Properties

Label 115.4.g.a.16.3
Level $115$
Weight $4$
Character 115.16
Analytic conductor $6.785$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(6,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 18]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.g (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78521965066\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 16.3
Character \(\chi\) \(=\) 115.16
Dual form 115.4.g.a.36.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.62935 + 3.03443i) q^{2} +(5.69405 - 3.65935i) q^{3} +(-1.15577 - 8.03858i) q^{4} +(2.07708 + 4.54816i) q^{5} +(-3.86762 + 26.8999i) q^{6} +(-1.94859 + 0.572159i) q^{7} +(0.409529 + 0.263188i) q^{8} +(7.81524 - 17.1130i) q^{9} +O(q^{10})\) \(q+(-2.62935 + 3.03443i) q^{2} +(5.69405 - 3.65935i) q^{3} +(-1.15577 - 8.03858i) q^{4} +(2.07708 + 4.54816i) q^{5} +(-3.86762 + 26.8999i) q^{6} +(-1.94859 + 0.572159i) q^{7} +(0.409529 + 0.263188i) q^{8} +(7.81524 - 17.1130i) q^{9} +(-19.2624 - 5.65596i) q^{10} +(27.2835 + 31.4869i) q^{11} +(-35.9970 - 41.5427i) q^{12} +(77.0341 + 22.6192i) q^{13} +(3.38736 - 7.41728i) q^{14} +(28.4703 + 18.2967i) q^{15} +(60.4628 - 17.7535i) q^{16} +(0.200228 - 1.39261i) q^{17} +(31.3792 + 68.7108i) q^{18} +(-0.0722497 - 0.502508i) q^{19} +(34.1601 - 21.9534i) q^{20} +(-9.00167 + 10.3885i) q^{21} -167.283 q^{22} +(26.6576 + 107.034i) q^{23} +3.29498 q^{24} +(-16.3715 + 18.8937i) q^{25} +(-271.186 + 174.281i) q^{26} +(7.88616 + 54.8494i) q^{27} +(6.85148 + 15.0026i) q^{28} +(-8.79452 + 61.1672i) q^{29} +(-130.378 + 38.2826i) q^{30} +(-163.860 - 105.307i) q^{31} +(-106.724 + 233.693i) q^{32} +(270.575 + 79.4481i) q^{33} +(3.69932 + 4.26925i) q^{34} +(-6.64965 - 7.67410i) q^{35} +(-146.597 - 43.0447i) q^{36} +(85.9359 - 188.173i) q^{37} +(1.71480 + 1.10203i) q^{38} +(521.408 - 153.099i) q^{39} +(-0.346400 + 2.40926i) q^{40} +(-10.0827 - 22.0781i) q^{41} +(-7.85460 - 54.6299i) q^{42} +(331.768 - 213.215i) q^{43} +(221.576 - 255.712i) q^{44} +94.0654 q^{45} +(-394.881 - 200.540i) q^{46} -44.0009 q^{47} +(279.312 - 322.344i) q^{48} +(-285.080 + 183.210i) q^{49} +(-14.2853 - 99.3565i) q^{50} +(-3.95595 - 8.66233i) q^{51} +(92.7927 - 645.387i) q^{52} +(185.992 - 54.6123i) q^{53} +(-187.172 - 120.288i) q^{54} +(-86.5374 + 189.490i) q^{55} +(-0.948591 - 0.278531i) q^{56} +(-2.25025 - 2.59692i) q^{57} +(-162.484 - 187.516i) q^{58} +(-140.501 - 41.2550i) q^{59} +(114.175 - 250.007i) q^{60} +(-728.355 - 468.085i) q^{61} +(750.391 - 220.335i) q^{62} +(-5.43738 + 37.8178i) q^{63} +(-219.090 - 479.740i) q^{64} +(57.1296 + 397.345i) q^{65} +(-952.516 + 612.145i) q^{66} +(252.738 - 291.675i) q^{67} -11.4261 q^{68} +(543.466 + 511.911i) q^{69} +40.7708 q^{70} +(376.397 - 434.385i) q^{71} +(7.70450 - 4.95138i) q^{72} +(-36.2942 - 252.432i) q^{73} +(345.044 + 755.540i) q^{74} +(-24.0816 + 167.491i) q^{75} +(-3.95595 + 1.16157i) q^{76} +(-71.1800 - 45.7446i) q^{77} +(-906.395 + 1984.73i) q^{78} +(-910.012 - 267.204i) q^{79} +(206.331 + 238.119i) q^{80} +(578.256 + 667.343i) q^{81} +(93.5054 + 27.4557i) q^{82} +(437.641 - 958.300i) q^{83} +(93.9126 + 60.3540i) q^{84} +(6.74972 - 1.98190i) q^{85} +(-225.350 + 1567.34i) q^{86} +(173.756 + 380.472i) q^{87} +(2.88642 + 20.0755i) q^{88} +(-817.408 + 525.316i) q^{89} +(-247.331 + 285.435i) q^{90} -163.050 q^{91} +(829.595 - 337.997i) q^{92} -1318.38 q^{93} +(115.694 - 133.518i) q^{94} +(2.13542 - 1.37235i) q^{95} +(247.471 + 1721.20i) q^{96} +(152.393 + 333.694i) q^{97} +(193.638 - 1346.78i) q^{98} +(752.061 - 220.825i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9} - 10 q^{10} + 2 q^{11} - 57 q^{12} + 34 q^{13} - 154 q^{14} + 30 q^{15} + 16 q^{16} + 252 q^{17} - 33 q^{18} - 160 q^{19} - 200 q^{20} - 684 q^{21} - 704 q^{22} + 127 q^{23} - 3090 q^{24} - 275 q^{25} - 567 q^{26} + 384 q^{27} - 188 q^{28} + 340 q^{29} - 15 q^{30} + 582 q^{31} - 1364 q^{32} + 1760 q^{33} + 1819 q^{34} + 665 q^{35} + 2794 q^{36} + 312 q^{37} + 3123 q^{38} - 1560 q^{39} - 1205 q^{40} + 1324 q^{41} + 1454 q^{42} - 1740 q^{43} - 369 q^{44} + 3730 q^{45} - 4322 q^{46} - 2858 q^{47} - 2686 q^{48} + 2015 q^{49} - 325 q^{50} - 1426 q^{51} + 1717 q^{52} + 882 q^{53} + 2541 q^{54} + 450 q^{55} + 7755 q^{56} + 3688 q^{57} + 6622 q^{58} + 2605 q^{59} + 1530 q^{60} - 104 q^{61} - 9360 q^{62} - 7618 q^{63} + 3483 q^{64} + 170 q^{65} - 1766 q^{66} - 166 q^{67} - 5018 q^{68} - 1194 q^{69} - 770 q^{70} - 1222 q^{71} + 3303 q^{72} - 922 q^{73} + 1245 q^{74} + 150 q^{75} + 1360 q^{76} - 3093 q^{77} - 1600 q^{78} + 2448 q^{79} + 2115 q^{80} - 1371 q^{81} + 6609 q^{82} + 6704 q^{83} + 3894 q^{84} - 720 q^{85} - 5074 q^{86} - 6324 q^{87} + 1918 q^{88} - 5380 q^{89} - 165 q^{90} + 7828 q^{91} - 16225 q^{92} - 24948 q^{93} - 16490 q^{94} + 685 q^{95} + 675 q^{96} - 4400 q^{97} + 8790 q^{98} - 3626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.62935 + 3.03443i −0.929615 + 1.07283i 0.0675594 + 0.997715i \(0.478479\pi\)
−0.997175 + 0.0751179i \(0.976067\pi\)
\(3\) 5.69405 3.65935i 1.09582 0.704242i 0.137663 0.990479i \(-0.456041\pi\)
0.958159 + 0.286238i \(0.0924046\pi\)
\(4\) −1.15577 8.03858i −0.144472 1.00482i
\(5\) 2.07708 + 4.54816i 0.185779 + 0.406800i
\(6\) −3.86762 + 26.8999i −0.263158 + 1.83031i
\(7\) −1.94859 + 0.572159i −0.105214 + 0.0308937i −0.333916 0.942603i \(-0.608370\pi\)
0.228702 + 0.973497i \(0.426552\pi\)
\(8\) 0.409529 + 0.263188i 0.0180988 + 0.0116314i
\(9\) 7.81524 17.1130i 0.289453 0.633814i
\(10\) −19.2624 5.65596i −0.609132 0.178857i
\(11\) 27.2835 + 31.4869i 0.747845 + 0.863059i 0.994358 0.106081i \(-0.0338302\pi\)
−0.246513 + 0.969140i \(0.579285\pi\)
\(12\) −35.9970 41.5427i −0.865953 0.999363i
\(13\) 77.0341 + 22.6192i 1.64349 + 0.482573i 0.967191 0.254051i \(-0.0817631\pi\)
0.676302 + 0.736624i \(0.263581\pi\)
\(14\) 3.38736 7.41728i 0.0646650 0.141597i
\(15\) 28.4703 + 18.2967i 0.490066 + 0.314946i
\(16\) 60.4628 17.7535i 0.944731 0.277398i
\(17\) 0.200228 1.39261i 0.00285661 0.0198682i −0.988343 0.152242i \(-0.951351\pi\)
0.991200 + 0.132374i \(0.0422599\pi\)
\(18\) 31.3792 + 68.7108i 0.410897 + 0.899738i
\(19\) −0.0722497 0.502508i −0.000872380 0.00606754i 0.989381 0.145348i \(-0.0464302\pi\)
−0.990253 + 0.139280i \(0.955521\pi\)
\(20\) 34.1601 21.9534i 0.381922 0.245446i
\(21\) −9.00167 + 10.3885i −0.0935394 + 0.107950i
\(22\) −167.283 −1.62113
\(23\) 26.6576 + 107.034i 0.241673 + 0.970358i
\(24\) 3.29498 0.0280243
\(25\) −16.3715 + 18.8937i −0.130972 + 0.151150i
\(26\) −271.186 + 174.281i −2.04554 + 1.31459i
\(27\) 7.88616 + 54.8494i 0.0562108 + 0.390955i
\(28\) 6.85148 + 15.0026i 0.0462431 + 0.101258i
\(29\) −8.79452 + 61.1672i −0.0563139 + 0.391671i 0.942098 + 0.335337i \(0.108850\pi\)
−0.998412 + 0.0563341i \(0.982059\pi\)
\(30\) −130.378 + 38.2826i −0.793458 + 0.232980i
\(31\) −163.860 105.307i −0.949360 0.610117i −0.0283261 0.999599i \(-0.509018\pi\)
−0.921034 + 0.389482i \(0.872654\pi\)
\(32\) −106.724 + 233.693i −0.589572 + 1.29098i
\(33\) 270.575 + 79.4481i 1.42731 + 0.419095i
\(34\) 3.69932 + 4.26925i 0.0186597 + 0.0215344i
\(35\) −6.64965 7.67410i −0.0321142 0.0370617i
\(36\) −146.597 43.0447i −0.678689 0.199281i
\(37\) 85.9359 188.173i 0.381832 0.836095i −0.616962 0.786993i \(-0.711637\pi\)
0.998794 0.0491021i \(-0.0156360\pi\)
\(38\) 1.71480 + 1.10203i 0.00732044 + 0.00470456i
\(39\) 521.408 153.099i 2.14082 0.628602i
\(40\) −0.346400 + 2.40926i −0.00136927 + 0.00952345i
\(41\) −10.0827 22.0781i −0.0384063 0.0840980i 0.889456 0.457020i \(-0.151083\pi\)
−0.927863 + 0.372922i \(0.878356\pi\)
\(42\) −7.85460 54.6299i −0.0288569 0.200704i
\(43\) 331.768 213.215i 1.17661 0.756161i 0.201850 0.979417i \(-0.435305\pi\)
0.974760 + 0.223255i \(0.0716684\pi\)
\(44\) 221.576 255.712i 0.759179 0.876139i
\(45\) 94.0654 0.311610
\(46\) −394.881 200.540i −1.26570 0.642784i
\(47\) −44.0009 −0.136557 −0.0682786 0.997666i \(-0.521751\pi\)
−0.0682786 + 0.997666i \(0.521751\pi\)
\(48\) 279.312 322.344i 0.839901 0.969298i
\(49\) −285.080 + 183.210i −0.831138 + 0.534140i
\(50\) −14.2853 99.3565i −0.0404049 0.281023i
\(51\) −3.95595 8.66233i −0.0108616 0.0237837i
\(52\) 92.7927 645.387i 0.247462 1.72114i
\(53\) 185.992 54.6123i 0.482038 0.141539i −0.0316803 0.999498i \(-0.510086\pi\)
0.513718 + 0.857959i \(0.328268\pi\)
\(54\) −187.172 120.288i −0.471684 0.303133i
\(55\) −86.5374 + 189.490i −0.212158 + 0.464561i
\(56\) −0.948591 0.278531i −0.00226359 0.000664649i
\(57\) −2.25025 2.59692i −0.00522899 0.00603457i
\(58\) −162.484 187.516i −0.367848 0.424519i
\(59\) −140.501 41.2550i −0.310029 0.0910328i 0.123017 0.992405i \(-0.460743\pi\)
−0.433046 + 0.901372i \(0.642561\pi\)
\(60\) 114.175 250.007i 0.245665 0.537930i
\(61\) −728.355 468.085i −1.52879 0.982495i −0.990158 0.139954i \(-0.955304\pi\)
−0.538633 0.842540i \(-0.681059\pi\)
\(62\) 750.391 220.335i 1.53709 0.451331i
\(63\) −5.43738 + 37.8178i −0.0108737 + 0.0756285i
\(64\) −219.090 479.740i −0.427910 0.936992i
\(65\) 57.1296 + 397.345i 0.109016 + 0.758225i
\(66\) −952.516 + 612.145i −1.77646 + 1.14166i
\(67\) 252.738 291.675i 0.460849 0.531848i −0.476995 0.878906i \(-0.658274\pi\)
0.937844 + 0.347058i \(0.112819\pi\)
\(68\) −11.4261 −0.0203767
\(69\) 543.466 + 511.911i 0.948197 + 0.893142i
\(70\) 40.7708 0.0696148
\(71\) 376.397 434.385i 0.629156 0.726085i −0.348262 0.937397i \(-0.613228\pi\)
0.977419 + 0.211312i \(0.0677736\pi\)
\(72\) 7.70450 4.95138i 0.0126109 0.00810453i
\(73\) −36.2942 252.432i −0.0581906 0.404725i −0.998010 0.0630534i \(-0.979916\pi\)
0.939820 0.341671i \(-0.110993\pi\)
\(74\) 345.044 + 755.540i 0.542034 + 1.18689i
\(75\) −24.0816 + 167.491i −0.0370760 + 0.257869i
\(76\) −3.95595 + 1.16157i −0.00597077 + 0.00175318i
\(77\) −71.1800 45.7446i −0.105347 0.0677024i
\(78\) −906.395 + 1984.73i −1.31576 + 2.88110i
\(79\) −910.012 267.204i −1.29600 0.380541i −0.440227 0.897886i \(-0.645102\pi\)
−0.855777 + 0.517345i \(0.826920\pi\)
\(80\) 206.331 + 238.119i 0.288357 + 0.332782i
\(81\) 578.256 + 667.343i 0.793218 + 0.915422i
\(82\) 93.5054 + 27.4557i 0.125926 + 0.0369753i
\(83\) 437.641 958.300i 0.578763 1.26731i −0.363235 0.931697i \(-0.618328\pi\)
0.941998 0.335617i \(-0.108945\pi\)
\(84\) 93.9126 + 60.3540i 0.121985 + 0.0783947i
\(85\) 6.74972 1.98190i 0.00861306 0.00252902i
\(86\) −225.350 + 1567.34i −0.282560 + 1.96524i
\(87\) 173.756 + 380.472i 0.214121 + 0.468860i
\(88\) 2.88642 + 20.0755i 0.00349651 + 0.0243188i
\(89\) −817.408 + 525.316i −0.973540 + 0.625656i −0.927714 0.373293i \(-0.878229\pi\)
−0.0458269 + 0.998949i \(0.514592\pi\)
\(90\) −247.331 + 285.435i −0.289677 + 0.334305i
\(91\) −163.050 −0.187827
\(92\) 829.595 337.997i 0.940122 0.383028i
\(93\) −1318.38 −1.47000
\(94\) 115.694 133.518i 0.126946 0.146503i
\(95\) 2.13542 1.37235i 0.00230620 0.00148211i
\(96\) 247.471 + 1721.20i 0.263098 + 1.82989i
\(97\) 152.393 + 333.694i 0.159517 + 0.349294i 0.972467 0.233040i \(-0.0748672\pi\)
−0.812950 + 0.582333i \(0.802140\pi\)
\(98\) 193.638 1346.78i 0.199595 1.38822i
\(99\) 752.061 220.825i 0.763485 0.224179i
\(100\) 170.801 + 109.767i 0.170801 + 0.109767i
\(101\) −79.4449 + 173.960i −0.0782680 + 0.171383i −0.944721 0.327876i \(-0.893667\pi\)
0.866453 + 0.499259i \(0.166394\pi\)
\(102\) 36.6868 + 10.7722i 0.0356131 + 0.0104569i
\(103\) −42.8680 49.4723i −0.0410088 0.0473267i 0.734875 0.678203i \(-0.237241\pi\)
−0.775883 + 0.630876i \(0.782696\pi\)
\(104\) 25.5946 + 29.5377i 0.0241322 + 0.0278501i
\(105\) −65.9457 19.3634i −0.0612918 0.0179969i
\(106\) −323.322 + 707.975i −0.296262 + 0.648723i
\(107\) 166.868 + 107.240i 0.150764 + 0.0968903i 0.613848 0.789424i \(-0.289621\pi\)
−0.463084 + 0.886314i \(0.653257\pi\)
\(108\) 431.797 126.787i 0.384719 0.112964i
\(109\) 287.447 1999.24i 0.252591 1.75681i −0.329943 0.944001i \(-0.607030\pi\)
0.582534 0.812807i \(-0.302061\pi\)
\(110\) −347.459 760.828i −0.301172 0.659474i
\(111\) −199.268 1385.94i −0.170393 1.18511i
\(112\) −107.660 + 69.1886i −0.0908293 + 0.0583724i
\(113\) −1083.47 + 1250.39i −0.901982 + 1.04094i 0.0969755 + 0.995287i \(0.469083\pi\)
−0.998957 + 0.0456556i \(0.985462\pi\)
\(114\) 13.7969 0.0113350
\(115\) −431.440 + 343.561i −0.349843 + 0.278585i
\(116\) 501.862 0.401696
\(117\) 989.122 1141.51i 0.781576 0.901987i
\(118\) 494.613 317.868i 0.385871 0.247984i
\(119\) 0.406634 + 2.82820i 0.000313245 + 0.00217866i
\(120\) 6.84391 + 14.9861i 0.00520634 + 0.0114003i
\(121\) −57.6109 + 400.693i −0.0432840 + 0.301046i
\(122\) 3335.47 979.383i 2.47524 0.726796i
\(123\) −138.203 88.8177i −0.101312 0.0651091i
\(124\) −657.130 + 1438.91i −0.475903 + 1.04208i
\(125\) −119.937 35.2166i −0.0858197 0.0251989i
\(126\) −100.459 115.936i −0.0710284 0.0819711i
\(127\) 1038.40 + 1198.37i 0.725535 + 0.837312i 0.991961 0.126544i \(-0.0403884\pi\)
−0.266426 + 0.963855i \(0.585843\pi\)
\(128\) 59.7805 + 17.5531i 0.0412805 + 0.0121210i
\(129\) 1108.88 2428.11i 0.756834 1.65724i
\(130\) −1355.93 871.403i −0.914792 0.587901i
\(131\) 2671.58 784.447i 1.78181 0.523187i 0.786300 0.617844i \(-0.211994\pi\)
0.995510 + 0.0946576i \(0.0301756\pi\)
\(132\) 325.926 2266.86i 0.214911 1.49474i
\(133\) 0.428300 + 0.937846i 0.000279235 + 0.000611440i
\(134\) 220.532 + 1533.83i 0.142172 + 0.988828i
\(135\) −233.084 + 149.794i −0.148598 + 0.0954978i
\(136\) 0.448519 0.517618i 0.000282795 0.000326363i
\(137\) −1387.08 −0.865006 −0.432503 0.901632i \(-0.642370\pi\)
−0.432503 + 0.901632i \(0.642370\pi\)
\(138\) −2982.32 + 303.117i −1.83965 + 0.186979i
\(139\) −906.751 −0.553306 −0.276653 0.960970i \(-0.589225\pi\)
−0.276653 + 0.960970i \(0.589225\pi\)
\(140\) −54.0034 + 62.3232i −0.0326009 + 0.0376234i
\(141\) −250.543 + 161.014i −0.149642 + 0.0961692i
\(142\) 328.433 + 2284.30i 0.194095 + 1.34996i
\(143\) 1389.55 + 3042.69i 0.812589 + 1.77932i
\(144\) 168.716 1173.45i 0.0976366 0.679078i
\(145\) −296.465 + 87.0501i −0.169794 + 0.0498560i
\(146\) 861.417 + 553.599i 0.488297 + 0.313809i
\(147\) −952.834 + 2086.42i −0.534615 + 1.17064i
\(148\) −1611.97 473.317i −0.895291 0.262881i
\(149\) 713.926 + 823.915i 0.392531 + 0.453005i 0.917275 0.398255i \(-0.130384\pi\)
−0.524744 + 0.851260i \(0.675839\pi\)
\(150\) −444.921 513.466i −0.242184 0.279496i
\(151\) −3155.13 926.431i −1.70041 0.499284i −0.719619 0.694369i \(-0.755684\pi\)
−0.980786 + 0.195085i \(0.937502\pi\)
\(152\) 0.102666 0.224807i 5.47849e−5 0.000119962i
\(153\) −22.2670 14.3101i −0.0117659 0.00756146i
\(154\) 325.966 95.7122i 0.170565 0.0500825i
\(155\) 138.601 963.992i 0.0718240 0.499547i
\(156\) −1833.33 4014.43i −0.940922 2.06033i
\(157\) 32.6918 + 227.376i 0.0166184 + 0.115584i 0.996442 0.0842803i \(-0.0268591\pi\)
−0.979824 + 0.199864i \(0.935950\pi\)
\(158\) 3203.55 2058.80i 1.61304 1.03664i
\(159\) 859.205 991.576i 0.428550 0.494573i
\(160\) −1284.55 −0.634701
\(161\) −113.185 193.314i −0.0554054 0.0946292i
\(162\) −3545.44 −1.71948
\(163\) 136.545 157.582i 0.0656139 0.0757224i −0.721994 0.691900i \(-0.756774\pi\)
0.787608 + 0.616177i \(0.211319\pi\)
\(164\) −165.823 + 106.568i −0.0789550 + 0.0507413i
\(165\) 200.663 + 1395.64i 0.0946761 + 0.658487i
\(166\) 1757.18 + 3847.70i 0.821590 + 1.79903i
\(167\) −295.527 + 2055.43i −0.136937 + 0.952421i 0.799270 + 0.600972i \(0.205220\pi\)
−0.936207 + 0.351448i \(0.885689\pi\)
\(168\) −6.42057 + 1.88525i −0.00294856 + 0.000865775i
\(169\) 3574.39 + 2297.12i 1.62694 + 1.04557i
\(170\) −11.7334 + 25.6927i −0.00529361 + 0.0115914i
\(171\) −9.16406 2.69081i −0.00409821 0.00120334i
\(172\) −2097.39 2420.52i −0.929795 1.07304i
\(173\) −608.084 701.766i −0.267236 0.308406i 0.606233 0.795287i \(-0.292680\pi\)
−0.873468 + 0.486881i \(0.838135\pi\)
\(174\) −1611.38 473.144i −0.702060 0.206143i
\(175\) 21.0912 46.1833i 0.00911055 0.0199493i
\(176\) 2208.64 + 1419.41i 0.945923 + 0.607908i
\(177\) −950.989 + 279.236i −0.403846 + 0.118580i
\(178\) 555.215 3861.61i 0.233793 1.62607i
\(179\) −788.421 1726.40i −0.329214 0.720878i 0.670566 0.741850i \(-0.266051\pi\)
−0.999780 + 0.0209716i \(0.993324\pi\)
\(180\) −108.718 756.152i −0.0450188 0.313113i
\(181\) 149.186 95.8757i 0.0612645 0.0393723i −0.509650 0.860382i \(-0.670225\pi\)
0.570915 + 0.821009i \(0.306589\pi\)
\(182\) 428.715 494.764i 0.174607 0.201507i
\(183\) −5860.18 −2.36720
\(184\) −17.2532 + 50.8497i −0.00691261 + 0.0203733i
\(185\) 1034.34 0.411060
\(186\) 3466.49 4000.54i 1.36653 1.57706i
\(187\) 49.3120 31.6909i 0.0192837 0.0123929i
\(188\) 50.8550 + 353.705i 0.0197286 + 0.137216i
\(189\) −46.7495 102.367i −0.0179922 0.0393974i
\(190\) −1.45046 + 10.0882i −0.000553828 + 0.00385196i
\(191\) −1871.47 + 549.513i −0.708977 + 0.208175i −0.616288 0.787521i \(-0.711364\pi\)
−0.0926890 + 0.995695i \(0.529546\pi\)
\(192\) −3003.04 1929.94i −1.12878 0.725424i
\(193\) 1570.25 3438.37i 0.585643 1.28238i −0.352396 0.935851i \(-0.614633\pi\)
0.938039 0.346529i \(-0.112640\pi\)
\(194\) −1413.26 414.972i −0.523023 0.153573i
\(195\) 1779.32 + 2053.45i 0.653436 + 0.754105i
\(196\) 1802.24 + 2079.89i 0.656792 + 0.757978i
\(197\) −5053.55 1483.86i −1.82767 0.536652i −0.827959 0.560789i \(-0.810498\pi\)
−0.999709 + 0.0241378i \(0.992316\pi\)
\(198\) −1307.35 + 2862.70i −0.469240 + 1.02749i
\(199\) 3850.54 + 2474.59i 1.37165 + 0.881503i 0.998921 0.0464389i \(-0.0147873\pi\)
0.372725 + 0.927942i \(0.378424\pi\)
\(200\) −11.6772 + 3.42874i −0.00412852 + 0.00121224i
\(201\) 371.763 2585.67i 0.130459 0.907359i
\(202\) −318.981 698.472i −0.111106 0.243289i
\(203\) −17.8604 124.222i −0.00617515 0.0429491i
\(204\) −65.0606 + 41.8119i −0.0223292 + 0.0143501i
\(205\) 79.4721 91.7157i 0.0270760 0.0312473i
\(206\) 262.835 0.0888961
\(207\) 2040.01 + 380.309i 0.684979 + 0.127697i
\(208\) 5059.27 1.68652
\(209\) 13.8512 15.9851i 0.00458424 0.00529049i
\(210\) 232.151 149.194i 0.0762854 0.0490257i
\(211\) 849.631 + 5909.31i 0.277209 + 1.92803i 0.363156 + 0.931728i \(0.381699\pi\)
−0.0859472 + 0.996300i \(0.527392\pi\)
\(212\) −653.970 1431.99i −0.211863 0.463914i
\(213\) 553.659 3850.78i 0.178104 1.23874i
\(214\) −764.167 + 224.380i −0.244100 + 0.0716742i
\(215\) 1658.84 + 1066.07i 0.526196 + 0.338166i
\(216\) −11.2061 + 24.5380i −0.00353000 + 0.00772962i
\(217\) 379.549 + 111.446i 0.118735 + 0.0348637i
\(218\) 5310.74 + 6128.92i 1.64995 + 1.90414i
\(219\) −1130.40 1304.55i −0.348791 0.402526i
\(220\) 1623.25 + 476.630i 0.497453 + 0.146065i
\(221\) 46.9243 102.750i 0.0142827 0.0312747i
\(222\) 4729.48 + 3039.45i 1.42983 + 0.918895i
\(223\) −2197.45 + 645.229i −0.659874 + 0.193757i −0.594489 0.804104i \(-0.702646\pi\)
−0.0653849 + 0.997860i \(0.520828\pi\)
\(224\) 74.2522 516.435i 0.0221481 0.154044i
\(225\) 195.381 + 427.825i 0.0578906 + 0.126763i
\(226\) −945.401 6575.41i −0.278262 1.93535i
\(227\) 3535.78 2272.31i 1.03382 0.664398i 0.0903718 0.995908i \(-0.471194\pi\)
0.943452 + 0.331510i \(0.107558\pi\)
\(228\) −18.2748 + 21.0902i −0.00530823 + 0.00612603i
\(229\) −832.300 −0.240174 −0.120087 0.992763i \(-0.538317\pi\)
−0.120087 + 0.992763i \(0.538317\pi\)
\(230\) 91.8930 2212.52i 0.0263446 0.634300i
\(231\) −572.698 −0.163120
\(232\) −19.7001 + 22.7351i −0.00557489 + 0.00643377i
\(233\) 136.524 87.7387i 0.0383862 0.0246693i −0.521307 0.853369i \(-0.674555\pi\)
0.559693 + 0.828700i \(0.310919\pi\)
\(234\) 863.079 + 6002.85i 0.241116 + 1.67700i
\(235\) −91.3931 200.123i −0.0253695 0.0555514i
\(236\) −169.243 + 1177.11i −0.0466814 + 0.324676i
\(237\) −6159.45 + 1808.58i −1.68818 + 0.495695i
\(238\) −9.65117 6.20243i −0.00262854 0.00168926i
\(239\) −1549.68 + 3393.33i −0.419416 + 0.918394i 0.575511 + 0.817794i \(0.304803\pi\)
−0.994927 + 0.100600i \(0.967924\pi\)
\(240\) 2046.22 + 600.825i 0.550346 + 0.161596i
\(241\) −4150.68 4790.14i −1.10941 1.28033i −0.956385 0.292110i \(-0.905643\pi\)
−0.153029 0.988222i \(-0.548903\pi\)
\(242\) −1064.40 1228.38i −0.282735 0.326294i
\(243\) 4299.10 + 1262.33i 1.13493 + 0.333245i
\(244\) −2920.93 + 6395.94i −0.766366 + 1.67811i
\(245\) −1425.40 916.050i −0.371696 0.238875i
\(246\) 632.895 185.835i 0.164032 0.0481642i
\(247\) 5.80066 40.3445i 0.00149428 0.0103929i
\(248\) −39.3900 86.2522i −0.0100858 0.0220847i
\(249\) −1014.80 7058.09i −0.258275 1.79634i
\(250\) 422.217 271.343i 0.106814 0.0686449i
\(251\) −418.027 + 482.429i −0.105122 + 0.121317i −0.805872 0.592089i \(-0.798303\pi\)
0.700750 + 0.713407i \(0.252849\pi\)
\(252\) 310.286 0.0775642
\(253\) −2642.87 + 3759.64i −0.656742 + 0.934255i
\(254\) −6366.70 −1.57276
\(255\) 31.1808 35.9846i 0.00765733 0.00883703i
\(256\) 3338.97 2145.82i 0.815178 0.523883i
\(257\) 645.281 + 4488.03i 0.156621 + 1.08932i 0.904804 + 0.425829i \(0.140017\pi\)
−0.748183 + 0.663493i \(0.769073\pi\)
\(258\) 4452.30 + 9749.18i 1.07437 + 2.35255i
\(259\) −59.7891 + 415.843i −0.0143441 + 0.0997653i
\(260\) 3128.06 918.482i 0.746132 0.219084i
\(261\) 978.023 + 628.537i 0.231947 + 0.149063i
\(262\) −4644.17 + 10169.3i −1.09511 + 2.39795i
\(263\) −3660.00 1074.67i −0.858118 0.251966i −0.177064 0.984199i \(-0.556660\pi\)
−0.681054 + 0.732233i \(0.738478\pi\)
\(264\) 89.8986 + 103.748i 0.0209579 + 0.0241867i
\(265\) 634.705 + 732.489i 0.147131 + 0.169798i
\(266\) −3.97198 1.16628i −0.000915555 0.000268831i
\(267\) −2732.05 + 5982.36i −0.626213 + 1.37122i
\(268\) −2636.76 1694.55i −0.600992 0.386234i
\(269\) −1416.10 + 415.805i −0.320971 + 0.0942456i −0.438249 0.898854i \(-0.644401\pi\)
0.117278 + 0.993099i \(0.462583\pi\)
\(270\) 158.320 1101.14i 0.0356853 0.248197i
\(271\) 716.245 + 1568.36i 0.160549 + 0.351554i 0.972761 0.231808i \(-0.0744642\pi\)
−0.812212 + 0.583362i \(0.801737\pi\)
\(272\) −12.6174 87.7561i −0.00281266 0.0195625i
\(273\) −928.416 + 596.656i −0.205825 + 0.132276i
\(274\) 3647.11 4208.98i 0.804123 0.928007i
\(275\) −1041.58 −0.228398
\(276\) 3486.91 4960.35i 0.760462 1.08180i
\(277\) 3593.23 0.779408 0.389704 0.920940i \(-0.372577\pi\)
0.389704 + 0.920940i \(0.372577\pi\)
\(278\) 2384.16 2751.47i 0.514362 0.593605i
\(279\) −3082.72 + 1981.14i −0.661496 + 0.425118i
\(280\) −0.703489 4.89287i −0.000150148 0.00104430i
\(281\) −1998.48 4376.06i −0.424268 0.929018i −0.994222 0.107341i \(-0.965766\pi\)
0.569954 0.821677i \(-0.306961\pi\)
\(282\) 170.179 1183.62i 0.0359362 0.249942i
\(283\) 6518.83 1914.10i 1.36927 0.402055i 0.487251 0.873262i \(-0.338000\pi\)
0.882023 + 0.471207i \(0.156182\pi\)
\(284\) −3926.87 2523.65i −0.820482 0.527292i
\(285\) 7.13729 15.6285i 0.00148343 0.00324825i
\(286\) −12886.5 3783.81i −2.66431 0.782312i
\(287\) 32.2793 + 37.2523i 0.00663898 + 0.00766179i
\(288\) 3165.11 + 3652.73i 0.647589 + 0.747358i
\(289\) 4712.09 + 1383.59i 0.959106 + 0.281619i
\(290\) 515.363 1128.49i 0.104356 0.228507i
\(291\) 2088.84 + 1342.41i 0.420789 + 0.270425i
\(292\) −1987.25 + 583.508i −0.398270 + 0.116943i
\(293\) 974.970 6781.07i 0.194397 1.35206i −0.625801 0.779983i \(-0.715228\pi\)
0.820198 0.572079i \(-0.193863\pi\)
\(294\) −3825.75 8377.22i −0.758919 1.66180i
\(295\) −104.198 724.713i −0.0205649 0.143032i
\(296\) 84.7183 54.4451i 0.0166356 0.0106911i
\(297\) −1511.87 + 1744.80i −0.295380 + 0.340887i
\(298\) −4377.27 −0.850901
\(299\) −367.498 + 8848.28i −0.0710800 + 1.71140i
\(300\) 1374.22 0.264469
\(301\) −524.489 + 605.293i −0.100435 + 0.115909i
\(302\) 11107.1 7138.13i 2.11637 1.36011i
\(303\) 184.217 + 1281.26i 0.0349273 + 0.242925i
\(304\) −13.2897 29.1004i −0.00250729 0.00549020i
\(305\) 616.079 4284.92i 0.115661 0.804439i
\(306\) 101.971 29.9413i 0.0190499 0.00559356i
\(307\) 8866.99 + 5698.47i 1.64842 + 1.05938i 0.932482 + 0.361218i \(0.117639\pi\)
0.715942 + 0.698160i \(0.245997\pi\)
\(308\) −285.454 + 625.057i −0.0528092 + 0.115636i
\(309\) −425.129 124.829i −0.0782678 0.0229815i
\(310\) 2560.74 + 2955.25i 0.469161 + 0.541441i
\(311\) 2305.94 + 2661.20i 0.420443 + 0.485218i 0.925972 0.377592i \(-0.123248\pi\)
−0.505529 + 0.862810i \(0.668702\pi\)
\(312\) 253.825 + 74.5299i 0.0460578 + 0.0135238i
\(313\) 1983.25 4342.70i 0.358146 0.784230i −0.641705 0.766952i \(-0.721773\pi\)
0.999851 0.0172784i \(-0.00550016\pi\)
\(314\) −775.916 498.651i −0.139451 0.0896194i
\(315\) −183.295 + 53.8204i −0.0327858 + 0.00962677i
\(316\) −1096.17 + 7624.03i −0.195140 + 1.35723i
\(317\) 110.795 + 242.608i 0.0196306 + 0.0429849i 0.919193 0.393807i \(-0.128842\pi\)
−0.899563 + 0.436792i \(0.856115\pi\)
\(318\) 749.717 + 5214.40i 0.132208 + 0.919525i
\(319\) −2165.91 + 1391.95i −0.380149 + 0.244307i
\(320\) 1726.87 1992.91i 0.301671 0.348147i
\(321\) 1342.59 0.233445
\(322\) 884.203 + 164.837i 0.153027 + 0.0285280i
\(323\) −0.714266 −0.000123043
\(324\) 4696.16 5419.65i 0.805240 0.929296i
\(325\) −1688.53 + 1085.15i −0.288193 + 0.185210i
\(326\) 119.145 + 828.675i 0.0202419 + 0.140785i
\(327\) −5679.16 12435.6i −0.960423 2.10303i
\(328\) 1.68153 11.6953i 0.000283069 0.00196879i
\(329\) 85.7398 25.1755i 0.0143678 0.00421875i
\(330\) −4762.58 3060.73i −0.794459 0.510568i
\(331\) 1346.51 2948.44i 0.223598 0.489611i −0.764272 0.644894i \(-0.776902\pi\)
0.987870 + 0.155283i \(0.0496289\pi\)
\(332\) −8209.19 2410.43i −1.35704 0.398463i
\(333\) −2548.60 2941.24i −0.419406 0.484021i
\(334\) −5460.03 6301.21i −0.894489 1.03230i
\(335\) 1851.54 + 543.662i 0.301972 + 0.0886669i
\(336\) −359.835 + 787.928i −0.0584244 + 0.127932i
\(337\) −9086.63 5839.62i −1.46878 0.943930i −0.998099 0.0616280i \(-0.980371\pi\)
−0.470684 0.882302i \(-0.655993\pi\)
\(338\) −16368.8 + 4806.30i −2.63415 + 0.773456i
\(339\) −1593.72 + 11084.5i −0.255336 + 1.77590i
\(340\) −23.7328 51.9676i −0.00378556 0.00828923i
\(341\) −1154.91 8032.58i −0.183407 1.27563i
\(342\) 32.2606 20.7326i 0.00510074 0.00327805i
\(343\) 906.846 1046.56i 0.142755 0.164749i
\(344\) 191.984 0.0300904
\(345\) −1199.43 + 3535.05i −0.187175 + 0.551654i
\(346\) 3728.32 0.579295
\(347\) 7796.82 8998.01i 1.20621 1.39204i 0.308635 0.951181i \(-0.400128\pi\)
0.897576 0.440860i \(-0.145327\pi\)
\(348\) 2857.63 1836.49i 0.440187 0.282891i
\(349\) −913.763 6355.36i −0.140151 0.974770i −0.931587 0.363518i \(-0.881575\pi\)
0.791436 0.611251i \(-0.209334\pi\)
\(350\) 84.6839 + 185.432i 0.0129330 + 0.0283193i
\(351\) −633.150 + 4403.65i −0.0962822 + 0.669657i
\(352\) −10270.1 + 3015.56i −1.55510 + 0.456619i
\(353\) −3267.67 2100.00i −0.492693 0.316634i 0.270595 0.962693i \(-0.412780\pi\)
−0.763287 + 0.646059i \(0.776416\pi\)
\(354\) 1653.16 3619.92i 0.248205 0.543493i
\(355\) 2757.46 + 809.663i 0.412255 + 0.121049i
\(356\) 5167.54 + 5963.66i 0.769323 + 0.887846i
\(357\) 12.6648 + 14.6159i 0.00187757 + 0.00216683i
\(358\) 7311.67 + 2146.90i 1.07942 + 0.316948i
\(359\) 2295.16 5025.71i 0.337421 0.738849i −0.662527 0.749038i \(-0.730516\pi\)
0.999948 + 0.0101890i \(0.00324333\pi\)
\(360\) 38.5225 + 24.7569i 0.00563976 + 0.00362445i
\(361\) 6580.92 1932.33i 0.959457 0.281722i
\(362\) −101.333 + 704.784i −0.0147125 + 0.102328i
\(363\) 1138.23 + 2492.39i 0.164578 + 0.360376i
\(364\) 188.449 + 1310.69i 0.0271357 + 0.188733i
\(365\) 1072.71 689.392i 0.153831 0.0988614i
\(366\) 15408.5 17782.3i 2.20058 2.53961i
\(367\) −1981.82 −0.281881 −0.140940 0.990018i \(-0.545013\pi\)
−0.140940 + 0.990018i \(0.545013\pi\)
\(368\) 3512.02 + 5998.34i 0.497492 + 0.849687i
\(369\) −456.621 −0.0644193
\(370\) −2719.64 + 3138.63i −0.382127 + 0.440998i
\(371\) −331.177 + 212.834i −0.0463446 + 0.0297838i
\(372\) 1523.75 + 10597.9i 0.212373 + 1.47709i
\(373\) −3168.37 6937.77i −0.439818 0.963067i −0.991632 0.129099i \(-0.958791\pi\)
0.551814 0.833967i \(-0.313936\pi\)
\(374\) −33.4946 + 232.960i −0.00463092 + 0.0322088i
\(375\) −811.795 + 238.365i −0.111789 + 0.0328243i
\(376\) −18.0196 11.5805i −0.00247152 0.00158835i
\(377\) −2061.03 + 4513.04i −0.281562 + 0.616534i
\(378\) 433.547 + 127.301i 0.0589927 + 0.0173218i
\(379\) 4458.61 + 5145.51i 0.604283 + 0.697380i 0.972643 0.232303i \(-0.0746262\pi\)
−0.368361 + 0.929683i \(0.620081\pi\)
\(380\) −13.4998 15.5796i −0.00182244 0.00210320i
\(381\) 10298.0 + 3023.75i 1.38473 + 0.406592i
\(382\) 3253.28 7123.70i 0.435740 0.954137i
\(383\) −6700.43 4306.11i −0.893933 0.574496i 0.0110524 0.999939i \(-0.496482\pi\)
−0.904985 + 0.425443i \(0.860118\pi\)
\(384\) 404.626 118.809i 0.0537721 0.0157889i
\(385\) 60.2076 418.753i 0.00797003 0.0554328i
\(386\) 6304.76 + 13805.5i 0.831357 + 1.82042i
\(387\) −1055.89 7343.87i −0.138692 0.964625i
\(388\) 2506.29 1610.70i 0.327932 0.210749i
\(389\) 1773.79 2047.07i 0.231195 0.266813i −0.628284 0.777984i \(-0.716243\pi\)
0.859479 + 0.511171i \(0.170788\pi\)
\(390\) −10909.5 −1.41647
\(391\) 154.395 15.6925i 0.0199696 0.00202967i
\(392\) −164.967 −0.0212554
\(393\) 12341.6 14242.9i 1.58410 1.82814i
\(394\) 17790.2 11433.1i 2.27476 1.46190i
\(395\) −674.878 4693.88i −0.0859666 0.597911i
\(396\) −2644.33 5790.28i −0.335562 0.734779i
\(397\) −2129.68 + 14812.3i −0.269234 + 1.87256i 0.186515 + 0.982452i \(0.440281\pi\)
−0.455749 + 0.890108i \(0.650628\pi\)
\(398\) −17633.4 + 5177.63i −2.22081 + 0.652088i
\(399\) 5.87067 + 3.77285i 0.000736594 + 0.000473380i
\(400\) −654.438 + 1433.02i −0.0818048 + 0.179127i
\(401\) −11155.7 3275.61i −1.38925 0.407921i −0.500272 0.865868i \(-0.666767\pi\)
−0.888979 + 0.457947i \(0.848585\pi\)
\(402\) 6868.55 + 7926.72i 0.852169 + 0.983455i
\(403\) −10240.9 11818.6i −1.26584 1.46086i
\(404\) 1490.21 + 437.566i 0.183517 + 0.0538855i
\(405\) −1834.10 + 4016.12i −0.225030 + 0.492747i
\(406\) 423.904 + 272.427i 0.0518178 + 0.0333013i
\(407\) 8269.62 2428.18i 1.00715 0.295726i
\(408\) 0.659746 4.58863i 8.00546e−5 0.000556792i
\(409\) 1597.52 + 3498.08i 0.193135 + 0.422907i 0.981281 0.192582i \(-0.0616860\pi\)
−0.788146 + 0.615489i \(0.788959\pi\)
\(410\) 69.3450 + 482.305i 0.00835294 + 0.0580960i
\(411\) −7898.08 + 5075.79i −0.947892 + 0.609173i
\(412\) −348.142 + 401.777i −0.0416304 + 0.0480440i
\(413\) 297.385 0.0354318
\(414\) −6517.93 + 5190.31i −0.773765 + 0.616159i
\(415\) 5267.52 0.623065
\(416\) −13507.3 + 15588.3i −1.59195 + 1.83721i
\(417\) −5163.09 + 3318.12i −0.606325 + 0.389661i
\(418\) 12.0861 + 84.0609i 0.00141424 + 0.00983625i
\(419\) 2264.50 + 4958.57i 0.264029 + 0.578143i 0.994492 0.104809i \(-0.0334230\pi\)
−0.730463 + 0.682952i \(0.760696\pi\)
\(420\) −79.4359 + 552.489i −0.00922876 + 0.0641874i
\(421\) 8777.70 2577.37i 1.01615 0.298368i 0.269083 0.963117i \(-0.413280\pi\)
0.747067 + 0.664749i \(0.231461\pi\)
\(422\) −20165.4 12959.5i −2.32615 1.49493i
\(423\) −343.877 + 752.986i −0.0395269 + 0.0865519i
\(424\) 90.5425 + 26.5857i 0.0103706 + 0.00304508i
\(425\) 23.0337 + 26.5823i 0.00262893 + 0.00303395i
\(426\) 10229.2 + 11805.1i 1.16339 + 1.34262i
\(427\) 1687.09 + 495.373i 0.191203 + 0.0561424i
\(428\) 669.194 1465.33i 0.0755764 0.165489i
\(429\) 19046.5 + 12240.4i 2.14352 + 1.37756i
\(430\) −7596.60 + 2230.56i −0.851955 + 0.250157i
\(431\) −984.628 + 6848.24i −0.110041 + 0.765355i 0.857834 + 0.513926i \(0.171810\pi\)
−0.967876 + 0.251429i \(0.919100\pi\)
\(432\) 1450.59 + 3176.34i 0.161554 + 0.353754i
\(433\) 1540.71 + 10715.9i 0.170997 + 1.18931i 0.876783 + 0.480887i \(0.159685\pi\)
−0.705786 + 0.708426i \(0.749406\pi\)
\(434\) −1336.14 + 858.686i −0.147781 + 0.0949729i
\(435\) −1369.54 + 1580.54i −0.150953 + 0.174209i
\(436\) −16403.2 −1.80177
\(437\) 51.8597 21.1289i 0.00567685 0.00231288i
\(438\) 6930.77 0.756084
\(439\) −4028.14 + 4648.72i −0.437933 + 0.505401i −0.931216 0.364467i \(-0.881251\pi\)
0.493284 + 0.869869i \(0.335796\pi\)
\(440\) −85.3112 + 54.8262i −0.00924330 + 0.00594031i
\(441\) 907.299 + 6310.40i 0.0979699 + 0.681395i
\(442\) 188.407 + 412.553i 0.0202751 + 0.0443963i
\(443\) −1018.29 + 7082.39i −0.109211 + 0.759581i 0.859454 + 0.511212i \(0.170803\pi\)
−0.968666 + 0.248368i \(0.920106\pi\)
\(444\) −10910.7 + 3203.66i −1.16621 + 0.342430i
\(445\) −4087.04 2626.58i −0.435381 0.279802i
\(446\) 3819.95 8364.53i 0.405561 0.888054i
\(447\) 7080.12 + 2078.91i 0.749169 + 0.219976i
\(448\) 701.404 + 809.464i 0.0739693 + 0.0853651i
\(449\) 4621.55 + 5333.55i 0.485755 + 0.560592i 0.944726 0.327860i \(-0.106327\pi\)
−0.458971 + 0.888451i \(0.651782\pi\)
\(450\) −1811.93 532.030i −0.189811 0.0557336i
\(451\) 420.077 919.841i 0.0438596 0.0960391i
\(452\) 11303.6 + 7264.37i 1.17627 + 0.755945i
\(453\) −21355.6 + 6270.58i −2.21496 + 0.650370i
\(454\) −2401.64 + 16703.8i −0.248270 + 1.72675i
\(455\) −338.667 741.577i −0.0348944 0.0764081i
\(456\) −0.238061 1.65575i −2.44479e−5 0.000170039i
\(457\) 7097.49 4561.28i 0.726491 0.466888i −0.124398 0.992232i \(-0.539700\pi\)
0.850889 + 0.525345i \(0.176064\pi\)
\(458\) 2188.41 2525.56i 0.223270 0.257667i
\(459\) 77.9632 0.00792812
\(460\) 3260.39 + 3071.09i 0.330471 + 0.311283i
\(461\) −13550.0 −1.36895 −0.684475 0.729036i \(-0.739968\pi\)
−0.684475 + 0.729036i \(0.739968\pi\)
\(462\) 1505.82 1737.81i 0.151639 0.175001i
\(463\) −11260.3 + 7236.55i −1.13026 + 0.726374i −0.965614 0.259979i \(-0.916284\pi\)
−0.164645 + 0.986353i \(0.552648\pi\)
\(464\) 554.190 + 3854.48i 0.0554475 + 0.385646i
\(465\) −2738.38 5996.21i −0.273095 0.597995i
\(466\) −92.7324 + 644.968i −0.00921834 + 0.0641150i
\(467\) 4238.58 1244.56i 0.419996 0.123322i −0.0649040 0.997892i \(-0.520674\pi\)
0.484900 + 0.874569i \(0.338856\pi\)
\(468\) −10319.3 6631.82i −1.01925 0.655034i
\(469\) −325.599 + 712.963i −0.0320571 + 0.0701953i
\(470\) 847.564 + 248.867i 0.0831813 + 0.0244242i
\(471\) 1018.20 + 1175.06i 0.0996095 + 0.114956i
\(472\) −46.6816 53.8734i −0.00455232 0.00525366i
\(473\) 15765.3 + 4629.10i 1.53253 + 0.449992i
\(474\) 10707.3 23445.8i 1.03756 2.27194i
\(475\) 10.6771 + 6.86175i 0.00103137 + 0.000662818i
\(476\) 22.2648 6.53752i 0.00214392 0.000629510i
\(477\) 518.995 3609.69i 0.0498179 0.346491i
\(478\) −6222.17 13624.6i −0.595388 1.30372i
\(479\) 364.503 + 2535.17i 0.0347694 + 0.241827i 0.999793 0.0203357i \(-0.00647351\pi\)
−0.965024 + 0.262162i \(0.915564\pi\)
\(480\) −7314.27 + 4700.60i −0.695519 + 0.446983i
\(481\) 10876.3 12552.0i 1.03101 1.18985i
\(482\) 25448.9 2.40491
\(483\) −1351.89 686.558i −0.127356 0.0646779i
\(484\) 3287.59 0.308752
\(485\) −1201.16 + 1386.21i −0.112458 + 0.129783i
\(486\) −15134.3 + 9726.22i −1.41256 + 0.907799i
\(487\) −2173.15 15114.6i −0.202207 1.40638i −0.797717 0.603032i \(-0.793959\pi\)
0.595510 0.803348i \(-0.296950\pi\)
\(488\) −175.088 383.389i −0.0162415 0.0355639i
\(489\) 200.851 1396.95i 0.0185742 0.129186i
\(490\) 6527.57 1916.67i 0.601807 0.176706i
\(491\) 3165.56 + 2034.38i 0.290957 + 0.186986i 0.677974 0.735086i \(-0.262858\pi\)
−0.387017 + 0.922072i \(0.626495\pi\)
\(492\) −554.237 + 1213.61i −0.0507864 + 0.111207i
\(493\) 83.4215 + 24.4948i 0.00762092 + 0.00223770i
\(494\) 107.171 + 123.681i 0.00976079 + 0.0112646i
\(495\) 2566.44 + 2961.82i 0.233036 + 0.268938i
\(496\) −11777.0 3458.04i −1.06614 0.313046i
\(497\) −484.908 + 1061.80i −0.0437647 + 0.0958314i
\(498\) 24085.6 + 15478.8i 2.16727 + 1.39282i
\(499\) 18455.8 5419.12i 1.65570 0.486159i 0.685424 0.728144i \(-0.259617\pi\)
0.970280 + 0.241985i \(0.0777986\pi\)
\(500\) −144.472 + 1004.82i −0.0129219 + 0.0898741i
\(501\) 5838.80 + 12785.2i 0.520675 + 1.14012i
\(502\) −364.758 2536.95i −0.0324302 0.225557i
\(503\) −5160.94 + 3316.73i −0.457485 + 0.294008i −0.749014 0.662554i \(-0.769472\pi\)
0.291529 + 0.956562i \(0.405836\pi\)
\(504\) −12.1800 + 14.0564i −0.00107647 + 0.00124231i
\(505\) −956.212 −0.0842591
\(506\) −4459.35 17905.0i −0.391783 1.57307i
\(507\) 28758.7 2.51917
\(508\) 8433.08 9732.29i 0.736530 0.850001i
\(509\) 12897.4 8288.64i 1.12312 0.721783i 0.159004 0.987278i \(-0.449172\pi\)
0.964112 + 0.265495i \(0.0855355\pi\)
\(510\) 27.2075 + 189.232i 0.00236229 + 0.0164301i
\(511\) 215.154 + 471.121i 0.0186259 + 0.0407851i
\(512\) −2338.89 + 16267.3i −0.201885 + 1.40414i
\(513\) 26.9925 7.92571i 0.00232310 0.000682123i
\(514\) −15315.3 9842.54i −1.31426 0.844622i
\(515\) 135.968 297.728i 0.0116339 0.0254747i
\(516\) −20800.2 6107.49i −1.77457 0.521060i
\(517\) −1200.50 1385.45i −0.102124 0.117857i
\(518\) −1104.64 1274.82i −0.0936970 0.108132i
\(519\) −6030.47 1770.71i −0.510035 0.149760i
\(520\) −81.1803 + 177.760i −0.00684614 + 0.0149910i
\(521\) −11293.8 7258.09i −0.949694 0.610331i −0.0285663 0.999592i \(-0.509094\pi\)
−0.921128 + 0.389261i \(0.872731\pi\)
\(522\) −4478.81 + 1315.10i −0.375541 + 0.110269i
\(523\) 1691.15 11762.2i 0.141393 0.983412i −0.788356 0.615219i \(-0.789068\pi\)
0.929749 0.368193i \(-0.120023\pi\)
\(524\) −9393.58 20569.1i −0.783131 1.71482i
\(525\) −48.9063 340.151i −0.00406561 0.0282769i
\(526\) 12884.4 8280.32i 1.06804 0.686386i
\(527\) −179.461 + 207.109i −0.0148338 + 0.0171192i
\(528\) 17770.2 1.46468
\(529\) −10745.7 + 5706.56i −0.883188 + 0.469019i
\(530\) −3891.55 −0.318940
\(531\) −1804.05 + 2081.98i −0.147437 + 0.170151i
\(532\) 7.04393 4.52686i 0.000574047 0.000368918i
\(533\) −277.324 1928.83i −0.0225370 0.156748i
\(534\) −10969.5 24019.9i −0.888948 1.94652i
\(535\) −141.146 + 981.689i −0.0114061 + 0.0793311i
\(536\) 180.269 52.9318i 0.0145269 0.00426549i
\(537\) −10806.8 6945.11i −0.868432 0.558108i
\(538\) 2461.69 5390.36i 0.197270 0.431961i
\(539\) −13546.7 3977.67i −1.08256 0.317867i
\(540\) 1473.52 + 1700.54i 0.117426 + 0.135517i
\(541\) 11307.5 + 13049.6i 0.898610 + 1.03705i 0.999113 + 0.0421145i \(0.0134094\pi\)
−0.100503 + 0.994937i \(0.532045\pi\)
\(542\) −6642.33 1950.37i −0.526407 0.154567i
\(543\) 498.628 1091.84i 0.0394073 0.0862900i
\(544\) 304.075 + 195.417i 0.0239653 + 0.0154015i
\(545\) 9689.89 2845.21i 0.761595 0.223624i
\(546\) 630.616 4386.03i 0.0494283 0.343782i
\(547\) −5773.70 12642.6i −0.451308 0.988227i −0.989383 0.145330i \(-0.953576\pi\)
0.538075 0.842897i \(-0.319152\pi\)
\(548\) 1603.15 + 11150.1i 0.124969 + 0.869178i
\(549\) −13702.6 + 8806.12i −1.06523 + 0.684583i
\(550\) 2738.67 3160.59i 0.212322 0.245033i
\(551\) 31.3724 0.00242561
\(552\) 87.8361 + 352.676i 0.00677274 + 0.0271936i
\(553\) 1926.13 0.148114
\(554\) −9447.85 + 10903.4i −0.724550 + 0.836175i
\(555\) 5889.58 3785.00i 0.450448 0.289485i
\(556\) 1048.00 + 7288.99i 0.0799371 + 0.555975i
\(557\) −9271.83 20302.5i −0.705314 1.54442i −0.833407 0.552660i \(-0.813613\pi\)
0.128093 0.991762i \(-0.459115\pi\)
\(558\) 2093.90 14563.4i 0.158856 1.10487i
\(559\) 30380.2 8920.44i 2.29865 0.674945i
\(560\) −538.298 345.943i −0.0406201 0.0261049i
\(561\) 164.817 360.899i 0.0124039 0.0271608i
\(562\) 18533.6 + 5441.95i 1.39109 + 0.408460i
\(563\) 7960.58 + 9187.00i 0.595912 + 0.687719i 0.970948 0.239291i \(-0.0769151\pi\)
−0.375036 + 0.927010i \(0.622370\pi\)
\(564\) 1583.90 + 1827.92i 0.118252 + 0.136470i
\(565\) −7937.40 2330.63i −0.591025 0.173540i
\(566\) −11332.1 + 24813.8i −0.841559 + 1.84276i
\(567\) −1508.61 969.526i −0.111739 0.0718100i
\(568\) 268.470 78.8300i 0.0198323 0.00582330i
\(569\) −2066.79 + 14374.8i −0.152275 + 1.05909i 0.760120 + 0.649783i \(0.225140\pi\)
−0.912395 + 0.409311i \(0.865769\pi\)
\(570\) 28.6571 + 62.7503i 0.00210581 + 0.00461109i
\(571\) −1523.55 10596.5i −0.111661 0.776620i −0.966304 0.257404i \(-0.917133\pi\)
0.854643 0.519216i \(-0.173776\pi\)
\(572\) 22852.9 14686.7i 1.67051 1.07357i
\(573\) −8645.39 + 9977.31i −0.630307 + 0.727414i
\(574\) −197.913 −0.0143915
\(575\) −2458.71 1248.66i −0.178322 0.0905609i
\(576\) −9922.01 −0.717738
\(577\) −5894.40 + 6802.49i −0.425281 + 0.490800i −0.927438 0.373976i \(-0.877994\pi\)
0.502158 + 0.864776i \(0.332540\pi\)
\(578\) −16588.1 + 10660.6i −1.19373 + 0.767164i
\(579\) −3641.09 25324.4i −0.261345 1.81769i
\(580\) 1042.41 + 2282.55i 0.0746268 + 0.163410i
\(581\) −304.485 + 2117.74i −0.0217421 + 0.151220i
\(582\) −9565.73 + 2808.75i −0.681293 + 0.200046i
\(583\) 6794.09 + 4366.30i 0.482646 + 0.310178i
\(584\) 51.5735 112.930i 0.00365433 0.00800186i
\(585\) 7246.24 + 2127.69i 0.512129 + 0.150375i
\(586\) 18013.1 + 20788.3i 1.26982 + 1.46545i
\(587\) −6811.96 7861.42i −0.478977 0.552769i 0.463909 0.885883i \(-0.346446\pi\)
−0.942887 + 0.333113i \(0.891901\pi\)
\(588\) 17873.1 + 5248.01i 1.25353 + 0.368068i
\(589\) −41.0785 + 89.9495i −0.00287370 + 0.00629253i
\(590\) 2473.06 + 1589.34i 0.172567 + 0.110902i
\(591\) −34205.1 + 10043.5i −2.38073 + 0.699045i
\(592\) 1855.19 12903.1i 0.128797 0.895804i
\(593\) 7445.47 + 16303.3i 0.515597 + 1.12900i 0.971080 + 0.238755i \(0.0767392\pi\)
−0.455483 + 0.890244i \(0.650534\pi\)
\(594\) −1319.22 9175.36i −0.0911248 0.633787i
\(595\) −12.0185 + 7.72383i −0.000828086 + 0.000532178i
\(596\) 5797.97 6691.21i 0.398480 0.459870i
\(597\) 30980.6 2.12387
\(598\) −25883.2 24380.3i −1.76997 1.66720i
\(599\) −23377.4 −1.59462 −0.797309 0.603571i \(-0.793744\pi\)
−0.797309 + 0.603571i \(0.793744\pi\)
\(600\) −53.9438 + 62.2544i −0.00367041 + 0.00423588i
\(601\) −15001.1 + 9640.61i −1.01815 + 0.654324i −0.939489 0.342578i \(-0.888700\pi\)
−0.0786580 + 0.996902i \(0.525064\pi\)
\(602\) −457.654 3183.05i −0.0309844 0.215501i
\(603\) −3016.23 6604.61i −0.203699 0.446038i
\(604\) −3800.57 + 26433.6i −0.256032 + 1.78074i
\(605\) −1942.08 + 570.245i −0.130507 + 0.0383203i
\(606\) −4372.25 2809.87i −0.293087 0.188355i
\(607\) −11120.4 + 24350.2i −0.743595 + 1.62825i 0.0339533 + 0.999423i \(0.489190\pi\)
−0.777548 + 0.628823i \(0.783537\pi\)
\(608\) 125.143 + 36.7454i 0.00834742 + 0.00245102i
\(609\) −556.270 641.969i −0.0370134 0.0427158i
\(610\) 11382.4 + 13136.0i 0.755509 + 0.871904i
\(611\) −3389.57 995.267i −0.224431 0.0658988i
\(612\) −89.2974 + 195.534i −0.00589809 + 0.0129150i
\(613\) 2164.65 + 1391.13i 0.142625 + 0.0916597i 0.610007 0.792396i \(-0.291166\pi\)
−0.467382 + 0.884055i \(0.654803\pi\)
\(614\) −40606.0 + 11923.0i −2.66893 + 0.783670i
\(615\) 116.899 813.050i 0.00766475 0.0533095i
\(616\) −17.1108 37.4675i −0.00111918 0.00245066i
\(617\) −1620.75 11272.5i −0.105752 0.735519i −0.971842 0.235632i \(-0.924284\pi\)
0.866091 0.499887i \(-0.166625\pi\)
\(618\) 1496.60 961.806i 0.0974143 0.0626044i
\(619\) −9578.15 + 11053.8i −0.621936 + 0.717752i −0.976073 0.217441i \(-0.930229\pi\)
0.354138 + 0.935193i \(0.384774\pi\)
\(620\) −7909.32 −0.512332
\(621\) −5660.55 + 2306.24i −0.365781 + 0.149028i
\(622\) −14138.3 −0.911408
\(623\) 1292.23 1491.32i 0.0831015 0.0959042i
\(624\) 28807.7 18513.6i 1.84813 1.18772i
\(625\) −88.9468 618.638i −0.00569259 0.0395929i
\(626\) 7962.98 + 17436.5i 0.508410 + 1.11326i
\(627\) 20.3743 141.706i 0.00129772 0.00902585i
\(628\) 1790.00 525.591i 0.113740 0.0333971i
\(629\) −244.846 157.353i −0.0155209 0.00997469i
\(630\) 318.633 697.709i 0.0201502 0.0441229i
\(631\) −10019.5 2941.98i −0.632121 0.185608i −0.0500518 0.998747i \(-0.515939\pi\)
−0.582069 + 0.813139i \(0.697757\pi\)
\(632\) −302.351 348.932i −0.0190299 0.0219617i
\(633\) 26462.1 + 30538.9i 1.66157 + 1.91755i
\(634\) −1027.50 301.700i −0.0643645 0.0188991i
\(635\) −3293.57 + 7211.91i −0.205829 + 0.450702i
\(636\) −8963.91 5760.75i −0.558871 0.359165i
\(637\) −26105.0 + 7665.11i −1.62373 + 0.476770i
\(638\) 1471.17 10232.2i 0.0912918 0.634949i
\(639\) −4491.99 9836.10i −0.278092 0.608936i
\(640\) 44.3341 + 308.350i 0.00273822 + 0.0190447i
\(641\) 4320.94 2776.90i 0.266251 0.171109i −0.400703 0.916208i \(-0.631234\pi\)
0.666954 + 0.745099i \(0.267598\pi\)
\(642\) −3530.12 + 4073.98i −0.217014 + 0.250447i
\(643\) 17570.3 1.07761 0.538807 0.842429i \(-0.318875\pi\)
0.538807 + 0.842429i \(0.318875\pi\)
\(644\) −1423.16 + 1133.28i −0.0870811 + 0.0693438i
\(645\) 13346.7 0.814767
\(646\) 1.87806 2.16739i 0.000114383 0.000132004i
\(647\) 16523.7 10619.1i 1.00404 0.645257i 0.0681956 0.997672i \(-0.478276\pi\)
0.935844 + 0.352415i \(0.114639\pi\)
\(648\) 61.1757 + 425.486i 0.00370865 + 0.0257943i
\(649\) −2534.39 5549.53i −0.153287 0.335652i
\(650\) 1146.91 7976.96i 0.0692087 0.481357i
\(651\) 2568.99 754.324i 0.154665 0.0454137i
\(652\) −1424.55 915.502i −0.0855670 0.0549906i
\(653\) −3471.51 + 7601.55i −0.208041 + 0.455546i −0.984674 0.174408i \(-0.944199\pi\)
0.776632 + 0.629954i \(0.216926\pi\)
\(654\) 52667.5 + 15464.6i 3.14903 + 0.924637i
\(655\) 9116.87 + 10521.4i 0.543856 + 0.627643i
\(656\) −1001.59 1155.90i −0.0596122 0.0687962i
\(657\) −4603.51 1351.71i −0.273364 0.0802668i
\(658\) −149.047 + 326.367i −0.00883046 + 0.0193360i
\(659\) −373.854 240.261i −0.0220990 0.0142022i 0.529545 0.848282i \(-0.322363\pi\)
−0.551644 + 0.834080i \(0.685999\pi\)
\(660\) 10987.0 3226.09i 0.647985 0.190265i
\(661\) 470.864 3274.93i 0.0277073 0.192708i −0.971267 0.237993i \(-0.923510\pi\)
0.998974 + 0.0452849i \(0.0144195\pi\)
\(662\) 5406.41 + 11838.4i 0.317411 + 0.695033i
\(663\) −108.808 756.775i −0.00637367 0.0443299i
\(664\) 431.440 277.270i 0.0252155 0.0162050i
\(665\) −3.37586 + 3.89595i −0.000196858 + 0.000227186i
\(666\) 15626.1 0.909160
\(667\) −6781.44 + 689.253i −0.393671 + 0.0400120i
\(668\) 16864.3 0.976797
\(669\) −10151.3 + 11715.2i −0.586653 + 0.677033i
\(670\) −6518.05 + 4188.90i −0.375842 + 0.241539i
\(671\) −5133.55 35704.6i −0.295348 2.05419i
\(672\) −1467.02 3212.33i −0.0842136 0.184402i
\(673\) −1131.14 + 7867.26i −0.0647880 + 0.450610i 0.931444 + 0.363884i \(0.118550\pi\)
−0.996232 + 0.0867261i \(0.972360\pi\)
\(674\) 41611.8 12218.3i 2.37808 0.698268i
\(675\) −1165.42 748.969i −0.0664548 0.0427079i
\(676\) 14334.4 31387.9i 0.815566 1.78584i
\(677\) −20883.5 6131.94i −1.18555 0.348109i −0.371238 0.928538i \(-0.621067\pi\)
−0.814311 + 0.580429i \(0.802885\pi\)
\(678\) −29444.9 33981.2i −1.66788 1.92484i
\(679\) −487.878 563.041i −0.0275744 0.0318226i
\(680\) 3.28582 + 0.964803i 0.000185302 + 5.44096e-5i
\(681\) 11817.8 25877.3i 0.664989 1.45612i
\(682\) 27411.0 + 17616.0i 1.53903 + 0.989076i
\(683\) −6646.01 + 1951.45i −0.372332 + 0.109327i −0.462545 0.886596i \(-0.653063\pi\)
0.0902127 + 0.995923i \(0.471245\pi\)
\(684\) −11.0387 + 76.7760i −0.000617070 + 0.00429182i
\(685\) −2881.06 6308.64i −0.160700 0.351884i
\(686\) 791.287 + 5503.52i 0.0440401 + 0.306305i
\(687\) −4739.16 + 3045.68i −0.263188 + 0.169141i
\(688\) 16274.3 18781.6i 0.901822 1.04076i
\(689\) 15563.0 0.860529
\(690\) −7573.13 12934.5i −0.417832 0.713633i
\(691\) 2811.47 0.154781 0.0773903 0.997001i \(-0.475341\pi\)
0.0773903 + 0.997001i \(0.475341\pi\)
\(692\) −4938.40 + 5699.21i −0.271286 + 0.313080i
\(693\) −1339.12 + 860.597i −0.0734037 + 0.0471737i
\(694\) 6803.27 + 47317.8i 0.372116 + 2.58812i
\(695\) −1883.39 4124.05i −0.102793 0.225085i
\(696\) −28.9777 + 201.545i −0.00157816 + 0.0109763i
\(697\) −32.7651 + 9.62070i −0.00178058 + 0.000522827i
\(698\) 21687.5 + 13937.7i 1.17605 + 0.755802i
\(699\) 456.309 999.178i 0.0246913 0.0540663i
\(700\) −395.625 116.166i −0.0213618 0.00627238i
\(701\) −7282.13 8404.02i −0.392357 0.452804i 0.524862 0.851187i \(-0.324117\pi\)
−0.917219 + 0.398383i \(0.869571\pi\)
\(702\) −11697.8 13500.0i −0.628925 0.725818i
\(703\) −100.767 29.5880i −0.00540614 0.00158739i
\(704\) 9127.96 19987.4i 0.488669 1.07004i
\(705\) −1252.72 805.072i −0.0669221 0.0430082i
\(706\) 14964.2 4393.87i 0.797710 0.234229i
\(707\) 55.2731 384.433i 0.00294025 0.0204499i
\(708\) 3343.79 + 7321.87i 0.177496 + 0.388662i
\(709\) 5047.74 + 35107.8i 0.267379 + 1.85966i 0.473039 + 0.881041i \(0.343157\pi\)
−0.205660 + 0.978624i \(0.565934\pi\)
\(710\) −9707.18 + 6238.43i −0.513104 + 0.329752i
\(711\) −11684.6 + 13484.8i −0.616325 + 0.711277i
\(712\) −473.009 −0.0248972
\(713\) 6903.32 20345.9i 0.362596 1.06867i
\(714\) −77.6511 −0.00407006
\(715\) −10952.5 + 12639.8i −0.572865 + 0.661122i
\(716\) −12966.6 + 8333.11i −0.676793 + 0.434948i
\(717\) 3593.40 + 24992.6i 0.187166 + 1.30177i
\(718\) 9215.38 + 20178.9i 0.478990 + 1.04884i
\(719\) 2651.46 18441.3i 0.137528 0.956531i −0.797843 0.602865i \(-0.794026\pi\)
0.935372 0.353666i \(-0.115065\pi\)
\(720\) 5687.46 1669.99i 0.294387 0.0864400i
\(721\) 111.838 + 71.8742i 0.00577681 + 0.00371253i
\(722\) −11440.0 + 25050.1i −0.589685 + 1.29123i
\(723\) −41163.0 12086.5i −2.11738 0.621719i
\(724\) −943.130 1088.43i −0.0484132 0.0558718i
\(725\) −1011.70 1167.56i −0.0518256 0.0598099i
\(726\) −10555.8 3099.46i −0.539617 0.158446i
\(727\) 10193.5 22320.6i 0.520020 1.13868i −0.449412 0.893325i \(-0.648366\pi\)
0.969432 0.245360i \(-0.0789063\pi\)
\(728\) −66.7737 42.9128i −0.00339945 0.00218469i
\(729\) 6222.80 1827.18i 0.316151 0.0928304i
\(730\) −728.629 + 5067.73i −0.0369422 + 0.256938i
\(731\) −230.497 504.717i −0.0116624 0.0255371i
\(732\) 6773.04 + 47107.5i 0.341993 + 2.37861i
\(733\) −13445.3 + 8640.75i −0.677507 + 0.435407i −0.833625 0.552331i \(-0.813738\pi\)
0.156118 + 0.987738i \(0.450102\pi\)
\(734\) 5210.90 6013.70i 0.262040 0.302411i
\(735\) −11468.5 −0.575538
\(736\) −27858.2 5193.45i −1.39520 0.260100i
\(737\) 16079.5 0.803659
\(738\) 1200.62 1385.58i 0.0598852 0.0691112i
\(739\) −24696.9 + 15871.7i −1.22935 + 0.790054i −0.983789 0.179327i \(-0.942608\pi\)
−0.245559 + 0.969382i \(0.578972\pi\)
\(740\) −1195.46 8314.61i −0.0593865 0.413042i
\(741\) −114.605 250.950i −0.00568168 0.0124411i
\(742\) 224.948 1564.55i 0.0111295 0.0774075i
\(743\) 24573.7 7215.50i 1.21335 0.356273i 0.388410 0.921487i \(-0.373024\pi\)
0.824945 + 0.565213i \(0.191206\pi\)
\(744\) −539.916 346.983i −0.0266052 0.0170981i
\(745\) −2264.42 + 4958.38i −0.111358 + 0.243840i
\(746\) 29382.9 + 8627.61i 1.44207 + 0.423430i
\(747\) −12979.1 14978.7i −0.635717 0.733656i
\(748\) −311.743 359.771i −0.0152386 0.0175863i
\(749\) −386.517 113.492i −0.0188558 0.00553657i
\(750\) 1411.19 3090.08i 0.0687059 0.150445i
\(751\) −21029.9 13515.1i −1.02183 0.656690i −0.0814008 0.996681i \(-0.525939\pi\)
−0.940428 + 0.339992i \(0.889576\pi\)
\(752\) −2660.42 + 781.168i −0.129010 + 0.0378807i
\(753\) −614.894 + 4276.68i −0.0297583 + 0.206973i
\(754\) −8275.32 18120.4i −0.399694 0.875208i
\(755\) −2339.89 16274.3i −0.112791 0.784481i
\(756\) −768.855 + 494.113i −0.0369881 + 0.0237708i
\(757\) −23728.7 + 27384.4i −1.13928 + 1.31480i −0.196836 + 0.980436i \(0.563067\pi\)
−0.942444 + 0.334364i \(0.891479\pi\)
\(758\) −27336.9 −1.30992
\(759\) −1290.80 + 31078.8i −0.0617301 + 1.48628i
\(760\) 1.23570 5.89784e−5
\(761\) 16783.7 19369.5i 0.799487 0.922657i −0.198866 0.980027i \(-0.563726\pi\)
0.998353 + 0.0573695i \(0.0182713\pi\)
\(762\) −36252.3 + 23297.9i −1.72347 + 1.10761i
\(763\) 583.763 + 4060.16i 0.0276981 + 0.192645i
\(764\) 6580.30 + 14408.8i