Properties

Label 115.4.g.a.16.2
Level $115$
Weight $4$
Character 115.16
Analytic conductor $6.785$
Analytic rank $0$
Dimension $110$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [115,4,Mod(6,115)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(115, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([0, 18]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("115.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 115 = 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 115.g (of order \(11\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78521965066\)
Analytic rank: \(0\)
Dimension: \(110\)
Relative dimension: \(11\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 16.2
Character \(\chi\) \(=\) 115.16
Dual form 115.4.g.a.36.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.78120 + 3.20967i) q^{2} +(0.620793 - 0.398960i) q^{3} +(-1.42842 - 9.93487i) q^{4} +(2.07708 + 4.54816i) q^{5} +(-0.446019 + 3.10213i) q^{6} +(-1.32223 + 0.388243i) q^{7} +(7.27793 + 4.67724i) q^{8} +(-10.9900 + 24.0647i) q^{9} +O(q^{10})\) \(q+(-2.78120 + 3.20967i) q^{2} +(0.620793 - 0.398960i) q^{3} +(-1.42842 - 9.93487i) q^{4} +(2.07708 + 4.54816i) q^{5} +(-0.446019 + 3.10213i) q^{6} +(-1.32223 + 0.388243i) q^{7} +(7.27793 + 4.67724i) q^{8} +(-10.9900 + 24.0647i) q^{9} +(-20.3748 - 5.98259i) q^{10} +(-14.8819 - 17.1746i) q^{11} +(-4.85037 - 5.59762i) q^{12} +(-74.9993 - 22.0218i) q^{13} +(2.43126 - 5.32372i) q^{14} +(3.10397 + 1.99480i) q^{15} +(41.7900 - 12.2706i) q^{16} +(11.2099 - 77.9669i) q^{17} +(-46.6745 - 102.203i) q^{18} +(15.1094 + 105.088i) q^{19} +(42.2184 - 27.1322i) q^{20} +(-0.665941 + 0.768537i) q^{21} +96.5144 q^{22} +(-34.9765 - 104.612i) q^{23} +6.38412 q^{24} +(-16.3715 + 18.8937i) q^{25} +(279.271 - 179.476i) q^{26} +(5.61387 + 39.0453i) q^{27} +(5.74585 + 12.5817i) q^{28} +(37.5529 - 261.186i) q^{29} +(-15.0354 + 4.41479i) q^{30} +(-169.450 - 108.899i) q^{31} +(-105.592 + 231.215i) q^{32} +(-16.0906 - 4.72462i) q^{33} +(219.071 + 252.821i) q^{34} +(-4.51217 - 5.20732i) q^{35} +(254.778 + 74.8096i) q^{36} +(55.8043 - 122.194i) q^{37} +(-379.321 - 243.775i) q^{38} +(-55.3449 + 16.2507i) q^{39} +(-6.15603 + 42.8161i) q^{40} +(154.173 + 337.593i) q^{41} +(-0.614638 - 4.27490i) q^{42} +(-376.985 + 242.274i) q^{43} +(-149.370 + 172.382i) q^{44} -132.277 q^{45} +(433.046 + 178.683i) q^{46} -376.918 q^{47} +(21.0474 - 24.2901i) q^{48} +(-286.952 + 184.413i) q^{49} +(-15.1103 - 105.094i) q^{50} +(-24.1466 - 52.8737i) q^{51} +(-111.653 + 776.565i) q^{52} +(-236.779 + 69.5246i) q^{53} +(-140.936 - 90.5740i) q^{54} +(47.2021 - 103.358i) q^{55} +(-11.4390 - 3.35880i) q^{56} +(51.3058 + 59.2101i) q^{57} +(733.879 + 846.942i) q^{58} +(-93.6935 - 27.5109i) q^{59} +(15.3843 - 33.6869i) q^{60} +(650.166 + 417.836i) q^{61} +(820.804 - 241.010i) q^{62} +(5.18838 - 36.0860i) q^{63} +(-303.706 - 665.024i) q^{64} +(-55.6206 - 386.850i) q^{65} +(59.9155 - 38.5054i) q^{66} +(-147.259 + 169.945i) q^{67} -790.604 q^{68} +(-63.4491 - 50.9881i) q^{69} +29.2630 q^{70} +(178.320 - 205.792i) q^{71} +(-192.541 + 123.738i) q^{72} +(56.5199 + 393.104i) q^{73} +(237.001 + 518.960i) q^{74} +(-2.62549 + 18.2607i) q^{75} +(1022.46 - 300.220i) q^{76} +(26.3453 + 16.9311i) q^{77} +(101.766 - 222.835i) q^{78} +(-17.1560 - 5.03745i) q^{79} +(142.610 + 164.580i) q^{80} +(-448.703 - 517.830i) q^{81} +(-1512.35 - 444.066i) q^{82} +(362.501 - 793.767i) q^{83} +(8.58656 + 5.51825i) q^{84} +(377.890 - 110.958i) q^{85} +(270.851 - 1883.81i) q^{86} +(-80.8901 - 177.125i) q^{87} +(-27.9795 - 194.602i) q^{88} +(-535.468 + 344.125i) q^{89} +(367.889 - 424.566i) q^{90} +107.717 q^{91} +(-989.344 + 496.917i) q^{92} -148.640 q^{93} +(1048.28 - 1209.78i) q^{94} +(-446.575 + 286.996i) q^{95} +(26.6944 + 185.664i) q^{96} +(241.129 + 528.000i) q^{97} +(206.165 - 1433.91i) q^{98} +(576.855 - 169.380i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 110 q - 2 q^{2} + 6 q^{3} - 40 q^{4} - 55 q^{5} - 3 q^{6} - 10 q^{7} + 243 q^{8} - 233 q^{9} - 10 q^{10} + 2 q^{11} - 57 q^{12} + 34 q^{13} - 154 q^{14} + 30 q^{15} + 16 q^{16} + 252 q^{17} - 33 q^{18} - 160 q^{19} - 200 q^{20} - 684 q^{21} - 704 q^{22} + 127 q^{23} - 3090 q^{24} - 275 q^{25} - 567 q^{26} + 384 q^{27} - 188 q^{28} + 340 q^{29} - 15 q^{30} + 582 q^{31} - 1364 q^{32} + 1760 q^{33} + 1819 q^{34} + 665 q^{35} + 2794 q^{36} + 312 q^{37} + 3123 q^{38} - 1560 q^{39} - 1205 q^{40} + 1324 q^{41} + 1454 q^{42} - 1740 q^{43} - 369 q^{44} + 3730 q^{45} - 4322 q^{46} - 2858 q^{47} - 2686 q^{48} + 2015 q^{49} - 325 q^{50} - 1426 q^{51} + 1717 q^{52} + 882 q^{53} + 2541 q^{54} + 450 q^{55} + 7755 q^{56} + 3688 q^{57} + 6622 q^{58} + 2605 q^{59} + 1530 q^{60} - 104 q^{61} - 9360 q^{62} - 7618 q^{63} + 3483 q^{64} + 170 q^{65} - 1766 q^{66} - 166 q^{67} - 5018 q^{68} - 1194 q^{69} - 770 q^{70} - 1222 q^{71} + 3303 q^{72} - 922 q^{73} + 1245 q^{74} + 150 q^{75} + 1360 q^{76} - 3093 q^{77} - 1600 q^{78} + 2448 q^{79} + 2115 q^{80} - 1371 q^{81} + 6609 q^{82} + 6704 q^{83} + 3894 q^{84} - 720 q^{85} - 5074 q^{86} - 6324 q^{87} + 1918 q^{88} - 5380 q^{89} - 165 q^{90} + 7828 q^{91} - 16225 q^{92} - 24948 q^{93} - 16490 q^{94} + 685 q^{95} + 675 q^{96} - 4400 q^{97} + 8790 q^{98} - 3626 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/115\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(51\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.78120 + 3.20967i −0.983301 + 1.13479i 0.00756923 + 0.999971i \(0.497591\pi\)
−0.990870 + 0.134819i \(0.956955\pi\)
\(3\) 0.620793 0.398960i 0.119472 0.0767798i −0.479540 0.877520i \(-0.659197\pi\)
0.599012 + 0.800740i \(0.295560\pi\)
\(4\) −1.42842 9.93487i −0.178552 1.24186i
\(5\) 2.07708 + 4.54816i 0.185779 + 0.406800i
\(6\) −0.446019 + 3.10213i −0.0303477 + 0.211073i
\(7\) −1.32223 + 0.388243i −0.0713940 + 0.0209632i −0.317234 0.948347i \(-0.602754\pi\)
0.245841 + 0.969310i \(0.420936\pi\)
\(8\) 7.27793 + 4.67724i 0.321642 + 0.206707i
\(9\) −10.9900 + 24.0647i −0.407037 + 0.891286i
\(10\) −20.3748 5.98259i −0.644309 0.189186i
\(11\) −14.8819 17.1746i −0.407915 0.470759i 0.514203 0.857669i \(-0.328088\pi\)
−0.922118 + 0.386910i \(0.873542\pi\)
\(12\) −4.85037 5.59762i −0.116682 0.134658i
\(13\) −74.9993 22.0218i −1.60008 0.469827i −0.644513 0.764593i \(-0.722940\pi\)
−0.955569 + 0.294766i \(0.904758\pi\)
\(14\) 2.43126 5.32372i 0.0464130 0.101630i
\(15\) 3.10397 + 1.99480i 0.0534294 + 0.0343370i
\(16\) 41.7900 12.2706i 0.652968 0.191729i
\(17\) 11.2099 77.9669i 0.159930 1.11234i −0.738828 0.673894i \(-0.764620\pi\)
0.898758 0.438445i \(-0.144470\pi\)
\(18\) −46.6745 102.203i −0.611183 1.33830i
\(19\) 15.1094 + 105.088i 0.182439 + 1.26889i 0.850973 + 0.525209i \(0.176013\pi\)
−0.668534 + 0.743681i \(0.733078\pi\)
\(20\) 42.2184 27.1322i 0.472017 0.303347i
\(21\) −0.665941 + 0.768537i −0.00692001 + 0.00798612i
\(22\) 96.5144 0.935315
\(23\) −34.9765 104.612i −0.317092 0.948395i
\(24\) 6.38412 0.0542980
\(25\) −16.3715 + 18.8937i −0.130972 + 0.151150i
\(26\) 279.271 179.476i 2.10652 1.35378i
\(27\) 5.61387 + 39.0453i 0.0400144 + 0.278307i
\(28\) 5.74585 + 12.5817i 0.0387808 + 0.0849182i
\(29\) 37.5529 261.186i 0.240462 1.67245i −0.409368 0.912369i \(-0.634251\pi\)
0.649830 0.760080i \(-0.274840\pi\)
\(30\) −15.0354 + 4.41479i −0.0915024 + 0.0268675i
\(31\) −169.450 108.899i −0.981747 0.630930i −0.0518130 0.998657i \(-0.516500\pi\)
−0.929934 + 0.367726i \(0.880136\pi\)
\(32\) −105.592 + 231.215i −0.583321 + 1.27729i
\(33\) −16.0906 4.72462i −0.0848791 0.0249227i
\(34\) 219.071 + 252.821i 1.10501 + 1.27525i
\(35\) −4.51217 5.20732i −0.0217913 0.0251485i
\(36\) 254.778 + 74.8096i 1.17953 + 0.346341i
\(37\) 55.8043 122.194i 0.247951 0.542936i −0.744204 0.667952i \(-0.767171\pi\)
0.992155 + 0.125016i \(0.0398983\pi\)
\(38\) −379.321 243.775i −1.61932 1.04067i
\(39\) −55.3449 + 16.2507i −0.227238 + 0.0667231i
\(40\) −6.15603 + 42.8161i −0.0243339 + 0.169246i
\(41\) 154.173 + 337.593i 0.587265 + 1.28593i 0.937081 + 0.349112i \(0.113517\pi\)
−0.349816 + 0.936818i \(0.613756\pi\)
\(42\) −0.614638 4.27490i −0.00225811 0.0157055i
\(43\) −376.985 + 242.274i −1.33697 + 0.859219i −0.996705 0.0811107i \(-0.974153\pi\)
−0.340265 + 0.940329i \(0.610517\pi\)
\(44\) −149.370 + 172.382i −0.511782 + 0.590628i
\(45\) −132.277 −0.438194
\(46\) 433.046 + 178.683i 1.38803 + 0.572725i
\(47\) −376.918 −1.16977 −0.584884 0.811117i \(-0.698860\pi\)
−0.584884 + 0.811117i \(0.698860\pi\)
\(48\) 21.0474 24.2901i 0.0632904 0.0730410i
\(49\) −286.952 + 184.413i −0.836596 + 0.537648i
\(50\) −15.1103 105.094i −0.0427383 0.297252i
\(51\) −24.1466 52.8737i −0.0662980 0.145172i
\(52\) −111.653 + 776.565i −0.297760 + 2.07097i
\(53\) −236.779 + 69.5246i −0.613662 + 0.180187i −0.573770 0.819016i \(-0.694520\pi\)
−0.0398923 + 0.999204i \(0.512701\pi\)
\(54\) −140.936 90.5740i −0.355166 0.228251i
\(55\) 47.2021 103.358i 0.115722 0.253397i
\(56\) −11.4390 3.35880i −0.0272965 0.00801498i
\(57\) 51.3058 + 59.2101i 0.119221 + 0.137589i
\(58\) 733.879 + 846.942i 1.66143 + 1.91740i
\(59\) −93.6935 27.5109i −0.206743 0.0607053i 0.176721 0.984261i \(-0.443451\pi\)
−0.383464 + 0.923556i \(0.625269\pi\)
\(60\) 15.3843 33.6869i 0.0331017 0.0724827i
\(61\) 650.166 + 417.836i 1.36468 + 0.877024i 0.998565 0.0535479i \(-0.0170530\pi\)
0.366110 + 0.930572i \(0.380689\pi\)
\(62\) 820.804 241.010i 1.68133 0.493682i
\(63\) 5.18838 36.0860i 0.0103758 0.0721652i
\(64\) −303.706 665.024i −0.593177 1.29888i
\(65\) −55.6206 386.850i −0.106137 0.738197i
\(66\) 59.9155 38.5054i 0.111744 0.0718133i
\(67\) −147.259 + 169.945i −0.268515 + 0.309883i −0.873954 0.486009i \(-0.838452\pi\)
0.605439 + 0.795892i \(0.292998\pi\)
\(68\) −790.604 −1.40992
\(69\) −63.4491 50.9881i −0.110701 0.0889602i
\(70\) 29.2630 0.0499657
\(71\) 178.320 205.792i 0.298066 0.343986i −0.586885 0.809670i \(-0.699646\pi\)
0.884951 + 0.465684i \(0.154192\pi\)
\(72\) −192.541 + 123.738i −0.315155 + 0.202538i
\(73\) 56.5199 + 393.104i 0.0906185 + 0.630265i 0.983626 + 0.180223i \(0.0576820\pi\)
−0.893007 + 0.450042i \(0.851409\pi\)
\(74\) 237.001 + 518.960i 0.372308 + 0.815241i
\(75\) −2.62549 + 18.2607i −0.00404221 + 0.0281142i
\(76\) 1022.46 300.220i 1.54321 0.453127i
\(77\) 26.3453 + 16.9311i 0.0389912 + 0.0250581i
\(78\) 101.766 222.835i 0.147727 0.323476i
\(79\) −17.1560 5.03745i −0.0244329 0.00717414i 0.269493 0.963002i \(-0.413144\pi\)
−0.293926 + 0.955828i \(0.594962\pi\)
\(80\) 142.610 + 164.580i 0.199303 + 0.230008i
\(81\) −448.703 517.830i −0.615504 0.710330i
\(82\) −1512.35 444.066i −2.03672 0.598035i
\(83\) 362.501 793.767i 0.479394 1.04973i −0.503236 0.864149i \(-0.667857\pi\)
0.982630 0.185577i \(-0.0594155\pi\)
\(84\) 8.58656 + 5.51825i 0.0111532 + 0.00716774i
\(85\) 377.890 110.958i 0.482211 0.141590i
\(86\) 270.851 1883.81i 0.339612 2.36205i
\(87\) −80.8901 177.125i −0.0996820 0.218273i
\(88\) −27.9795 194.602i −0.0338935 0.235734i
\(89\) −535.468 + 344.125i −0.637748 + 0.409855i −0.819171 0.573550i \(-0.805566\pi\)
0.181423 + 0.983405i \(0.441930\pi\)
\(90\) 367.889 424.566i 0.430877 0.497258i
\(91\) 107.717 0.124085
\(92\) −989.344 + 496.917i −1.12116 + 0.563121i
\(93\) −148.640 −0.165734
\(94\) 1048.28 1209.78i 1.15023 1.32744i
\(95\) −446.575 + 286.996i −0.482291 + 0.309950i
\(96\) 26.6944 + 185.664i 0.0283801 + 0.197388i
\(97\) 241.129 + 528.000i 0.252402 + 0.552683i 0.992841 0.119440i \(-0.0381099\pi\)
−0.740440 + 0.672123i \(0.765383\pi\)
\(98\) 206.165 1433.91i 0.212509 1.47803i
\(99\) 576.855 169.380i 0.585617 0.171953i
\(100\) 211.092 + 135.661i 0.211092 + 0.135661i
\(101\) −492.191 + 1077.75i −0.484900 + 1.06178i 0.496188 + 0.868215i \(0.334733\pi\)
−0.981087 + 0.193567i \(0.937994\pi\)
\(102\) 236.863 + 69.5494i 0.229931 + 0.0675139i
\(103\) 896.395 + 1034.50i 0.857519 + 0.989630i 1.00000 0.000167937i \(-5.34561e-5\pi\)
−0.142481 + 0.989798i \(0.545508\pi\)
\(104\) −442.838 511.063i −0.417537 0.481864i
\(105\) −4.87864 1.43250i −0.00453435 0.00133140i
\(106\) 435.378 953.344i 0.398940 0.873556i
\(107\) −285.804 183.675i −0.258221 0.165949i 0.405125 0.914261i \(-0.367228\pi\)
−0.663346 + 0.748312i \(0.730864\pi\)
\(108\) 379.891 111.546i 0.338473 0.0993846i
\(109\) −200.052 + 1391.40i −0.175794 + 1.22267i 0.690571 + 0.723264i \(0.257359\pi\)
−0.866366 + 0.499410i \(0.833550\pi\)
\(110\) 200.468 + 438.963i 0.173762 + 0.380486i
\(111\) −14.1077 98.1211i −0.0120634 0.0839031i
\(112\) −50.4922 + 32.4493i −0.0425988 + 0.0273766i
\(113\) −540.066 + 623.269i −0.449603 + 0.518869i −0.934626 0.355632i \(-0.884266\pi\)
0.485023 + 0.874501i \(0.338811\pi\)
\(114\) −332.736 −0.273365
\(115\) 403.143 376.365i 0.326898 0.305185i
\(116\) −2648.49 −2.11988
\(117\) 1354.19 1562.82i 1.07004 1.23489i
\(118\) 348.881 224.212i 0.272179 0.174919i
\(119\) 15.4479 + 107.443i 0.0119001 + 0.0827669i
\(120\) 13.2603 + 29.0360i 0.0100874 + 0.0220884i
\(121\) 115.924 806.270i 0.0870955 0.605763i
\(122\) −3149.35 + 924.734i −2.33712 + 0.686242i
\(123\) 230.396 + 148.066i 0.168895 + 0.108542i
\(124\) −839.852 + 1839.02i −0.608233 + 1.33185i
\(125\) −119.937 35.2166i −0.0858197 0.0251989i
\(126\) 101.394 + 117.015i 0.0716898 + 0.0827345i
\(127\) −194.963 224.999i −0.136222 0.157208i 0.683540 0.729913i \(-0.260440\pi\)
−0.819762 + 0.572705i \(0.805894\pi\)
\(128\) 1028.06 + 301.867i 0.709913 + 0.208449i
\(129\) −137.373 + 300.804i −0.0937595 + 0.205305i
\(130\) 1396.35 + 897.381i 0.942063 + 0.605427i
\(131\) 1112.24 326.584i 0.741811 0.217815i 0.111074 0.993812i \(-0.464571\pi\)
0.630737 + 0.775997i \(0.282753\pi\)
\(132\) −23.9544 + 166.606i −0.0157952 + 0.109858i
\(133\) −60.7780 133.085i −0.0396250 0.0867666i
\(134\) −135.914 945.303i −0.0876208 0.609416i
\(135\) −165.924 + 106.633i −0.105781 + 0.0679814i
\(136\) 446.255 515.006i 0.281368 0.324716i
\(137\) −1191.25 −0.742885 −0.371443 0.928456i \(-0.621137\pi\)
−0.371443 + 0.928456i \(0.621137\pi\)
\(138\) 340.120 61.8427i 0.209804 0.0381478i
\(139\) −2773.78 −1.69258 −0.846290 0.532722i \(-0.821169\pi\)
−0.846290 + 0.532722i \(0.821169\pi\)
\(140\) −45.2888 + 52.2661i −0.0273400 + 0.0315521i
\(141\) −233.988 + 150.375i −0.139754 + 0.0898146i
\(142\) 164.582 + 1144.70i 0.0972637 + 0.676484i
\(143\) 737.917 + 1615.81i 0.431522 + 0.944902i
\(144\) −163.982 + 1140.52i −0.0948969 + 0.660022i
\(145\) 1265.92 371.707i 0.725025 0.212887i
\(146\) −1418.93 911.890i −0.804324 0.516908i
\(147\) −104.565 + 228.965i −0.0586691 + 0.128467i
\(148\) −1293.70 379.864i −0.718522 0.210977i
\(149\) 952.687 + 1099.46i 0.523807 + 0.604505i 0.954580 0.297955i \(-0.0963046\pi\)
−0.430773 + 0.902460i \(0.641759\pi\)
\(150\) −51.3088 59.2135i −0.0279290 0.0322317i
\(151\) −868.606 255.046i −0.468120 0.137452i 0.0391614 0.999233i \(-0.487531\pi\)
−0.507281 + 0.861780i \(0.669350\pi\)
\(152\) −381.558 + 835.495i −0.203608 + 0.445840i
\(153\) 1753.05 + 1126.62i 0.926314 + 0.595306i
\(154\) −127.615 + 37.4710i −0.0667759 + 0.0196072i
\(155\) 143.329 996.878i 0.0742742 0.516588i
\(156\) 240.505 + 526.632i 0.123434 + 0.270284i
\(157\) −512.442 3564.11i −0.260493 1.81177i −0.529148 0.848530i \(-0.677488\pi\)
0.268655 0.963237i \(-0.413421\pi\)
\(158\) 63.8827 41.0549i 0.0321660 0.0206719i
\(159\) −119.253 + 137.626i −0.0594805 + 0.0686442i
\(160\) −1270.93 −0.627972
\(161\) 86.8620 + 124.742i 0.0425198 + 0.0610624i
\(162\) 2909.99 1.41130
\(163\) 1659.34 1914.99i 0.797361 0.920204i −0.200872 0.979617i \(-0.564378\pi\)
0.998233 + 0.0594137i \(0.0189231\pi\)
\(164\) 3133.72 2013.92i 1.49209 0.958906i
\(165\) −11.9330 82.9959i −0.00563020 0.0391589i
\(166\) 1539.54 + 3371.13i 0.719830 + 1.57621i
\(167\) 61.2265 425.839i 0.0283703 0.197320i −0.970707 0.240266i \(-0.922765\pi\)
0.999077 + 0.0429461i \(0.0136744\pi\)
\(168\) −8.44130 + 2.47859i −0.00387655 + 0.00113826i
\(169\) 3291.71 + 2115.45i 1.49827 + 0.962882i
\(170\) −694.845 + 1521.50i −0.313484 + 0.686433i
\(171\) −2694.97 791.316i −1.20520 0.353880i
\(172\) 2945.45 + 3399.23i 1.30575 + 1.50691i
\(173\) −87.6326 101.133i −0.0385120 0.0444452i 0.736167 0.676800i \(-0.236634\pi\)
−0.774679 + 0.632355i \(0.782088\pi\)
\(174\) 793.483 + 232.988i 0.345711 + 0.101510i
\(175\) 14.3116 31.3381i 0.00618204 0.0135368i
\(176\) −832.658 535.117i −0.356613 0.229182i
\(177\) −69.1401 + 20.3014i −0.0293609 + 0.00862115i
\(178\) 384.715 2675.75i 0.161998 1.12672i
\(179\) −1049.51 2298.11i −0.438235 0.959601i −0.991919 0.126874i \(-0.959506\pi\)
0.553684 0.832727i \(-0.313222\pi\)
\(180\) 188.947 + 1314.16i 0.0782406 + 0.544175i
\(181\) 509.405 327.375i 0.209192 0.134440i −0.431850 0.901946i \(-0.642139\pi\)
0.641042 + 0.767506i \(0.278503\pi\)
\(182\) −299.581 + 345.735i −0.122013 + 0.140811i
\(183\) 570.318 0.230378
\(184\) 234.738 924.951i 0.0940497 0.370589i
\(185\) 671.669 0.266930
\(186\) 413.397 477.085i 0.162966 0.188073i
\(187\) −1505.88 + 967.769i −0.588881 + 0.378451i
\(188\) 538.397 + 3744.63i 0.208865 + 1.45269i
\(189\) −22.5819 49.4475i −0.00869097 0.0190306i
\(190\) 320.849 2231.55i 0.122510 0.852073i
\(191\) 2386.69 700.795i 0.904161 0.265486i 0.203580 0.979058i \(-0.434742\pi\)
0.700581 + 0.713573i \(0.252924\pi\)
\(192\) −453.857 291.676i −0.170595 0.109635i
\(193\) −1310.79 + 2870.22i −0.488872 + 1.07048i 0.491055 + 0.871128i \(0.336611\pi\)
−0.979928 + 0.199353i \(0.936116\pi\)
\(194\) −2365.33 694.524i −0.875366 0.257031i
\(195\) −188.866 217.964i −0.0693590 0.0800446i
\(196\) 2242.01 + 2587.42i 0.817059 + 0.942936i
\(197\) 816.111 + 239.632i 0.295155 + 0.0866653i 0.425958 0.904743i \(-0.359937\pi\)
−0.130803 + 0.991408i \(0.541755\pi\)
\(198\) −1060.69 + 2322.59i −0.380708 + 0.833633i
\(199\) −3654.09 2348.34i −1.30167 0.836531i −0.308275 0.951297i \(-0.599752\pi\)
−0.993393 + 0.114766i \(0.963388\pi\)
\(200\) −207.521 + 60.9337i −0.0733698 + 0.0215433i
\(201\) −23.6158 + 164.251i −0.00828720 + 0.0576387i
\(202\) −2090.34 4577.20i −0.728097 1.59431i
\(203\) 51.7500 + 359.929i 0.0178923 + 0.124444i
\(204\) −490.802 + 315.419i −0.168446 + 0.108254i
\(205\) −1215.20 + 1402.41i −0.414015 + 0.477798i
\(206\) −5813.44 −1.96622
\(207\) 2901.85 + 307.984i 0.974359 + 0.103412i
\(208\) −3404.44 −1.13488
\(209\) 1580.00 1823.41i 0.522922 0.603484i
\(210\) 18.1663 11.6748i 0.00596949 0.00383636i
\(211\) 416.355 + 2895.81i 0.135844 + 0.944815i 0.937737 + 0.347347i \(0.112917\pi\)
−0.801893 + 0.597468i \(0.796173\pi\)
\(212\) 1028.94 + 2253.06i 0.333338 + 0.729909i
\(213\) 28.5970 198.897i 0.00919923 0.0639821i
\(214\) 1384.41 406.500i 0.442226 0.129849i
\(215\) −1884.93 1211.37i −0.597911 0.384254i
\(216\) −141.767 + 310.426i −0.0446575 + 0.0977863i
\(217\) 266.332 + 78.2022i 0.0833171 + 0.0244641i
\(218\) −3909.54 4511.85i −1.21462 1.40175i
\(219\) 191.920 + 221.487i 0.0592180 + 0.0683412i
\(220\) −1094.28 321.308i −0.335346 0.0984664i
\(221\) −2557.71 + 5600.60i −0.778508 + 1.70469i
\(222\) 354.173 + 227.613i 0.107074 + 0.0688125i
\(223\) 16.5331 4.85456i 0.00496475 0.00145778i −0.279249 0.960219i \(-0.590086\pi\)
0.284214 + 0.958761i \(0.408267\pi\)
\(224\) 49.8502 346.716i 0.0148695 0.103419i
\(225\) −274.750 601.618i −0.0814073 0.178257i
\(226\) −498.460 3466.87i −0.146713 1.02041i
\(227\) 3307.75 2125.76i 0.967151 0.621550i 0.0411831 0.999152i \(-0.486887\pi\)
0.925968 + 0.377601i \(0.123251\pi\)
\(228\) 514.958 594.294i 0.149579 0.172623i
\(229\) −4523.02 −1.30520 −0.652598 0.757704i \(-0.726321\pi\)
−0.652598 + 0.757704i \(0.726321\pi\)
\(230\) 86.7905 + 2340.70i 0.0248817 + 0.671049i
\(231\) 23.1098 0.00658231
\(232\) 1494.94 1725.25i 0.423049 0.488225i
\(233\) 2106.89 1354.02i 0.592391 0.380706i −0.209827 0.977739i \(-0.567290\pi\)
0.802217 + 0.597032i \(0.203654\pi\)
\(234\) 1249.87 + 8693.01i 0.349172 + 2.42855i
\(235\) −782.887 1714.28i −0.217319 0.475862i
\(236\) −139.484 + 970.130i −0.0384729 + 0.267585i
\(237\) −12.6601 + 3.71733i −0.00346987 + 0.00101885i
\(238\) −387.819 249.236i −0.105624 0.0678807i
\(239\) 1076.14 2356.41i 0.291254 0.637756i −0.706281 0.707931i \(-0.749629\pi\)
0.997535 + 0.0701752i \(0.0223558\pi\)
\(240\) 154.192 + 45.2749i 0.0414711 + 0.0121770i
\(241\) 380.033 + 438.582i 0.101577 + 0.117226i 0.804262 0.594275i \(-0.202561\pi\)
−0.702685 + 0.711501i \(0.748016\pi\)
\(242\) 2265.45 + 2614.47i 0.601772 + 0.694482i
\(243\) −1507.07 442.515i −0.397853 0.116820i
\(244\) 3222.44 7056.16i 0.845474 1.85133i
\(245\) −1434.76 922.066i −0.374137 0.240443i
\(246\) −1116.02 + 327.693i −0.289247 + 0.0849307i
\(247\) 1181.04 8214.29i 0.304241 2.11604i
\(248\) −723.899 1585.12i −0.185353 0.405867i
\(249\) −91.6427 637.389i −0.0233238 0.162220i
\(250\) 446.601 287.013i 0.112982 0.0726092i
\(251\) 3631.67 4191.17i 0.913264 1.05396i −0.0850766 0.996374i \(-0.527114\pi\)
0.998340 0.0575882i \(-0.0183410\pi\)
\(252\) −365.921 −0.0914716
\(253\) −1276.15 + 2157.53i −0.317119 + 0.536138i
\(254\) 1264.40 0.312346
\(255\) 190.324 219.645i 0.0467393 0.0539400i
\(256\) 1092.13 701.867i 0.266632 0.171354i
\(257\) 249.852 + 1737.76i 0.0606433 + 0.421784i 0.997416 + 0.0718447i \(0.0228886\pi\)
−0.936772 + 0.349939i \(0.886202\pi\)
\(258\) −583.422 1277.52i −0.140784 0.308274i
\(259\) −26.3453 + 183.235i −0.00632052 + 0.0439602i
\(260\) −3763.85 + 1105.17i −0.897786 + 0.263614i
\(261\) 5872.66 + 3774.13i 1.39275 + 0.895069i
\(262\) −2045.14 + 4478.23i −0.482249 + 1.05598i
\(263\) −3720.48 1092.43i −0.872300 0.256130i −0.185207 0.982700i \(-0.559295\pi\)
−0.687093 + 0.726569i \(0.741114\pi\)
\(264\) −95.0078 109.645i −0.0221490 0.0255613i
\(265\) −808.017 932.501i −0.187306 0.216163i
\(266\) 596.196 + 175.059i 0.137425 + 0.0403517i
\(267\) −195.123 + 427.261i −0.0447242 + 0.0979323i
\(268\) 1898.73 + 1220.24i 0.432774 + 0.278127i
\(269\) 1084.10 318.321i 0.245721 0.0721502i −0.156553 0.987670i \(-0.550038\pi\)
0.402274 + 0.915519i \(0.368220\pi\)
\(270\) 119.211 829.128i 0.0268701 0.186886i
\(271\) 2166.22 + 4743.36i 0.485566 + 1.06324i 0.980895 + 0.194537i \(0.0623203\pi\)
−0.495329 + 0.868706i \(0.664952\pi\)
\(272\) −488.241 3395.79i −0.108838 0.756985i
\(273\) 66.8697 42.9746i 0.0148247 0.00952725i
\(274\) 3313.10 3823.52i 0.730480 0.843019i
\(275\) 568.132 0.124581
\(276\) −415.929 + 703.191i −0.0907100 + 0.153359i
\(277\) 7079.26 1.53557 0.767783 0.640710i \(-0.221360\pi\)
0.767783 + 0.640710i \(0.221360\pi\)
\(278\) 7714.42 8902.91i 1.66432 1.92072i
\(279\) 4482.88 2880.97i 0.961947 0.618205i
\(280\) −8.48336 59.0030i −0.00181063 0.0125932i
\(281\) −1434.12 3140.29i −0.304458 0.666669i 0.694127 0.719852i \(-0.255791\pi\)
−0.998585 + 0.0531833i \(0.983063\pi\)
\(282\) 168.112 1169.25i 0.0354998 0.246907i
\(283\) −6386.15 + 1875.14i −1.34140 + 0.393871i −0.872170 0.489203i \(-0.837288\pi\)
−0.469233 + 0.883074i \(0.655469\pi\)
\(284\) −2299.23 1477.63i −0.480403 0.308736i
\(285\) −162.731 + 356.331i −0.0338223 + 0.0740604i
\(286\) −7238.52 2125.42i −1.49658 0.439436i
\(287\) −334.922 386.520i −0.0688843 0.0794967i
\(288\) −4403.67 5082.10i −0.901002 1.03981i
\(289\) −1239.19 363.858i −0.252226 0.0740603i
\(290\) −2327.70 + 5096.96i −0.471336 + 1.03208i
\(291\) 360.342 + 231.578i 0.0725898 + 0.0466506i
\(292\) 3824.71 1123.04i 0.766521 0.225071i
\(293\) −256.395 + 1783.26i −0.0511220 + 0.355561i 0.948164 + 0.317781i \(0.102938\pi\)
−0.999286 + 0.0377800i \(0.987971\pi\)
\(294\) −444.087 972.415i −0.0880941 0.192899i
\(295\) −69.4845 483.275i −0.0137137 0.0953810i
\(296\) 977.672 628.312i 0.191980 0.123378i
\(297\) 587.044 677.485i 0.114693 0.132362i
\(298\) −6178.51 −1.20105
\(299\) 319.474 + 8616.07i 0.0617914 + 1.66649i
\(300\) 185.168 0.0356356
\(301\) 404.402 466.705i 0.0774397 0.0893702i
\(302\) 3234.37 2078.61i 0.616283 0.396061i
\(303\) 124.429 + 865.424i 0.0235916 + 0.164083i
\(304\) 1920.92 + 4206.24i 0.362410 + 0.793566i
\(305\) −549.943 + 3824.94i −0.103245 + 0.718082i
\(306\) −8491.67 + 2493.38i −1.58639 + 0.465807i
\(307\) −3717.39 2389.02i −0.691083 0.444132i 0.147388 0.989079i \(-0.452914\pi\)
−0.838471 + 0.544947i \(0.816550\pi\)
\(308\) 130.576 285.922i 0.0241567 0.0528958i
\(309\) 969.198 + 284.582i 0.178433 + 0.0523926i
\(310\) 2801.02 + 3232.55i 0.513185 + 0.592247i
\(311\) −3032.38 3499.56i −0.552896 0.638076i 0.408659 0.912687i \(-0.365996\pi\)
−0.961556 + 0.274611i \(0.911451\pi\)
\(312\) −478.805 140.590i −0.0868813 0.0255107i
\(313\) 1871.39 4097.78i 0.337947 0.740001i −0.662008 0.749497i \(-0.730295\pi\)
0.999955 + 0.00949590i \(0.00302269\pi\)
\(314\) 12864.8 + 8267.73i 2.31212 + 1.48591i
\(315\) 174.902 51.3557i 0.0312844 0.00918593i
\(316\) −25.5405 + 177.638i −0.00454672 + 0.0316232i
\(317\) 2385.92 + 5224.43i 0.422734 + 0.925657i 0.994450 + 0.105206i \(0.0335503\pi\)
−0.571717 + 0.820451i \(0.693722\pi\)
\(318\) −110.066 765.528i −0.0194095 0.134996i
\(319\) −5044.63 + 3241.99i −0.885408 + 0.569017i
\(320\) 2393.82 2762.61i 0.418182 0.482608i
\(321\) −250.704 −0.0435917
\(322\) −641.961 68.1337i −0.111103 0.0117917i
\(323\) 8362.79 1.44061
\(324\) −4503.64 + 5197.48i −0.772229 + 0.891200i
\(325\) 1643.93 1056.49i 0.280581 0.180318i
\(326\) 1531.51 + 10651.9i 0.260192 + 1.80967i
\(327\) 430.920 + 943.582i 0.0728743 + 0.159573i
\(328\) −456.939 + 3178.08i −0.0769215 + 0.535001i
\(329\) 498.374 146.336i 0.0835144 0.0245220i
\(330\) 299.577 + 192.527i 0.0499733 + 0.0321159i
\(331\) 568.654 1245.18i 0.0944292 0.206771i −0.856523 0.516109i \(-0.827380\pi\)
0.950952 + 0.309338i \(0.100107\pi\)
\(332\) −8403.78 2467.57i −1.38921 0.407909i
\(333\) 2327.28 + 2685.83i 0.382986 + 0.441990i
\(334\) 1196.52 + 1380.86i 0.196020 + 0.226219i
\(335\) −1078.81 316.766i −0.175945 0.0516620i
\(336\) −18.3992 + 40.2887i −0.00298738 + 0.00654145i
\(337\) −896.894 576.399i −0.144976 0.0931704i 0.466142 0.884710i \(-0.345644\pi\)
−0.611118 + 0.791539i \(0.709280\pi\)
\(338\) −15944.8 + 4681.81i −2.56592 + 0.753423i
\(339\) −86.6100 + 602.386i −0.0138761 + 0.0965107i
\(340\) −1642.14 3595.79i −0.261934 0.573556i
\(341\) 651.441 + 4530.87i 0.103453 + 0.719532i
\(342\) 10035.1 6449.17i 1.58666 1.01968i
\(343\) 617.356 712.467i 0.0971840 0.112156i
\(344\) −3876.84 −0.607632
\(345\) 100.114 394.483i 0.0156230 0.0615601i
\(346\) 568.328 0.0883049
\(347\) −6342.37 + 7319.48i −0.981200 + 1.13236i 0.00999489 + 0.999950i \(0.496818\pi\)
−0.991194 + 0.132415i \(0.957727\pi\)
\(348\) −1644.17 + 1056.64i −0.253266 + 0.162764i
\(349\) 52.3968 + 364.428i 0.00803650 + 0.0558951i 0.993445 0.114311i \(-0.0364659\pi\)
−0.985409 + 0.170206i \(0.945557\pi\)
\(350\) 60.7815 + 133.093i 0.00928260 + 0.0203260i
\(351\) 438.812 3052.00i 0.0667294 0.464113i
\(352\) 5542.45 1627.41i 0.839243 0.246424i
\(353\) 8328.91 + 5352.67i 1.25582 + 0.807064i 0.987706 0.156324i \(-0.0499644\pi\)
0.268110 + 0.963388i \(0.413601\pi\)
\(354\) 127.131 278.379i 0.0190875 0.0417957i
\(355\) 1306.36 + 383.582i 0.195308 + 0.0573476i
\(356\) 4183.71 + 4828.26i 0.622854 + 0.718812i
\(357\) 52.4553 + 60.5366i 0.00777655 + 0.00897462i
\(358\) 10295.1 + 3022.90i 1.51986 + 0.446272i
\(359\) 1366.65 2992.55i 0.200917 0.439947i −0.782175 0.623059i \(-0.785890\pi\)
0.983092 + 0.183112i \(0.0586171\pi\)
\(360\) −962.704 618.692i −0.140942 0.0905776i
\(361\) −4234.10 + 1243.24i −0.617306 + 0.181257i
\(362\) −365.990 + 2545.52i −0.0531381 + 0.369584i
\(363\) −249.704 546.776i −0.0361049 0.0790587i
\(364\) −153.864 1070.15i −0.0221557 0.154096i
\(365\) −1670.51 + 1073.57i −0.239557 + 0.153954i
\(366\) −1586.17 + 1830.53i −0.226531 + 0.261431i
\(367\) 372.890 0.0530373 0.0265186 0.999648i \(-0.491558\pi\)
0.0265186 + 0.999648i \(0.491558\pi\)
\(368\) −2745.32 3942.54i −0.388885 0.558476i
\(369\) −9818.44 −1.38517
\(370\) −1868.04 + 2155.84i −0.262473 + 0.302910i
\(371\) 286.085 183.856i 0.0400345 0.0257286i
\(372\) 212.320 + 1476.72i 0.0295922 + 0.205818i
\(373\) 4409.63 + 9655.75i 0.612123 + 1.34036i 0.921112 + 0.389298i \(0.127282\pi\)
−0.308989 + 0.951066i \(0.599990\pi\)
\(374\) 1081.92 7524.93i 0.149585 1.04039i
\(375\) −88.5059 + 25.9877i −0.0121878 + 0.00357866i
\(376\) −2743.18 1762.93i −0.376247 0.241799i
\(377\) −8568.23 + 18761.8i −1.17052 + 2.56308i
\(378\) 221.515 + 65.0427i 0.0301415 + 0.00885036i
\(379\) −6368.85 7350.04i −0.863181 0.996164i −0.999985 0.00556577i \(-0.998228\pi\)
0.136804 0.990598i \(-0.456317\pi\)
\(380\) 3489.17 + 4026.72i 0.471028 + 0.543595i
\(381\) −210.797 61.8957i −0.0283451 0.00832287i
\(382\) −4388.53 + 9609.54i −0.587792 + 1.28709i
\(383\) −4806.32 3088.84i −0.641231 0.412094i 0.179221 0.983809i \(-0.442642\pi\)
−0.820453 + 0.571714i \(0.806279\pi\)
\(384\) 758.648 222.759i 0.100819 0.0296032i
\(385\) −22.2842 + 154.990i −0.00294989 + 0.0205169i
\(386\) −5566.91 12189.8i −0.734063 1.60737i
\(387\) −1687.19 11734.6i −0.221614 1.54136i
\(388\) 4901.18 3149.79i 0.641287 0.412130i
\(389\) 6228.64 7188.24i 0.811838 0.936911i −0.187130 0.982335i \(-0.559919\pi\)
0.998968 + 0.0454246i \(0.0144641\pi\)
\(390\) 1224.87 0.159035
\(391\) −8548.35 + 1554.32i −1.10565 + 0.201036i
\(392\) −2950.96 −0.380220
\(393\) 560.180 646.482i 0.0719016 0.0829789i
\(394\) −3038.90 + 1952.99i −0.388573 + 0.249721i
\(395\) −12.7231 88.4913i −0.00162068 0.0112721i
\(396\) −2506.76 5489.03i −0.318104 0.696551i
\(397\) −325.658 + 2265.00i −0.0411695 + 0.286340i 0.958828 + 0.283988i \(0.0916577\pi\)
−0.999997 + 0.00235193i \(0.999251\pi\)
\(398\) 17700.2 5197.24i 2.22922 0.654557i
\(399\) −90.8263 58.3705i −0.0113960 0.00732376i
\(400\) −452.327 + 990.458i −0.0565409 + 0.123807i
\(401\) −5841.56 1715.24i −0.727465 0.213603i −0.103029 0.994678i \(-0.532853\pi\)
−0.624437 + 0.781075i \(0.714671\pi\)
\(402\) −461.512 532.614i −0.0572591 0.0660805i
\(403\) 10310.5 + 11899.0i 1.27445 + 1.47079i
\(404\) 11410.3 + 3350.38i 1.40516 + 0.412593i
\(405\) 1423.19 3116.34i 0.174614 0.382351i
\(406\) −1299.18 834.932i −0.158811 0.102062i
\(407\) −2929.12 + 860.066i −0.356735 + 0.104747i
\(408\) 71.5656 497.750i 0.00868389 0.0603978i
\(409\) −5174.16 11329.8i −0.625539 1.36974i −0.911421 0.411475i \(-0.865014\pi\)
0.285882 0.958265i \(-0.407713\pi\)
\(410\) −1121.58 7800.76i −0.135100 0.939639i
\(411\) −739.519 + 475.260i −0.0887538 + 0.0570386i
\(412\) 8997.15 10383.3i 1.07587 1.24162i
\(413\) 134.566 0.0160328
\(414\) −9059.13 + 8457.41i −1.07544 + 1.00401i
\(415\) 4363.12 0.516090
\(416\) 13011.1 15015.6i 1.53347 1.76972i
\(417\) −1721.94 + 1106.63i −0.202216 + 0.129956i
\(418\) 1458.28 + 10142.5i 0.170638 + 1.18681i
\(419\) −4361.89 9551.21i −0.508574 1.11362i −0.973587 0.228317i \(-0.926678\pi\)
0.465013 0.885304i \(-0.346050\pi\)
\(420\) −7.26294 + 50.5149i −0.000843798 + 0.00586874i
\(421\) 3381.01 992.753i 0.391402 0.114926i −0.0801092 0.996786i \(-0.525527\pi\)
0.471511 + 0.881860i \(0.343709\pi\)
\(422\) −10452.6 6717.46i −1.20574 0.774884i
\(423\) 4142.32 9070.42i 0.476139 1.04260i
\(424\) −2048.44 601.477i −0.234625 0.0688923i
\(425\) 1289.56 + 1488.23i 0.147183 + 0.169859i
\(426\) 558.859 + 644.958i 0.0635606 + 0.0733528i
\(427\) −1021.89 300.055i −0.115815 0.0340063i
\(428\) −1416.54 + 3101.79i −0.159979 + 0.350305i
\(429\) 1102.74 + 708.687i 0.124104 + 0.0797569i
\(430\) 9130.45 2680.94i 1.02397 0.300666i
\(431\) −1383.39 + 9621.69i −0.154607 + 1.07531i 0.753763 + 0.657147i \(0.228237\pi\)
−0.908370 + 0.418168i \(0.862672\pi\)
\(432\) 713.715 + 1562.82i 0.0794875 + 0.174053i
\(433\) 188.145 + 1308.58i 0.0208815 + 0.145234i 0.997595 0.0693145i \(-0.0220812\pi\)
−0.976713 + 0.214548i \(0.931172\pi\)
\(434\) −991.725 + 637.343i −0.109687 + 0.0704918i
\(435\) 637.576 735.802i 0.0702746 0.0811012i
\(436\) 14109.1 1.54978
\(437\) 10465.0 5256.25i 1.14556 0.575379i
\(438\) −1244.67 −0.135782
\(439\) 2281.28 2632.74i 0.248018 0.286228i −0.618067 0.786126i \(-0.712084\pi\)
0.866084 + 0.499898i \(0.166629\pi\)
\(440\) 826.965 531.458i 0.0896000 0.0575824i
\(441\) −1284.25 8932.13i −0.138672 0.964488i
\(442\) −10862.6 23785.8i −1.16896 2.55967i
\(443\) −282.091 + 1961.99i −0.0302541 + 0.210422i −0.999341 0.0362978i \(-0.988444\pi\)
0.969087 + 0.246719i \(0.0793526\pi\)
\(444\) −954.669 + 280.316i −0.102042 + 0.0299622i
\(445\) −2677.34 1720.62i −0.285209 0.183293i
\(446\) −30.4003 + 66.5673i −0.00322757 + 0.00706739i
\(447\) 1030.06 + 302.454i 0.108994 + 0.0320035i
\(448\) 659.762 + 761.406i 0.0695778 + 0.0802970i
\(449\) −5264.97 6076.10i −0.553384 0.638639i 0.408284 0.912855i \(-0.366127\pi\)
−0.961668 + 0.274216i \(0.911582\pi\)
\(450\) 2695.13 + 791.361i 0.282332 + 0.0829003i
\(451\) 3503.64 7671.90i 0.365809 0.801010i
\(452\) 6963.54 + 4475.20i 0.724640 + 0.465698i
\(453\) −640.978 + 188.208i −0.0664807 + 0.0195205i
\(454\) −2376.51 + 16529.0i −0.245672 + 1.70868i
\(455\) 223.735 + 489.912i 0.0230525 + 0.0504779i
\(456\) 96.4603 + 670.896i 0.00990607 + 0.0688982i
\(457\) −7675.11 + 4932.50i −0.785616 + 0.504885i −0.870893 0.491472i \(-0.836459\pi\)
0.0852768 + 0.996357i \(0.472823\pi\)
\(458\) 12579.4 14517.4i 1.28340 1.48112i
\(459\) 3107.17 0.315971
\(460\) −4315.00 3467.56i −0.437365 0.351470i
\(461\) 9726.44 0.982658 0.491329 0.870974i \(-0.336511\pi\)
0.491329 + 0.870974i \(0.336511\pi\)
\(462\) −64.2729 + 74.1749i −0.00647239 + 0.00746954i
\(463\) −9782.97 + 6287.14i −0.981973 + 0.631076i −0.929995 0.367573i \(-0.880189\pi\)
−0.0519779 + 0.998648i \(0.516553\pi\)
\(464\) −1635.59 11375.8i −0.163643 1.13816i
\(465\) −308.736 676.038i −0.0307899 0.0674205i
\(466\) −1513.73 + 10528.2i −0.150477 + 1.04659i
\(467\) −10451.0 + 3068.70i −1.03558 + 0.304074i −0.754978 0.655750i \(-0.772353\pi\)
−0.280603 + 0.959824i \(0.590535\pi\)
\(468\) −17460.8 11221.3i −1.72462 1.10835i
\(469\) 128.730 281.880i 0.0126742 0.0277527i
\(470\) 7679.64 + 2254.95i 0.753693 + 0.221304i
\(471\) −1740.06 2008.14i −0.170229 0.196454i
\(472\) −553.220 638.449i −0.0539491 0.0622606i
\(473\) 9771.22 + 2869.09i 0.949855 + 0.278903i
\(474\) 23.2787 50.9732i 0.00225575 0.00493940i
\(475\) −2232.88 1434.98i −0.215687 0.138614i
\(476\) 1045.36 306.946i 0.100660 0.0295564i
\(477\) 929.109 6462.10i 0.0891844 0.620291i
\(478\) 4570.36 + 10007.7i 0.437329 + 0.957618i
\(479\) 133.609 + 929.272i 0.0127448 + 0.0886420i 0.995201 0.0978511i \(-0.0311969\pi\)
−0.982456 + 0.186493i \(0.940288\pi\)
\(480\) −788.983 + 507.048i −0.0750249 + 0.0482156i
\(481\) −6876.22 + 7935.59i −0.651827 + 0.752249i
\(482\) −2464.65 −0.232908
\(483\) 103.690 + 42.7846i 0.00976827 + 0.00403057i
\(484\) −8175.78 −0.767823
\(485\) −1900.58 + 2193.39i −0.177940 + 0.205354i
\(486\) 5611.77 3606.47i 0.523776 0.336611i
\(487\) 740.065 + 5147.26i 0.0688615 + 0.478942i 0.994847 + 0.101384i \(0.0323271\pi\)
−0.925986 + 0.377558i \(0.876764\pi\)
\(488\) 2777.54 + 6081.96i 0.257650 + 0.564175i
\(489\) 266.108 1850.82i 0.0246090 0.171160i
\(490\) 6949.88 2040.67i 0.640742 0.188139i
\(491\) −9750.97 6266.57i −0.896243 0.575980i 0.00943089 0.999956i \(-0.496998\pi\)
−0.905674 + 0.423975i \(0.860634\pi\)
\(492\) 1141.92 2500.45i 0.104638 0.229124i
\(493\) −19942.9 5855.76i −1.82187 0.534950i
\(494\) 23080.5 + 26636.3i 2.10210 + 2.42596i
\(495\) 1968.54 + 2271.81i 0.178746 + 0.206284i
\(496\) −8417.58 2471.62i −0.762017 0.223748i
\(497\) −155.883 + 341.337i −0.0140691 + 0.0308069i
\(498\) 2300.69 + 1478.56i 0.207020 + 0.133044i
\(499\) −17542.2 + 5150.86i −1.57374 + 0.462093i −0.948088 0.318007i \(-0.896986\pi\)
−0.625655 + 0.780100i \(0.715168\pi\)
\(500\) −178.552 + 1241.86i −0.0159702 + 0.111075i
\(501\) −131.884 288.785i −0.0117607 0.0257524i
\(502\) 3351.90 + 23313.0i 0.298013 + 2.07273i
\(503\) −3594.16 + 2309.83i −0.318600 + 0.204752i −0.690159 0.723657i \(-0.742460\pi\)
0.371559 + 0.928409i \(0.378823\pi\)
\(504\) 206.543 238.364i 0.0182543 0.0210666i
\(505\) −5924.09 −0.522017
\(506\) −3375.74 10096.6i −0.296581 0.887048i
\(507\) 2887.45 0.252931
\(508\) −1956.85 + 2258.33i −0.170908 + 0.197238i
\(509\) 11962.0 7687.52i 1.04166 0.669437i 0.0962667 0.995356i \(-0.469310\pi\)
0.945398 + 0.325918i \(0.105673\pi\)
\(510\) 175.661 + 1221.75i 0.0152518 + 0.106079i
\(511\) −227.353 497.833i −0.0196820 0.0430975i
\(512\) −2004.54 + 13941.9i −0.173025 + 1.20342i
\(513\) −4018.39 + 1179.90i −0.345840 + 0.101548i
\(514\) −6272.52 4031.10i −0.538267 0.345923i
\(515\) −2843.17 + 6225.67i −0.243272 + 0.532691i
\(516\) 3184.67 + 935.105i 0.271700 + 0.0797785i
\(517\) 5609.25 + 6473.43i 0.477166 + 0.550679i
\(518\) −514.854 594.173i −0.0436706 0.0503985i
\(519\) −94.7499 27.8211i −0.00801360 0.00235300i
\(520\) 1404.59 3075.62i 0.118452 0.259374i
\(521\) 7783.86 + 5002.38i 0.654543 + 0.420649i 0.825324 0.564660i \(-0.190993\pi\)
−0.170781 + 0.985309i \(0.554629\pi\)
\(522\) −28446.7 + 8352.72i −2.38521 + 0.700361i
\(523\) 1219.78 8483.74i 0.101983 0.709308i −0.873112 0.487520i \(-0.837902\pi\)
0.975095 0.221788i \(-0.0711892\pi\)
\(524\) −4833.32 10583.5i −0.402948 0.882333i
\(525\) −3.61807 25.1642i −0.000300773 0.00209192i
\(526\) 13853.7 8903.26i 1.14839 0.738024i
\(527\) −10390.1 + 11990.8i −0.858819 + 0.991130i
\(528\) −730.399 −0.0602017
\(529\) −9720.29 + 7317.92i −0.798906 + 0.601456i
\(530\) 5240.27 0.429477
\(531\) 1691.73 1952.36i 0.138258 0.159558i
\(532\) −1235.37 + 793.923i −0.100677 + 0.0647010i
\(533\) −4128.51 28714.4i −0.335508 2.33351i
\(534\) −828.690 1814.58i −0.0671553 0.147049i
\(535\) 241.747 1681.39i 0.0195358 0.135874i
\(536\) −1866.61 + 548.087i −0.150420 + 0.0441674i
\(537\) −1568.38 1007.94i −0.126035 0.0809976i
\(538\) −1993.40 + 4364.93i −0.159742 + 0.349787i
\(539\) 7437.62 + 2183.88i 0.594362 + 0.174520i
\(540\) 1296.39 + 1496.12i 0.103311 + 0.119227i
\(541\) 8381.14 + 9672.35i 0.666051 + 0.768663i 0.983753 0.179527i \(-0.0574567\pi\)
−0.317702 + 0.948190i \(0.602911\pi\)
\(542\) −21249.3 6239.36i −1.68401 0.494471i
\(543\) 185.626 406.464i 0.0146703 0.0321235i
\(544\) 16843.4 + 10824.6i 1.32749 + 0.853128i
\(545\) −6743.81 + 1980.16i −0.530043 + 0.155635i
\(546\) −48.0436 + 334.150i −0.00376571 + 0.0261911i
\(547\) 7493.59 + 16408.7i 0.585745 + 1.28260i 0.937979 + 0.346691i \(0.112695\pi\)
−0.352234 + 0.935912i \(0.614578\pi\)
\(548\) 1701.60 + 11834.9i 0.132644 + 0.922558i
\(549\) −17200.4 + 11054.0i −1.33715 + 0.859335i
\(550\) −1580.09 + 1823.52i −0.122500 + 0.141373i
\(551\) 28015.0 2.16602
\(552\) −223.294 667.855i −0.0172174 0.0514960i
\(553\) 24.6400 0.00189475
\(554\) −19688.8 + 22722.1i −1.50992 + 1.74254i
\(555\) 416.968 267.969i 0.0318906 0.0204949i
\(556\) 3962.12 + 27557.1i 0.302214 + 2.10195i
\(557\) −10695.5 23419.9i −0.813616 1.78157i −0.591014 0.806662i \(-0.701272\pi\)
−0.222603 0.974909i \(-0.571455\pi\)
\(558\) −3220.79 + 22401.1i −0.244350 + 1.69949i
\(559\) 33609.0 9868.48i 2.54295 0.746677i
\(560\) −252.461 162.247i −0.0190507 0.0122432i
\(561\) −548.738 + 1201.57i −0.0412972 + 0.0904283i
\(562\) 14067.9 + 4130.70i 1.05590 + 0.310041i
\(563\) −9641.05 11126.4i −0.721708 0.832896i 0.269803 0.962915i \(-0.413041\pi\)
−0.991511 + 0.130020i \(0.958496\pi\)
\(564\) 1828.19 + 2109.84i 0.136491 + 0.157518i
\(565\) −3956.49 1161.73i −0.294603 0.0865032i
\(566\) 11742.5 25712.6i 0.872041 1.90950i
\(567\) 794.334 + 510.488i 0.0588340 + 0.0378103i
\(568\) 2260.34 663.695i 0.166975 0.0490282i
\(569\) −2242.82 + 15599.2i −0.165244 + 1.14930i 0.723309 + 0.690525i \(0.242620\pi\)
−0.888553 + 0.458774i \(0.848289\pi\)
\(570\) −691.119 1513.34i −0.0507856 0.111205i
\(571\) −2169.64 15090.2i −0.159013 1.10596i −0.900456 0.434947i \(-0.856767\pi\)
0.741443 0.671016i \(-0.234142\pi\)
\(572\) 14998.8 9639.16i 1.09639 0.704604i
\(573\) 1202.05 1387.24i 0.0876378 0.101139i
\(574\) 2172.08 0.157946
\(575\) 2549.13 + 1051.82i 0.184880 + 0.0762850i
\(576\) 19341.4 1.39911
\(577\) 10893.8 12572.1i 0.785985 0.907075i −0.211541 0.977369i \(-0.567848\pi\)
0.997526 + 0.0702938i \(0.0223937\pi\)
\(578\) 4614.29 2965.42i 0.332057 0.213400i
\(579\) 331.375 + 2304.76i 0.0237849 + 0.165428i
\(580\) −5501.11 12045.8i −0.393830 0.862367i
\(581\) −171.137 + 1190.29i −0.0122203 + 0.0849937i
\(582\) −1745.47 + 512.516i −0.124316 + 0.0365026i
\(583\) 4717.78 + 3031.93i 0.335147 + 0.215386i
\(584\) −1427.30 + 3125.34i −0.101133 + 0.221451i
\(585\) 9920.71 + 2912.98i 0.701147 + 0.205875i
\(586\) −5010.61 5782.55i −0.353219 0.407636i
\(587\) 17574.4 + 20281.9i 1.23573 + 1.42611i 0.868289 + 0.496059i \(0.165220\pi\)
0.367439 + 0.930047i \(0.380235\pi\)
\(588\) 2424.10 + 711.780i 0.170014 + 0.0499206i
\(589\) 8883.72 19452.6i 0.621473 1.36084i
\(590\) 1744.41 + 1121.06i 0.121722 + 0.0782260i
\(591\) 602.240 176.834i 0.0419168 0.0123079i
\(592\) 832.657 5791.25i 0.0578074 0.402059i
\(593\) 4717.19 + 10329.2i 0.326664 + 0.715294i 0.999704 0.0243116i \(-0.00773937\pi\)
−0.673041 + 0.739606i \(0.735012\pi\)
\(594\) 541.819 + 3768.44i 0.0374261 + 0.260304i
\(595\) −456.580 + 293.426i −0.0314588 + 0.0202173i
\(596\) 9562.15 11035.3i 0.657183 0.758430i
\(597\) −3205.33 −0.219741
\(598\) −28543.3 22937.6i −1.95187 1.56854i
\(599\) −16435.3 −1.12108 −0.560540 0.828128i \(-0.689406\pi\)
−0.560540 + 0.828128i \(0.689406\pi\)
\(600\) −104.518 + 120.620i −0.00711153 + 0.00820714i
\(601\) −21395.4 + 13750.0i −1.45214 + 0.933232i −0.453009 + 0.891506i \(0.649649\pi\)
−0.999129 + 0.0417263i \(0.986714\pi\)
\(602\) 373.248 + 2595.99i 0.0252698 + 0.175756i
\(603\) −2471.32 5411.43i −0.166899 0.365457i
\(604\) −1293.11 + 8993.80i −0.0871126 + 0.605882i
\(605\) 3907.83 1147.44i 0.262605 0.0771077i
\(606\) −3123.79 2007.54i −0.209398 0.134572i
\(607\) −4673.03 + 10232.5i −0.312475 + 0.684225i −0.999084 0.0428025i \(-0.986371\pi\)
0.686609 + 0.727027i \(0.259099\pi\)
\(608\) −25893.4 7603.00i −1.72717 0.507142i
\(609\) 175.723 + 202.795i 0.0116924 + 0.0134937i
\(610\) −10747.3 12403.0i −0.713352 0.823252i
\(611\) 28268.6 + 8300.41i 1.87173 + 0.549588i
\(612\) 8688.73 19025.7i 0.573890 1.25664i
\(613\) 8317.46 + 5345.30i 0.548024 + 0.352194i 0.785170 0.619280i \(-0.212576\pi\)
−0.237146 + 0.971474i \(0.576212\pi\)
\(614\) 18006.7 5287.26i 1.18354 0.347518i
\(615\) −194.880 + 1355.42i −0.0127778 + 0.0888714i
\(616\) 112.548 + 246.447i 0.00736153 + 0.0161195i
\(617\) 1651.86 + 11488.9i 0.107782 + 0.749637i 0.970001 + 0.243102i \(0.0781649\pi\)
−0.862219 + 0.506535i \(0.830926\pi\)
\(618\) −3608.94 + 2319.33i −0.234908 + 0.150966i
\(619\) 14995.8 17306.1i 0.973719 1.12373i −0.0185757 0.999827i \(-0.505913\pi\)
0.992294 0.123904i \(-0.0395414\pi\)
\(620\) −10108.6 −0.654792
\(621\) 3888.25 1952.95i 0.251256 0.126198i
\(622\) 19666.1 1.26775
\(623\) 574.411 662.905i 0.0369395 0.0426304i
\(624\) −2113.46 + 1358.24i −0.135586 + 0.0871361i
\(625\) −88.9468 618.638i −0.00569259 0.0395929i
\(626\) 7947.82 + 17403.3i 0.507442 + 1.11114i
\(627\) 253.383 1762.32i 0.0161390 0.112249i
\(628\) −34677.0 + 10182.1i −2.20345 + 0.646990i
\(629\) −8901.55 5720.68i −0.564274 0.362637i
\(630\) −321.600 + 704.207i −0.0203379 + 0.0445338i
\(631\) −3247.73 953.619i −0.204897 0.0601632i 0.177673 0.984089i \(-0.443143\pi\)
−0.382571 + 0.923926i \(0.624961\pi\)
\(632\) −101.299 116.905i −0.00637570 0.00735795i
\(633\) 1413.78 + 1631.59i 0.0887723 + 0.102449i
\(634\) −23404.4 6872.16i −1.46610 0.430486i
\(635\) 618.380 1354.06i 0.0386451 0.0846211i
\(636\) 1537.64 + 988.179i 0.0958668 + 0.0616098i
\(637\) 25582.3 7511.66i 1.59122 0.467225i
\(638\) 3624.39 25208.2i 0.224908 1.56427i
\(639\) 2992.59 + 6552.87i 0.185266 + 0.405677i
\(640\) 762.428 + 5302.80i 0.0470900 + 0.327518i
\(641\) −6203.31 + 3986.63i −0.382240 + 0.245651i −0.717624 0.696431i \(-0.754770\pi\)
0.335384 + 0.942082i \(0.391134\pi\)
\(642\) 697.257 804.677i 0.0428638 0.0494674i
\(643\) 30423.3 1.86591 0.932953 0.359998i \(-0.117223\pi\)
0.932953 + 0.359998i \(0.117223\pi\)
\(644\) 1115.22 1041.15i 0.0682389 0.0637064i
\(645\) −1653.44 −0.100937
\(646\) −23258.5 + 26841.8i −1.41656 + 1.63479i
\(647\) −10816.9 + 6951.57i −0.657271 + 0.422402i −0.826317 0.563206i \(-0.809568\pi\)
0.169046 + 0.985608i \(0.445931\pi\)
\(648\) −843.608 5867.42i −0.0511420 0.355701i
\(649\) 921.849 + 2018.57i 0.0557561 + 0.122089i
\(650\) −1181.10 + 8214.76i −0.0712719 + 0.495707i
\(651\) 196.537 57.7084i 0.0118324 0.00347430i
\(652\) −21395.4 13750.0i −1.28513 0.825905i
\(653\) 1165.32 2551.69i 0.0698352 0.152918i −0.871495 0.490404i \(-0.836849\pi\)
0.941331 + 0.337486i \(0.109577\pi\)
\(654\) −4227.06 1241.18i −0.252739 0.0742108i
\(655\) 3795.57 + 4380.32i 0.226420 + 0.261303i
\(656\) 10585.4 + 12216.2i 0.630015 + 0.727076i
\(657\) −10081.1 2960.08i −0.598632 0.175774i
\(658\) −916.385 + 2006.60i −0.0542924 + 0.118884i
\(659\) −7497.30 4818.22i −0.443176 0.284812i 0.299961 0.953952i \(-0.403026\pi\)
−0.743137 + 0.669140i \(0.766663\pi\)
\(660\) −807.508 + 237.106i −0.0476246 + 0.0139838i
\(661\) 1049.99 7302.83i 0.0617849 0.429723i −0.935327 0.353783i \(-0.884895\pi\)
0.997112 0.0759403i \(-0.0241958\pi\)
\(662\) 2415.08 + 5288.28i 0.141789 + 0.310476i
\(663\) 646.606 + 4497.24i 0.0378764 + 0.263436i
\(664\) 6350.90 4081.47i 0.371179 0.238542i
\(665\) 479.053 552.856i 0.0279351 0.0322389i
\(666\) −15093.3 −0.878156
\(667\) −28636.6 + 5206.90i −1.66239 + 0.302267i
\(668\) −4318.12 −0.250109
\(669\) 8.32688 9.60973i 0.000481219 0.000555357i
\(670\) 4017.08 2581.62i 0.231632 0.148861i
\(671\) −2499.52 17384.6i −0.143805 1.00018i
\(672\) −107.379 235.127i −0.00616404 0.0134974i
\(673\) 485.324 3375.50i 0.0277977 0.193337i −0.971191 0.238303i \(-0.923409\pi\)
0.998989 + 0.0449658i \(0.0143179\pi\)
\(674\) 4344.49 1275.66i 0.248284 0.0729027i
\(675\) −829.620 533.164i −0.0473068 0.0304022i
\(676\) 16314.8 35724.4i 0.928244 2.03257i
\(677\) 11464.0 + 3366.13i 0.650808 + 0.191095i 0.590440 0.807082i \(-0.298954\pi\)
0.0603684 + 0.998176i \(0.480772\pi\)
\(678\) −1692.58 1953.34i −0.0958749 0.110646i
\(679\) −523.822 604.523i −0.0296059 0.0341671i
\(680\) 3269.23 + 959.934i 0.184367 + 0.0541350i
\(681\) 1205.34 2639.32i 0.0678247 0.148515i
\(682\) −16354.4 10510.3i −0.918243 0.590119i
\(683\) −22390.2 + 6574.36i −1.25438 + 0.368318i −0.840398 0.541969i \(-0.817679\pi\)
−0.413977 + 0.910287i \(0.635861\pi\)
\(684\) −4012.07 + 27904.5i −0.224277 + 1.55988i
\(685\) −2474.31 5417.99i −0.138013 0.302206i
\(686\) 569.796 + 3963.02i 0.0317127 + 0.220567i
\(687\) −2807.86 + 1804.50i −0.155934 + 0.100213i
\(688\) −12781.4 + 14750.5i −0.708262 + 0.817378i
\(689\) 19289.3 1.06657
\(690\) 987.724 + 1418.47i 0.0544957 + 0.0782610i
\(691\) 8373.85 0.461007 0.230504 0.973071i \(-0.425963\pi\)
0.230504 + 0.973071i \(0.425963\pi\)
\(692\) −879.571 + 1015.08i −0.0483183 + 0.0557623i
\(693\) −696.977 + 447.920i −0.0382048 + 0.0245528i
\(694\) −5853.77 40713.8i −0.320181 2.22691i
\(695\) −5761.34 12615.6i −0.314446 0.688541i
\(696\) 239.742 1667.44i 0.0130566 0.0908107i
\(697\) 28049.3 8236.03i 1.52431 0.447578i
\(698\) −1315.42 845.369i −0.0713315 0.0458420i
\(699\) 767.746 1681.13i 0.0415434 0.0909673i
\(700\) −331.783 97.4202i −0.0179146 0.00526020i
\(701\) 3162.63 + 3649.87i 0.170401 + 0.196653i 0.834526 0.550968i \(-0.185741\pi\)
−0.664125 + 0.747621i \(0.731196\pi\)
\(702\) 8575.50 + 9896.65i 0.461056 + 0.532087i
\(703\) 13684.4 + 4018.09i 0.734162 + 0.215569i
\(704\) −6901.82 + 15112.9i −0.369492 + 0.809074i
\(705\) −1169.94 751.875i −0.0625000 0.0401663i
\(706\) −40344.6 + 11846.2i −2.15069 + 0.631501i
\(707\) 232.364 1616.13i 0.0123606 0.0859699i
\(708\) 300.452 + 657.899i 0.0159487 + 0.0349228i
\(709\) −1865.71 12976.3i −0.0988266 0.687354i −0.977655 0.210216i \(-0.932583\pi\)
0.878828 0.477138i \(-0.158326\pi\)
\(710\) −4864.41 + 3126.17i −0.257124 + 0.165244i
\(711\) 309.769 357.492i 0.0163393 0.0188566i
\(712\) −5506.65 −0.289846
\(713\) −5465.36 + 21535.4i −0.287068 + 1.13115i
\(714\) −340.191 −0.0178310
\(715\) −5816.26 + 6712.33i −0.304218 + 0.351086i
\(716\) −21332.3 + 13709.4i −1.11344 + 0.715565i
\(717\) −272.055 1892.18i −0.0141702 0.0985562i
\(718\) 5804.18 + 12709.4i 0.301685 + 0.660599i
\(719\) 57.9513 403.060i 0.00300587 0.0209063i −0.988263 0.152760i \(-0.951184\pi\)
0.991269 + 0.131854i \(0.0420929\pi\)
\(720\) −5527.86 + 1623.13i −0.286127 + 0.0840144i
\(721\) −1586.88 1019.83i −0.0819674 0.0526773i
\(722\) 7785.46 17047.8i 0.401309 0.878743i
\(723\) 410.898 + 120.651i 0.0211362 + 0.00620615i
\(724\) −3980.07 4593.25i −0.204307 0.235783i
\(725\) 4319.98 + 4985.53i 0.221297 + 0.255390i
\(726\) 2449.45 + 719.223i 0.125217 + 0.0367670i
\(727\) −1398.53 + 3062.36i −0.0713462 + 0.156226i −0.941945 0.335767i \(-0.891004\pi\)
0.870599 + 0.491994i \(0.163732\pi\)
\(728\) 783.953 + 503.816i 0.0399110 + 0.0256493i
\(729\) 16638.6 4885.52i 0.845327 0.248210i
\(730\) 1200.20 8347.58i 0.0608512 0.423230i
\(731\) 14663.4 + 32108.3i 0.741920 + 1.62458i
\(732\) −814.654 5666.04i −0.0411345 0.286097i
\(733\) 22548.6 14491.1i 1.13622 0.730207i 0.169374 0.985552i \(-0.445825\pi\)
0.966850 + 0.255345i \(0.0821890\pi\)
\(734\) −1037.08 + 1196.85i −0.0521516 + 0.0601862i
\(735\) −1258.56 −0.0631600
\(736\) 27881.1 + 2959.12i 1.39635 + 0.148199i
\(737\) 5110.24 0.255411
\(738\) 27307.0 31514.0i 1.36204 1.57188i
\(739\) 9857.72 6335.17i 0.490693 0.315349i −0.271791 0.962356i \(-0.587616\pi\)
0.762484 + 0.647007i \(0.223980\pi\)
\(740\) −959.425 6672.95i −0.0476610 0.331490i
\(741\) −2543.99 5570.57i −0.126121 0.276167i
\(742\) −205.542 + 1429.58i −0.0101694 + 0.0707297i
\(743\) −15166.3 + 4453.22i −0.748852 + 0.219883i −0.633822 0.773479i \(-0.718515\pi\)
−0.115030 + 0.993362i \(0.536697\pi\)
\(744\) −1081.79 695.224i −0.0533069 0.0342583i
\(745\) −3021.72 + 6616.63i −0.148600 + 0.325389i
\(746\) −43255.8 12701.1i −2.12293 0.623349i
\(747\) 15117.9 + 17447.0i 0.740476 + 0.854554i
\(748\) 11765.7 + 13578.3i 0.575128 + 0.663734i
\(749\) 449.210 + 131.900i 0.0219143 + 0.00643461i
\(750\) 162.740 356.351i 0.00792324 0.0173495i
\(751\) −15381.1 9884.81i −0.747355 0.480296i 0.110700 0.993854i \(-0.464691\pi\)
−0.858055 + 0.513558i \(0.828327\pi\)
\(752\) −15751.4 + 4625.02i −0.763822 + 0.224278i
\(753\) 582.409 4050.75i 0.0281862 0.196039i
\(754\) −36389.3 79681.4i −1.75759 3.84858i
\(755\) −644.171 4480.31i −0.0310514 0.215967i
\(756\) −458.998 + 294.980i −0.0220815 + 0.0141909i
\(757\) 1439.20 1660.92i 0.0690997 0.0797453i −0.720147 0.693821i \(-0.755926\pi\)
0.789247 + 0.614076i \(0.210471\pi\)
\(758\) 41304.2 1.97920
\(759\) 68.5408 + 1848.52i 0.00327783 + 0.0884017i
\(760\) −4592.49 −0.219194
\(761\) 106.841 123.301i 0.00508931 0.00587338i −0.753199 0.657792i \(-0.771490\pi\)
0.758289 + 0.651919i \(0.226036\pi\)
\(762\) 784.934 504.446i 0.0373165 0.0239818i
\(763\) −275.683 1917.42i −0.0130805 0.0909768i
\(764\) −10371.5 22710.4i −0.491136 1.0754