 110.402i 0.0435270 0.0127807i −0.259897 0.965636i \(-0.583688\pi\)
0.303424 + 0.952856i \(0.401870\pi\)
\(422\) −3615.33 2323.43i −0.417042 0.268016i
\(423\) 264.197 578.510i 0.0303681 0.0664968i
\(424\) 5286.12 + 1552.14i 0.605464 + 0.177780i
\(425\) 649.495 + 749.557i 0.0741297 + 0.0855503i
\(426\) −6197.97 7152.84i −0.704912 0.813512i
\(427\) −3465.79 1017.65i −0.392789 0.115333i
\(428\) 109.039 238.762i 0.0123145 0.0269649i
\(429\) −1917.89 1232.55i −0.215843 0.138714i
\(430\) 1362.52 400.072i 0.152806 0.0448679i
\(431\) 1538.31 10699.2i 0.171921 1.19573i −0.702901 0.711288i \(-0.748112\pi\)
0.874821 0.484446i \(-0.160979\pi\)
\(432\) −3184.25 6972.53i −0.354635 0.776541i
\(433\) −117.587 817.838i −0.0130505 0.0907685i 0.982255 0.187549i \(-0.0600545\pi\)
−0.995306 + 0.0967809i \(0.969145\pi\)
\(434\) 10634.2 6834.20i 1.17617 0.755881i
\(435\) 4192.76 4838.70i 0.462132 0.533328i
\(436\) −251.470 −0.0276221
\(437\) −13326.1 + 7274.46i −1.45875 + 0.796304i
\(438\) 7107.53 0.775367
\(439\) −9210.92 + 10630.0i −1.00140 + 1.15567i −0.0136023 + 0.999907i \(0.504330\pi\)
−0.987794 + 0.155766i \(0.950216\pi\)
\(440\) 3621.61 2327.47i 0.392394 0.252177i
\(441\) 5.21425 + 36.2659i 0.000563033 + 0.00391598i
\(442\) 563.454 + 1233.79i 0.0606352 + 0.132773i
\(443\) 382.373 2659.46i 0.0410092 0.285225i −0.958989 0.283443i \(-0.908523\pi\)
0.999998 0.00178260i \(-0.000567419\pi\)
\(444\) 2436.60 715.450i 0.260441 0.0764725i
\(445\) −3505.12 2252.61i −0.373391 0.239964i
\(446\) 1697.38 3716.75i 0.180209 0.394603i
\(447\) −5569.96 1635.49i −0.589374 0.173056i
\(448\) −6965.32 8038.41i −0.734555 0.847722i
\(449\) 2018.68 + 2329.68i 0.212177 + 0.244865i 0.851855 0.523778i \(-0.175478\pi\)
−0.639678 + 0.768643i \(0.720932\pi\)
\(450\) 232.611 + 68.3009i 0.0243676 + 0.00715496i
\(451\) 6806.36 14903.9i 0.710641 1.55609i
\(452\) 735.197 + 472.482i 0.0765061 + 0.0491675i
\(453\) −7000.42 + 2055.51i −0.726067 + 0.213192i
\(454\) −375.779 + 2613.60i −0.0388463 + 0.270182i
\(455\) −516.060 1130.01i −0.0531720 0.116430i
\(456\) −2275.07 15823.4i −0.233640 1.62500i
\(457\) −5572.57 + 3581.27i −0.570402 + 0.366575i −0.793825 0.608147i \(-0.791913\pi\)
0.223423 + 0.974722i \(0.428277\pi\)
\(458\) 3581.87 4133.70i 0.365437 0.421736i
\(459\) −5882.38 −0.598183
\(460\) 582.806 + 436.395i 0.0590728 + 0.0442326i
\(461\) 7099.54 0.717264 0.358632 0.933479i \(-0.383243\pi\)
0.358632 + 0.933479i \(0.383243\pi\)
\(462\) −5478.57 + 6322.61i −0.551701 + 0.636697i
\(463\) −6124.22 + 3935.80i −0.614723 + 0.395058i −0.810625 0.585565i \(-0.800873\pi\)
0.195903 + 0.980623i \(0.437236\pi\)
\(464\) 1953.87 + 13589.5i 0.195488 + 1.35965i
\(465\) −2607.94 5710.59i −0.260086 0.569510i
\(466\) −485.314 + 3375.43i −0.0482441 + 0.335545i
\(467\) 10303.4 3025.36i 1.02096 0.299779i 0.271927 0.962318i \(-0.412339\pi\)
0.749028 + 0.662538i \(0.230521\pi\)
\(468\) −55.1209 35.4240i −0.00544437 0.00349888i
\(469\) 1385.27 3033.33i 0.136388 0.298648i
\(470\) 2101.72 + 617.122i 0.206267 + 0.0605653i
\(471\) 197.699 + 228.157i 0.0193408 + 0.0223205i
\(472\) 13940.5 + 16088.1i 1.35945 + 1.56889i
\(473\) −3768.67 1106.58i −0.366350 0.107570i
\(474\) −3292.01 + 7208.50i −0.319002 + 0.698518i
\(475\) 2894.76 + 1860.35i 0.279622 + 0.179702i
\(476\) −943.822 + 277.131i −0.0908824 + 0.0266855i
\(477\) 122.125 849.398i 0.0117227 0.0815331i
\(478\) −3497.08 7657.53i −0.334629 0.732735i
\(479\) −864.399 6012.03i −0.0824539 0.573479i −0.988606 0.150527i \(-0.951903\pi\)
0.906152 0.422952i \(-0.139006\pi\)
\(480\) −1198.51 + 770.238i −0.113968 + 0.0732425i
\(481\) −3456.09 + 3988.55i −0.327618 + 0.378092i
\(482\) −6085.97 −0.575121
\(483\) −9358.87 3491.98i −0.881664 0.328966i
\(484\) 70.4835 0.00661941
\(485\) −1081.30 + 1247.88i −0.101235 + 0.116832i
\(486\) −2271.62 + 1459.88i −0.212022 + 0.136258i
\(487\) 494.952 + 3442.47i 0.0460542 + 0.320314i 0.999806 + 0.0197176i \(0.00627672\pi\)
−0.953751 + 0.300597i \(0.902814\pi\)
\(488\) −1924.44 4213.94i −0.178515 0.390894i
\(489\) −827.308 + 5754.05i −0.0765075 + 0.532121i
\(490\) −121.080 + 35.5522i −0.0111629 + 0.00327773i
\(491\) −9367.85 6020.35i −0.861029 0.553349i 0.0339678 0.999423i \(-0.489186\pi\)
−0.894996 + 0.446073i \(0.852822\pi\)
\(492\) −1212.07 + 2654.06i −0.111066 + 0.243200i
\(493\) 10109.2 + 2968.33i 0.923520 + 0.271170i
\(494\) 3081.65 + 3556.42i 0.280668 + 0.323908i
\(495\) −439.120 506.772i −0.0398727 0.0460155i
\(496\) 12916.7 + 3792.69i 1.16931 + 0.343341i
\(497\) −5925.83 + 12975.7i −0.534828 + 1.17111i
\(498\) 1723.33 + 1107.52i 0.155069 + 0.0996567i
\(499\) 14542.0 4269.92i 1.30459 0.383062i 0.445680 0.895192i \(-0.352962\pi\)
0.858908 + 0.512131i \(0.171144\pi\)
\(500\) 23.4844 163.337i 0.00210051 0.0146093i
\(501\) 5686.76 + 12452.3i 0.507117 + 1.11043i
\(502\) −680.352 4731.95i −0.0604892 0.420712i
\(503\) −9871.58 + 6344.08i −0.875054 + 0.562363i −0.899295 0.437343i \(-0.855920\pi\)
0.0242408 + 0.999706i \(0.492283\pi\)
\(504\) −1111.64 + 1282.90i −0.0982466 + 0.113383i
\(505\) 4919.92 0.433532
\(506\) 3559.87 + 9547.96i 0.312758 + 0.838851i
\(507\) 9749.36 0.854012
\(508\) 84.2137 97.1878i 0.00735508 0.00848821i
\(509\) −2721.43 + 1748.96i −0.236985 + 0.152301i −0.653743 0.756716i \(-0.726802\pi\)
0.416759 + 0.909017i \(0.363166\pi\)
\(510\) −351.790 2446.75i −0.0305442 0.212439i
\(511\) −4450.07 9744.30i −0.385244 0.843566i
\(512\) 1852.54 12884.7i 0.159905 1.11216i
\(513\) −19581.8 + 5749.75i −1.68530 + 0.494849i
\(514\) −14651.7 9416.07i −1.25731 0.808025i
\(515\) −1946.93 + 4263.19i −0.166587 + 0.364774i
\(516\) 671.121 + 197.059i 0.0572567 + 0.0168121i
\(517\) −3967.60 4578.86i −0.337514 0.389512i
\(518\) 12682.6 + 14636.5i 1.07575 + 1.24148i
\(519\) −14516.3 4262.36i −1.22773 0.360495i
\(520\) 661.856 1449.26i 0.0558160 0.122220i
\(521\) −1089.83 700.392i −0.0916438 0.0588959i 0.494016 0.869453i \(-0.335528\pi\)
−0.585660 + 0.810557i \(0.699165\pi\)
\(522\) 2471.04 725.562i 0.207192 0.0608371i
\(523\) −2678.05 + 18626.2i −0.223906 + 1.55730i 0.499152 + 0.866515i \(0.333645\pi\)
−0.723058 + 0.690787i \(0.757264\pi\)
\(524\) −1299.52 2845.56i −0.108340 0.237231i
\(525\) 322.200 + 2240.95i 0.0267847 + 0.186292i
\(526\) 15851.1 10186.9i 1.31396 0.844429i
\(527\) 6765.32 7807.59i 0.559207 0.645359i
\(528\) −8909.43 −0.734343
\(529\) −9197.16 + 7965.44i −0.755910 + 0.654676i
\(530\) 2955.58 0.242231
\(531\) 2171.38 2505.91i 0.177457 0.204797i
\(532\) −2871.00 + 1845.08i −0.233973 + 0.150366i
\(533\) −862.957 6002.00i −0.0701291 0.487759i
\(534\) 4313.85 + 9446.01i 0.349585 + 0.765485i
\(535\) 141.482 984.028i 0.0114333 0.0795201i
\(536\) 4103.54 1204.91i 0.330683 0.0970972i
\(537\) −2076.26 1334.33i −0.166848 0.107227i
\(538\) −1240.03 + 2715.30i −0.0993711 + 0.217592i
\(539\) 334.901 + 98.3359i 0.0267629 + 0.00785830i
\(540\) 640.920 + 739.661i 0.0510756 + 0.0589443i
\(541\) −1303.48 1504.29i −0.103587 0.119546i 0.701588 0.712582i \(-0.252475\pi\)
−0.805176 + 0.593036i \(0.797929\pi\)
\(542\) 15226.2 + 4470.81i 1.20668 + 0.354313i
\(543\) 2772.98 6071.98i 0.219153 0.479878i
\(544\) −1972.28 1267.50i −0.155442 0.0998967i
\(545\) −913.859 + 268.333i −0.0718264 + 0.0210901i
\(546\) −440.631 + 3064.65i −0.0345371 + 0.240211i
\(547\) 5244.30 + 11483.4i 0.409927 + 0.897614i 0.996167 + 0.0874768i \(0.0278804\pi\)
−0.586240 + 0.810138i \(0.699392\pi\)
\(548\) −303.372 2110.00i −0.0236486 0.164479i
\(549\) −607.029 + 390.114i −0.0471901 + 0.0303272i
\(550\) 1512.42 1745.42i 0.117254 0.135318i
\(551\) 36553.9 2.82622
\(552\) −4475.59 12004.0i −0.345098 0.925588i
\(553\) 11943.9 0.918455
\(554\) −12263.1 + 14152.4i −0.940452 + 1.08534i
\(555\) 8091.35 5199.99i 0.618844 0.397707i
\(556\) 103.128 + 717.268i 0.00786616 + 0.0547103i
\(557\) 3601.99 + 7887.26i 0.274006 + 0.599989i 0.995742 0.0921788i \(-0.0293831\pi\)
−0.721737 + 0.692168i \(0.756656\pi\)
\(558\) 359.378 2499.53i 0.0272647 0.189630i
\(559\) −1394.74 + 409.534i −0.105530 + 0.0309865i
\(560\) −4084.11 2624.70i −0.308188 0.198060i
\(561\) −2840.28 + 6219.34i −0.213755 + 0.468058i
\(562\) −16380.3 4809.68i −1.22947 0.361004i
\(563\) −6112.95 7054.72i −0.457602 0.528101i 0.479319 0.877641i \(-0.340884\pi\)
−0.936922 + 0.349539i \(0.886338\pi\)
\(564\) 706.546 + 815.397i 0.0527499 + 0.0608766i
\(565\) 3175.92 + 932.535i 0.236482 + 0.0694373i
\(566\) −5999.26 + 13136.6i −0.445526 + 0.975566i
\(567\) −9695.44 6230.88i −0.718113 0.461503i
\(568\) −17553.8 + 5154.27i −1.29673 + 0.380754i
\(569\) −1868.87 + 12998.3i −0.137693 + 0.957673i 0.797446 + 0.603391i \(0.206184\pi\)
−0.935138 + 0.354282i \(0.884725\pi\)
\(570\) −3562.66 7801.13i −0.261795 0.573252i
\(571\) 3364.72 + 23402.1i 0.246601 + 1.71515i 0.617583 + 0.786506i \(0.288112\pi\)
−0.370982 + 0.928640i \(0.620979\pi\)
\(572\) −525.109 + 337.467i −0.0383845 + 0.0246682i
\(573\) 11416.8 13175.7i 0.832361 0.960595i
\(574\) −22251.6 −1.61805
\(575\) 2583.62 + 964.000i 0.187381 + 0.0699158i
\(576\) −2124.78 −0.153703
\(577\) 104.108 120.147i 0.00751140 0.00866861i −0.751981 0.659184i \(-0.770902\pi\)
0.759493 + 0.650516i \(0.225447\pi\)
\(578\) −7260.08 + 4665.77i −0.522456 + 0.335762i
\(579\) −2043.08 14209.9i −0.146645 1.01994i
\(580\) −728.214 1594.57i −0.0521335 0.114156i
\(581\) 439.398 3056.08i 0.0313757 0.218223i
\(582\) 3948.61 1159.42i 0.281229 0.0825762i
\(583\) −6877.25 4419.74i −0.488554 0.313974i
\(584\) 5707.29 12497.2i 0.404400 0.885512i
\(585\) −238.113 69.9162i −0.0168286 0.00494133i
\(586\) 8082.34 + 9327.52i 0.569758 + 0.657536i
\(587\) 6897.01 + 7959.57i 0.484957 + 0.559671i 0.944511 0.328479i \(-0.106536\pi\)
−0.459554 + 0.888150i \(0.651991\pi\)
\(588\) −59.6388 17.5115i −0.00418276 0.00122817i
\(589\) 14889.5 32603.4i 1.04161 2.28082i
\(590\) 9607.33 + 6174.25i 0.670385 + 0.430830i
\(591\) 7953.43 2335.34i 0.553571 0.162543i
\(592\) −2935.21 + 20414.9i −0.203778 + 1.41731i
\(593\) 10720.7 + 23475.1i 0.742408 + 1.62565i 0.779552 + 0.626337i \(0.215447\pi\)
−0.0371442 + 0.999310i \(0.511826\pi\)
\(594\) 1949.39 + 13558.3i 0.134654 + 0.936540i
\(595\) −3134.20 + 2014.23i −0.215949 + 0.138782i
\(596\) −1040.84 + 1201.20i −0.0715345 + 0.0825553i
\(597\) 11571.8 0.793300
\(598\) 3018.73 + 2260.37i 0.206430 + 0.154571i
\(599\) 7575.58 0.516744 0.258372 0.966045i \(-0.416814\pi\)
0.258372 + 0.966045i \(0.416814\pi\)
\(600\) −1901.46 + 2194.40i −0.129378 + 0.149310i
\(601\) 15224.6 9784.27i 1.03332 0.664074i 0.0899940 0.995942i \(-0.471315\pi\)
0.943326 + 0.331868i \(0.107679\pi\)
\(602\) 759.145 + 5279.97i 0.0513961 + 0.357467i
\(603\) −276.731 605.957i −0.0186888 0.0409228i
\(604\) −284.288 + 1977.27i −0.0191515 + 0.133202i
\(605\) 256.142 75.2101i 0.0172126 0.00505409i
\(606\) −10315.5 6629.38i −0.691484 0.444390i
\(607\) −717.164 + 1570.37i −0.0479552 + 0.105007i −0.932093 0.362219i \(-0.882019\pi\)
0.884138 + 0.467226i \(0.154747\pi\)
\(608\) −7804.43 2291.59i −0.520578 0.152855i
\(609\) 15749.7 + 18176.1i 1.04796 + 1.20942i
\(610\) −1627.50 1878.23i −0.108025 0.124668i
\(611\) −2151.43 631.717i −0.142451 0.0418274i
\(612\) −81.6306 + 178.746i −0.00539170 + 0.0118062i
\(613\) −8712.69 5599.31i −0.574066 0.368930i 0.221165 0.975236i \(-0.429014\pi\)
−0.795231 + 0.606307i \(0.792650\pi\)
\(614\) −17504.0 + 5139.65i −1.15050 + 0.337816i
\(615\) −1572.70 + 10938.4i −0.103118 + 0.717201i
\(616\) 6717.85 + 14710.0i 0.439399 + 0.962149i
\(617\) −1670.26 11616.9i −0.108983 0.757990i −0.968881 0.247526i \(-0.920383\pi\)
0.859899 0.510465i \(-0.170527\pi\)
\(618\) 9826.58 6315.16i 0.639617 0.411057i
\(619\) 3574.63 4125.34i 0.232111 0.267870i −0.627731 0.778430i \(-0.716016\pi\)
0.859842 + 0.510560i \(0.170562\pi\)
\(620\) −1718.86 −0.111341
\(621\) −14355.6 + 7836.50i −0.927653 + 0.506389i
\(622\) −11667.4 −0.752124
\(623\) 10249.4 11828.4i 0.659123 0.760668i
\(624\) −2773.85 + 1782.65i −0.177953 + 0.114364i
\(625\) −88.9468 618.638i −0.00569259 0.0395929i
\(626\) −11165.4 24448.8i −0.712874 1.56098i
\(627\) −3375.88 + 23479.8i −0.215023 + 1.49552i
\(628\) 79.3093 23.2873i 0.00503947 0.00147972i
\(629\) 13315.1 + 8557.11i 0.844052 + 0.542439i
\(630\) −378.307 + 828.376i −0.0239240 + 0.0523862i
\(631\) −13448.4 3948.79i −0.848448 0.249127i −0.171524 0.985180i \(-0.554869\pi\)
−0.676924 + 0.736053i \(0.736687\pi\)
\(632\) 10031.3 + 11576.8i 0.631368 + 0.728637i
\(633\) −5250.24 6059.10i −0.329666 0.380454i
\(634\) −5049.81 1482.76i −0.316330 0.0928830i
\(635\) 202.333 443.048i 0.0126447 0.0276879i
\(636\) 1224.69 + 787.062i 0.0763557 + 0.0490708i
\(637\) 123.943 36.3930i 0.00770928 0.00226365i
\(638\) 3491.57 24284.4i 0.216666 1.50694i
\(639\) 1183.78 + 2592.12i 0.0732859 + 0.160474i
\(640\) −705.080 4903.94i −0.0435480 0.302883i
\(641\) 5148.93 3309.02i 0.317271 0.203898i −0.372306 0.928110i \(-0.621433\pi\)
0.689577 + 0.724212i \(0.257796\pi\)
\(642\) −1622.58 + 1872.56i −0.0997478 + 0.115115i
\(643\) −15995.2 −0.981008 −0.490504 0.871439i \(-0.663187\pi\)
−0.490504 + 0.871439i \(0.663187\pi\)
\(644\) −1934.16 + 1933.68i −0.118348 + 0.118319i
\(645\) 2649.17 0.161723
\(646\) 9241.98 10665.8i 0.562881 0.649599i
\(647\) 1712.45 1100.52i 0.104054 0.0668717i −0.487579 0.873079i \(-0.662120\pi\)
0.591633 + 0.806207i \(0.298483\pi\)
\(648\) −2103.56 14630.6i −0.127524 0.886948i
\(649\) −13122.1 28733.4i −0.793663 1.73788i
\(650\) 121.641 846.030i 0.00734022 0.0510524i
\(651\) 22627.1 6643.93i 1.36225 0.399994i
\(652\) 1338.97 + 860.502i 0.0804264 + 0.0516869i
\(653\) −7205.37 + 15777.5i −0.431804 + 0.945518i 0.561227 + 0.827662i \(0.310329\pi\)
−0.993031 + 0.117856i \(0.962398\pi\)
\(654\) 2277.64 + 668.776i 0.136182 + 0.0399866i
\(655\) −7758.94 8954.29i −0.462850 0.534157i
\(656\) −15518.2 17908.9i −0.923603 1.06589i
\(657\) −2053.29 602.899i −0.121927 0.0358011i
\(658\) −3418.13 + 7484.67i −0.202512 + 0.443439i
\(659\) 23435.4 + 15061.0i 1.38530 + 0.890280i 0.999478 0.0322915i \(-0.0102805\pi\)
0.385825 + 0.922572i \(0.373917\pi\)
\(660\) 1091.50 320.492i 0.0643733 0.0189017i
\(661\) −669.505 + 4656.51i −0.0393960 + 0.274005i −0.999992 0.00394255i \(-0.998745\pi\)
0.960596 + 0.277948i \(0.0896541\pi\)
\(662\) −12366.3 27078.4i −0.726027 1.58978i
\(663\) 360.110 + 2504.62i 0.0210943 + 0.146714i
\(664\) 3331.18 2140.82i 0.194691 0.125120i
\(665\) −8464.61 + 9768.69i −0.493600 + 0.569644i
\(666\) 3868.84 0.225097
\(667\) 28625.4 6223.40i 1.66174 0.361276i
\(668\) 3748.08 0.217092
\(669\) 4991.77 5760.81i 0.288480 0.332924i
\(670\) 1930.15 1240.43i 0.111296 0.0715255i
\(671\) 978.287 + 6804.13i 0.0562837 + 0.391462i
\(672\) −2223.16 4868.05i −0.127620 0.279448i
\(673\) −835.412 + 5810.42i −0.0478496 + 0.332801i 0.951809 + 0.306690i \(0.0992214\pi\)
−0.999659 + 0.0261111i \(0.991688\pi\)
\(674\) 11826.9 3472.68i 0.675896 0.198461i
\(675\) 3118.41 + 2004.08i 0.177819 + 0.114277i
\(676\) 1108.88 2428.11i 0.0630905 0.138149i
\(677\) −2079.31 610.540i −0.118042 0.0346602i 0.222178 0.975006i \(-0.428683\pi\)
−0.340220 + 0.940346i \(0.610502\pi\)
\(678\) −5402.36 6234.66i −0.306012 0.353157i
\(679\) −4061.79 4687.56i −0.229569 0.264937i
\(680\) −4584.64 1346.17i −0.258548 0.0759166i
\(681\) −2046.32 + 4480.82i −0.115147 + 0.252137i
\(682\) −20237.7 13006.0i −1.13628 0.730243i
\(683\) −13294.7 + 3903.67i −0.744813 + 0.218697i −0.632053 0.774925i \(-0.717787\pi\)
−0.112760 + 0.993622i \(0.535969\pi\)
\(684\) −97.0241 + 674.817i −0.00542370 + 0.0377226i
\(685\) −3353.97 7344.17i −0.187078 0.409644i
\(686\) 2302.12 + 16011.6i 0.128127 + 0.891144i
\(687\) 8584.15 5516.70i 0.476718 0.306368i
\(688\) −3720.10 + 4293.23i −0.206145 + 0.237904i
\(689\) −3025.48 −0.167288
\(690\) −4118.08 5502.52i −0.227207 0.303590i
\(691\) 3210.38 0.176742 0.0883709 0.996088i \(-0.471834\pi\)
0.0883709 + 0.996088i \(0.471834\pi\)
\(692\) −2712.62 + 3130.53i −0.149015 + 0.171972i
\(693\) 2119.02 1361.81i 0.116154 0.0746476i
\(694\) −1445.23 10051.8i −0.0790490 0.549798i
\(695\) 1140.14 + 2496.56i 0.0622273 + 0.136259i
\(696\) −4389.72 + 30531.2i −0.239069 + 1.66276i
\(697\) −17448.7 + 5123.39i −0.948229 + 0.278425i
\(698\) −12002.6 7713.60i −0.650867 0.418287i
\(699\) −2642.80 + 5786.92i −0.143004 + 0.313135i
\(700\) 594.762 + 174.638i 0.0321141 + 0.00942956i
\(701\) −22706.9 26205.2i −1.22344 1.41192i −0.881492 0.472199i \(-0.843460\pi\)
−0.341943 0.939721i \(-0.611085\pi\)
\(702\) 3319.74 + 3831.19i 0.178484 + 0.205981i
\(703\) 52688.8 + 15470.8i 2.82674 + 0.830005i
\(704\) −8408.74 + 18412.6i −0.450165 + 0.985724i
\(705\) 3437.71 + 2209.28i 0.183648 + 0.118023i
\(706\) −2741.01 + 804.832i −0.146118 + 0.0429041i
\(707\) −2630.15 + 18293.1i −0.139911 + 0.973102i
\(708\) 2336.77 + 5116.80i 0.124041 + 0.271612i
\(709\) −3651.57 25397.2i −0.193424 1.34529i −0.822861 0.568242i \(-0.807624\pi\)
0.629437 0.777051i \(-0.283285\pi\)
\(710\) −8256.66 + 5306.24i −0.436433 + 0.280478i
\(711\) 1562.49 1803.21i 0.0824162 0.0951134i
\(712\) 20073.0 1.05656
\(713\) 6109.15 28066.8i 0.320883 1.47421i
\(714\) 9285.52 0.486697
\(715\) −1548.19 + 1786.70i −0.0809775 + 0.0934530i
\(716\) −568.471 + 365.334i −0.0296714 + 0.0190687i
\(717\) −2235.02 15544.9i −0.116414 0.809674i
\(718\) 3621.46 + 7929.90i 0.188234 + 0.412174i
\(719\) −592.093 + 4118.10i −0.0307112 + 0.213601i −0.999398 0.0346834i \(-0.988958\pi\)
0.968687 + 0.248285i \(0.0798668\pi\)
\(720\) −930.541 + 273.231i −0.0481656 + 0.0141427i
\(721\) −14810.5 9518.11i −0.765008 0.491641i
\(722\) 12976.1 28413.6i 0.668863 1.46460i
\(723\) −10893.8 3198.71i −0.560367 0.164539i
\(724\) −1196.85 1381.24i −0.0614372 0.0709023i
\(725\) −4347.87 5017.72i −0.222726 0.257039i
\(726\) −638.392 187.449i −0.0326349 0.00958247i
\(727\) 4883.06 10692.4i 0.249109 0.545474i −0.743227 0.669039i \(-0.766706\pi\)
0.992336 + 0.123566i \(0.0394330\pi\)
\(728\) 5034.79 + 3235.66i 0.256321 + 0.164727i
\(729\) −20730.0 + 6086.89i −1.05320 + 0.309246i
\(730\) 1048.93 7295.46i 0.0531816 0.369886i
\(731\) 1810.99 + 3965.52i 0.0916306 + 0.200643i
\(732\) −174.212 1211.67i −0.00879654 0.0611813i
\(733\) −4553.90 + 2926.62i −0.229471 + 0.147472i −0.650324 0.759657i \(-0.725367\pi\)
0.420853 + 0.907129i \(0.361731\pi\)
\(734\) 13700.9 15811.7i 0.688978 0.795123i
\(735\) −235.417 −0.0118143
\(736\) −6501.80 465.818i −0.325624 0.0233292i
\(737\) −6346.14 −0.317182
\(738\) −2910.93 + 3359.39i −0.145194 + 0.167562i
\(739\) 13537.3 8699.89i 0.673853 0.433059i −0.158460 0.987365i \(-0.550653\pi\)
0.832313 + 0.554306i \(0.187016\pi\)
\(740\) −374.775 2606.61i −0.0186176 0.129488i
\(741\) 3646.91 + 7985.63i 0.180800 + 0.395897i
\(742\) −1580.03 + 10989.4i −0.0781736 + 0.543709i
\(743\) −37065.3 + 10883.4i −1.83014 + 0.537378i −0.999802 0.0198831i \(-0.993671\pi\)
−0.830338 + 0.557261i \(0.811852\pi\)
\(744\) 25443.6 + 16351.6i 1.25377 + 0.805750i
\(745\) −2500.75 + 5475.87i −0.122980 + 0.269289i
\(746\) −3316.71 973.873i −0.162779 0.0477963i
\(747\) −403.905 466.132i −0.0197833 0.0228311i
\(748\) 1225.90 + 1414.76i 0.0599240 + 0.0691560i
\(749\) 3583.15 + 1052.11i 0.174800 + 0.0513260i
\(750\) −647.096 + 1416.94i −0.0315048 + 0.0689859i
\(751\) −2763.26 1775.84i −0.134265 0.0862866i 0.471784 0.881714i \(-0.343610\pi\)
−0.606049 + 0.795427i \(0.707246\pi\)
\(752\) −8407.76 + 2468.74i −0.407712 + 0.119715i
\(753\) 1269.24 8827.73i 0.0614257 0.427225i
\(754\) −3771.89 8259.29i −0.182181 0.398920i
\(755\) 1076.74 + 7488.87i 0.0519026 + 0.360991i
\(756\) −3092.82 + 1987.63i −0.148789 + 0.0956211i
\(757\) 23962.4 27654.1i 1.15050 1.32775i 0.214100 0.976812i \(-0.431318\pi\)
0.936400 0.350936i \(-0.114136\pi\)
\(758\) −3721.86 −0.178343
\(759\) 1353.84 + 18961.8i 0.0647448 + 0.906810i
\(760\) −16577.6 −0.791227
\(761\) 3409.02 3934.22i 0.162388 0.187405i −0.668724 0.743510i \(-0.733159\pi\)
0.831112 + 0.556105i \(0.187705\pi\)
\(762\) −1021.22 + 656.297i −0.0485497 + 0.0312010i
\(763\) −509.167 3541.33i −0.0241587 0.168027i
\(764\) −1982.91 4341.96i −0.0938994